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Abstract. Maximum margin clustering (MMC) approaches extend the
large margin principle of SVM to unsupervised learning with consider-
able success. In this work, we utilize the ratio between the margin and the
intra-cluster variance, to explicitly consider both the separation and the
compactness of the clusters in the objective. Moreover, we employ multi-
ple kernel learning (MKL) to jointly learn the kernel and a partitioning
of the instances, thus overcoming the kernel selection problem of MMC.
Importantly, the margin alone cannot reliably reflect the quality of the
learned kernel, as it can be enlarged by a simple scaling of the kernel. In
contrast, our ratio-based objective is scale invariant and also invariant to
the type of norm constraints on the kernel parameters. Optimization of
the objective is performed using an iterative gradient-based algorithm.
Comparative clustering experiments on various datasets demonstrate the
effectiveness of the proposed formulation.

Keywords: maximum margin clustering, unsupervised multiple kernel
learning, kernel k -means.

1 Introduction

The success of large margin techniques in supervised learning, particularly that
of support vector machines (SVM), has generated great interest in extending
such techniques to the unsupervised setting, leading to the, so called, maximum
margin clustering (MMC) problem [21]. Given a dataset X = {xi}Ni=1, xi ∈ �d,
MMC approaches attempt to find a labeling (clustering) y = [y1, . . . , yN ]�,
yi ∈ {±1}, of the instances, such that a subsequent training of a standard SVM
would result in a margin that is maximal over all possible labellings. MMC is
formulated as:

min
y

min
w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi, (1)

s.t. − � ≤
N∑

i=1

yi ≤ �, y ∈ {±1}N , yi
(
w�φ(xi) + b

) ≥ 1− ξi, ξi ≥ 0,

where w, b are the coefficients of the SVM hyperplane (‖w‖ is the reciprocal
of the margin), ξ the slack variables capturing the misclassification error and
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C > 0 the regularizer. Instances are implicitly mapped through transformation
φ to a higher dimensional feature space using the kernel trick (K(xi,xj) =
φ(xi)

�φ(xj)). Moreover, to prevent the trivially “optimal” solution of assigning
all instances to the same cluster and thus obtaining an infinite margin (‖w‖ = 0),

a cluster balance constraint (−� ≤ ∑N
i=1 yi ≤ �) was introduced by Xu et al. [21],

where � ≥ 0 is a constant controlling the imbalance of the clusters. The MMC
problem is non-convex with integer parameters y, making the optimization much
trickier than that of (convex) supervised SVM. To solve (1), some approaches
employ semidefinite programing (SDP) [18, 21, 22], others exploit the cutting
plane method [20, 25] and others rely on alternating between the outer and the
inner minimization [24].

It is well-known that the performance of kernel-based approaches, like MMC,
heavily depends on the choice of the kernel. However, it is often unclear which is
the best kernel for a particular task. Multiple kernel learning (MKL) [9], which
has been mainly studied under the SVM paradigm, attempts to simultaneously
locate the hyperplane with the largest margin and also learn a suitable kernel.
The kernel, K̃(xi,xj) = φ̃(xi)

�φ̃(xj), is usually parametrized by a vector θ =

[θ1, . . . , θV ]
�
of parameters. Most existing MKL approaches focus on supervised

learning and in principle derive from the following optimization (subject to some
slight modifications) (e.g. [11, 12, 14, 23]):

min
θ,w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi, (2)

s.t. θv ≥ 0, ‖θ‖pp ≤ 1, yi

(
w�φ̃(xi) + b

)
≥ 1− ξi, ξi ≥ 0.

Kernel parameters θv are limited to nonnegative values to ensure the learned
kernel is positive semidefinite and the p-norm constraint is employed to avoid
overfitting. Usually the kernel is parametrized as a linear combination of some
given basis kernels and either the 1-norm that promotes sparsity [14,16,26], or a
more general p-norm, p ≥ 1, [11,12,23], is chosen. There also exist a few studies
that consider nonlinear combinations of basis kernels [3,8], or even general types
of parametric kernels [7,19]. The optimization problem in (2) is non-convex due
to θ. Depending on the form of the kernel parametrization and the choice of
p-norm, various optimization strategies have been proposed, several of which al-
ternate between updating θ and solving a standard SVM to obtain w, b and ξ.
For example, semi-infinite linear programming [11,16,26], gradient-based meth-
ods [7, 8, 14, 19] and closed-form methods [12, 23].

Extending MKL to the clustering domain, and in particular to MMC prob-
lems, is an interesting research direction, however, existing work is rather limited.
The methods of [18,25] seek to find a linear mixture of the basis kernels together
with the cluster assignments, such that the margin is maximized, in essence
combining (1) and (2). In this paper, we follow a similar path, but propose a
novel objective that considers the ratio between the margin (a notion of clus-
ter separability) and the intra-cluster variance criterion of kernel k -means [5] (a
notion of cluster coherence). Hence, both the separation and the compactness
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of the clusters are explicitly taken into account, which can possibly improve on
the solutions returned by approaches utilizing either of the two. Importantly,
the margin has been shown to suffer from a major deficiency when applied to
supervised MKL [7]. It can become arbitrarily large by a simple scaling of the
kernel, thus it is inappropriate for assessing the quality of the learned kernel.
The same can be demonstrated to hold for unsupervised MKL and we prove
that our ratio-based objective is invariant to kernel scaling, thus overcoming
this deficiency. Moreover, its global optimum solution is invariant to the type
of p-norm constraint on the kernel parameters θ (when a linear combination of
basis kernels is employed), making the selection of a suitable norm less crucial.

