
Integrating Particle Swarm Optimization with
Reinforcement Learning in Noisy Problems

Grigoris S. Piperagkas
Department of

Computer Science,
University of Ioannina,

GR–45110 Ioannina, Greece
gpiperag@cs.uoi.gr

George Georgoulas
Teorema Engineering Srl,

Area Science Park Basovizza,
Trieste, Italy

georgoul@gmail.com

Kostas E. Parsopoulos
Department of

Computer Science,
University of Ioannina,

GR–45110 Ioannina, Greece
kostasp@cs.uoi.gr

Chrysostomos D. Stylios
Department of Informatics and
Communications Technology,

Technological Educational
Institute of Epirus,

GR–47100 Arta, Greece
stylios@teiep.gr

Aristidis C. Likas
Department of

Computer Science,
University of Ioannina,

GR–45110 Ioannina, Greece
arly@cs.uoi.gr

ABSTRACT

Noisy optimization problems arise very often in real–life ap-
plications. A common practice to tackle problems charac-
terized by uncertainties, is the re–evaluation of the objective
function at every point of interest for a fixed number of repli-
cations. The obtained objective values are then averaged
and their mean is considered as the approximation of the
actual objective value. However, this approach can prove
inefficient, allocating replications to unpromising candidate
solutions. We propose a hybrid approach that integrates the
established Particle Swarm Optimization algorithm with the
Reinforcement Learning approach to efficiently tackle noisy
problems by intelligently allocating the available computa-
tional budget. Two variants of the proposed approach, based
on different selection schemes, are assessed and compared
against the typical alternative of equal sampling. The re-
sults are reported and analyzed, offering significant evidence
regarding the potential of the proposed approach.

Categories and Subject Descriptors

G.1.6 [Optimization]: Global optimization,Unconstrained
optimization; G.3 [Probability and Statistics]: Proba-
bilistic algorithms

General Terms

Algorithms, Performance, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

Keywords

Particle Swarm Optimization, Reinforcement Learning, Noisy
Problems, Budget Allocation

1. INTRODUCTION
A plethora of algorithms for deterministic global optimiza-

tion problems have been developed in the past years. How-
ever, sources of uncertainty may complicate the optimization
process in real–life problems. Among the various types of
uncertainty [9], the presence of noise in the evaluation of
objective function is the most extensively investigated one
due to its direct relation to the field of simulation optimiza-
tion [8]. Such noisy objective functions may assign different
values to the same input vector. These inconsistencies can
be the outcome of possible errors in sensory measurements,
games of chance or randomized simulations [9].

The uncertainty in objective values dictates the use of op-
timization heuristics. Evolutionary and swarm intelligence
algorithms have been successfully applied to hard optimiza-
tion tasks and appear as a powerful artillery for solving
problems under uncertainty [9, 15, 16]. However, these algo-
rithms have been primarily developed for deterministic prob-
lems and their operators are heavily based either on direct
comparisons or rankings of the objective values of their pop-
ulation members. Thus, they can be easily misled by noisy
environments that do not preserve the relative ordering be-
tween objective values. In such cases, proper modifications
of the algorithms are needed.

A common practice in noisy objective functions is the mul-
tiple re–evaluation of each candidate solution. Then, the
average of the obtained sample values is set as the objective
value of the solution. The average constitutes a rough ap-
proximation of the actual objective value. Obviously, higher
number of replications (larger sample) is expected to pro-
vide better approximations, although at higher computa-
tional cost. This trade–off gives raise to a crucial dilemma
for the practitioner when a specific computational budget,
in terms of the available function evaluations, has to be al-
located during the optimization procedure. The dilemma

65

subsumes to two crucial decisions. The first one is the ho-
mogeneous or inhomogeneous allocation of the budget to the
candidate solutions, i.e., the allocation (or not) of the same
number of replications to each candidate solution. The sec-
ond question refers to the actual number of replications that
will be allocated in the homogeneous case.

Various techniques have been proposed to tackle the afore-
mentioned sampling problems. One of the first attempts to
intelligently allocate replications among different solutions
was proposed by Aizawa and Wah [1, 9], where higher sam-
ple size numbers are assigned to candidates with increased
variance in their objective values. However, this approach
neglects the mean of the candidate solution values. Chen [3]
proposed the utilization of both the mean and the vari-
ance as a means to allocate replications originally for a re-
stricted number of candidate solutions by optimizing the
measure of (Approximate–) Probability of Correct Selection
(A–PCS) [16]. This approach has proved to be asymptoti-
cally optimal and has been combined with different search
procedures, such as the neighborhood random search, cross–
entropy method, population–based incremental learning [4]
and Particle Swarm Optimization (PSO) [21]. The identi-
fication of a superior solution can be performed either by
quantifying its ranking among other solutions by using a
measure such as the PCS or by taking into account differ-
ences in the fitness values using measures such as the Ex-
pected Opportunity Cost (EOC) [5]. Nevertheless, the homo-
geneous allocation of replications remains the most popular
approach. This approach will be denoted as equal sampling
(ES) throughout the rest of the present paper.

