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Abstract. Mixture models constitute a popular type of probabilistic neural 
networks which model the density of a dataset using a convex combination of 
statistical distributions, with the Gaussian distribution being the one most 
commonly used. In this work we propose a new probability density function, 
called the Π-sigmoid, from its ability to form the shape of the letter “Π” by 
appropriately combining two sigmoid functions. We demonstrate its modeling 
properties and the different shapes that can take for particular values of its 
parameters. We then present the Π-sigmoid mixture model and propose a 
maximum likelihood estimation method to estimate the parameters of such a 
mixture model using the Generalized Expectation Maximization algorithm. We 
assess the performance of the proposed method using synthetic datasets and 
also on image segmentation and illustrate its superiority over Gaussian mixture 
models. 
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1   Introduction 

Gaussian mixture models (GMM) are a valuable statistical tool for modeling 
densities. They are flexible enough to approximate any given density with high 
accuracy, and in addition they can be interpreted as a soft clustering solution. Thus, 
they have been widely used in both supervised and unsupervised learning, and have 
been extensively studied, e.g. [3]. They can be trained through a convenient EM 
procedure [4] that yields maximum likelihood estimates for the parameters of the 
mixture. However, it exhibits some weaknesses, the most notable being its lack of 
interpretability, since it provides spherical (or ellipsoidal in the most general case) 
shaped clusters that are inherently hard to be understood by humans. It is widely 
acknowledged that humans prefer solutions in the form of rectangular shaped clusters 
which are directly interpretable. Another weakness of the GMM approach is that it is 
not efficient when used to model data that are uniformly distributed in some regions. 

With the aim to adequately treat the above issues, in this work we propose a new 
probability distribution called the Π-sigmoid (Πs) distribution. This distribution is 
obtained as the difference of two translated sigmoid functions and is flexible enough 
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to approximate data distributions ranging from Gaussian to uniform depending on the 
slope of the sigmoids. We also propose a mixture model with Π-sigmoid distributions 
called Π-sigmoid mixture model (ΠsMM) and show that it is capable of providing 
probabilistic clustering solutions for the case of rectangular-shaped clusters that are 
straightforward to transform into an interpretable set of rules. We present a maximum 
likelihood technique to estimate the parameters of ΠsMM using the Generalized EM 
algorithm [3,4]. As experimental results indicate, due to its flexibility to approximate 
both the rectangular uniform and bell-shaped distributions, the ΠsMM provides 
superior solutions compared to GMMs when the data are not Gaussian. 

2   The Π-Sigmoid Distribution 

The one-dimensional Π-sigmoid distribution is computed as the difference between 
two logistic sigmoid functions with the same slope. The logistic sigmoid with slope λ 
is given by: 
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The Π-sigmoid pdf with parameters α, b, λ (with b>α) is defined by subtracting two 
translated sigmoids: 
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The term 1/(b-α) is the normalization constant to ensure that the integral of  

Πs(x) is unit. It is interesting to note that the integral [ ]( ) ( )x a x b dx b aσ σ− − − = −∫  

independently of λ. Figure 1 describes two translated sigmoids and the resulting Π-
sigmoid distribution. 

(a) (b)  

Fig. 1. The one-dimensional Π-sigmoid distribution (b) obtained as the difference of two 
translated sigmoid functions (a) 
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(c) (d) 

Fig. 2. Several shapes of the Π-sigmoid distribution by varying the values of its parameters 

In Fig.2 we present several shapes of the Π-sigmoid distribution by varying the 
values of its parameters. It is clear that both uniform (Fig. 2b) and bell-shaped 
distributed (Fig. 2d) can be adequately approximated. 

The multidimensional Π-sigmoid distribution is obtained under the assumption of 
independence along each dimension. More specifically, for a vector x=(x1, x2,…, xD)T: 
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with bd>αd and λd>0. Fig. 3 illustrates how a two-dimensional Π-sigmoid distribution 
that approximates a uniform distribution on rectangular domain. 

2.1   Maximum Likelihood Estimation 

Suppose we are given a dataset 1{ ,..., }NX x x= , i Dx R∈ , to be modeled by a Π-

sigmoid distribution. The parameters of the distribution can be estimated by 
maximizing the likelihood of the dataset X:  
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with respect to the set of parameters { }, { }, { }d d dA a B b λ= = Λ = , d=1,…D. 

 

Fig. 3. A two-dimensional Π-sigmoid probability density function 

The maximum likelihood solution cannot be obtained in closed form. However, 
since the gradient of the likelihood with respect to the parameters can be computed, 
gradient-based maximization methods can be employed (for example the simple 
gradient ascent or the more sophisticated quasi-Newton methods such as the BFGS). 

3   The Π-Sigmoid Mixture Model 

Using the proposed Π-sigmoid distribution, a mixture model can be defined called 
ΠsMM (Π-sigmoid Mixture Model) can be defined as follows 
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where K is the number of Π-sigmoid components, { }, { }, { }k kd k kd k kdA a B b λ= = Λ =  

are the parameters of k-th component and the mixing weights 
k
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Given a dataset 1{ ,..., }NX x x= , i Dx R∈  the parameters of the ΠsMM can be 

estimated through maximum likelihood using the EM algorithm as is the also the case  
 

with GMMs. The EM algorithm is an iterative approach involving two steps at each 
iteration. The E-step is the same in all mixture models and computes the posterior 

probability that ix  belongs to component k:  
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The M-step requires the maximization of the complete likelihood Lc (eq. (7)) with 
respect to the parameters of the ΠsMM model.  
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For the parameters πk the update equation is the same for all mixture models: 
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In contrast to the GMM case, the M-step does not lead to closed form update 

equations for the parameters , ,
k k k

A B Λ of the Π-sigmoid components. Thus we resort 

to the GEM (generalized EM) algorithm [3,4], which suggests to update the model 
parameters so that obtain higher (not necessarily maximum) values of the complete 
likelihood are obtained. In this work a few updates of each parameter θ along the 

direction of the gradient /
c

L θ∂ ∂ are computed. The GEM algorithm ensures that, at 

each iteration, the parameters θ are updated so that the likelihood increases, until a 
local maximum is reached. 