A simple gradient-based optimization procedure that alternates between up-
dating the kernel parameters θ and the cluster assignments y is devised, avoid-
ing the invocation of complex optimizers, such as the SDP solvers [18] and the
cutting plane method [25]. Experiments on several datasets, including two collec-
tions of handwritten numerals and two image collections, reveal the superiority
of the proposed method over approaches that rely solely on the margin or the
intra-cluster variance.

The rest of this paper is organized as follows. Section 2 introduces our
ratio-based formulation and presents its invariance properties and optimiza-
tion details. Experiments follow in Section 3, before the concluding remarks of
Section 4.

2 The RMKC Algorithm

2.1 Problem Formulation

Consider a dataset X = {xi}Ni=1, xi ∈ �d, for which we want to simultane-
ously infer the cluster labels and also perform kernel learning under the large
margin framework. While presenting our method we shall restrict ourselves on
a linear combination of basis kernels, which is the most common technique of
parametrizing kernels for MKL [12, 14, 23]. Later we will show that our model
can accommodate more general parametric forms of kernels.

Assume that V basis kernels, K(v) : X ×X → �, are available, each implicitly
inducing a transformation φ(v) : X → H(v) on the instances to a feature space
H(v) through K(v)(xi,xj) = φ(v)(xi)

�φ(v)(xj). A linear mixture of kernels gives

rise to a composite kernel K̃:

K̃(xi,xj) =

V∑

v=1

θvK(v)(xi,xj), θv ≥ 0, (3)

that is parametrized by θ = [θ1, . . . , θV ]
�. Since K̃ is a valid kernel it holds that

K̃(xi,xj) = φ̃(xi)
�φ̃(xj), φ̃ : X → H̃, and actually φ̃(xi) =

[√
θ1φ

(1)(xi)
�, . . . ,√

θV φ
(V )(xi)

�]� due to the linear combination.
We propose a new formulation that does not depend only on the margin, like

most existing MMC and MKL studies, but utilizes the ratio between the margin
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and the intra-cluster variance objective of kernel k -means [5] in feature space

H̃. Minimizing such a ratio can lead to superior partitionings as both compact
and well-separated clusters are sought. Moreover, as it will be proved, it makes
our formulation invariant to kernel scaling, an important property when kernel
learning is involved [7]. Denoting by y = [y1, . . . , yN ]�, yi ∈ {±1}, the vector of
the instances’ cluster labels, we consider the following optimization problem:

min
θ,y

J (θ,y), s.t. θv ≥ 0, ‖θ‖pp = 1, −� ≤
N∑

i=1

yi ≤ �, y ∈ {±1}N , (4)

J (θ,y) = min
w,b,ξ

1

2
E(θ,y)‖w‖2 + C

N∑

i=1

ξi, (5)

s.t. yi

(
w�φ̃(xi) + b

)
≥ 1− ξi, ξi ≥ 0.

Here E(θ,y) is the kernel k -means criterion (6) describing the intra-cluster vari-
ance1, where m̃k is the k-th cluster center and δik is a cluster indicator variable
with δi1 = 1 if yi = −1 and δi2 = 1 if yi = 1. Note that due to the SVM-like
formulation we are limited to two-cluster solutions, i.e. k ∈ {1, 2}, which is the
typical case for MMC methods.

E(θ,y) = 1

N

N∑

i=1

2∑

k=1

δik‖φ̃(xi)− m̃k‖2, (6)

δik =

{
1, yi = 2k − 3
0, otherwise

, m̃k =

∑N
i=1 δikφ̃(xi)∑N

i=1 δik

Note that the squared Euclidean distances in E(θ,y) can be posed solely in

terms of the entries of the kernel matrix K̃ ∈ �N×N corresponding to K̃, i.e.

K̃ij = K̃(xi,xj) [5]. Additionally, by using (3), this composite kernel matrix

can be written as the sum of the basis kernel matrices K(v) ∈ �N×N , i.e. K̃ =∑V
v=1 θvK

(v), thus getting (7).

E(θ,y) = 1

N

V∑

v=1

θv

N∑

i=1

2∑

k=1

δik

(
K

(v)
ii − 2

∑N
j=1 δjkK

(v)
ij∑N

j=1 δjk
+

∑N
j=1

∑N
l=1 δjkδlkK

(v)
jl∑N

j=1

∑N
l=1 δjkδlk

)

(7)

For the above optimization problem (4), it is easy to verify that its objective
function J (θ,y) at a given {θ, y} is defined as the optimal objective value of
a problem (5) that closely resembles the standard SVM. The only difference is
that the variance to margin ratio is employed in place of the margin. Similar to
MMC methods [21,24], a cluster balance constraint (−� ≤ ∑N

i=1 yi ≤ �) must be

1 For simplicity, on the following, we shall refer to the intra-cluster variance as the
variance of the clusters.
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imposed to prevent meaningless solutions from arising. Finally, the composite
kernel coefficients θv are required to be nonnegative so that K̃ is a valid kernel
and a p-norm constraint is introduced to avoid overfitting, as in (2).

