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Abstract. In this work we present an active learning methodology for
training the probabilistic RBF (PRBF) network. It is a special case
of the RBF network, and constitutes a generalization of the Gaussian
mixture model. We propose an incremental method for semi-supervised
learning based on the Expectation-Maximization (EM) algorithm. Then
we present an active learning method that iteratively applies the semi-
supervised method for learning the labeled and unlabeled observations
concurrently, and then employs a suitable criterion to select an unlabeled
observation and query its label. The proposed criterion selects points near
the decision boundary, and facilitates the incremental semi-supervised
learning that also exploits the decision boundary. The performance of
the algorithm in experiments using well-known data sets is promising.

1 Introduction

Active learning a classifier constitutes a special learning problem, where the
training data are actively collected during the training. The training data are
available as a stream of classified observations, but the information they carry
is controlled from the classifier. The classifier determines regions of interest in
the data space, and asks for training data that lie in these regions. The impor-
tance of active learning is well established, see [1] for a study on the increase
of classifier’s accuracy as the number of labeled data increases. Various active
learning methods have been suggested; in [2] a learning method for Gaussian
mixture models [3] is proposed, that selects data that minimize the variance of
the learner. In [4] active learning for a committee of classifiers is proposed, which
selects data for which the committee members disagree. Based on this selection
method, in [5] they propose the use of available unclassified data by employing
EM [6] to form a better selection criterion, that is used to train a naive Bayes
classifier. In [7] they train Gaussian random fields and harmonic functions, and
select data based on the estimated expected classification error.
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Our work concentrates on a variation of the active learning scenario called
the pool-based active learning, also studied in [5,7]. In this case a set of labeled
and unlabeled observations is available right from the start. During training
we are allowed to iteratively query the label of unlabeled points, and use the
acquired labels to improve the classifier. In practice this scenario is important
when querying a field expert is expensive, as in medical diagnosis, or when there
is a huge quantity of unlabeled data that prohibits thorough labeling, as in text
classification. The intuition behind pool-based learning is that the unlabeled data
can be exploited to construct a more detailed generative model for the data set.
Thus this problem is closely related to semi-supervised learning. Algorithms for
semi-supervised learning have been proposed for Gaussian mixtures in [8,9], as
well as for the RBF network [10]. So it has been established that unlabeled data
can reveal useful information for the distribution of the labeled data.

We concentrate here on the pool-based active learning of the probabilistic
RBF (PRBF) classifier [11,12]. It is a special case of RBF network [13] that
computes at each output unit the density function of a class. It adopts a cluster
interpretation of the basis functions, where each cluster can generate observa-
tions of any class. This is a generalization of a Gaussian mixture model [3,13],
where each cluster generates observations of only one class. In [14] an incremental
learning method based on EM for supervised learning is proposed. In this work
we propose an incremental learning method based on EM for semi-supervised
learning. We are facilitated by the fact that each node of the PRBF describes
the local distribution of potentially all the classes. For the unlabeled data we
can marginalize the class labels from the update equations of EM, to use both
labeled and unlabeled data in parameter estimation.

In the following section we describe an incremental algorithm for the semi-
supervised training of the PRBF based on EM. In section 3 we use this algorithm
to tackle the problem of active learning. Next in section 4 we present the results
from our experimental study. Some discussion in section 5 concludes this work.

2 Semi-supervised Learning

Assume a set of labeled observations X = {(xn, yn)| n = 1, . . . , N} and a set
of unlabeled observations X∅ = {xn| n = 1, . . . , N∅}. The labeled observations
have an “input” part x ∈ �d, and an “output” part y ∈ {1, . . . , K} in the case
of a classification task with K classes. This “output” part (called label) assigns
an observation to one class, and in the case of unlabeled observations is missing.
Let Ω be the joint set of labeled and unlabeled observations, i.e. Ω = X ∪ X∅.
Moreover we can separate X according to the “output” labels in K disjoint sets
Xk = {(xn, yn)|yn = k, n = 1, . . . , Nk} one for each class, then Ω =

⋃
k Xk ∪X∅.