In the current work, we propose an alternative, hybrid
approach for solving noisy problems. Our approach utilizes
PSO and Reinforcement Learning (RL) for the efficient allo-
cation of replications among candidate solutions. The corre-
sponding reward for the learning procedure is based on the
previously mentioned PCS concept [16]. The choice of RL
was motivated by its significant contribution in the field of
Machine Learning as well as on its smooth integration with
metaheuristic algorithms [2, 13].

The rest of the paper is structured as follows: Section 2
constitutes a brief reference to the employed methodologies,
i.e., PSO, PCS and the relative RL methodologies. The pro-
posed approach is exposed in Section 3, while experimental
results are reported in Section 4. Finally, the paper con-
cludes in Section 5.

2. BACKGROUND INFORMATION
The main noisy optimization problem considered through-

out the paper has the form:

min
x∈X⊂Rn

f(x)(1 + η), (1)

where f(x) is the actual (noiseless) objective function de-
fined over the search space X, and η is a Gaussian random
variable:

η ∼ N
(

0, σ2
)

,

with zero mean and standard deviation σ.

2.1 Particle Swarm Optimization
In recent years, Particle Swarm Optimization (PSO) has

been placed in a salient position among the population–
based algorithms [15]. The original PSO algorithm was in-
troduced back in 1995 by Eberhart and Kennedy [7]. Its

main concept includes a population, called a swarm, of po-
tential solutions, called the particles, iteratively probing the
search space. Each particle moves in the search space with
an adaptable velocity, while retaining in a memory the best
position it has ever visited, i.e., the position where its lowest
function value was achieved (without loss of generality, only
minimization problems are considered).

An additional feature of PSO is the information exchange
that takes place among the particles. This aims at enhanc-
ing the search capability of a particle by exposing it to the
experience of its mates in the swarm. Naturally, this may
have tremendous impact on the overall exploration and ex-
ploitation capability of the swarm.

The information exchange is structured within the parti-
cles. For this purpose, communication schemes shall be de-
fined among them. These schemes are called neighborhood
topologies and they are usually represented as connected
graphs where nodes represent the particles and edges rep-
resent the communication channels among them. We shall
underline that the term “particle” is used here to express
the general concept of a search unit rather than its actual
position vector in the search space.

The neighborhood topologies determine a neighborhood
for each particle, which is a set of other particles that will
share their experience with it. If this set is strictly smaller
than the whole swarm, then the local PSO model (also called
lbest) is obtained. On the other hand, if the whole swarm
is considered as the neighborhood of each particle, then the
global PSO model (also called gbest) is obtained. Obvi-
ously, gbest can be considered as a special case of lbest.
Various neighborhood topologies have been introduced in
literature [10, 17]. A very popular one is the ring, where
each particle is assigned a neighborhood consisting of the
particles with indices adjacent to it.

Formalizing our description, consider the minimization
problem of Eq. (1) and let:

S = {x1, x2, . . . , xN},
be a swarm of N particles with xi ∈ X ⊂ R

n, i ∈ I =
{1, 2, . . . , N}. Also, let vi denote the velocity (position shift)
of the i–th particle and bpi ∈ X denote the best position it
has ever visited. A ring neighborhood of radius s for xi, is
defined as the set of indices:

Bi = {i− s, i− s+ 1, . . . , i, . . . , i+ s− 1, i+ s} .
Assume that gi is the index of the best position found in the
neighborhood of xi, and let t denote the iteration counter.
Then, according to the popular constriction coefficient ver-
sion of PSO [6], the swarm and velocities are updated as
follows:

v
(t+1)
ij = χ

[

v
(t)
ij + ϕ1

(

bp
(t)
ij − x

(t)
ij

)

+ ϕ2

(

bp
(t)
gij

− x
(t)
ij

)]

,(2)

x
(t+1)
ij = x

(t)
ij + v

(t+1)
ij , (3)

where i ∈ I and j = 1, 2, . . . , n. The parameter χ is the
constriction coefficient and offers a means of controlling the
magnitude of the velocities. The other two parameters are
defined as ϕ1 = c1R1, ϕ2 = c2R2, where c1 and c2 are
positive constants, also called the cognitive and the social
parameter, respectively, while R1, R2, are random variables
uniformly distributed in the range [0, 1], assuming different
values for each i, j and t. Obviously, in the gbest model it
holds that g = g1 = · · · = gN .

66

The constriction coefficient is needed to restrict the mag-
nitude of the velocities, promoting convergence and allevi-
ating the swarm explosion effect that has been shown to be
detrimental for the search procedure [6]. PSO’s theoretical
investigations due to Clerc and Kennedy [6] and Trelea [19]
offered insight for its proper parameter setting. Based on
these results, the values χ = 0.729, c1 = c2 = 2.05, are
commonly considered as an acceptable parameter set.

The iteration of PSO is completed with the best positions’
update, as follows:

bp
(t+1)
i =

{

x
(t+1)
i , if f

(

x
(t+1)
i

)

< f
(

bp
(t)
i

)

,

bp
(t)
i , otherwise,

(4)

followed by the corresponding update of the indices gi, i ∈ I .
Although in deterministic environments the application

of PSO is straightforward, several issues arise in the context
of noisy optimization problems. Perhaps the most crucial
question refers to the reliability of selecting best positions
to drive the search towards the optimal solution(s) of the
problem. Noisy objective values may promote inferior best
positions, thereby misleading the algorithm.

