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Abstract. Estimating the reliability of individual classifications is very
important in several applications such as medical diagnosis. Recently,
the transductive approach to reliability estimation has been proved to be
very efficient when used with several machine learning classifiers, such as
Naive Bayes and decision trees. However, the efficiency of the transduc-
tive approach for state-of-the art kernel-based classifiers was not consid-
ered. In this work we deal with this problem and apply the transductive
reliability methodology with sparse kernel classifiers, specifically the Sup-
port Vector Machine and Relevance Vector Machine. Experiments with
medical and bioinformatics datasets demonstrate better performance of
the transductive approach for reliability estimation compared to reliabil-
ity measures obtained directly from the output of the classifiers. Further-
more, we apply the methodology in the problem of reliable diagnostics of
the coronary artery disease, outperforming the expert physicians’ stan-
dard approach.

1 Introduction

Decision-making is usually an uncertain and complicated process, therefore it
is often crucial to know the magnitude of diagnosis’ (un)reliability in order to
minimize risks, for example in the medical domain risks related to the patient’s
health or even life. One of the reasons why machine learning methods are in-
frequently used in practice is that they fail to provide an unbiased reliability
measure of predictions.

Although there are several methods for estimating the overall performance
of a classifier, e.g cross-validation, and quality (reliability and validity) of col-
lected data [1], there is very little work on estimating the reliability of individ-
ual classifications. The transductive reliability methodology as introduced in [2]
computes the reliability of an individual classification, by studying the stability
of the trained model when the training set is perturbed (the newly classified
example is added to the training set and the classifier is retrained). For reliable
classifications, this process should not lead to significant model changes. The
transductive reliability methodology has been applied on traditional classifiers
like Naive Bayes and decision trees with interesting results. Here, we examine
the effectiveness of this methodology when applied on sparse kernel-based clas-
sifiers, such as the Support Vector Machine (SVM) and the Relevance Vector
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Machine (RVM), and compare transductive reliability estimations with reliabil-
ity measures based on the outputs that SVM and RVM provide. Furthermore, we
apply the methodology for diagnosis of the coronary artery disease (CAD) using
kernel-based classifiers and compare our results to the performance of expert
physicians using an established standard methodology.

2 Transduction Reliability Estimations

Transduction is an inference principle that takes a training sample and aims at
estimating the values of a discrete or continuous function only at given unlabeled
points of interest from input space, as opposed to the whole input space for
induction. In the learning process the unlabeled points are suitably labelled and
included into the training sample. The usefullness of unlabeled data has also
been advocated in the context of co-training. It has been shown [3] that for every
better-than-random classifier its performance can be significantly improved by
utilizing only additional unlabeled data.

The transductive reliability estimation process and its theoretical foundations
originating from Kolmogorov complexity are described in more detail in [2].
In practice, it is performed in a two-step process, featuring an inductive step
followed by a transductive step.
– An inductive step is just like an ordinary inductive learning process in Ma-

chine Learning. A Machine Learning algorithm is run on the training set, in-
ducing a classifier. A selected example is taken from an independent dataset
and classified using the induced classifier. An example, labelled with the
predicted class is temporarily included into the training set (Figure 1a).

– A transductive step is almost a repetition of an inductive step. A Machine
Learning algorithm is run on the changed training set, transducing a classi-
fier. The same example as before is taken from the independent dataset and
is classified using the transduced classifier (Figure 1b). Both classifications of
the same example are compared and their difference (distance) is calculated,
thus approximating the randomness deficiency.

– After the reliability is calculated, the example in question is removed from
the training set.