Adopting the Bayes decision rule, a classifier assigns a new unlabeled obser-
vation x� to the class k� with maximum posterior probability. If we drop the
part of the posterior that depends only on x�, then

k� = arg max
k

p(x�|k)p(k) (1)
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where p(x|k) is the class conditional distribution of observations from class k,
and p(k) is the prior probability of this class. For two classes k and k′ there
is a decision boundary p(x|k)p(k) = p(x|k′)p(k′) that divides the space of the
observations.

To describe class conditional distributions we employ the PRBF network. For
input x the class conditional probability p(x|k) is the k-th output of a PRBF
with J basis functions

p(x|k) =
J∑

j=1

p(j|k) p(x|j) (2)

The coefficients p(j|k) are non-negative and
∑

j p(j|k) = 1, while each basis
function is a Gaussian

p(x|j) =
1

(2πσ2
j )d/2 exp{−1

2
(x − μj)T (x − μj)/σ2

j } (3)

with mean μj ∈ �d and variance σ2
j . In order to find estimates for the parameters

of the network

θ = {p(k), p(j|k), μj , σj | j = 1, . . . , J, k = 1, . . . , K}

we maximize the joint likelihood, as in [10]. Assuming i.i.d. observations, the
joint log-likelihood L of labeled and unlabeled data is

L = log p(Ω) = log
∏

k

∏

x∈Xk

p(x, k)
∏

x∈X∅

p(x)

=
∑

k

∑

x∈Xk

log p(k)
∑

j

p(j|k)p(x|j) +
∑

x∈X∅

log
∑

k

p(k)
∑

j

p(j|k)p(x|j). (4)

For the maximization of L we use the Expectation-Maximization (EM) algorithm
[6]. The EM is an iterative algorithm that is guaranteed to converge at a local
maximum of the likelihood surface. It is employed in problems where hidden
variables exist. These variables determine the solution of the problem, although
are not observable. In our case the hidden variables define the node of the network
that generated an observation, and the label of an unlabeled observation. In the
following we formally derive the update equations of EM.

We introduce a hidden variable z(x) for each x ∈ Ω that assigns this obser-
vation to one class and one node of the network. Each z(x) is a binary J × K

matrix, where z
(x)
jk = 1 if x is assigned to the k-th class and the j-th node. This

assignment is unique, so that
∑

j

∑
k z

(x)
jk = 1. Moreover for a labeled observa-

tion (x, k) the corresponding z(x) is constrained so that z
(x)
j� = 0 for all (j, �)

with � �= k. Thus a hidden variable can assign a labeled observation to any node
but only one class. This does not hold for the case of unlabeled observations that
can be assigned to any class and any node. Given the set of hidden variables
Z = {z(x)| ∀x ∈ Ω}, we define the complete log-likelihood

Q = log p(Ω, Z) = log
∏

x∈Ω

∏

k

∏

j

[p(k)p(j|k)p(x|j)]z
(x)
jk (5)
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Although we can not compute Q directly, as it depends on the unknown values
of Z, we can compute its expectation 〈Q〉 w.r.t. the distribution of Z. Since the
expected value of z

(x)
jk is equal to the joint posterior probability p(j, k|x) that x

is assigned to the j-th node and the k-th class, it follows that

〈Q〉 =
∑

x∈Ω

∑

k

∑

j

p(j, k|x) log {p(k)p(j|k)p(x|j)} . (6)

The EM algorithm iterates two steps until convergence. During the E-step it
computes the expectation of the complete log-likelihood 〈Q〉, given the current
estimate for the parameter vector θ. During the M-step it provides estimates θ
that maximize 〈Q〉. This procedure is guaranteed to converge at a local maximum
of the joint log-likelihood L.