In order to alleviate this problem, the typical procedure of
re–evaluating each new particle position for a fixed number
of replications has been used [14]. However, more sophisti-
cated techniques can significantly improve the algorithm by
allocating the computational budget more effectively. The
proposed approach aims at introducing such a technique,
utilizing the concept of PCS, which is sketched in the fol-
lowing section.

2.2 Probability of Correct Selection
In PSO there are two main procedures that need to be

accomplished at each iteration. The one is the determination
of the personal best position for each particle, and the other
is the selection of the neighborhood’s best particle. In noisy
problems, the challenge lies at the main task of identifying
the actual best particle among N candidates, with respect to
the smallest mean objective function value, while minimizing
the total number of replications needed for a precise and safe
selection. To this end, the Probability of Correct Selection
(PCS) can be very useful.

Let a set consist of N candidates (e.g, particles, best po-
sitions etc.), each one already assigned a number, Ml, of
replications (not necessarily equal). Let flm be the out-
put (objective value) of the m–th evaluation of candidate l,
l = 1, 2, . . . , N , m = 1, 2, . . . ,Ml. If µl and σ̂2

l denote the
sample mean and variance of the obtained objective values
for candidate l, respectively, then:

µl =

Ml
∑

m=1

flm
Ml

, σ̂2
l =

Ml
∑

m=1

(flm − µl)
2

(Ml − 1)
.

Apparently, the values of Ml, µl, σ̂
2
l , change as long as ad-

ditional replications are performed.
We assume that the means, µl, follow the Student’s t–

distribution:

St
(

µl,Ml/σ̂
2
l ,Ml − 1

)

.

Given the available replications data, Θ, the PCSBayes that
the individual k with the best observed mean is the actual
best, can be approximated with the Slepian inequality and

Welch approximations, as follows [16]:

PCSBayes = P

(

µk 6 min
l6=k

µl | Θ
)

>
∏

l6=k

P (µk 6 µl | Θ)

≈
∏

l6=k

Φvkl
(dlk/slk) , (5)

where Φv is the cumulative distribution function of Student’s
t–distribution; vlk are the degrees of freedom; dlk = µl − µk

are the observed differences; and slk =
√

σ̂2
l /Ml + σ̂2

k/Mk,
is the variance of the difference of the estimated means. Fur-
ther theoretical and practical details on the application of
PCS can be found in [16].

2.3 Reinforcement Learning
Reinforcement Learning (RL) is a machine learning field

that copes with decision–making, based on a reward maxi-
mization approach [18]. Among the numerous RL approa-
ches, the Parallel Recombinative Reinforcement Learning
(PRRL) technique [11, 12, 13] has been established as a
population–based recombinative technique for the solution
of binary optimization problems. It has also been extended
to tackle discrete optimization problems through its Multi-
valued PRRL (MPRRL) variant, as well as to continuous
problems by exploiting the concurrent operation of individ-
ual RL optimizers.

Based on the Reinforce Theorem, the Multivalued Discrete
Stochastic (MDS) unit is defined, which is characterized by
a set of adaptable parameters [11]. Using MDS or binary
stochastic units in PRRL, results in efficient RL optimizers
for discrete optimization tasks [11, 12, 13].

In binary problems, the scheme generates new candidate
solutions, y = (y1, . . . , yn), using a group of n Bernoulli
units, each one determining a component, yj , of the binary
output vector. The MDS unit generalizes the Bernoulli unit,
providing discrete output values, y ∈ {a1, . . . , aL}. Also, it
is characterized by a parameter vector, w = (w1, . . . , wL),
and a corresponding probability vector, p = (p1, . . . , pL),
which is computed as follows:

pi =
exp(wi/T)

L
∑

j=1

exp(wj/T)

, (6)

where T is a positive control parameter. Obviously, it holds

that
L
∑

i=1

pi = 1.

According to the Reinforce Algorithm [20], which pos-
sesses the stochastic hill–climbing property, the weights of
an MDS unit are updated at each step according to the for-
mula:

∆wi = α(r − r̄)
∂ ln g

∂wi

, (7)

where α is the learning rate factor ; r is the reinforcement
signal delivered by the environment; r̄ is the reinforcement
comparison, defined as:

r̄(t) = γr̄(t−1) + (1− γ)r(t), (8)

where γ is a decay rate in the range [0, 1]; and g(a,w) =
P {y = a |w} is the probability that the output y will be
equal to a when the parameter vector is w.

67

Algorithm 1 Pseudocode of PSO with RL and PCS.
INPUT: PSO, RL and PCS parameters; swarm size, N ; objective
function, f ; initial replications, M0; maximum replications, Mp,
Mg ; index of best particle, g.

/* INITIALIZATION */
for (i = 1, . . . , N) do

initialize particle xi within the search space X.
evaluate xi with M0 initial replications.
compute mean µxi

and standard deviation σ̂xi
.

end for
duplicate all quantities to the best positions.

/* PSO ITERATIONS */
while (stopping criterion not met) do

for (i = 1, . . . , N) do
update xi using Eqs. (2) and (3).
evaluate xi with M0 replications.
compute mean µxi

and standard deviation σ̂xi
.