The machine learning algorithm, whose reliability is being assessed, is assumed to
provide a probability distribution p that describes the probability that its input
belongs at each possible class. In order to measure how much the model changes,
we calculate the distance between the probability distribution p of the initial
classifier and the probability distribution q of the augmented classifier, using the
Symmetric Kullback-Leibler divergence, or J-divergence, which is defined as

J(p, q) =
n∑

i=1

(pi − qi) log2
pi

qi
. (1)

J(p, q) is limited to the interval [0, ∞), with J(P, P ) = 0. For the ease of in-
terpretation, it is desirable for reliability values to be bounded to the [0, 1] in-
terval, J(p, q) is normalized in the spirit of Martin-Löf’s test for randomness
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Fig. 1. Transductive reliability estimation

[2,4, pp. 129], to obtain the transductive reliability measure (TRE) used in our
approach:

TRE = 1 − 2−J(p,q). (2)

Due to non-optimal classifiers resulting from learning in noisy and incomplete
datasets, it is inappropriate to select a priori fixed boundary (say, 0.90) as a
threshold above which a classification is considered reliable. To deal with this
problem, we split the range [0, 1] of reliability estimation values into two in-
tervals by selecting a threshold T . The lower interval [0, T ) contains unreliable
classifications, while the higher interval [T, 1] contains reliable classifications.
As a splitting point selection criterion we use maximization of the information
gain[5]:

Gain = H(S) − |S1|
|S| H(S1) − |S2|

|S| H(S2), (3)

where H(S) denotes the entropy of set S, S1 = {x : TRE(x) < T } is the set of
unreliable examples and S2 = {x : TRE(x) > T } is the set of reliable results.

Note that our approach is considerably different from that described in [6,7].
Their approach is tailor-made for SVM (it works by manipulating support vec-
tors) while ours requires only that the applied classifier provide a probability
distribution. Our approach can also be used in conjunction with probability
calibration, e.g. by utilizing the typicalness concept [8,9].

3 Kernel-Based Methods

Kernel methods have been extensively used to solve classification problems,
where a training set {xn, tn}N

n=1 is given, so that tn denotes the class label
of training example xn. The class labels tn are discrete, e.g. t ∈ {0, 1} for bi-
nary classification, and they describe the class to which each training example
belongs. Kernel methods, are based on a mapping function φ(x) that maps each
training vector to a higher dimensional feature space. Then, inner products be-
tween training examples are computed in this new feature space, by evaluating
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the corresponding kernel function K(xi, xj) = φ(xi)T φ(xj). This kernel function,
provides a measure of similarity between training examples.

Recently, there is much interest in sparse kernel methods, such as the Sup-
port Vector Machine (SVM) and the Relevance Vector Machine (RVM). These
methods are called sparse because, after training with the full dataset, they
make predictions using only a small subset of the available training vectors. In
SVM sparsity is achieved through suitable weight regularization, while RVM is
a Bayesian model and sparsity is a consequence of the use of a suitable sparse
prior distribution on the weights. The remaining training vectors, which are used
for predictions are called support vectors (SV) in the case of SVM and relevance
vectors (RV) in the case of RVM. The main reason why sparse kernel methods
are so interesting and effective, is that during training, they automatically es-
timate the complexity of the dataset, and thus they have good generalization
performance on both simple and complex datasets. In simple datasets only few
support/relevance vectors will be used, while in more difficult datasets the num-
ber of support/relevance vectors will increase. Furthermore, making predictions
using only a small subset of the initial training examples is typically much more
computationally efficient.

3.1 Support Vector Machine

The support vector machine (SVM) classifier, is a kernel classifier that aims at
finding an optimal hyperplane which separates data points of two classes. This
hyperplane is optimal in the sense that it maximizes the margin between the
hyperplane and the training examples. The SVM classifier [10] makes decisions
for an unknown input vector, based on the sign of the decision function:

ySV M (x) =
N∑

n=1

wnK(x, xn) + b (4)

After training, most of the weights w are set to exactly zero, thus predictions are
made using only few of the training vectors, which are the support vectors. As-
suming that the two classes are labeled with ’−1’ and ’1’, so that tn ∈ {−1, 1},
the weights w = (w1, . . . , wN ) are set by solving the following quadratic pro-
gramming problem:

min
w,b,ξ

1
2
wT w + C

N∑

n=1

ξn (5)

subject to tn(wT φ(xn) + b) ≥ 1 − ξn

ξn ≥ 0

where the auxiliary variables ξ = (ξ1, . . . , ξN ) have been introduced to deal with
non-separable datasets.