Explicitly described, during the E-step we compute p(j, k|x) for every x ∈ Ω,
j ∈ {1, . . . , J} and k ∈ {1, . . . , K} according to

p(j, k|x) = p(j|k, x)p(k|x). (7)

If x is unlabeled then we compute p(k|x) and p(j|k, x) for every class k using
Bayes theorem

p(k|x) =
p(x|k)p(k)

∑
� p(x|�)p(�)

(8)

p(j|k, x) =
p(j|k)p(x|j)

∑
i p(i|k)p(x|i) . (9)

If x is labeled, then we exploit the information of the label and set

p(k|x) =
{

1 if x ∈ Xk

0 if x /∈ Xk
(10)

and we compute p(j|k, x) similarly

p(j|k, x) =

{
p(j|k)p(x|j)�
i p(i|k)p(x|i) if x ∈ Xk

0 if x /∈ Xk

(11)

During the M-step we maximize 〈Q〉 w.r.t. θ, given the current estimation of the
joint posteriors. The solution for every j ∈ {1, . . . , J} and k ∈ {1, . . . , K} is

μj =
∑

x∈Ω

∑
k p(j, k|x) x

∑
x∈Ω

∑
k p(j, k|x)

(12)

σ2
j =

1
d

∑
x∈Ω

∑
k p(j, k|x) (x − μj)T (x − μj)
∑

x∈Ω

∑
k p(j, k|x)

(13)

p(j|k) =
∑

x∈Ω p(j, k|x)
Nk +

∑
j

∑
x∈X∅

p(j, k|x)
(14)

p(k) =
Nk +

∑
j

∑
x∈X∅

p(j, k|x)

N + N∅
. (15)
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An important aspect of network training is the estimation of the number of
basis functions to be used. To tackle this we adopt the incremental approach
proposed in [14] for supervised learning, that we modify suitably. It is an in-
cremental method with two stages. We start with a network having only one
node, whose parameters are easily estimated from the statistics of the training
data. During the first stage we iteratively add new nodes to the network, until
we reach the desired complexity. Then the second stage follows, where we split
all the nodes in order to increase classification performance. In the next sections
we give more details for the two stages.

2.1 Addition of Nodes

Given a network with M nodes we can construct a network with M+1 nodes.
If the given class conditional density is p(x|k), then adding a Gaussian node
q(x) = N (x; μq, σ

2
q ) results in p̂(x|k) as follows

p̂(x|k) = (1 − αk) p(x|k) + αk q(x) (16)

where αk is the prior probability that node q generates observations from class
k. However we have to estimate αk, the mean μq and variance σ2

q of q. Thus we
search for parameters such that q is near the decision boundary. Good estimation
of class conditional densities near the boundary is crucial for the performance of
the classifier.

According to [14] we resort to a clustering method, namely the kd-tree [15].
The kd-tree is a binary tree that partitions a given data set. It is constructed
recursively by partioning the data of each node in two subsets. Using only the
labeled points, we initially partition the data in M subsets

Xj = {(x, k)| (x, k) ∈ X, p(j|k, x) > p(i|k, x), ∀i �= j}

one for each node. Employing the kd-tree we repartition each of Xj in six subsets.
These subsets result from the construction of a kd-tree with two levels. More
levels would result in a lot of small clusters. We would like to avoid that, as we
want to gradually shrink the size of the clusters. Moreover, in order to add the
next node, we are going to employ the kd-tree again to partition all the data in
smaller clusters. The statistics of the resulting subsets are probable estimates of
μq and σ2

q . The corresponding estimation of prior is αk = p(j|k)/2. Partitioning
each node we create 6M sets of candidates θq = {αk, μq, σ

2
q}, so we have to select

the most appropriate according to a criterion.
As proposed in [14], we compute the change of the log-likelihood ΔL(q)

k for
class k after the addition of q

ΔL(q)
k =

1
Nk

(log p̂(x|k) − log p(x|k))

=
1

Nk

∑

x∈Xk

log
{

1 − αk + αk
q(x)

p(x|k)

}

. (17)
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We retain those θq that increase the log-likelihood of at least two classes and
discard the rest. For each retained θq, we add the positive ΔLq

k terms to com-
pute the total increase of the log-likelihood ΔLq. The candidate q� whose value
ΔLq� is maximum consists the parameters of the node that will be added to the
current network, if this maximum value is higher than a prespecified threshold.
Otherwise, we consider that the attempt to add a new node is unsuccessful.
We set this threshold equal to 0.01 after experimentation, in order to avoid
the addition of nodes with negligible effects on the performance of the network.
So we chose a small value, to also prevent the premature termination of the
procedure.

