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ABSTRACT 
In this paper we propose a new iterative Bayesian non 
stationary image restoration algorithm. The main novelty 
of this approach is the introduction of a hierarchical non 
stationary image prior. Based on this prior and the 
generative graphical model for the observations, 
Bayesian inference is performed integrating out the 
hidden variables. An interesting byproduct of this 
approach is the justification, using a Bayesian 
framework, of previous non stationary image restoration 
formulations that were based on heuristic arguments. 
Numerical experiments are provided that demonstrate the 
advantages of the proposed non stationary approach as 
compared with stationary approaches. 
 
 

1. INTRODUCTION 
Bayesian methods have been applied extensively for 
many signal processing problems including image 
restoration; see for example [1, 2]. The Bayesian 
formulation offers many advantages for the image 
restoration problem since it allows the incorporation of a 
priori knowledge in the form of priors about the image 
and the unknown parameters [3, 4].  
In many Bayesian formulations for the image restoration 
problem Gaussian stationary models have been used for 
the image prior; see for example [3, 4]. A very popular 
model is the Simultaneously Autoregressive (SAR) in 
which the statistics of the image are assumed invariant for 
the different spatial locations; see for example [2-4]. This 
model greatly facilitates the parameter estimation process 
since only one parameter is used and thus can be easily 
estimated. However, it is seriously handicapped because 
it does not provide the flexibility to model the spatially 
varying correlations of the image. In other words, such 
prior enforces smoothness uniformly across the entire 
image and corresponds to uniform “regularization”.   
There have been numerous efforts to ameliorate the 
problem of uniform regularization in image restoration. 
One of the most successful such effort has used spatially 
adaptive regularization [5-7].  The motivation and the 
justification for this approach is based on psycho visual 

arguments about the visibility of the noise in images. 
Furthermore, for its application the parameters used to 
define the noise visibility weights are selected in an ad 
hoc manner.  
In this paper we propose a new non stationary image prior 
model. This model incorporates spatially varying 
variances for the residuals of the SAR predictor and thus 
provides the flexibility to model spatially varying 
correlations. To ameliorate the estimation problem of the 
spatially varying variances a Gamma hyperprior is used 
within and a Bayesian setting is used for inference. We 
propose a Bayesian methodology based on the graphical 
model for the observation that marginalizes the likelihood 
with respect to the “hidden” variables [10]. More 
specifically, we use a quadratic approximation of the 
Bayesian integral to marginalize the hidden variables.  
An interesting result of the proposed approach is that the 
update equations for variances of the residuals of the non 
stationary SAR model are identical in form to the 
equations proposed for obtaining the visibility weights of 
the noise in images [6, 7]. In other words, using a 
Bayesian formulation we were able to obtain the same 
form of equations as in [6, 7] which were derived using 
heuristic arguments. In addition, for our approach all the 
parameters used are estimated from the observations in a 
systematic manner. We provide numerical experiments 
that demonstrate the advantages of the proposed approach 
and comparisons with similar in spirit Bayesian 
restoration methods that use stationary priors for the 
image. 

 
2. IMAGING AND IMAGE MODELS 

The imaging model is linear. Let g  be a 1N ×  vector, 
representing the observed degraded image. We assume 
that this image is formed as 

       g = Hf + n ,    (1) 
where,  f  the unknown original image to be estimated, 
H  a N N×  known degradation matrix, and n  additive 
white noise.  We assume Gaussian statistics for the noise 
given by 1~ ( , )N β −n 0 I  where 0  and I  are a 1N ×  
vector with zeros and the N N× identity matrix, 
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respectively, and β  the inverse of the noise variance is 
assumed unknown.  
The image  f  is assumed to be generated by an SAR 
prediction [4] model given by  
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with ( , )k jε the prediction residual for the image location 
(k, j). The above equation can be also written in matrix 
vector form for the entire image as Qf = ε , where Q  is 
a N N×  matrix operator.  With out loss of generality, in 
what follows we use for convenience one dimensional 
notation. We assume that the residuals have Gaussian 

statistics according to ( ) ( )( )1
~ 0, ,iNi aε

−
for 

1, 2i N= … , where N the size of the image.  This 
induces prior for the image given by   
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where the matrix A  is a diagonal N N× matrix given by 

{ }1 2, Ndiag a a a=A … , with elements inverse of the 

variances of the residuals, and [ ]1 2, N

Ta a a=a … a 
1N ×  vector that also contains the same parameters.  