/* Update Personal Best */
call Algorithm 2 or 3 for C = {xi, bpi}, M ←Mp.
if

(

µxi
< µbpi

)

then
bpi ← xi.

end if
end for

/* Update Global Best */
call Algorithm 2 or 3 for C = {bp1, . . . , bpN}, M ← Mg .
g ← argmini{µbpi

}.
end while
return bpg and f̄(bpg).

Concerning the MDS unit, it holds that:

∂ ln g

∂pi
=

{

1/pi, if y = ai,
0, otherwise.

(9)

Moreover,

∂ ln g

∂wi

=
L
∑

k=1

∂ ln g

∂pk

∂pk
∂wi

, (10)

and, from Eq. (6), it follows that:

∂pi
∂wk

=

{

1
T
pi(1− pi), if k = i,

− 1
T
pipk, otherwise.

(11)

Based on the above relations, it follows that:

∆wi =

{

α(r − r̄) 1
T
pi(1− pi)− δwi, if i = k,

−α(r − r̄) 1
T
pipk − δwi, otherwise,

(12)

where −δwi is a decay term introduced to sustain search
diversity, with 0 < δ < 1. Equation (12) is the main rein-
forcement update rule used in the MPRRL algorithm. This
approach was also adopted in our algorithm. Further de-
tails on the MPRRL algorithm and the use of MDS units in
discrete optimization environments can be found in [11].

3. THE PROPOSED APPROACH
As previously mentioned, the main issues of PSO in noisy

problems are the correct update of the personal best of each
particle with Eq. (4) as well as the correct determination
of the globally best position. Both procedures require the
best possible estimation of the objective values for both the
particle’s current and best position. In order to alleviate the
computational burden that accompanies the equal sampling
of each particle and best position, as described in the pre-
vious sections, we propose an approach that utilizes RL to
intelligently allocate the available budget in terms of func-
tion evaluations.

Algorithm 2 Selection with Stochastic Independent Deci-
sions (SID).

INPUT: Set of candidates, C = {z1, . . . , zK}; maximum replica-
tions, M .

set initial weights, wzi
← 1/K, i = 1, . . . ,K.

compute selection probabilities pzi
, i = 1, . . . ,K, from Eq. (6).

i← 0, l← 0.
while (PCS < threshold) AND (l < M) do

if (i = K) then
i← 1.

else
i← i + 1.

end if
if

(

rand() < pzi

)

then
evaluate candidate zi and set l ← l + 1.
update the corresponding mean and standard deviation of zi.
update PCS using Eq. (5).

end if
update weights wzi

, i = 1, . . . ,K, with Eq. (12).
update selection probabilities pzi

, i = 1, . . . ,K, with Eq. (6).
end while

Algorithm 3 Selection with Roulette Wheel (RW).

INPUT: Set of candidates, C = {z1, . . . , zK}; maximum replica-
tions, M .

set initial weights, wzi
← 1/K, i = 1, . . . ,K, and l ← 0.

compute selection probabilities pzi
, i = 1, . . . ,K, from Eq. (6).

while (PCS < threshold) AND (l < M) do
R← rand().
find j ∈ {1, . . .K} such that R 6 pzj

and R > pzj−1
.

evaluate candidate zj and set l ← l + 1.
update the corresponding mean and standard deviation of zj .
update PCS using Eq. (5).
update weights wzi

, i = 1, . . . ,K, with Eq. (12).
update selection probabilities pzi

, i = 1, . . . ,K, with Eq. (6).
end while

Specifically, let S be a swarm of N particles, M0 be a fixed
number of initial replications, Mp be the maximum number
of replications to be allocated per particle for updating its
personal best at each iteration, and Mg be the maximum
number of available replications for the determination of the
globally best position. Initially, each particle xi, i ∈ I =
{1, 2, . . . , N}, is randomly positioned in the search space and
it is evaluated M0 times, deriving the corresponding mean
and standard deviation, µxi

and σ̂xi
, of the obtained values.

The same quantities are reproduced for the best positions
since, initially, they coincide with the swarm.

Then, the iterative PSO scheme of Eqs. (2) and (3) is initi-
ated and a new current position is produced for each particle.
For each new position, M0 replications are performed and
the mean and standard deviation is derived. Now, the proce-
dure of updating the personal best position of each particle
is triggered. There are Mp replications (at maximum) avail-
able per particle that will be allocated using the RL scheme
by maximizing the PCS.

Specifically, each particle, xi, is isolated along with its best
position, bpi, and they are assigned equal weights, wxi

and
wbpi , respectively. These weights are used to produce the
corresponding selection probabilities according to Eq. (6).
Probabilistic selection is performed (we will refer to this pro-
cedure later) and either xi or bpi is selected to be assigned
the next replication. After the new evaluation, the mean and
standard deviation of the selected position (current or best)
is updated. At this point, PCS is updated with Eq. (5),
and the weights are updated through the learning rule of
Eq. (12), assuming the obtained PCS values as reward. The

68

Table 1: Parameter values employed in the experiments.
Parameter Value

Test problems Sphere (TP1), Rosenbrock (TP2), Rastrigin (TP3), Griewank (TP4), Ackley (TP5)

Dimensions 5, 15, 40

Noise levels 0.01, 0.03, 0.05

Computational budget 2× 105 function evaluations

PSO parameters Swarm size N = 25, χ = 0.729, c1 = c2 = 2.05 (gbest model)

RL parameters α = 2.0, T = 0.02, δ = 0.002, γ = 0.7

PCS upper bound 0.9

Replications M0 = 10, Mp = 25, Mg = 300

Number of experiments 100 per algorithm, problem and noise instance

procedure is repeated by probabilistically selecting again be-
tween xi and bpi to allocate the next replication and so on.
The procedure stops as soon as the PCS exceeds a maxi-
mum threshold or the maximum available replications, Mp,
have been assigned. The same procedure is applied on all
particles for the determination of their new best positions.