Hence, the optimization in (4) searches for a pair of {θ,y} values that yields a
small variance to margin ratio (E(θ,y)‖w‖2) regularized by the misclassification
error (captured by the slack variables ξ). We shall call this approach Ratio-based
Multiple Kernel Clustering, abbreviated as RMKC.

It should be clarified that the actual problem we are trying to solve is (s.t.
the constraints in (4)-(5)):

min
θ,y,w,b,ξ

1

2
E(θ,y)‖w‖2 + C

N∑

i=1

ξi, (8)

which is rather difficult to directly optimize, since it constitutes a non-convex
problem with integer parameters y. Reformulating it as in (4), analogously to
Rakotomamonjy et al. [14], will enable us to devise an alternating optimization
strategy, that benefits from differentiability w.r.t. θ and does not demand the
use of complex solvers.

2.2 Properties of RMKC

In this section, two properties of RMKC are presented, which highlight some
important advantages of combining the margin with the variance of the clusters.

Suppose the composite kernel K̃ (3) is scaled by α > 0, i.e. K̃′ = αK̃. Then

the corresponding transformation becomes φ̃′ =
√
αφ̃. Moreover, as K̃ is a linear

combination of basis kernels, its scaling can be equivalently posed as a scaling
on its parameters, i.e. θ′ = αθ.

Proposition 1. (Scale Invariance) If a kernel K̃ of the form defined in (3)
is scaled by a scalar α > 0, then J (αθ,y) = J (θ,y).

Proof. From (7) it is evident that E(αθ,y) = αE(θ,y), hence:

J (αθ,y) = min
w,b,ξ

1

2
αE(θ,y)‖w‖2 + C

N∑

i=1

ξi,

s.t. yi

(
w�

(√
αφ̃(xi)

)
+ b

)
≥ 1− ξi, ξi ≥ 0.

Setting w = w′/
√
α and substituting in the above equation completes the proof,

as (5) is recovered. 	

Our quest for an objective that satisfies Proposition 1 was inspired by Gai et

al. [7], where it was illustrated that relying solely on the margin is not sufficient
to perform kernel learning in the supervised case. Analogously, if J (θ,y) in (4)
is replaced with the more conventional margin-based objective:

J ′(θ,y) = min
w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi, s.t. yi

(
w�φ̃(xi) + b

)
≥ 1− ξi, ξi ≥ 0,

(9)



246 G. Tzortzis and A. Likas

it can be shown that an arbitrarily small J ′(θ,y) value can be achieved by
scaling the composite kernel, thus constituting the margin criterion unsuitable
for evaluating the true quality of the kernel while learning {θ,y}. Note that in
the linear combination case (3), where scaling the composite kernel is equivalent
to scaling its parameters, the scaling issue can be handled through the p-norm
constraint on θ. However, this is not possible for nonlinear mixtures of basis
kernels. On the contrary, our ratio-based objective (5) is scale invariant for ar-
bitrary forms of composite kernels (the proof is analogous to Proposition 1) and
also allows for norm invariance.

Proposition 2. (Norm Invariance) Consider a kernel K̃ of the form defined
in (3) as well as a) the optimization problem described by (4) without the p-
norm constraint on θ (p1) and b) the same problem (4), but with the slightly
more general p-norm constraint ‖θ‖pp = c, c > 0, in place of ‖θ‖pp = 1 (p2). If

{θ∗
a,y

∗
a} is a global optimal solution of p1 then

{
c1/p

‖θ∗
a‖p

θ∗
a,y

∗
a

}
is a global optimal

solution of p2. Also, if {θ∗
b ,y

∗
b} is a global optimal solution of p2 then {θ∗

b ,y
∗
b}

is a global optimal solution of p1.

Proof. From the scale invariance property and since {θ∗
a,y

∗
a} is a global optimum

of p1 we get J
(

c1/p

‖θ∗
a‖p

θ∗
a,y

∗
a

)
= J (θ∗

a,y
∗
a) ≤ J (θ,y) for any {θ,y} satisfying

the constraints of p1. Note that the admissible θ values for problem p2 are a
subset of those allowed in p1, hence the above inequality also holds for every
{θ,y} adhering to the constraints of p2 (the constraints for y are identical in p1

and p2)). Together with the fact that
∥∥∥ c1/p

‖θ∗
a‖p

θ∗
a

∥∥∥
p

p
= c the first part of the proof

is completed.

For any {θ,y} complying to the constraints of p1 it holds that
{

c1/p

‖θ‖p
θ,y

}

is admissible for p2, since
∥∥∥ c1/p

‖θ‖p
θ
∥∥∥
p

p
= c. The scale invariance property and

the global optimality of {θ∗
b ,y

∗
b} w.r.t. p2 yields J (θ∗

b ,y
∗
b ) ≤ J

(
c1/p

‖θ‖p
θ,y

)
=

J (θ,y), thus completing the second part of the proof. 	

Proposition 2 implies that the global optimal solution of the proposed formu-

lation (4) is insensitive to the selected type of p-norm constraint, up to a scaling
on the composite kernel parameters. The norm constraint can be even dropped
from (4) without affecting its optimal solution. Of course, a solver that locates
local optima of the ratio-based objective may produce different solutions when
different p-norms are employed for the same problem, but at least the overall
best will be the same, making the choice of the p-norm less crucial.