SVM makes predictions based on the decision function of eq. (4). Positive
values of the decision function (ySV M(x) > 0) correspond to class ’1’, while neg-
ative values (ySV M (x) < 0) correspond to class ’−1’. Furthermore, the absolute
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value of the decision function provides a measure of the certainty of the decision.
Values near zero, correspond to points near the decision boundary and therefore
may be unreliable, while large values of the decision function should correspond
to reliable classifications. In practice, we first obtain probabilistic predictions by
applying the sigmoid function σ(x) = 1/(1 + exp(−x)) to the SVM outputs and
then compute the reliability measure as:

RESV M = |2σ(ySV M (x)) − 1|. (6)

3.2 Relevance Vector Machine

The relevance vector machine (RVM) classifier [11], is a probabilistic extension
of the linear regression model, which provides sparse solutions. It is analogous to
the SVM, since it computes the decision function using only few of the training
examples, which are now called relevance vectors. However training is based on
different objectives.

The RVM model y(x; w) is the output of a linear model with parameters
w = (w1, . . . , wN )T , with application of a sigmoid function for the case of clas-
sification:

yRV M (x) = σ(
N∑

n=1

wnK(x, xn)), (7)

where σ(x) = 1/(1+ exp(−x)). In the RVM, sparseness is achieved by assuming
a suitable prior distribution on the weights, specifically a zero-mean, Gaussian
distribution with distinct inverse variance αn for each weight wn:

p(w|α) =
N∏

n=1

N(wn|0, α−1
n ). (8)

The variance hyperparameters α = (α1, . . . , αN ) are assumed to be Gamma
distributed random variables:

p(α) =
N∏

n=1

Gamma(αn|a, b). (9)

The parameters a and b are assumed fixed and usually they are set to zero
(a = b = 0), which provides sparse solutions.

Given a training set {xn, tn}N
n=1 with tn ∈ {0, 1} training in RVM is equivalent

to compute the posterior distribution p(w, α|t). However, since this computation
is intractable, a quadratic approximation log p(w|t, α) ≈ (w − μ)T Σ−1(w − μ) is
assumed and we compute matrix Σ and vector μ as:

Σ = (ΦT BΦ + A)−1 (10)
μ = ΣΦT Bt̂ (11)

with the N × N matrix Φ defined as [Φ]ij = K(xi, xj), A = diag(α1, . . . , αN ),
B = diag(β1, . . . , βN ), βn = yRV M(xn)[1− yRV M (xn)] and t̂ = Φμ+B−1(t− y).
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The parameters α are then set to the values αMP that maximize the logarithm
of the following marginal likelihood

L(α) = log p(α|t) = −1
2

[
N log 2π + log|C| + tT C−1t

]
, (12)

with C = B−1 + ΦA−1ΦT . This, gives the following update formula:

αn =
1 − αnΣnn

μ2
n

(13)

The RVM learning algorithm iteratively evaluates formulas (10),(11) and (13).
After training, the value of yRV M (x) = y(x; μ) can be used to estimate the

reliability of the classification decision for input x. Values close to 0.5 are near the
decision boundary and therefore are unreliable classifications, while values near
0 and near 1 should correspond to reliable classifications. In our experiments,
we used the reliability measure

RERV M = |2yRV M(x) − 1|, (14)

which takes values near 0 for unreliable classifications and near 1 for reliable
classifications.

3.3 Incremental Relevance Vector Machine

An interesting property of the RVM model that can be exploited in the trans-
ductive approach, is that it can be trained incrementally, as proposed in [12].
The proposed incremental algorithm, initially assumes an empty model, that
does not use any basis functions. Then, it incrementally adds, deletes and re-
estimates basis functions, until convergence. It is based on the observation that
the marginal likelihood, see eq. (12), can be decomposed as:

L(α) = L(α−n) + l(αn), (15)

where L(α−n) does not depend on αn and

l(αn) = log αn − log(αn + sn) +
q2
n

αn + sn
, (16)

with sn = φT
nC−1

−nφn and qn = φT
nC−1

−n t̂. Here, C−n = B−1 +
∑

i�=n α−1
n φnφT

n

denotes the matrix C without the contribution of the n-th basis function, so
that C = C−n + α−1

n φnφT
n , sn is the “sparseness” factor that measures how

sparse the model is and qn is the “quality” factor that measures how well the
model fits the observations. Based on this decomposition, analysis of l(αn) shows
that it is maximized when

αn = s2
n

q2
n−sn

if q2
n > sn (17)

αn = ∞ if q2
n ≤ sn (18)
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Based on this result, the following algorithm is proposed in [12]:

1. Initially assume an empty model, set an = ∞, for all n
2. Select a training point xn and compute the corresponding basis function φn

as well as sn and qn.
(a) if q2

n > sn and αn = ∞ add the basis function to the model, using eq.
(17) to set αn

(b) if q2
n > sn and αn < ∞ re-estimate αn

(c) if q2
n <= sn remove the basis function from the model, set αn = ∞

3. Compute Σ and μ, using eq. (10) and (11)
4. Repeat from step 2, until convergence.

4 Evaluation of Transductive Reliability Estimations

In this section, we apply the transductive reliability methodology in a series of
classification problems and compare the performance of transductive reliability
estimations, with respect to the reliability measures that are directly computed
based on SVM and RVM outputs. Transductive reliability estimations, are ob-
tained following the procedure described in Section 2. After training the model
and computing its output for a new test point x∗, we add this test point to the
training set with the predicted label and retrain the model. Transductive reli-
ability estimations are obtained by measuring the distance between the output
distributions of the two models.

In the case of RVM we also considered a modification, where we used the
incremental training algorithm to obtain fast transductive reliability estimations.
Specifically, after adding the new training point x∗, instead of retraining from
scratch, we can use the incremental algorithm to continue training the previous
model. This is much more computationally efficient, and in the experiments it
appears to provide better performance than the standard approach of training
from scratch.

In order to evaluate the performance of the reliability estimation methods, we
apply the following procedure. We perform leave-one-out cross-validation on the
available training dataset and compute a prediction for the class of each training
point and a reliability estimation (RE) of this prediction. Afterwards, we can
discriminate reliable and unreliable classifications by selecting a threshold (T )

Table 1. Information gain of SVM/RVM reliability estimations and transductive reli-
ability estimations

Method hepatitis new-thyroid wdbc leukemia
RESV M 0.106 0.083 0.036 0.054
TRESV M 0.120 0.092 0.047 0.073
RERV M 0.109 0.068 0.091 0.089
TRERV M 0.178 0.062 0.094 0.062
TRERV M(inc) 0.133 0.072 0.106 0.107
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for the reliability measure. Using an ideal reliability measure all correct classi-
fications should be labeled reliable (RE > T ), while all incorrect classifications
should be labeled unreliable. Thus, an evaluation of the reliability measure is
obtained by computing the percentage of correct and reliable classifications, and
the percentage of incorrect reliable classifications. Plotting these percentages,
for many values of the threshold, produces an ROC curve, which illustrates the
performance of the reliability estimation method.

Although the ROC describes the overall effectiveness of a reliability measure,
in practice, a single threshold value has to be used. This is selected by maximizing
the information gain, as explained in Section 2. The information gain may also
be used to compare the performance of several reliability measures. Table 1
shows the information gain that is achieved by: i) using directly the SVM/RVM
reliability estimates RESV M and RERV M , ii) using the transduction reliability
principle (TRE). Results are shown for three medical datasets from the UCI
machine learning repository and the leukemia bioinformatics dataset. It is clear
that when SVM is used, transduction provides better information gain for all
datasets. The same happens with incremental RVM, while when typical RVM is
used, transduction is better in two of the three cases.

5 Diagnosis of Coronary Artery Disease

Coronary artery disease (CAD) is the most important cause of mortality in all
developed countries. It is caused by diminished blood flow through coronary
arteries due to stenosis or occlusion. CAD produces impaired function of the
heart and finally the necrosis of the myocardium – myocardial infarction.