This model is non-stationary, because the covariance 
matrix changes spatially. It introduces N  parameters 

'ia s that have to be estimated from N  data points, which 
is clearly not a desirable situation from an estimation 
point of view.  For this purpose we use the Bayesian 
paradigm to bypass this difficulty and we introduce a 
Gamma prior for all the 'ia s . In the case of a stationary 

model all 'ia s  are equal and it is rather straight forward 
to obtain good estimates using maximum likelihood (ML) 
for the unknown parameters.  
The rational for using this Gamma prior in the non 
stationary case is threefold. First, it is “conjugate” for the 
variance of a Gaussian and ameliorates the over 
parameterization problem of this model. Second, similar 
hierarchical models have been used successfully in 
Bayesian formulations of other statistical learning 
problems; see for example [8].  Finally, as we shall see in 
what follows it produces update equations for the 'ia s  
previously derived using different principles.   
We parameterized the Gamma hyperprior as  

2
2 ( 2)
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For such a representation the mean and variance of the 
Gamma are given by 

[ ] ( ) 12 ( 2)iE a l m l −
= − and [ ] ( ) 12 22 ( 2)iVar a l m l

−

= − , 

respectively [11].  This representation is used because the 
value of the parameter l  can be interpreted as the level of 
confidence to the prior knowledge provided by the 
Gamma hyperprior [2, 9]. More specifically, as l → ∞  

[ ] ( ) 12iE a m −
→  and [ ] 0iVar a → . Thus the prior 

becomes very restrictive. In contrast, as 2l →  both 
[ ]iE a → ∞  and [ ]iVar a → ∞  thus the prior becomes 

uninformative.  
 

3. THE BAYESIAN ALGORITHM 
The graphical model that describes the observed data 
generation process is shown in Figure 5. In this figure 
ellipses represent the random variables and rectangles the 
parameters.  Thus, f  and a  are “hidden” (latent) 
variables, while m , l  and β  are unknown parameters. 
In the Bayesian inference paradigm hidden variables are 
marginalized while parameters are estimated [10]. Given 
the observations g , the parameters are estimated by 

maximizing the likelihood ( ); , ,p m lβg .  

Based on the graphical model in Figure 1 the likelihood 
is obtained by marginalizing the joint probability density 
function (pdf) according to  

( ; , , ) ( ; , , )

( | ; ) ( | ) ( ; , ) .

p m l p m l d d

p p p m l d d

β β

β

= ∫

∫

=g g, f, a f a

g f f a a f a
,  (4) 

where, 1 2... Nd da da da=a . The exact evaluation of this 
Bayesian integral is not possible thus we resort to a 
quadratic approximation in the region of the maximum of 
the integrand.  
For this purpose we can write the joint pdf as 

( )( , , ; , , ) exp log ( , , ; , , )p m l p m lβ β=g f a g f a  
and we define the function J as 

( ), , ; , , log ( , , ; , , )J m l p m lβ β= −g f a g f a . 
Thus 
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Setting the gradient of ( )J with respect to f  
and a  equal to zero gives  

( ) 11* β
−−= +T T Tf H H Q AQ H g    (6) 
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( )( ) [ ]( )( ) ( )( ) 12* 1 2 2 .5 22ia l i m l
−

= + − + −Qf (7) 

The term [ ]( )( )2iQf  can be viewed as the local variance 

of the image at the ith location while ( )2m l −  is the bias 
of the prior.  
We use a quadratic Taylor approximation of  ( )J   in 
the vicinity of the “mode” of the joint pdf. Thus, at this 
location gradient equal to zero. This approximation gives  
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where  2J∇  is the Hessian of the function ( )J . 
Using the approximation in (7) and the integration 
properties of the Gaussian pdf the Bayesian integral in (4) 
yields 
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where  denotes the determinant.  
The goal of this Bayesian approach is to estimate 

the parameters m , l  and β  to maximize the likelihood.  

Assuming *f  and *a  known, the minimization of the 
negative logarithm of the likelihood function  

( )( ) , ,log p m lβ− g ; ,   can yield the maximum likelihood 
estimates unknown parameters.  However, their 
computation from (9) is very hard because of the non 
circulant nature of the large matrices in the determinant. 
Thus, in this paper we resorted to a different approach 
which we describe in what follows. 
 

4. NUMERICAL EXPERIMENTS  
To demonstrate our algorithm numerical experiments 
using images of size 256 256×  are shown. In contrast to 
the stationary case, for the non stationary case the 
computation of *f  in equation (6) cannot be performed in 
closed form in the discrete Fourier Transform domain. 
The matrix that has to be inverted is non circulant, 
because of the diagonal matrix A  which has different 
elements in the diagonal. For this reason we resorted to 
an iterative conjugate gradient approach to find *f  in 
(6).To produce the observations the original image was 
blurred with a Gaussian shaped point spread function 
with variance 2 and then Gaussian noise was added with 
variance 410− . The iterative restoration algorithm iterates 
between (6) and (7) the estimates  *f  and *a . For the 