2.3 Optimizing the RMKC Objective

An iterative algorithm that alternates between updating the cluster labels y and
reestimating the composite kernel coefficients θ, starting from some initial {θ,y}
value, is presented and its main steps are summarized in Algorithms 1-2.
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Evaluating the Objective Function. To compute the value of the objective
function J (θ,y) for some fixed {θ,y}, we need to solve the convex SVM-like
optimization problem in (5). This can be facilitated by turning to its dual, which
can be obtained by incorporating the constraints into the primal via Lagrange
multipliers and setting the derivatives w.r.t. w, b, and ξ to zero. After some
manipulation the following dual emerges:

max
α

N∑

i=1

αi − 1

2E(θ,y)
N∑

i=1

N∑

j=1

αiαjyiyjK̃ij , s.t. 0 ≤ αi ≤ C,
N∑

i=1

αiyi = 0.

(10)

Since the cluster variance E(θ,y) is a constant for given {θ,y}, it can be
included in the kernel matrix and, thus, (10) actually coincides with the dual

of the standard SVM, with 1
E(θ,y)K̃ as the kernel matrix. Hence, the optimal

solution for (10), denoted by α∗, can be located using any of the existing SVM
solvers (the optimal values for w, b, and ξ in (5) are calculated based on the
solution of the dual). Moreover, due to strong duality, the value of J (θ,y) can
be directly acquired from the dual:

J (θ,y) =

N∑

i=1

α∗
i −

1

2E(θ,y)
N∑

i=1

N∑

j=1

α∗
iα

∗
jyiyjK̃ij . (11)

Updating the Kernel Parameters. Changing the composite kernel coeffi-
cients so that the ratio-based objective J (θ,y) is reduced, while keeping the
cluster labels y fixed, can be effectively performed by means of gradient descent.
Due to strong duality between (5) and (10) (Section 2.3), we can exploit (11) to
compute the gradient of J (θ,y) w.r.t. θ.

Proof for the differentiability of J (θ,y) comes from Danskin’s theorem [4],
similar to [14, 19]. To apply this theorem to our problem, two conditions must
be satisfied. First, the optimal solution α∗ of (10) must be unique. This can

be ensured by demanding the composite kernel matrix K̃ to be strictly positive
definite for every admissible θ. Second, the objective function optimized in the
dual (10) must be continuously differentiable w.r.t. θ, which can be ensured by

demanding K̃ to be continuously differentiable w.r.t. θ. As K̃ is a linear mixture
of basis kernel matrices K(v), both requirements are fulfilled as long as every
K(v) is strictly positive definite. The theorem also states that J (θ,y) can be
differentiated as if α∗ does not depend on θ. Therefore, the derivatives can be
obtained from (11) as:

∂J (θ,y)

∂θv
=

1

2E(θ,y)2
N∑

i=1

N∑

j=1

α∗
iα

∗
jyiyjK̃ij

∂E(θ,y)
∂θv

− 1

2E(θ,y)
N∑

i=1

N∑

j=1

α∗
iα

∗
jyiyj

∂K̃ij

∂θv
, (12)
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where
∂ ˜Kij

∂θv
= K

(v)
ij and ∂E(θ,y)

∂θv
follows directly from (7). Note that in order to

calculate the derivatives, we must first obtain α∗ by solving (10) for the current
{θ,y} values.

The procedure for updating θ for given y, begins by executing a standard
gradient descent update on θ, using (12). Afterwards, θ is projected back to its
feasible set, so that the positivity and p-norm constraints (4) are enforced. In
this work, we consider the values p = 1, 2 and execute the projections as shown
in [6, 15]. Note that the gradient descent step size, η, is adjusted according to
the Armijo rule, which may require additional optimizations of the dual.

Updating the Cluster Labels. Finding a new set of cluster assignments y′

that will further decrease J (θ,y) (keeping the kernel parameters θ fixed) is
not straightforward, since the underlying optimization is a non-convex integer
problem. Some single kernel MMC approaches relax y on the continuous domain
to ease the optimization (e.g. [18, 21]), however, in the end the relaxed solution
should be mapped back to the discrete space. Here, on the contrary, our aim is
to work directly on the discrete cluster labels without any relaxations.

We have developed a practical search framework, where an improved clus-
ter labeling y′ is obtained by moving instances between the two clusters. One
possible direction would be to change the cluster label of a single instance only
and then proceed with reestimating θ. However, we have empirically found that
such a minor modification on y results in premature convergence as the algo-
rithm overcommits to the initial assignments. A better strategy is to change
the labels of multiple instances before reestimating θ. The strategy we follow
is motivated by several graph partitioning heuristics that have been applied to
clustering, prominently the Kernighan-Lin algorithm [10]: an initial split of the
graph is revamped by exchanging several nodes (specified in an incremental fash-
ion) between partitions and selecting the best subset of these nodes. Based on
this idea, we build a sequence of L candidate cluster label vectors, y(1), . . . ,y(L),
(L is user-defined) and select the one generating the greatest improvement on
J (θ,y) in order to update y. These L candidate label vectors are constructed
incrementally (one after the other), such that compared to the previous can-
didate label vector, the next contains one more instance whose label has been
changed (i.e. they differ in one element). Given y(l), the (l + 1)-th instance to
change clusters is selected to be the one that is expected to produce the smallest
objective value when added to the current l changes, thus constructing y(l+1).

