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Abstract. Many image modeling and segmentation problems have been
tackled using Gaussian Mixture Models (GMM). The two most important
issues in image modeling using GMMs is the selection of the appropriate
low level features and the specification of the appropriate number of GMM
components. In this work we deal with the second issue and present an ap-
proach for GMM-based image modeling employing an incremental varia-
tional algorithm for Bayesian GMM training that automatically specifies
the number of mixture components. Experimental results on natural and
texture images indicate that the method yields reasonable models without
requiring the a priori specification of the number of components.

1 Introduction

Several approaches have been proposed for statistical image representation, ie.
the modeling of an image based on the distribution of various features at pixel
or window level. Simpler approaches focus on the use of histograms, while more
sophisticated statistical modeling tools such as mixture models have also been
considered [1]. More specifically, the assumption under the GMM framework is
that an image is considered as a set of regions (segments) where each region is
represented by a Gaussian distribution and the set of all regions in an image is
represented by a GMM.

To build the GMM for an image, first a dataset X = {fn} is constructed that
contains one feature vector fn ∈ Rd either for each image pixel n (as is the case
in this work) or for appropriately selected image windows (patches). Typical low
level features used are related to color and texture. Then an efficient training
method is applied to the dataset X in order to obtain the final GMM for the
image.

Let g be a mixture with M Gaussian components

g(f) =
M∑

j=1

πj N (f ; μj , Tj) (1)

where π = {πj} are the mixing coefficients (priors), μ = {μj} the means (centers)
of the components, and T = {Tj} the precision (inverse covariance) matrices.
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After training, it is possible to segment the image, ie. assign a group of pixels
to each GMM component by finding for the feature vector f of each pixel the
component j with maximum posterior, (ie. with maximum πj N (f ; μj , Tj)).

An issue to be considered is how to impose the requirement for spatial smooth-
ness, ie. that in most cases neighboring pixels should be assigned to the same
component (cluster). Two approaches have been proposed. The first imposes an
MRF prior on the posteriors [2]. The MRF approach is more difficult to handle
from the learning point of view, and requires all image pixels to be included in the
training set. It provides as outcome the posterior probabilities for each pixel. In
addition, no effective method has been proposed for automatically determining
the number of GMM components in the MRF framework.

In this work we focus on the second way to impose spatial smoothness [1]. Ac-
cording to this approach, the spatial location (x, y) of a pixel is considered as an
additional feature to be included in the feature vector f describing this pixel, for
example fn = (L, a, b, x, y)n for the n-th pixel with image coordinates (x, y) and
color vector (L, a, b). Thus the spatial distance between two pixels contributes
significantly to the total distance between the corresponding feature vectors. In
this way, adjacent pixels tend to have similar cluster labels since their spatial
distance is small, thus spatial smoothing is achieved. On the other hand, this
approach forces large image areas (with approximately the same color) that can
be considered as one segment to be splitted into smaller segments, because spa-
tially distant pixels cause the distance of the corresponding feature vectors to be
large, thus they cannot be modeled by a single Gaussian component. However,
this fragmentation problem can be easily resolved through a simple postprocess-
ing stage that merges image regions corresponding to GMM components with
similar mean feature values. In addition, to further enforce spatial smoothness,
it is possible to apply the MRF-based GMM model afterwards starting from the
GMM solution provided by the second approach.

The advantage of using the second approach for spatial smoothness is that
it results in a GMM that takes as input the image location (x, y) and can as-
sign feature labels (for example color) to every location (x, y) independent of
whether this pixel has been used for training or not. This has three interesting
consequences. First it is easy to obtain a model for a specific region of the im-
age by considering only the mixture components that are active in this region.
For example we can easily derive a mixture model for the color density in an
arbitrary image region. Second it is straightforward to marginalize the (x, y)
coordinates and obtain a GMM for the distribution of the low level features.
Finally, it is easy to assign segment labels to image locations (x, y) not used
for training, simply by computing the component j with highest posterior. This
allows train the mixture model using only a subset of the pixels.

Despite those advantages, a major difficulty is introduced that relates to the
specification of the number of mixture components. For example, it is possi-
ble that an image with four colors cannot be modeled using a GMM with four
components, especially in the case where the image segments with the same
color have large size or are disconnected. In this case the GMM requires more
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components to accurately model the image. Therefore it is difficult to specify in
advance the number of GMM components, thus it is essential to use GMM train-
ing methods that incorporate a built-in mechanism for automatically assessing
the number of components. This is the case with our method [3] used in this
work that is described next.

