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ABSTRACT

Gaussian mixture models (GMM) have been shown an ef-

fective tool for image representation and segmentation. How-

ever, several issues related to GMM training for image mod-

eling have not been adequately resolved such as the spec-

ification of the number of mixture components and the in-

creased complexity for images of typical size (e.g. 256x256).

We present an approach for GMM-based image modeling

employing an incremental variational algorithm for Bayesian

mixture learning that automatically specifies the number of

mixture components. Moreover, we integrate the method

in an active learning framework which allows to gradually

build the GMM using only a small fraction of the image

pixels.

1. INTRODUCTION

Statistical image representation, ie. the modeling of an im-

age based on the distribution of various features at pixel

level, constitutes an important task in computer vision and

image analysis. Several approaches have been proposed,

with earlier work mainly focusing on the use of histograms,

while later more sophisticated statistical modeling tools such

as mixture models have been employed. Mixture models

are now considered as a convenient tool for image model-

ing based on low level features such as color, texture etc [1].

More specifically, the assumption under the GMM frame-

work is that an image is considered as a set of regions (seg-

ments) where each region is represented by a Gaussian dis-

tribution and the set of all regions in an image is represented

by a GMM.

Without loss of generality, in this work we consider that

features are computed at the pixel level and in our experi-

ments we have considered the color feature computed in the
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(L, a, b) space, although it is straightforward to employ any

sets of features (e.g. Gabor coefficients for texture model-

ing). To build the GMM for an image, a dataset X is con-

structed that contains one feature vector xn ∈ Rd for each

image pixel n. Then an efficient training method is applied

to this dataset to provide the final GMM for the image.

Let f be a mixture with J Gaussian components

f(x) =
J∑

j=1

πj N (x|µj , Tj) (1)

where π = {πj} are the mixing coefficients (priors), µ =
{µj} the means (centers) of the components, and T = {Tj}
the precision (inverse covariance) matrices. After training,

it is possible to segment the image, ie. assign a group pixels

to each GMM component by finding for the feature vector

x of each pixel the component j with maximum posterior,

(ie. with maximum πj N (x|µj , Tj)).
An important issue is how to impose the requirement

for spatial smoothness, ie. that in most cases neighboring

pixels should be assigned to the same component (cluster).

This can be achieved in two ways. The first is by imposing

an MRF prior on the posteriors [2]. The MRF approach is

more difficult to handle from the learning point of view, and

requires all image pixels to be included in the training set.

It provides as outcome the posterior probabilities for each

pixel. In addition, no effective method has been proposed

for automatically determining the number of GMM compo-

nents in the MRF framework.

The second way to impose spatial smoothness is the

direct approach [3], which considers the spatial location

(x, y) of a pixel as an additional feature to be included in the

feature vector describing this pixel, ie. xn = (L, a, b, x, y)
for the n-th pixel with image coordinates (x, y) and color

vector (L, a, b). Thus the spatial distance between two pix-

els contributes significantly to the total distance between the

corresponding feature vectors. In this way, adjacent pixels

tend to have similar cluster labels since their spatial dis-

tance is small, thus spatial smoothing is achieved. On the
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other hand, this approach forces large image areas (with ap-

proximately the same color) that can be considered as one

segment to be splitted into smaller segments, because spa-

tially distant pixels cause the distance of the correspond-

ing feature vectors to be large, thus they cannot be modeled

by a single Gaussian component. However, this fragmenta-

tion problem can be easily resolved through a simple post-

processing stage that merges image regions corresponding

to GMM components with similar color mean.

A notable advantage of using the direct approach for

spatial smoothness is that it results in a GMM that takes as

input the image location (x, y) and can assign feature labels

(for example color) to every location (x, y) independent of

whether this pixel has been used for training or not. This

has several significant consequences:

• it is easy to obtain a model for a specific region of the

image by considering only the mixture components

that are active in this region. For example we can

easily derive a mixture model for the color density in

an arbitrary image region

• it is straightforward to marginalize the (x, y) coordi-

nates and obtain a GMM for the distribution of the

low level features

• it is easy to assign feature values (for example color)

to image locations (x, y) not used for training, simply

by computing the component j with highest posterior

and assigning the mean color value (µj,L, µj,a, µj,b)
of this component as the ’representative’ color for lo-

cation (x, y) in the segmented image. This allows to

exploit the redundancy in the pixel information and

train the mixture model using only a representative

subset of the pixels. The rest of the pixels could be

used as a test set to evaluate ”segmentation accuracy”

by computing the difference between the original im-

age and the ”segmented” image.