A meaningful approach for picking the (l + 1)-th instance is to rank the con-
tending instances based on the confidence about their labeling according to the
current (after l cluster moves) separating hyperplane and select the one with the

smallest yi(w
�φ̃(xi) + b) value. This way misclassified instances (if any exist)

have a higher priority to change clusters, since yi(w
�φ̃(xi)+ b) < 0, followed by

those falling inside the margin (if any exist), since 0 ≤ yi(w
�φ̃(xi)+ b) < 1, and

finally those away from the margin, since yi(w
�φ̃(xi) + b) ≥ 1.

More specifically, let y(0) to be the vector of the cluster labels before com-
mencing the update process. Assume that y(l) has already been generated, thus
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at this point l instances have already changed clusters w.r.t y(0). As mentioned,
the (l + 1)-th instance is selected to be the one we are the less confident about
its labeling according to the separating hyperplane. However, when the labels
change so does the hyperplane. Therefore, we must solve the dual (10) for the
current assignments y(l) to obtain the corresponding optimal hyperplane param-
eters w(l)∗ and b(l)

∗
. Then, the index of the (l + 1)-th instance is given by:

i∗ = argmin
i:y

(l)
i =y

(0)
i

y
(l)
i

(
w(l)∗�φ̃(xi) + b(l)

∗
)
, (13)

and the (l + 1)-th candidate label vector is defined as:

y
(l+1)
i =

{
y
(l)
i , i �= i∗

−y
(l)
i , i = i∗

. (14)

From (13), it is obvious, that an instance xi whose label has already changed

is not considered again as a contender, since y
(l)
i �= y

(0)
i , and the selected one

flips its label (14). Moreover, observe that the label changes of all previous steps
are retained when constructing y(l+1), leading to an incremental reassignment
of the instances. The above is repeated for l = 0, 1, . . . , L− 1.

The returned cluster assignments that are used to update y correspond to the
cluster label vector y(l∗) attaining the smallest objective value (i.e. y′ = y(l∗)):

l∗ = argmin
0≤l≤L

J (θ,y(l)). (15)

Note that if none of the candidate label vectors y(l) reduces the objective, then
l∗ = 0 from (15), and no label change is accepted. This ensures that the ratio-
based objective never increases after updating y.

The procedure for modifying y, as described up to this point, selects L in-
stances belonging to either of the two clusters and flips their label to construct
the candidate label vectors. Some trial experiments indicated that a better ap-
proach is to restrict all L instances that change clusters to originate from the
same (i.e. a single) cluster. For this reason, our final procedure is divided into
two phases. In the first phase the candidate vectors are formed by moving L
instances from the cluster associated with the +1 label to the cluster associated
with the −1 label, while in the second phase the opposite movement direction
is considered. The two phases are independent from each other, both starting
from y(0). Hence, one phase does not take into account the cluster changes of
the other. At the end, the best of the 2L candidate vectors is selected to update
the cluster labels. To implement the above idea, in (13) we must, additionally to

y
(l)
i = y

(0)
i , require that y

(l)
i = +1 (y

(l)
i = −1) for the first (second) phase con-

tending instances. Our complete, two phase, framework is shown in Algorithm 2.
An issue we have yet to touch on is how to impose the cluster balance con-

straint (4). Fortunately, this is rather straightforward under our framework,
since we can define an upper bound on the number L of candidate label vec-
tors in each phase and, therefore, on the number of instances allowed to change
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Algorithm 1. RMKC

Input: Basis kernel matrices {K(v)}Vv=1, Initial composite kernel coefficients θ(0) and
cluster assignments y(0)

Output: Final kernel coefficients θ and cluster assignments y

1: Set t = 0
2: Set parameters L, � and C
3: Set K̃(0) =

∑V
v=1 θ

(0)
v K(v)

4: repeat
5: Solve the dual (10) for K̃(t) (i.e. θ(t)) and y(t) to obtain α(t)∗

6: for v = 1 to V do // Update θ.

7: θ
(t+1)
v = θ

(t)
v − η(t) ∂J (θ,y)

∂θv

∣∣∣
θ=θ(t),y=y(t),α∗=α(t)∗

8: end for
9: Project θ(t+1) to satisfy the constraints in (4)

10: K̃(t+1) =
∑V

v=1 θ
(t+1)
v K(v)

11: y(t+1) = Cluster upd(K̃(t+1), y(t)) // Update y.
12: t = t+ 1
13: until converged
14: return θ = θ(t),y = y(t)

clusters, to guarantee that the constraint is never violated. For the first phase

L ≤ (� +
∑N

i=1 y
(0)
i )/2, while for the second L ≤ (� − ∑N

i=1 y
(0)
i )/2. Note that∑N

i=1 y
(0)
i describes the initial imbalance before moving any instances (which, of

course, satisfies the constraint) and � ≥ 0 the maximum admissible imbalance.