After the successful addition of a new node we apply the semi-supervised EM,
as described in the previous section. This procedure can be applied iteratively,
in order to add the desired number of nodes to the given network. Figure 1
illustrates the addition of the first two nodes. The initial network with only
one node is illustrated in Figure 1(a). The six candidate nodes and the chosen
node are illustrated in Figure 1(b) and Figure 1(c) correspondingly. Figure 1(d)
illustrates the network after the application of semi-supervised EM.

(a) (b)

(d)(c)

Fig. 1. Addition of the first two nodes. The nodes of the network are drawn with solid
lines, and the candidate nodes with dashed lines. The dots represent the unlabeled
observations in a two-class problem.



Active Learning with the Probabilistic RBF Classifier 363

2.2 Splitting of Nodes

After the stage of adding nodes, there may be nodes of the network located to
regions with overlapping among classes. In order to increase the generalization
performance of the network we follow the approach suggested in [16], and split
each node. During this stage we use both supervised and unsupervised observa-
tions. We evaluate the joint posterior probabilities p(j, k|x) for a node, and define
if it is responsible for observations of more than one class. If

∑
x∈Ω p(j, k|x) > 0,

then we remove it from the network, and add a separate node for the k-th class.
So finally each node is responsible for only one class. Splitting a node p(x|j), the
resulting node for class k is a Gaussian p(x|j, k) with mean μkj , variance σ2

kj

and mixing weight p(j|k). These parameters are estimated according to:

μkj =
∑

x∈Ω p(j, k|x)x
∑

x∈Ω p(j, k|x)
(18)

σ2
kj =

1
d

∑
x∈Ω p(j, k|x) (x − μkj)T (x − μkj)

∑
x∈Ω p(j, k|x)

(19)

p(j|k) =
∑

x∈Ω p(j, k|x)
Nk +

∑
j

∑
x∈X∅

p(j, k|x)
. (20)

Consequently the class conditional density is estimated as

p(x|k) =
∑

j

p(j|k)p(x|j, k). (21)

In the case of a training set where all the points are labeled, the class conditional
likelihood is increased for all classes after splitting as proved in [16]. However in
the semi-supervised case we cannot guarantee that splitting increases the joint
likelihood.

3 Active Learning

In the previous section we described an incremental algorithm for training a
PRBF network using labeled and unlabeled observations. In the following we
incorporate the algorithm in an active learning method, where we iteratively
select an unlabeled point and query its label. After its label is given, we add the
labeled point in the labeled set and train the network again. The crucial point
is to pick a point that greatly benefits the training of our classifier. We propose
the selection of a point that lies near the classification boundary. In this way we
facilitate the iterative addition of basis functions on the classification boundary,
as described in the previous section.

As a criterion of selecting a suitable point we propose the ratio of class pos-
teriors. For each unlabeled observation x ∈ X∅ we compute the class posterior
p(k|x) for every class, and then find the two classes with the largest posterior
values:

κ
(x)
1 = argmax

k
p(k|x), κ

(x)
2 = arg max

k �=κ
(x)
1

p(k|x). (22)
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We choose to ask for the label of x̂ that exhibits the smallest ratio of largest
class posteriors:

x̂ = arg min
x∈X∅

log
p(κ(x)

1 |x)

p(κ(x)
2 |x)

. (23)

In this way we pick the unlabeled observation that lies closer to the decision
boundary of the current classifier. Note that according to (1) we classify obser-
vations to the class with the maximum class posterior. Thus for some x on the de-
cision boundary holds that p(κ(x)

1 |x) = p(κ(x)
2 |x). Consequently if an observation

approaches the decision boundary between two classes, then the corresponding
logarithmic ratio of class posteriors tends to zero.