Going one step further, we propose the use of an ac-

tive learning methodology where training starts with a small

number of feature vectors and more (appropriately selected)

feature vectors are gradually added to the training set as

learning proceeds. In this way it is possible to build a rep-

resentative image model using only a small fraction of the

pixels.

Despite the advantages obtained by using the direct ap-

proach for spatial smoothness, a major difficulty is intro-

duced that relates to the specification of the number of mix-

ture components. For example, it is possible that an im-

age with four colors cannot be modeled using a GMM with

four components, especially in the case where the image

segments with the same color have large size or are dis-

connected. In this case the direct approach requires more

components to model the image. Therefore in the direct

approach it is difficult to specify in advance the number of

GMM components and it is essential to use GMM training

methods that incorporate a built-in mechanism for automat-

ically assessing the number of components (as for exam-

ple our method used in this work [4]) or the MML-based

approach in [5]. However, to implement active learning it

is preferable to use a learning algorithm that gradually in-

creases the number of components as is the case with our

method described next.

2. THE INCREMENTAL VARIATIONAL BAYESIAN

METHOD

In this section we describe a Bayesian method for Gaussian

mixture learning [4] that is deterministic, does not depend

on the initialization, and resolves adequately the model se-

lection problem, ie. the specification of the number of com-

ponents. The method is an incremental one: it starts with

one component and progressively adds components to the

model. The procedure for component addition is based on a

“splitting test” applied to each of the existing mixture com-

ponents. According to this test, a component is replaced by

two sub-components and then variational Bayesian learning

is applied to the specific pair of components, while the rest

components remain “fixed”. Due to the introduction of pri-

ors on the parameters of the Gaussians, a competition takes

place between the components. If the data distribution in the

region of the tested component strongly suggests the exis-

tence of more than one clusters, then both sub-components

will “survive” and the number of model components will

be increased. Otherwise, the competition among the two

components will cause one of them to be eliminated and the

initial component will be recovered. This strategy of incre-

mental component addition also facilitates the specification

of the parameters of the priors, since it can be based on the

parameters of the component to be splitted. In order to ap-

ply this idea, a modification of the typical Bayesian mixture

model is required that is described in the graphical model

of Figure 1. Note that a prior has been imposed only on

the J − s “fixed” mixing coefficients π̃. Let X = {xn}
the set of training points containing the feature vectors of

the image pixels.The hidden variables Z = {zjn} capture

the missing information of which component has generated

a given data point. More specifically, zjn = 1 if compo-

nent j is responsible for generating xn, otherwise zjn = 0.

Therefore it holds that:

p(X|Z, µ, T ) =
N∏

n=1

J∏
j=1

[N (xn|µj , Tj)]
zjn (2)

The distribution of Z is a product of multinomials

p(Z|π, π̃) =

N∏
n=1

s∏
j=1

π
zjn

j

J∏
j=s+1

π̃
zjn

j (3)

320



N

T

µ Z

X π

s

s

π

~
J−s

Fig. 1. The graphical model.

given the subset π̃ = {π̃j} of “fixed” mixing coefficients

and the subset π = {πj} of “free” mixing coefficients.

For notational convenience and assuming J mixing compo-

nents, we can always rearrange the indexes so that the first

s components are the “free” ones.

The typical Bayesian framework assumes conjugate Dirich-

let priors over the entire set of mixing coefficients. How-

ever, in order to apply our idea, it is necessary to define the

conditional joint distribution p(π̃|π) of the “fixed” mixing

coefficients given the “free”. It is known that if the joint dis-

tribution of a set of variables is Dirichlet, then the marginal

joint distribution of a subset of the variables is also Dirich-

let. Using Bayes theorem the conditional joint distribution

p(π̃|π) can be derived, which is a non-standard Dirichlet

with parameters αj (j = s + 1, . . . , J):

p(π̃|π) =

⎛
⎝1 −

s∑
j=1

πj

⎞
⎠

−J+s

Γ(
∑J

j=s+1
αj)∏J

j=s+1
Γ(αj)

×
J∏

j=s+1

(
π̃j

1 −∑s

k=1
πk

)αj−1

(4)

and constitutes a conjugate prior of the “fixed” coefficients.