2.4 Discussion

This section examines some additional aspects of the proposed RMKC method,
starting with the convergence of the iterative algorithm used to optimize (4).
In each iteration, the gradient descent update on θ reduces the ratio-based ob-
jective value. Moreover, the subsequent update on y selects a candidate cluster
label vector that further decreases the objective. Hence, the overall process is
guaranteed to monotonically converge. The final solution, though, depends on
the initial {θ,y} values, thus a local, and not the global, minimum of J (θ,y) is
located. The solution also depends on the user-specified constants C, � and L, as
well as, on the selected p-norm for the composite kernel coefficients constraint.

An important advantage of RMKC is that it can be readily extended to learn-
ing general forms of parametric composite kernels K̃, such as a nonlinear mixture
of basis kernels, without being restricted to just the linear combination case (3).
The formulation itself remains unchanged (e.g. (4), (5), (6), (10), (11)) and the
iterative algorithm is applicable out of the box, if the gradient of the ratio-based
objective can be computed. This is possible when the composite kernel matrix
is strictly positive definite and continuously differentiable w.r.t. its parameters

θ (see Section 2.3). Of course,
∂ ˜Kij

∂θv
and ∂E(θ,y)

∂θv
in (12) depend on the specific

form of the composite kernel. Moreover, the scale invariance of our objective
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Algorithm 2. RMKC - cluster update

Input: Current composite kernel matrix K̃ and cluster assignments y
Output: Updated cluster assignments y′

1: function Cluster upd(K̃, y)
// First phase.

2: Set y(0) = y
3: for l = 0 to L− 1 do
4: Solve the dual (10) for K̃ and y(l) to obtain w(l)∗ and b(l)

∗

5: Calculate y(l+1) (14) with the added constraint y
(l)
i = +1 in (13)

6: end for
// Second phase. This phase ignores the cluster moves of the first.

7: Set y(L+1) = y
8: for l = L+ 1 to 2L do
9: Solve the dual (10) for K̃ and y(l) to obtain w(l)∗ and b(l)

∗

10: Calculate y(l+1) (14) with the added constraint y
(l)
i = −1 in (13)

11: end for
12: l∗ = argmin0≤l≤2L+1 J (θ,y(l))

13: return y′ = y(l∗)

14: end function

(i.e. scaling K̃ by a scalar α > 0) also holds in the general case (the proof is
analogous to that in Proposition 1), but the same is not true for the norm in-

variance. Note that scaling K̃ is no more equivalent to scaling the parameters
θ. The ability to accommodate general kernel forms broadness the applicability
of RMKC and constitutes an advantage over existing MKL approaches that are
usually limited to a particular type of composite kernel.

3 Empirical Evaluation

To investigate the potential of combining the margin with the variance in the
clustering objective and perform kernel learning, the presented RMKC frame-
work is compared to: a) kernel k -means, which serves as our baseline method,
b) iterSVR [24], an iterative margin-based MMC approach that follows formula-
tion (1), and c) two iterative variance-based MKL approaches that optimize (6),
namely multi-view kernel k -means (MVKKM) and multi-view spectral cluster-
ing (MVSpec) [17]. The evaluation is made on various diverse datasets from the
UCI repository2 (Ionosphere, Letter, Satellite, Multiple Features and Optdigits),
as well as on the COIL-20 image library of objects [13] and a subset of the Corel
image collection3. Apart from Ionosphere, all other datasets contain instances of
more than two categories. For this reason, we conduct experiments using pairs of
the included categories. For Letter and Satellite we simply focus on the first two
classes, i.e. A-B and C1(red soil)-C2(cotton crop), respectively, as in [24]. For

2 http://archive.ics.uci.edu/ml
3 http://www.cs.virginia.edu/~xj3a/research/CBIR/Download.htm

http://archive.ics.uci.edu/ml
http://www.cs.virginia.edu/~xj3a/research/CBIR/Download.htm
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Fig. 1. The COIL-20 objects considered in the experiments
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Fig. 2. Indicative images of the Corel categories considered in the experiments

the two databases of handwritten digits (i.e. Multiple Features and Optdigits)
we try several pairs of the contained numerals (0-9), while for the two image col-
lections we consider pairs of the classes depicted in Figures 1-2. The tested pairs
are shown in Tables 3-4. Since ground truth information is available for every
dataset, we employ the clustering accuracy metric to measure performance4.

Multiple Features and Corel are multi-view datasets, hence, for the same
instance multiple sets of attributes are available. Each attribute set naturally
defines a basis kernel and the linear kernel is employed here to represent each
view. For the other, single view, datasets, we follow [18,20] and construct 10 basis
RBF kernels, where the kernel width σ varies from 10% to 100% of the range of
distance between any two instances. Kernels are multiplicatively normalized [12].

Throughout the experiments, our algorithm is configured as follows: we fix the
number of candidate label vectors in each phase to L = 30, the cluster imbalance
parameter to � = 0.5N (for the Corel images only, � = 0.2N) and conduct a grid
search on the set {10−2, 10−1, . . . , 102} to locate the best performing value for
the C regularizer in each dataset. The basis kernels are linearly combined (3) and
their coefficients are uniformly initialized, i.e. θv = 1

V 1/p . To initialize the cluster
assignments y, we extract several pairs of instances (usually 0.25N pairs) using
a k -means++-like procedure [1], where the first instance is chosen randomly and
the second is picked with a probability that is proportional to its distance from
the first. For each such pair, the remaining N − 2 instances are assigned to the
closest of the two instances in the pair, thus producing a partitioning of the data.
The partitioning y with the minimum J (θ,y) value is used to initialize a run of
RMKC. Since the procedure for choosing the initial y is nondeterministic, the
RMKC performance is averaged over 30 runs for each tried set of parameters
(L, �, C, p-norm). Finally, the LIBSVM toolbox [2] is utilized for solving (10).