In our study we used a dataset of 327 patients (250 males, 77 females) with per-
formed clinical and laboratory examinations, exercise ECG, myocardial scintig-
raphy and coronary angiography because of suspected CAD. The features from
the ECG an scintigraphy data were extracted manually by the clinicians. In
228 cases the disease was angiographically confirmed and in 99 cases it was ex-
cluded. 162 patients had suffered from recent myocardial infarction. The patients
were selected from a population of approximately 4000 patients who were exam-
ined at the Nuclear Medicine Department, University Clinical Centre, Ljubljana,

Table 2. Comparison of the performance of expert physicians and machine learning
classification methods for the CAD dataset

Positive Negative
Method Reliable Errors AUC Reliable Errors AUC
Physicians 0.72 0.04 0.790 0.45 0.07 0.650
RESV M 0.65 0.00 0.903 0.30 0.04 0.566
TRESV M 0.76 0.02 0.861 0.57 0.08 0.672
RERV M 0.63 0.004 0.842 0.54 0.06 0.729
TRERV M 0.67 0.013 0.767 0.49 0.05 0.702
TRERV M(inc) 0.69 0.004 0.850 0.54 0.07 0.720
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Fig. 2. ROC curves for the transduction reliability measures for SVM and incremental
RVM, using the CAD dataset and considering separately the positive and negative
examples

Slovenia, between 1991 and 1994. We selected only the patients with complete
diagnostic procedures (all four levels) [13].

Physicians apply a stepwise diagnostic process and use Bayes law to compute
a posterior probability of disease, based on some diagnostic tests and a prior
probability according to the age, gender and type of chest pain for each patient.
Reliable diagnoses are assumed to be those whose posterior probability is over
0.90 (positive) or under 0.10 (negative). We considered treating the problem by
training an SVM or an RVM classifier and using the transductive reliability prin-
ciple to estimate the reliability of each classification. For evaluation purposes,
we performed leave-one-out cross-validation, and for each example we predicted
a class and a reliability of the classification. We then splitted classifications to
reliable and unreliable by computing the threshold that maximizes the informa-
tion gain and measured the percentage of reliable diagnoses (with the reliability
measure above some threshold), and errors made in this process (percentage of
incorrectly diagnosed patients with seemingly reliable diagnoses).

The results of these experiments are summariazed in Table 2 and furthermore,
in Figure 2 ROC curves are plotted separately for the cases of positive and
negative examples. The area (AUC) under these curves, which measures the
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overall reliability performace, is also shown in Table 2. It can be observed that
when the transduction principle is used along with SVM and incremental RVM,
better performance is achieved compared to physicians.

Specifically, notice that the transductive SVM, has reliably detected 0.76%
of the positive examples and 0.57% of negative examples, which is much better
than the percentages of physicians, which are 0.72% and 0.45% respectively More
important is the fact that at the same time, transductive SVM made less errors
in positive examples, specifically 0.02% when the physicians made 0.04%. In
medical diagnosis applications, it is very important that this error rate is kept
at very small values. The error rate in negative examples, is 0.08% for physicians
and 0.07% for transductive SVM, which is comparable.

When using the RVM model, the error rate of positive examples is dropped
even lower to 0.004%. Although, the percentage of reliably detected positive
examples (0.63%) is somewhat less than the one of physicians (0.72%), it is im-
proved to 0.69% when using the incremental transduction principle. The RVM
percentage of reliably detected negative examples is slightly higher than physi-
cians, while the error rate of negative examples is about the same. Notice, that
non-incremental transduction with RVM did not perform as expected, probably
because relevant vectors are very sensitive to small changes of the training set.

6 Conclusions

We applied the transduction methodology for reliability estimation on sparse
kernel-based classification methods. Experiments on medical datasets from the
UCI repository and a bioinformatics gene expression dataset, indicate that, when
used with kernel-based classifiers, transductive reliability estimations are more
accurate than simple reliability measures based on the outputs of kernel classi-
fiers. Furthermore, we applied the transductive methodology in the problem of
CAD diagnosis, achieving better reliability estimation performance compared to
the standard physicians procedure.
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