Completing the specification of our Bayesian model we as-

sume Gaussian and Wishart priors for µ and T respectively

[6]:

p(µ) =

s∏
j=1

N (µj |0, β I) (5)

p(T ) =

s∏
j=1

W(Tj |ν, V ). (6)

Learning in the Bayesian framework can be achieved

through maximization of the marginal likelihood of the data

which is obtained by integrating out the hidden variables of

the model. In our case, the marginal likelihood of X given

π is obtained by integrating out θ = {Z, µ, T, π̃} as follows

p(X|π) =
∑
Z

∫
p(X, θ|π) dµ dT dπ̃. (7)

Following the Variational Bayes methodology, we maxi-

mize a lower bound L of the logarithmic marginal likeli-

hood log p(X|π):

L[q, π] =
∑
Z

∫
q(θ) log

p(X, θ|π)

q(θ)
dθ (8)

where q is an arbitrary distribution that approximates the

posterior distribution p(θ|X, π). The maximization of L
is performed in an iterative way, where at each iteration

two steps take place (in analogy to the EM approach): first

maximization of the bound with respect to q, and subse-

quently maximization of the bound with respect to π. To

implement this maximization with respect to q the mean-

field approximation [6] has been adopted, which assumes

that q is constrained to be a product of the form: q(θ) =
qZ(Z)qµ(µ)qT (T )qπ̃(π̃). The resulting update equations

for the parameters of the q distributions (E-step) and the

parameters π (M-step) [4] are omitted due to space limita-

tions.

Using the above idea the incremental algorithm for Bayesian

mixture model learning proceeds as follows. Mixture com-

ponents are sequentially added to the mixture model using

the following component splitting procedure: one of the

mixture components is selected and is appropriately split-

ted in two components. We treat the resulting two com-

ponents as “free” and the rest as “fixed” according to the

terminology introduced previously. Next we set the pre-

cision prior p(T ) based on the characteristics of the split-

ted component, and apply variational learning as described

in the previous section. In case that the two components

provide a much better fit to the data in their region, then

both components are retained in the mixture model, other-

wise the update equations will eliminate one of them. The

splitting test is applied sequentially to all components and

the method terminates when all mixture components have

been unsuccessfully tested for splitting. In the case where a

successful split is encountered, then the number of mixture

components increases and a new round of split tests for all

components is initialized.

To illustrate the details of splitting, assume that some

component ĵ has to be splitted, with density N (x|µĵ, Tĵ).
The idea is that in order to form the new mixture, we remove

component ĵ and insert two new components with densities

N (x|µĵ1, Tĵ1) and N (x|µĵ2, Tĵ2) respectively. We have se-

lected to place the centers of the two components along the

dimension of the principal axis of the covariance T−1

ĵ and

at opposite directions with respect to the center µĵ. The

mixing coefficients of the two components are set equal

πĵ1 = πĵ2 = πĵ/2, and their parameters are set accord-

ing to: µĵ1 = µĵ +
√

λ u, µĵ2 = µĵ −
√

λ u, Tĵ1 = Tĵ and

Tĵ2 = Tĵ, where λ is the maximum eigenvalue of T−1

ĵ and

u the corresponding eigenvector. An important issue in the

proposed method is the specification of the scale parameter

V of the prior W(ν, V ) over the precision matrices, based

on the splitted component. We set ν = d (which is the min-
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Fig. 2. Four steps of the incremental training procedure.

The expected covariance w.r.t. the Wishart prior is depicted

with a dashed line. (a) An intermediate solution with 5 com-

ponents. (b) One component is splitted in two. (c) The mix-

ture after variational learning. (d) Another component is

selected and splitted.

imum allowed value) and V = νλI, where λ is the highest

eigenvalue of T−1

ĵ . The value of β was set to 10−10. An

example of component splitting is illustrated in Figure 2.

3. ACTIVE GMM LEARNING

While the above procedure can be applied to the whole im-

age dataset to provide the image GMM, we propose the use

of an active learning approach. More specifically, we start

with a small set of feature vectors and build an initial mix-

ture model using the method described previously. Next,

additional feature vectors are selected using an appropriate

selection criterion and added to the training set. Then the

learning algorithm is applied to the augmented training set

starting from the mixture model obtained in the previous

iteration. This procedure is repeated several times until a

stopping criterion is satisfied.