3.1 Norm Invariance in Practice

In Proposition 2, it was proved that the global optimal solution of our formula-
tion (4) is invariant to the p-norm applied on the composite kernel coefficients θ,

4 To evaluate performance, we make the typical assumption that clusters correspond
to classes and set their number equal to the number of classes (e.g. [18,20,22,25]).
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Table 1. RMKC clustering accuracy (%) (averaged over all pairs of categories consid-
ered in each dataset) for different p-norm constraints

Dataset No-norm 1-norm 2-norm

Ionosphere 71.51 ± 0.00 71.51 ± 0.00 71.51 ± 0.00
Letter 94.47 ± 0.00 94.47 ± 0.00 94.47 ± 0.00

Satellite 96.17 ± 0.50 96.19 ± 0.52 96.16 ± 0.51
COIL-20 98.75 ± 2.60 98.61 ± 2.65 98.43 ± 2.73
Corel 94.55 ± 1.62 94.64 ± 1.58 94.69 ± 1.62

Multiple Features 99.58 ± 0.22 99.53 ± 0.37 99.59 ± 0.23
Optdigits 97.77 ± 2.45 97.65 ± 2.71 97.75 ± 2.50

Table 2. Clustering accuracy (%) of the compared methods on three popular UCI
datasets

Dataset
RMKC

MVKKM MVSpec
Kernel IterSVR IterSVR

(1-norm) k-means (best) (average)

Ionosphere 71.51 ± 0.00 71.23 70.66 73.22 ± 2.90 74.83± 1.65 71.83 ± 1.99
Letter (A-B) 94.47 ± 0.00 93.50 88.68 93.63 ± 0.00 94.51± 1.70 92.29 ± 1.97

Satellite (C1-C2) 96.19 ± 0.52 94.19 96.24 94.15 ± 0.03 96.42± 0.00 91.53 ± 5.58

Table 3. Clustering accuracy (%) of the compared methods on image clustering

Dataset
RMKC

MVKKM MVSpec
Kernel IterSVR IterSVR

(1-norm) k-means (best) (average)

COIL-20
3-19 100.00± 0.00 100.00 100.00 94.05 ± 10.27 100.00± 0.00 100.00± 0.00
4-11 100.00± 0.00 77.78 100.00 96.30 ± 10.41 98.47 ± 8.37 98.34 ± 8.34
15-18 100.00± 0.00 90.28 95.83 97.57 ± 3.74 99.72 ± 0.35 99.21 ± 0.21
15-19 94.44± 10.59 68.06 86.11 86.57 ± 14.84 93.43 ± 14.30 91.86 ± 14.52
Corel

700-4990 97.62± 0.65 95.00 95.00 85.98 ± 9.58 96.43 ± 0.25 83.19 ± 1.85
700-5530 92.60 ± 1.42 94.00 94.00 85.50 ± 0.00 88.63 ± 6.40 68.03 ± 3.49
770-840 97.55± 0.91 94.50 90.00 90.47 ± 0.37 94.20 ± 3.04 87.85 ± 0.58
770-1350 94.03± 1.72 93.50 92.00 88.72 ± 0.96 92.67 ± 1.27 84.10 ± 1.89
1340-1350 95.50± 0.00 95.00 95.00 91.00 ± 0.00 92.50 ± 0.00 83.71 ± 0.00
2890-4990 90.57± 4.79 87.00 86.00 85.00 ± 0.00 90.00 ± 0.00 73.04 ± 5.68

if K̃ is a linear mixture of basis kernels (3). However, the RMKC method locates
local optima of the ratio-based objective. Hence, it is of particular interest to
explore how these local optima vary for different choices of p-norm constraints.

To demonstrate this, RMKC is executed (according to the above configura-
tion) for p = 1, 2 and also for the case where no norm constraint is imposed on θ
and the results are illustrated in Table 1. It can be observed that the solutions
obtained across the different norms are very similar, therefore, in practice, the
uncovered local optima are not significantly influenced by the choice of p-norm,
although this cannot be theoretically guaranteed. On the following, we shall
focus on the 1-norm, when presenting the results of our approach.
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Table 4. Clustering accuracy (%) of the compared methods on the task of handwritten
digits recognition

Dataset
RMKC

MVKKM MVSpec
Kernel IterSVR IterSVR

(1-norm) k-means (best) (average)

Mult. Feat.
1-7 99.62 ± 0.78 98.75 98.75 98.00 ± 0.00 99.75± 0.00 96.85 ± 0.00
2-7 100.00± 0.00 99.00 99.75 97.92 ± 0.24 99.75 ± 0.00 97.61 ± 1.73
2-3 99.70± 0.23 99.25 99.00 99.50 ± 0.00 99.50 ± 0.00 94.13 ± 7.16
3-8 99.28 ± 0.38 99.50 99.50 97.50 ± 0.00 99.75± 0.00 98.78 ± 0.04
5-6 99.42± 0.48 98.50 98.50 98.29 ± 0.09 98.75 ± 0.00 95.68 ± 2.37
6-8 99.15± 0.33 97.25 98.50 97.33 ± 0.16 99.00 ± 0.00 94.94 ± 6.47