The next stage is the determination of the globally opti-
mal solution. The same procedure as for the particles is used
also in this stage. Specifically, the best positions of all par-
ticles are isolated and assigned, initially, equal weights. All
best positions are assumed to be accompanied by the mean
and standard deviations they have obtained in the previous
steps of the algorithm. Then, probabilistic selection among
them takes place, pointing the best position that will be
assigned the next replication. After the replication, the cor-
responding mean and standard deviation are updated, along
with the PCS, and new weights are computed according to
the RL rule. The procedure is repeated until PCS reaches its
maximum threshold or the maximum available replications,
Mg , are exceeded. The pseudocode of the whole procedure
is reported in Algorithm 1.

Regarding the probabilistic selection, two approaches were
considered. The first one is called the Stochastic Independent
Decisions (SID) and it individually examines each candi-
date, either selecting or neglecting it, based on its selection
probability. The pseudocode of SID is provided in Algo-
rithm 2. The second approach is the well–known Roulette
Wheel (RW) selection. Its pseudocode is reported in Algo-
rithm 3. The main difference between SID and RW, is that
SID may not assign a replication before updating weights
and selection probabilities, while RW will always assign a
replication prior to the updates. Also, it shall be underlined
that SID employs Bernoulli units, while RW employs the
MDS units.

4. EXPERIMENTAL ANALYSIS
The proposed approach was tested on five widely used

test problems, contaminated by multiplicative noise. The
algorithm was compared with the typical equal sampling
approach. The complete experimental setting is exposed in
the following section, followed by the experimental results.

4.1 Experimental Setting
The test suite used in our experimental analysis consists of

five test functions: Sphere (TP1), Rosenbrock (TP2), Rast-
rigin (TP3), Griewank (TP4) and Ackley (TP5). The prob-
lems are defined by Eqs. (13)–(17) in the Appendix at the
end of the present paper. Each problem was considered in
its 5–, 15– and 40–dimensional instance. The test functions

were contaminated by multiplicative Gaussian noise with
standard deviation (henceforth called noise level) equal to
0.01, 0.03 and 0.05, which correspond to distortions of 1%,
3% and 5%, respectively, of the actual objective functions.

The available computational budget was set to 2 × 105

function evaluations for each test problem. This value was
proved to be satisfactory for all the considered approaches in
preliminary experiments. Two variants of the proposed ap-
proach were considered, namely, PSO with RL using SID se-
lection, henceforth denoted as RL, and its counterpart with
RW selection, henceforth denoted as RLrw, both based on
the gbest model of PSO. The two PSO–based approaches
were compared to the typical equal sampling technique, hen-
ceforth denoted as ES.

The RL based approaches were based on the PCS maxi-
mization scheme, with upper PCS bound equal to 0.9. The
swarm size was kept small, counting 25 particles in all cases.
We avoided larger swarms due to our interest in observing
the manipulation of the computational budget by the algo-
rithm for lengthier runs. Also, the default PSO parameters’
values, χ = 0.729, c1 = c2 = 2.05, were used.

Regarding the RL parameters, α was initially considered
in the set {2.0, 4.0, 6.0}. However, preliminary experiments
revealed that α = 2.0 was the most promising setting, hence,
it was adopted in our study. Smaller values of α that are
usually met in machine learning approaches, e.g., within the
range (0, 1), were proved to slow down the convergence speed
of the algorithm to unacceptable levels. Thus, they were
abandoned. The rest of RL parameters were set to the val-
ues:

T = 0.02, δ = 0.002, γ = 0.7.

Regarding the replications, the initial number M0 = 10 was
used, while Mp = 25 and Mg = 300 were used for the deter-
mination of the personal and the global best, respectively.
The same values were also used for the corresponding pro-
cedures of the ES approach, were all candidate solutions are
assigned the same number of replications. Finally, 100 in-
dependent experiments were conducted per algorithm, prob-
lem and noise instance, recording the distance of the best de-
tected solution from the actual solution of the corresponding
problem. The results are reported and discussed in the next
section. All parameter values are summarized in Table 1.

4.2 Experimental Results
A total number of 4500 independent experiments was per-

formed per algorithm. At each experiment, the best solu-
tion detected by the algorithm was recorded, and its dis-
tance from the actual global minimizer of the corresponding
(noiseless) objective function was computed. The obtained

69

Table 2: Results for all algorithm, problem and noise instances. The distance from the actual solution,
averaged over 100 experiments, is reported. Best performance per case is boldfaced.