reasons explained above *f  in (6) is computed iteratively 
by the conjugant gradient algorithm. The parameters m  
and β  were assumed known and were estimated from a 

stationary model in which all *
ia a=  for all i’s. More 

specifically, the maximum likelihood estimates of a  and 
β  were found using the expectation maximization (EM) 
algorithm.  The estimate of  a  was assumed to be the 
mean for the Gamma hyperprior in (3) for l →∞ . This 
defines the parameter m , which was kept fixed in our 
algorithm. The value of the parameter l  is not kept 
constant. We start iterating between (6) and (7) using a 
large value of l and we decrease it gradually to 2. In other 
words, as we estimate *

ia ’s iteratively we start by placing 
more confidence to the hyperprior and as we obtain better 
and better estimates of the original image we reduce this 
confidence. This becomes evident by observing (7). For  
l →∞   ( ) 1* 2ia m −=  thus all *

ia ’s are equal to the mean 

of the hyperprior. For 2l →  the term  [ ]( )( )2iQf  
dominates, thus the dependence on the hyperprior is 
diminished.  

Two error metrics were used to evaluate our 
results. The first is the classical 2

MSE ˆ−= f f  where f  

and f̂ the original and restored images. The second metric 
is the weighted MSE (WMSE) that takes into account the 
visibility of the errors [6, 7]. This metric is defined 

as ( ) ( )ˆ ˆWMSE
T

− −= f f A f f .  
From the restored images shown in Figures 1-4 it is clear 
that the non stationary model yields visually more 
pleasing results.  It is interesting to notice that the MSE 
does not always convey accurately the visual impression 
of the quality of the images. For example, the restored 
image using the stationary model in Figure 1 has smaller 
MSE than the corresponding from the non stationary 
model in Figure 2. However, the WMSE metric that 
incorporates the visibility of the error in the images is 
about 50% smaller for the non stationary model in both 
experiments.  

 
5. REFERENCES 

[1] Ruanaidh J., and Fitzegerald W., Numerical Bayesian 
Methods Applied to Signal Processing, Springer Verlag, 1996.  
[2] Molina, R., Katsaggelos, A. K., Mateos, J., “Bayesian and 
regularization methods for hyper-parameter estimation in image 
restoration,” IEEE Trans. on Image Processing, Vol: 8 No: 2 , 
pp.  231 -246, Feb. 1999.  
[3] Galatsanos N. P., Mesarovic V. N., Molina R. M.  and 
Katsaggelos A. K., “Hierarchical Bayesian Image Restoration 
from Partially-Known Blurs,” IEEE Trans. on Image 
Processing, Vol. 9, No. 10, pp. 1784-1797, October 2000. 

0-7695-2128-2/04 $20.00 (C) 2004 IEEE



[4] R. Molina, and B. D. Ripley, "Using spatial models as priors 
in astronomical images analysis", J. Appl. Stat., vol.16, pp.193-
206, 1989. 
[5] Anderson G., and Netrevali A., “Image Restoration Based on 
a Subjective Criterion”, IEEE Trans. Sys. Man Cybern., SMC-6, 
845-853, 1976.  
[6] Katsaggelos A. K., Biemond J., Mersereau R. and, Schaefer 
R., “A Regularized Iterative Restoration Algorithm”, IEEE 
Trans. Signal Processing, 39, 914-929, 1991.  
[7] Katsaggelos A. K. “Iterative Image restoration”, in 
Handbook on Image and Video Processing, Editor Al. Bovik, 
pp. 191-206, Academic Press 2000.   
[8] Tipping M. E. “Sparse Bayesian Learning And The 
Relevance Vector Machine” Journal Of Machine Learning 
Research 1, 211-244, 2001. 
[9] Galatsanos N., V. N. Mesarovic, R. M. Molina, J. Mateos, 
and A. K. Katsaggelos, “Hyper-parameter Estimation Using 
Gamma Hyper-priors in Image Restoration from Partially-
Known Blurs,” Optical Engineering, 41(8), pp. 1845-1854, 
August 2002. 
[10] D. J. MacKay, Information Theory, Inference and Learning 
Algorithms, Cambridge University Press, 2003. 
 

 
Figure 1: Stationary restored 256x256 Leena image,  

MSE = 70.2, WMSE = 2.74e+015. 
 

 
Figure 2: Non stationary restored 256x256 Leena image, 

MSE = 71.2, WMSE = 1.07e+015. 
 

 
 
Figure 3: Segment of stationary restored Cameraman 
256x256 image,  MSE = 1920, WMSE = 6.9e+015. 

 

 
 

Figure 4: Segment of non stationary restored Cameraman 
256x256 image, MSE = 1884, WMSE = 2.3e+015. 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 5: The graphical model of the data. 
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