Optdigits
1-7 99.56 ± 1.41 100.00 100.00 89.38 ± 16.06 96.93 ± 9.83 94.26 ± 13.14
2-7 98.03 ± 1.31 96.35 92.42 95.03 ± 8.40 99.32± 0.16 98.88 ± 0.84
2-3 96.29 ± 5.44 90.56 88.89 89.92 ± 9.10 96.50± 0.82 95.59 ± 2.70
3-8 92.43 ± 8.00 94.12 93.28 92.56 ± 7.80 96.20± 0.16 95.01 ± 4.08
5-6 99.72± 0.00 99.45 99.45 99.57 ± 0.14 99.72± 0.00 99.33 ± 0.01
6-8 99.89± 0.14 99.15 98.87 99.32 ± 0.26 99.72 ± 0.00 99.45 ± 0.06

3.2 Comparative Results

We have conducted a comprehensive evaluation of RMKC, kernel k -means,
iterSVR, MVKKM and MVSpec on all datasets. RMKC is set up as previously
described. Kernel k -means is restarted 30 times, from randomly picked initial
centers. For iterSVR we employ a similar setup to [24], i.e. the cluster imbalance
parameter is fixed to � = 0.03N for balanced and to � = 0.3N for unbalanced
datasets, while the initial cluster labels are obtained from the kernel k -means
solution (iterSVR is, thus, repeated 30 times). For the C regularizer, the same
grid search as for RMKC is implemented. Finally, the sparsity controlling pa-
rameter p for MVKKM and MVSpec is selected by a grid search on the values
{1, 1.5, . . . , 5}.

Performance is measured in terms of average clustering accuracy (and its
deviation) over the 30 restarts (MVKKM and MVSpec are deterministically
initialized [17], thus we have no restarts). Let us stress, that both kernel k -
means and iterSVR are single kernel methods that do not implement kernel
learning. For this reason, these algorithms are independently executed for each
of the individual basis kernels in each data collection and the kernel attaining
the highest accuracy is reported. Moreover, for iterSVR the average performance
over all basis kernels is also shown. It is important to make clear that it is not
possible to know a priori which is the best basis kernel for a given dataset.

In Table 2 we observe that iterSVR with the optimal basis kernel achieves the
best accuracy, being closely matched by RMKC. Only for Ionosphere the differ-
ence is large, where, surprisingly, all three MKL approaches (RMKC, MVKKM
and MVSpec) are even inferior to kernel k -means. However, this is a difficult
dataset to cluster and all methods yield rather poor outcomes (accuracy does
not exceed 75%).

Turning our attention to image clustering (Table 3), it is evident that
our ratio-based objective constantly outperforms the other methods. For the
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COIL-20 objects, whose images are taken from different angles in a neutral
background, hence are easy to distinguish, our approach manages to find the
correct clusters for 3/4 of subsets and iterSVR appears to be its closest com-
petitor. Clustering the Corel images is a more difficult task, due to variations
in the composition of the depicted scene within each class. Here the differences
of RMKC to iterSVR are more distinct and its closest competitor is MVKKM,
which clearly displays the benefits of combining information from multiple views
under MKL.

For the task of handwritten digits recognition (Table 4) the best performance
is equally shared between RMKC and iterSVR across the two datasets. Note
that for Multiple Features, which, like Corel, is a multi-view dataset, RMKC is
superior. MVKKM and MVSpec achieve the highest accuracy on a single case
(Optdigits for the pair 1-7) and are superior to RMKC for only 3/12 of subsets.

Overall, the proposed RMKC algorithm obtains a higher clustering accuracy
for the majority of the tested category pairs. The margin-based iterSVR ap-
proach seems to be close, or even better, for some cases, provided the optimal
basis kernel is used (iterSVR(best)). However, in practice, the best kernel for a
particular dataset is not a priori known. By looking at the Tables’ last column,
one can notice that iterSVR results degrade significantly if an inappropriate ba-
sis kernel is chosen. On the contrary, RMKC is able to automatically infer a
meaningful kernel by combining the basis kernels.

4 Conclusions

We have proposed a novel MKL formulation that considers the ratio between the
margin and the intra-cluster variance. Its objective is optimized by an iterative,
gradient-based algorithm to get both the cluster assignments and the composite
kernel parameters. Moreover, it is characterized by two important properties: it
is invariant to scalings of the learned kernel and, when basis kernels are linearly
mixed, is also invariant (on its global optimum) to the type of p-norm constraint
on the composite kernel parameters. Our framework compares favorably to ex-
isting approaches that rely either on the margin or the intra-cluster variance.

Although multiple cluster problems can be tackled by iteratively solving a
sequence of two-cluster problems, an interesting research direction would be to
extend our formulation to directly handle multiple clusters, following the ideas
in [22,25,26]. Moreover, evaluating different parametric forms for the composite
kernel is in our plans.
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