Summarizing the presented methodology, we propose the following active
learning algorithm:

1. Input: The set X of labeled observations, the set X∅ of unlabeled observa-
tions, and a degenerate network PRBFJ=1 with one basis function.

2. For s = 0, . . . , S − 1
(a) Add one node to the network PRBFJ+s to form PRBFJ+s+1.
(b) Apply EM until convergence for semi-supervised training of PRBFJ+s+1.

3. For s = 0, . . . , S
(a) Split the nodes of PRBFJ+s to form PRBF split

J+s .
4. Select the network PRBF split

J� ∈ {PRBF split
J , . . . , PRBF split

J+S } that maxi-
mizes the joint likelihood.

5. Set the current network: PRBFJ = PRBFJ� .
6. If X∅ is empty go to step 7, else

(a) Pick an unlabeled observation x̂ according to (23), and ask its label ŷ.
(b) Update the sets: X = X ∪ {(x̂, ŷ)} and X∅ = X∅ \ {x̂}.
(c) Go to step 2.

7. Output: Split the nodes of PRBFJ to form the output network PRBF split
J .

In all our experiments we use S = 1, thus we try to add one node at each
iteration of the active learning.

4 Experiments

For the experimental evaluation of our method we used three data sets, available
from the UCI repository. The first is the “segmentation” set, that consists of 2310
points with 19 continuous features in 7 classes. The second is the “waveform” set,
that consists of 5000 points with 21 continuous features in 3 classes. The last is
the “optical digits” set, that consists of 5620 points with 62 continuous features
in 10 classes. All the data sets were standardized, so that all their features
exhibit zero mean and unit standard deviation. In all experiments we applied our
algorithm starting with 50 uniformly selected labeled points. We treated the rest
as a pool of unlabeled points, and we actively selected 400 more. Each experiment
was repeated five times, and we computed the average generalization error on
a separate test set that contained the 10% of the original data set. Figure 2
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illustrates the average generalization error and the average number of PRBF
nodes after each added label. The results are satisfactory, as the generalization
error almost halved in all cases after the addition of 50 labels. After the addition
of 300 labels the error had converged, and the addition of more labels offered
little improvement. After the addition of 400 labels, the average error for the
“segmentation” data set was 0.156, for the “waveform” data set was 0.091, and
for the “optical digits” data set was 0.089. For comparison, we also applied the
supervised learning method proposed in [14] using the original data sets. The
generalization error of the resulting PRBF for the “segmentation” data set was
0.246, for the “waveform” data set was 0.142, and for the “optical digits” data
set was 0.07. Concluding, we note that the number of nodes converged slower
than the error, but eventually it also reached a plateau. The average number of
nodes after the addition of 400 labels was 285.2 for the “segmentation” data set,
294.6 for the “waveform” data set, and 509 for the “optical digits” data set.
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Fig. 2. The average generalization error (left), and the average number of network
nodes (right) for pool-based active PRBF learning

5 Discussion

We have proposed an algorithm for the active learning of the PRBF classifier.
We derived an EM algorithm for semi-supervised training of PRBF, and an
incremental variation that sequentially adds nodes to the network. We use this
method to estimate class conditional densities for pool-based active learning.

The experimental results are encouraging, and slight modifications of the
method may further improve its performance. For example we could acquire
the labels for a bunch of unlabeled observations, before we try to add a new
node. The most important issue for consideration is the time complexity of the
algorithm, e.g. it takes almost two hours to solve the “waveform” data set with
a MATLAB implementation on a standard personal computer. A method to de-
crease the number of splits in each iteration would improve the execution time
significantly. Another interesting issue concerns the complexity of the resulting
network. We note that the interpretation of the network weights as probabili-
ties alleviates the problem, as it forces many weights to near zero values and
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overfitting is avoided. However we could use a validation set for better model
selection.

Our future plans include a more detailed study of the method, and elaboration
on several of our choices, with the most important being the comparison with
other selection methods for the active acquisition of class information. Also we
plan to consider the problem of new class discovery, as a similar task that we
would like to tackle.
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