RL RLrw ES

Noise Problem Dim Mean StD Mean StD Mean StD

0.01 TP1 5 6.2252e − 13 8.1178e − 13 7.0565e − 13 1.9094e − 12 4.7264e − 09 9.6887e − 09

15 4.0689e − 06 4.2673e − 06 7.0333e − 06 1.1233e − 05 3.4827e − 02 3.2550e − 02

40 3.3334e + 02 1.7245e + 03 2.2827e + 02 1.4078e + 03 6.8298e + 02 1.0377e + 03

TP2 5 1.0198e + 04 9.9501e + 04 1.0046e + 04 9.9949e + 04 1.0217e + 04 9.9647e + 04

15 1.3018e + 05 3.3634e + 05 1.0047e + 05 2.9989e + 05 1.3118e + 05 3.3730e + 05

40 1.3282e + 05 3.3945e + 05 7.2018e + 04 2.5642e + 05 1.3836e + 07 2.3744e + 07

TP3 5 1.5188e + 00 1.2810e + 00 1.4203e + 00 1.2250e + 00 1.6418e + 00 1.2979e + 00

15 2.5331e + 01 1.0185e + 01 2.3429e + 01 1.0523e + 01 2.7628e + 01 9.8925e + 00

40 1.5282e + 02 3.8680e + 01 1.5611e + 02 3.5560e + 01 1.9527e + 02 3.3892e + 01

TP4 5 6.3845e − 02 4.3811e − 02 5.9517e − 02 3.5620e − 02 8.9027e − 02 5.9574e − 02

15 5.8112e − 02 5.5362e − 02 5.3849e − 02 5.2725e − 02 2.8362e − 01 2.1390e − 01

40 3.1580e + 00 1.2744e + 01 2.5672e + 00 9.6840e + 00 6.6175e + 00 9.3756e + 00

TP5 5 4.5802e − 09 5.4258e − 09 3.8459e − 09 3.6731e − 09 5.4689e − 09 5.5983e − 09

15 3.5321e − 10 3.0538e − 10 3.9243e − 10 3.8634e − 10 3.6604e − 10 3.6604e − 10

40 2.2610e − 02 1.6037e − 01 8.2413e − 02 3.4345e − 01 4.0950e − 02 2.4101e − 01

0.03 TP1 5 7.3003e − 13 1.2936e − 12 6.2201e − 13 7.3231e − 13 3.4001e − 09 6.0581e − 09

15 4.7440e − 06 8.0663e − 06 6.1386e − 06 1.0164e − 05 3.3991e − 02 3.5064e − 02

40 3.0869e + 02 1.5994e + 03 2.3277e + 02 1.4267e + 03 6.4756e + 02 1.0410e + 03

TP2 5 3.5473e + 02 1.6958e + 03 2.9895e + 04 1.6998e + 05 1.0119e + 04 9.9430e + 04

15 1.0959e + 05 3.1031e + 05 1.1879e + 05 3.2149e + 05 1.2071e + 05 3.2460e + 05

40 1.2619e + 05 3.2951e + 05 8.3097e + 04 2.7262e + 05 1.0358e + 07 8.5382e + 06

TP3 5 1.3932e + 00 1.3093e + 00 1.2158e + 00 9.9188e − 01 1.6210e + 00 1.1719e + 00

15 2.2651e + 01 1.1496e + 01 2.8667e + 01 1.4427e + 01 2.7660e + 01 1.2799e + 01

40 1.4794e + 02 3.2793e + 01 1.5511e + 02 3.8106e + 01 1.8990e + 02 3.8559e + 01

TP4 5 5.7390e − 02 4.5452e − 02 5.5932e − 02 4.0744e − 02 8.6565e − 02 4.4118e − 02

15 4.4530e − 02 3.6157e − 02 5.2763e − 02 4.4096e − 02 2.8537e − 01 1.9812e − 01

40 5.1072e + 00 1.8102e + 01 5.9459e + 00 1.9931e + 01 7.8330e + 00 1.3196e + 01

TP5 5 5.6730e − 09 6.4548e − 09 6.2441e − 09 6.7018e − 09 7.3606e − 09 1.0042e − 08

15 4.8670e − 09 5.1335e − 09 6.0212e − 09 7.9248e − 09 4.8614e − 09 6.1410e − 09

40 1.9340e + 00 5.1686e + 00 1.9927e + 00 4.9377e + 00 1.5146e + 00 4.3447e + 00

0.05 TP1 5 7.2314e − 13 1.2754e − 12 7.0765e − 13 1.0996e − 12 2.5668e − 09 3.5830e − 09

15 6.5432e − 06 9.6862e − 06 1.4793e − 05 9.7763e − 05 3.9236e − 02 5.2710e − 02

40 3.3011e + 02 1.7363e + 03 2.3402e + 02 1.3896e + 03 8.7819e + 02 1.7877e + 03

TP2 5 9.9304e + 03 9.7955e + 04 1.9351e + 04 1.3586e + 05 9.9983e + 03 9.9507e + 04

15 9.8164e + 04 2.9434e + 05 8.9247e + 04 2.8166e + 05 9.9632e + 04 2.9649e + 05

40 1.2437e + 05 3.2886e + 05 2.0443e + 05 4.0698e + 05 1.1958e + 07 1.0061e + 07

TP3 5 1.4061e + 00 1.2151e + 00 1.3365e + 00 1.3578e + 00 1.7680e + 00 1.4024e + 00