2 The Incremental Variational Bayesian Method

In this section we describe a Bayesian method for Gaussian mixture learning
[3] that is deterministic, does not depend on the initialization, and resolves ad-
equately the model selection problem, ie. the specification of the number of
components. The method is an incremental one: it starts with one component
and progressively adds components to the model. The procedure for component
addition is based on a splitting test applied to each of the existing mixture com-
ponents. According to this test, a component is splitted into two sub-components
and then variational Bayesian learning is applied to the specific pair of compo-
nents, while the rest components remain “fixed”. To apply this method, it is
necessary to define a Bayesian Gaussian mixture model by imposing priors on
the parameters π, μj and Tj .

The effect of variational Bayesian learning is that a competition takes place
between the two sub-components. If the data distribution in the region of the
splitted component strongly suggests the existence of more than one clusters,
then both sub-components will “survive” and the number of model components
will be increased. Otherwise, the competition among the two components will
cause one of them to be eliminated and the initial component will be recovered.
This strategy of incremental component addition also facilitates the specification
of the parameters of the priors, since it can be based on the parameters of the
component to be splitted.

In order to apply this idea, a modification of the typical Bayesian mixture
model [4] is required that is described in the graphical model of Figure 1 and
is explained next. Assume that we wish to restrict the competition to a subset
containing s of the GMM components while the others M − s components are
“fixed”. The proposed modification is to impose a prior only on the M − s
“fixed” mixing coefficients π̃. Let X = {fn} the set of training points containing
the feature vectors of the image pixels. The hidden variables Z = {zjn} capture
the missing information of which component has generated a given data point
fn. More specifically, zjn = 1 if component j is responsible for generating xn,
otherwise zjn = 0. Therefore it holds that:

p(X |Z, μ, T ) =
N∏

n=1

M∏

j=1

[N (fn; μj, Tj)]
zjn (2)

The distribution of Z is a product of multinomials

p(Z|π, π̃) =
N∏

n=1

s∏

j=1

π
zjn

j

M∏

j=s+1

π̃
zjn

j (3)
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Fig. 1. The graphical model

given the subset π̃ = {π̃j} of “fixed” mixing coefficients and the subset π = {πj}
of “free” mixing coefficients. For notational convenience and assuming M mixing
components, we can always rearrange the indexes so that the first s components
are the “free” ones.

The typical Bayesian framework assumes conjugate Dirichlet priors over the
entire set of mixing coefficients. Therefore, in order to define the modified Bayesian
GMM, it is necessary to define the conditional joint distribution p(π̃|π) of the
“fixed” mixing coefficients given the “free” which can be shown to be a non-
standard Dirichlet with parameters αj (j = s + 1, . . . , M):

p(π̃|π) =

⎛

⎝1 −
s∑

j=1

πj

⎞

⎠
−M+s

Γ (
∑M

j=s+1 αj)
∏M

j=s+1 Γ (αj)

×
M∏

j=s+1

(
π̃j

1 −
∑s

k=1 πk

)αj−1

(4)

It must be emphasized that we do not impose prior on the “free” mixing coeffi-
cients. Completing the specification of the Bayesian model we assume Gaussian
and Wishart priors for μ and T respectively [4]:

p(μ) =
s∏

j=1

N (μj |0, β I) (5)

p(T ) =
s∏

j=1

W(Tj |ν, V ). (6)

Learning in the Bayesian framework can be achieved through maximization
of the marginal likelihood of X given π, that is obtained by integrating out the
hidden variables θ = {Z, μ, T, π̃} as follows:

p(X |π) =
∑

Z

∫
p(X, θ|π) dμ dT dπ̃. (7)

Since this integral is intractable, the Variational Bayes methodology is adopted,
where we maximize a lower bound L of the logarithmic marginal likelihood
log p(X |π):
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L[q, π] =
∑

Z

∫
q(θ) log

p(X, θ|π)
q(θ)

dθ (8)

where q is an arbitrary distribution that approximates the posterior distribu-
tion p(θ|X, π). The maximization of L is performed in an iterative way, where
at each iteration two steps take place (in analogy to the EM approach): first
maximization of the bound with respect to q, and subsequently maximization
of the bound with respect to π. To implement this maximization with respect
to q the mean-field approximation [4] has been adopted, which assumes that q
is constrained to be a product of the form: q(θ) = qZ(Z)qμ(μ)qT (T )qπ̃(π̃). The
resulting update equations for the parameters of the q distributions (E-step) and
the parameters π (M-step) are omitted and described in detail in [3].