It is well known that the EM algorithm is very sensitive to the initialization of the 
model parameters. To deal with this issue, we first apply the Greedy-EM algorithm 
[2] to fit a GMM with K components (and diagonal covariance matrices) on the 
dataset. Then the parameters of the k-th ΠsMM component are initialized using the 
obtained parameters (mean and variance) of the k-th GMM component. The values of 
λ are always initialized to 1.5, although the performance is not sensitive to this choice. 

4   Experimental Results 

We have compared the modeling capabilities of ΠsMM against the widely used 
GMM. First artificial datasets were considered with a) only uniform rectangular, (Fig. 
4a) b) only Gaussian (Fig. 4b) and c) mixed (uniform and Gaussian) clusters (Fig. 4c). 
We considered the case D=2, K=4 (as in Fig. 4) and D=5, K=4. Each dataset 
contained 5000 data points used for training and 5000 used for testing. It must be 
emphasized that we are not interested in data clustering, but in building accurate 
models of the density of the given datasets. In this spirit, the obtained mixture models  
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(a) (b) (c)
 

Fig. 4. Three types of artificial datasets: (a) rectangular uniform, (b) Gaussian, (c) mixed 

Table 1. Test set likelihood values for three types of datasets (Gaussian, uniform, mixed) for 
the cases with D=2, K=4 and D=5, K=4 

D=2, K=4 D=5, K=4 
Uniform Gaussian Mixed Uniform Gaussian Mixed 

sMM -8572 3802 -11558 -10167 -8168 -46616 
GMM -11118 3836 -12653 -8856 -8352 -49044  

were compared in terms of the likelihood on the test set which constitutes the most 
reliable measure to compare statistical models. 

The results are summarized in Table 1. In the case of uniform clusters the ΠsMM 
was highly superior to GMM, in the case of Gaussian clusters the GMM was only 
slightly superior, while in the case of mixed clusters the performance of ΠsMM was 
much better. The inability of GMMs to efficiently approximate the uniform 
distribution is an old and well-known problem and the proposed ΠsMM model 
provides an efficient solution to modeling uniformly distributed data, while at the 
same time is able to adequately model Gaussian data. 

Since GMMs have been successfully employed for image modeling and 
segmentation using pixel intensity information, we tested the performance of the 
proposed ΠsMM model on the image segmentation task and compare against GMM. 
We considered 256x256 grey level images and for each image the intensities of 5000 
randomly selected pixels were used as the training set to fit a GMM and a ΠsΜΜ 
with the same number of components (K=5). After training, the remaining pixels were 
assigned to the component (cluster) with the maximum posterior probability (eq (8)). 
The segmentation results for two example images are shown in Fig. 5. 

It must be noted that the likelihood values on the large set of pixels not used for 
training (test set) of the PsMM and GMM were -28229 and -30185, respectively, for 
the top image and -23487 and -26576 for the bottom image of Fig. 5, also indicating 
that the ΠsMM provides superior statistical models of the images compared to GMM. 
This superiority is also confirmed from visual inspection of the segmented images 
(which is more clear in the top row images). 
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Original image Segmentation with sMM Segmentation with GMM  

Fig. 5. Segmentation results for two natural images (first column) using ΠsMM (second 
column) and GMM (third column) 

5   Conclusions 

We have proposed a new probability density function (Π-sigmoid) defined as the 
difference of two translated logistic sigmoids. Depending on the slope value of the 
sigmoids, the shape of the distribution may vary from bell-shaped to uniform allowing 
the flexibility to model a variety of datasets from Gaussian to uniform. We have also 
presented the Π-sigmoid mixture model (ΠsMM) and show how to estimate its 
parameters under the maximum likelihood framework using the Generalized EM 
algorithm. Experimental comparison with the Gaussian Mixture Models indicate that 
ΠsMM is more flexible than GMM providing solutions of higher likelihood. Also a 
notable characteristic of ΠsMM is its ability to accurately identify rectangular shaped 
clusters, which constitutes a well-known weakness of GMMs. 

It must be noted that another probabilistic model cabable of identifying rectangular 
shaped clusters has been proposed in [1], called mixture of rectangles. In that model a 
component distribution is a uniform distribution with a Gaussian tail and it is difficult 
to train, due to the inability to define the gradient of the likelihood with respect to the 
parameters. Thus one has to resort to line search optimization methods to perform 
training of the model. 

Our current work is focused on extending the Π-sigmoid distribution with the aim 
to describe rotated rectangles. The main issue to be addressed is how to develop an 
efficient training algorithm to adjust the additional parameters defining the rotation 
matrix. Another important issue is to develop a methodology to estimate the number 
of mixture components in ΠsMM, based on recent methods developed in the context 
of GMMs. 
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