More specifically, given an image with N pixels, let

Ω = {xn| n = 1, . . . , N} be the set of all feature vec-

tors. In each active learning iteration, there are two disjoint

sets X and Xc (X ∪ Xc = Ω). X contains the set of fea-

ture vectors that we use to learn the mixture, and Xc is the

rest dataset (pool of samples) that we use to augment X in

the next iteration. In order to add points, we compute the

’reconstruction error’ for the points in Xc. The reconstruc-

tion error for a feature vector (L, a, b, x, y) is computed by

determining the mixture component j with the highest pos-

terior and computing the distance between the actual color

vector (L, a, b) and the mean color vector (µj,Lµj,a, µj,b)
of component j. Next we augment X with the subset of Xc

that contains the feature vectors with the largest reconstruc-

tion error. Of course these feature vectors are removed from

Xc.

To terminate the active learning, we compute (as de-

scribed above) at the end of each iteration the total recon-

struction error for all the points in Ω. If this error has been

increased, then we reject the current mixture and adopt the

mixture of the previous iteration. If the error has not im-

proved for four consecutive iterations, we terminate the GMM

learning procedure. This active learning method signifi-

cantly accelerates learning since usually a small fraction of

the samples (e.g. 2%) is used for building the GMM model

of the image.

4. EXPERIMENTAL RESULTS

To illustrate the performance of the proposed method, we

have conducted experiments using both artificially gener-

ated and natural images. For each image the following steps

were taken. First the dataset containing the feature vectors

for all pixels was constructed and next the feature vectors

were preprocessed so that each feature distribution has zero

mean and unit standard deviation. The resulting dataset

Ω was then used for building the mixture model using the

active learning methodology. Using the resulting mixture

model, the ’segmented’ image is produced by assigning to

each pixel (x, y) the mean color value of the GMM compo-

nent with highest posterior. In all experiments, to initiate ac-

tive learning, 500 uniformly distributed pixels are selected

and the corresponding feature vectors are added to the train-

ing set X . At each active learning iteration 100 points were

selected and added to X .

Figure 3 illustrates the segmentation result for two ar-

tificial images. The depicted mixture components and the

feature vectors have been projected on the spatial coordi-

nates (x, y). To demonstrate performance on natural im-

ages, we provide segmentation results for two images from

the Berkeley Segmentation Data Set (BSDS) [7]. Figure 4

illustrates the segmentation of image 253036 (top row) and

118035 (bottom row). The first image was segmented us-

ing a mixture with 13 components, while the second with

8. It is clear that segmentation results are quite satisfac-

tory In addition, we compared the proposed active data se-

lection method for augmenting X with a method where X
is augmented through uniform random selection of feature

vectors. The total reconstruction (ie. segmentation) error

and the number of components at each active learning iter-

ation are illustrated in Table 1. It is clear that the proposed

data selection criterion leads to solutions with much better
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Fig. 3. Artificial images. (a) Original image. (b) The se-

lected training points and components of the mixture model.

(c) Image segmentation using the mixture.

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

Fig. 4. Segmentation of natural images from BSDS. (left)

Original image. (right) Segmented image.

reconstruction error, while the random selection approach

seems to terminate prematurely.

5. CONCLUSIONS

We have presented an efficient approach for image model-

ing using GMMs. The approach is fully automatic, makes

no assumptions regarding the required number of GMM

components and provides solutions that are spatially smooth.

Through an active learning methodology it is possible to ob-

tain representative GMMs using only a small fraction of the

pixels. Future work will focus on testing the performance of

the method in the case where several other features are also

included in the feature vector (such as texture-related fea-

tures). Also we plan to integrate in our approach a technique

Table 1. Comparison of the proposed active sampling

method compared to random sampling. For each active

learning iteration we report the reconstruction error, and in

parentheses the number of GMM components.

BSDS image 253036 BSDS image 118035

active random active random

1516.2 (4) 1516.2 (4) 1143.7 (4) 1143.7 (4)

1163.2 (6) 1300.6 (5) 1017.5 (5) 1047.7 (4)

1099.0 (7) 1276.8 (5) 840.3 (6)

903.6 (9) 827.4 (8)

800.5 (11)

744.5 (13)

for the automatic selection of the most salient features.
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