Using the above idea, the incremental algorithm for constructing the GMM
proceeds as follows. Mixture components are sequentially added to the mixture
model using the following component splitting procedure: one of the mixture
components is selected and is appropriately splitted in two components. The re-
sulting two components are considered as “free” and the rest as “fixed” according
to the terminology introduced previously. Next we set the precision prior p(T )
based on the characteristics of the splitted component, and apply variational
learning as described in the previous section. In case that the two components
provide a much better fit to the data in their region, then both components are
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Fig. 2. Four steps of the incremental training procedure. The expected covariance w.r.t.
the Wishart prior is depicted with a dashed line. (a) An intermediate solution with 5
components. (b) One component is splitted in two. (c) The mixture after variational
learning. (d) Another component is selected and splitted.
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Fig. 3. Segmentation of (a) an artificial image, (b) and (c) natural images from BSDS.
Top row: original images. Bottom row: segmented images.

retained in the mixture model, otherwise the update equations will eliminate
one of them. The splitting test is applied sequentially to all components and
the method terminates when all mixture components have been unsuccessfully
tested for splitting. In the case where a successful split is encountered, then the
number of mixture components increases and a new round of split tests for all
components is initialized.

To illustrate the details of splitting, assume that some component ĵ has to
be splitted, with density N (f ; μĵ, Tĵ). The idea is that in order to form the
new mixture, we remove component ĵ and insert two new components with
densities N (f ; μĵ1, Tĵ1) and N (f ; μĵ2, Tĵ2) respectively. We have selected to place
the centers of the two components along the dimension of the principal axis of
the covariance T−1

ĵ and at opposite directions with respect to the center μĵ.
The mixing coefficients of the two components are set equal πĵ1 = πĵ2 = πĵ/2,
and their parameters are set according to: μĵ1 = μĵ +

√
λ u, μĵ2 = μĵ −

√
λ u,

Tĵ1 = Tĵ and Tĵ2 = Tĵ, where λ is the maximum eigenvalue of T−1
ĵ and u the

corresponding eigenvector. An important issue in the proposed method is the
specification of the scale parameter V of the prior W(ν, V ) over the precision
matrices, based on the splitted component. We set ν = d (which is the minimum
allowed value) and V = νλI, where λ is the highest eigenvalue of T−1

ĵ . The
value of β was set to 10−10. An example of component splitting is illustrated in
Figure 2.
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Fig. 4. Segmentation using texture feature: (a) and (b) artificial images, (c) BSDS
image. Top row: original images. Bottom row: segmented images.

3 Experimental Results

To illustrate the performance of the proposed method, we have conducted ex-
periments using both artificially generated and natural images. For each image
the following steps were taken. First the dataset containing the feature vectors
for a subset of 5000 pixels was constructed and next the feature vectors were
preprocessed so that each feature distribution has zero mean and unit standard
deviation. The resulting dataset was then used to build the GMM for the image.
Using the resulting GMM, the ’segmented’ image is produced. In the case where
color features are used, the segmented image is produced by assigning to each
pixel (x, y) the mean color value of the corresponding GMM component. In the
case of texture images we use an arbitrary different color for each segment.

For segmentation using artificial color features we used the (L,a,b) representa-
tion along with the (x, y) coordinates. Figure 3.(a) illustrates the segmentation
result using an artificial color image. Figure 3.(b),(c) displays segmentation re-
sults with two natural images from the Berkeley Segmentation Data Set (BSDS)
[5]. For these images we also added a texture feature, namely the polarity feature
pl [1] to the feature vector describing a pixel, i.e. fn = (L, a, b, pl, x, y)n. Finally
Figure 4 provides results for two artificial texture images and one BSDS image,
using only the polarity feature, ie. fn = (pl, x, y)n.
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From the experimental results it is clear that, although only a subset of the
pixels are used for GMM training, the method yields segmentations of satisfac-
tory quality, that are spatially smooth and estimates reasonably well the number
of image segments, without producing significant oversegmentation.

4 Conclusions

We have presented an efficient approach for image modeling and segmentation
using GMMs that is based on a recently proposed Bayesian technique for esti-
mating the components of a GMM [3]. The approach is fully automatic, makes no
assumptions regarding the required number of GMM components and provides
solutions that are spatially smooth. Future work will focus on a more systematic
testing of the method in the case where other texture-related features are used
and in the case where feature vectors are defined at the patch level instead of the
pixel level. Also we plan to test the efficiency of the method in image retrieval
tasks where GMMs are used as models of the stored images and the query image.
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