15 2.3576e + 01 1.1829e + 01 2.3801e + 01 1.0679e + 01 2.9363e + 01 1.2676e + 01

40 1.5642e + 02 3.5043e + 01 1.5472e + 02 3.2447e + 01 2.0052e + 02 4.1461e + 01

TP4 5 5.6665e − 02 3.1438e − 02 5.3956e − 02 3.3854e − 02 8.6181e − 02 5.7802e − 02

15 5.5365e − 02 5.0899e − 02 5.6809e − 02 4.9469e − 02 2.8920e − 01 1.9866e − 01

40 7.2492e + 00 2.2179e + 01 3.9561e + 00 1.3095e + 01 1.2624e + 01 2.2924e + 01

TP5 5 1.2196e − 08 1.5082e − 08 1.4285e − 08 1.9523e − 08 1.0513e − 08 1.0318e − 08

15 2.6863e − 01 1.9230e + 00 2.4333e − 01 1.7848e + 00 1.5637e − 01 1.5584e + 00

40 1.5814e + 01 1.1089e + 00 1.5687e + 01 1.3739e + 00 1.5713e + 01 1.2499e + 00

averaged results are reported in Table 2, where the best ap-
proach per case appears boldfaced.

A first inspection of the results offers a clear conclusion.
The RL–based variants, outperformed the typical ES ap-
proach in almost all cases. Exceptions were observed in three
instances of TP5 for higher noise levels, probably due to the
structure of the specific problem. In all other cases, the best
performance was observed with competitive frequencies ei-
ther by RL or RLrw.

The statistical significance of performance differences be-
tween the algorithms was not very distinguishable in several
instances, due to large standard deviations and marginal dif-
ferences between the means. For this purpose, pairwise com-
parisons of the algorithms were conducted through Wilcoxon
statistical tests for each one of the 45 different experimen-
tal configurations (5 problems × 3 dimensions × 3 noise
levels), at a 95% level of significance. A pairwise compar-
ison between two algorithms was considered as positive for
the one that outperformed the other with statistical signif-
icance. Obviously, for the other algorithm the comparison
was recorded as negative. If no statistical significance was
observed in their differences, the comparison was character-
ized as neutral for both algorithms.

The percentages of positive, negative and neutral com-
parisons for the three algorithms are graphically illustrated
in Fig. 1 for all test problems. In this figure, the superior-
ity of RL and RLrw is apparent and statistically verified.
As we can see, for almost 40% of the cases, RL and RLrw
(individually) were statistically dominant. The majority of
their neutral comparisons referred to comparisons between
them, while the negative comparisons correspond to the ex-
ceptions of TP5 observed in Table 2, where ES achieved its
best performance.

Further analysis to identify the cases where each algorithm
was performing better, was based on the positive compar-
isons of the algorithms and their relative distributions with
respect to the problems’ dimensions and noise levels. Fig-
ure 2 depicts these distributions for the three algorithms. As
we can see, RL outperforms (often marginally) the RLrw ap-
proach for all problems’ dimensions. This holds also for the
higher noise cases. However, lower noise levels provide an
advantage to the RLrw approach.

A possible explanation for this may lie to the fact that RW
selection assigns a replication whenever it is evoked, while
SID may update several times the selection probabilities of
the candidates before assigning a replication. Thus, in low
noise levels where the expected noisy objective values lie

70

Figure 1: Percentage of positive (+), neutral (=) and negative (−) pairwise comparisons between the algo-
rithms for all problem instances and noise levels.

Figure 2: Number of positive pairwise comparisons per algorithm for the different dimensions and noise levels
over all problems.

closer to the actual ones, RW may offer faster convergence
towards candidate solutions that lie closer to the optimal
one. On the other hand, higher noise levels can shadow
this advantage, resulting in slower replications’ allocation
through the RL approach.

Finally, it is worth noting that ES performance, illustrated
with a curve in Fig. 2, follows the trend of RL with respect
to the problems’ dimensions, i.e., it exhibits a noticeable
increase for the 15–dimensional cases and decreases for the
40–dimensional ones. Contrary to this, when the analysis
refers to the noise level, the performance of ES follows the
trend of RLrw, i.e., it slightly declines for the case of 0.03
and then increases for 0.05.

5. CONCLUSIONS
We proposed a hybrid approach that integrates PSO with

the RL methodology to efficiently allocate replications in
noisy problems. The main algorithm was combined with
two different selection schemes. Their performances were

assessed on a set of widely used test functions and compared
against the typical equal sampling approach.

The obtained results suggested that the proposed algo-
rithms offer significant advantage against equal sampling.
Both approaches were satisfactorily scaling with respect to
the problems’ dimension and noise level. Naturally, further
work is required to fully reveal the potential of the proposed
algorithms through extensive experimentation.

Acknowledgment

This work was partially supported by the E.U. FP7–PEOPLE–
IAPP–2009, Grant Agreement No. 251589, Acronym: SAIL.

6. REFERENCES
[1] A. N. Aizawa and B. W. Wah. Dynamic control of

genetic algorithms in a noisy environment. In ICGA,
pages 48–55, 1993.

[2] R. Battiti and P. Campigotto. Reinforcement learning
and reactive search: an adaptive max-sat solver. In

71

Proceedings of the 2008 conference on ECAI 2008:
18th European Conference on Artificial Intelligence,
pages 909–910, Amsterdam, The Netherlands, The
Netherlands, 2008. IOS Press.

[3] C.-H. Chen. An effective approach to smartly allocate
computing budget for discrete event simulation. In
Proceedings of the 34th IEEE Conference on Decision
and Control, pages 2598–2605, 1995.

[4] C. H. Chen and L. H. Lee. Stochastic Simulation
Optimization: An Optimal Computing Budget
Allocation. World Scientific Publishing Co., 2010.

[5] S. Chick and K. Inoue. New two-stage and sequential
procedures for selecting the best simulated system.
Operations Research, 49:732–743, September 2001.

[6] M. Clerc and J. Kennedy. The particle
swarm–explosion, stability, and convergence in a
multidimensional complex space. IEEE Trans. Evol.
Comput., 6(1):58–73, 2002.

[7] R. C. Eberhart and J. Kennedy. A new optimizer
using particle swarm theory. In Proceedings Sixth
Symposium on Micro Machine and Human Science,
pages 39–43, Piscataway, NJ, 1995. IEEE Service
Center.

[8] M. Fu, C. Chen, and L. Shi. Some topics for
simulation optimization. In Winter Simulation
Conference, pages 27–38, 2008.

[9] Y. Jin and J. Branke. Evolutionary optimization in
uncertain environments-a survey. IEEE Trans.
Evolutionary Computation, 9(3):303–317, 2005.

[10] J. Kennedy. Small worlds and mega–minds: Effects of
neighborhood topology on particle swarm
performance. In Proc. IEEE Congr. Evol. Comput.,
pages 1931–1938, Washington, D.C., USA, 1999. IEEE
Press.

[11] A. Likas. Multivalued parallel recombinative
reinforcement learning: A multivalued genetic
algorithm. In Proc. HERCMA’98 Conference, Athens,
Greece, 1998.

[12] A. Likas, K. Blekas, and A. Stafylopatis. Parallel
recombinative reinforcement learning. In Proc. 8th
European Conference on Machine Learning
(ECML–95), LNAI 912, pages 311–314. Springer
Verlag, 1995.

[13] A. Likas, K. Blekas, and A. Stafylopatis. Parallel
recombinative reinforcement learning: A genetic
algorithm. Journal of Intellligent Systems, 6:145–169,
1996.

[14] K. E. Parsopoulos and M. N. Vrahatis. Particle swarm
optimizer in noisy and continuously changing
environments. In M. Hamza, editor, Artificial
Intelligence and Soft Computing, pages 289–294.
IASTED/ACTA Press, 2001.

[15] K. E. Parsopoulos and M. N. Vrahatis. Particle
Swarm Optimization and Intelligence: Advances and
Applications. Information Science Publishing (IGI
Global), 2010.

[16] C. Schmidt, J. Branke, and S. Chick. Integrating
techniques from statistical ranking into evolutionary
algorithms. Lecture notes in computer science,
3907/2006:752–763, 2006.

[17] P. N. Suganthan. Particle swarm optimizer with
neighborhood operator. In Proc. IEEE Congr. Evol.

Comput., pages 1958–1961, Washington, D.C., USA,
1999.

[18] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[19] I. C. Trelea. The particle swarm optimization
algorithm: Convergence analysis and parameter
selection. Information Processing Letters, 85:317–325,
2003.

[20] R. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine Learning, 8:229–256, 1992.

[21] S. Zhang, P. Chen, L.-J. Lee, C.-E. Peng, and C.-H.
Chen. Simulation optimization using the particle
swarm optimization with optimal computing budget
allocation. In Winter Simulation Conference, 2011.

APPENDIX

The employed test problems are defined as follows:

Test Problem 1 (TP1 – Sphere) [15]. This is a separable
n–dimensional problem, defined as:

f(x) =

n
∑

i=1

x2
i . (13)

It has a global minimizer, x∗ = (0, . . . , 0)⊤, with f(x∗) = 0.

Test Problem 2 (TP2 - Generalized Rosenbrock) [15]. This
is a non–separable n–dimensional problem, defined as:

f(x) =

n−1
∑

i=1

(

100
(

xi+1 − x2
i

)2
+ (xi − 1)2

)

. (14)

It has a global minimizer, x∗ = (1, . . . , 1)⊤, with f(x∗) = 0.

Test Problem 3 (TP3 - Rastrigin) [15]. This is a separable
n–dimensional problem, defined as:

f(x) = 10n+
n
∑

i=1

(

x2
i − 10 cos(2πxi)

)

. (15)

It has a global minimizer, x∗ = (0, . . . , 0)⊤, with f(x∗) = 0.

Test Problem 4 (TP4 - Griewank) [15]. This is a non–
separable n–dimensional problem, defined as:

f(x) =
n
∑

i=1

x2
i

4000
−

n
∏

i=1

cos

(

xi√
i

)

+ 1. (16)

It has a global minimizer, x∗ = (0, . . . , 0)⊤, with f(x∗) = 0.

Test Problem 5 (TP5 - Ackley) [15]. This is a non–separable
n–dimensional problem, defined as:

f(x) = 20 + exp(1)− 20 exp

−0.2

√

√

√

√

1

n

n
∑

i=1

x2
i

−

exp

(

1

n

n
∑

i=1

cos(2πxi)

)

. (17)

It has a global minimizer, x∗ = (0, . . . , 0)⊤, with f(x∗) = 0.

72

