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Abstract. This paper is aimed to explore the po-
tential use of reinforcement learning in control appli-
cations. Reinforcement learning systems are of par-
ticular interest because they require as training feed-
back only a scalar signal provided to the entire neural
network and they admit a simple on-line implemen-
tation. In this paper we demonstrate the ability of
a reinforcement learning adaptive contioller to drive
an autonomous vehicle through simulated paths com-
prising left and right turns, The neural network is re-
sponsible for providing the proper control commands
s0 that the vehicle stays on the road and avoids col-
lision. Keywords: adaptive control, neural networks,
reinforcement learning, autonomous vehicle.

1 Introduction

There has been a great interest in the use of neural
networks in the area of adaptive control. Techniques
for training and utilizing neural network models ef-
fectively as components of the overail control system
have been investigated by many researchers [3, 7, 9].

Typically a trainable adaptive controller architec-
ture facing supervised learning consists of a teacher,
the trainable controller and the plant to be controlled.
The teacher may be automated as a linear or nonlinear
control law, or it may be a2 human expert. The con-
troller consists of a neural network architecture that
is suitable for supervised learning, while the teacher
constitutes the source that provides examples of de-
sired behavior. Through these examples the neural
network learns to imitate the behavior of the expert,
thus becoming able to function azutonomously. The
ability to train neural networks in this fashion is ex-
tremely useful when the classic Al approach of rule
based inferences is not applicable because such rules
are not clear and well organized.

However, in some learning tasks arising in control
neither a designed nor a human expert is available. In
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such cases we wish to adjust a controi rule in order .
to improve the performance of a plant as measured 5 E
by a performance measure that in some way evaluates .
the overall behavior of the plant. In these situation-
s it may be possible to improve plant performance (
over time by means of on-line learning methods per-
forming what is called reinforcement learning [3, 10].
Reinforcement learning has been effectively applied {o
control tasks. In [1, 2], neural nets learning via rein- 55
forcement learning and temporal differences methods .
were used in controlling the motion of an inverted pen~
dulum. The applicability of the approach has been al-
so demonstrated by Helferty et al. {3] for a one legged
hopping machine and by Hoskins and Himmelblau [§}
in a chemical process control situation,

Qur concern in this paper is the potential use of a re-
inforcement learning strategy to drive an autonomons
vehicle through simulated paths made of straight seg- 55"
ments as well as left and right turns. The neural net-:
work is assigned the task of providing the proper con- &
trol commands so that the vehicle stays on the read
and avoids collision. The system developed demon-
strates a type of adaptive probabilistic search, allow-
ing the quick selection of an action due to parallelism
inherent in connectionist networks. “

Section 2 of the paper gives an overview of the rein-
forcement learning algorithm making a contrast to the
supervised learning paradigm, while Section 3 presents
in detail the autonomous vehicle navigation task. In
Section 4 the reinforcement learning algorithm used
to train the neural adaptive controlier is introduced,
while the experimental results concerning the perfor-
mance of the proposed approach are discussed in Sec-
tion 5. Finally, the main conclusions are summarized
in Section 6.

2 Reinforcement Learning in Control

Reinforcement learning addresses the problem of im
proving performance as evaluated by any measun.é"r‘
whose values are supplied to the learning neiwork.
In tasks of this kind desired control signals are not
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Figure 1: A reinforcement learning system

supplied to the learning network, but instead the lat-
ter receives from the external environment a scalar
reinforcement signal which indicates the appropriate-
ness of its response. Based on that evaluation signal
the network has to determine the necessary changes
that would lead to increases in the measure of system
performance. The situation is illustrated in Figure
I which shows a reinforcement learning network in-
teracting with a system and receiving an evaluation
signal generated by the environment. Thus, it can be
said that in a supervised learning task the feedback
provided to the system by the teacher is purely ‘in-
structive’, whereas in a reinforcement learning task,
feedback can be thought of as ‘evaluative’ {10}.

A reinforcement learning task mainly involves two
issues [7]. The first issue is to specify 2 critic capa-
ble of evaluating system performance in a way that is
both appropriate to the actual learning objective and
informative enough to allow learning. This critic may
be either an external agent providing an immediate
reinforcement signal or another network that adapts
over time {called ’adaptive critic’) and learns to pre-
dict future consequences of an action. Sutton (8] has
developed a general class of algortihms for the training
of such networks called temporal difference algorithms,
The second issue concerns the determination of how
to teach the learning network to provide cutputs that
improve performance as it is measured by the critic.

A direct approach to adjusting control actions in
order to improve system performance is to actively
explore the space of network outputs, Specifically,
modifications to actions are performed and the result-
ing changes to performance evaluation are observed.
Changes leading to improved performance are incor-
porated into the control rule. Since in this approach
there is a need for active exploration among possible

network outcomes, there must be a source of variation
within the network, to allow exploration of alternative
actions. To this end, it is generally assumed that at
least some of the units in the network compute their
outputs as a stochastic function of their inputs. Such
networks actively search for the optimal output pat-
tern to associate with each input pattern. Williams
{10] analyzed a general class of learning algorithms for
networks of neuron-like stochastic computing elements
facing associative reinforcement learning tasks. More-
over, he called the algorithms belorging to this class,
REINFORCE algorithms.

In this paper we have implemented a reinforcemen-
t learning system adopting the direct approach men-
tioned above. The objective of the system is to achieve
a collision-free movement of an autonomous vehicle
using only little knowledge about the task. The au-
tonomous vehicle driving task is well adapted to re-
inforcement learning techniques, since it allows for a
meaningful reinforcement signal providing valuable in-
formation at each step of the learning process. On the
contrary, most work reported in the literature mainly
concerns applications in which an informative rein-
{orcement signal evaluating a given action cannot be
obtained readily but only with a considerable delay.

3 Driving an Autonomous Vehicle

To investigate the utility of reinforcement learning sys-
tems in the control area, we taught a neural network to
drive a robot vehicle along a simulated path compris-
ing left and right turns. The purpose of the network is
to give the proper driving commands as a response to
the current state of the vehicle, so that the car moves
in a course without collisions. This task represents a
sensor-motor association problem in the control area.
Conventional approaches to solve the problem use ar-
tificial intelligence methods {expert systems), which
are time-consuming and require much knowledge of
the environment in which the vehicle is moving. In our
approach we assume that very little is known about
the vehicle’s environment. '

The vehicle recognizes its environment through the
use of sensors. The number and configuration of the
ultrasonic sensors plays an important role in the con-
trol task. On the one hand the nember of sensors can
not be arbitrarily large, on the other hand there must
be a sufficient number of sensors to acquire the nec-
essary information about the vehicle’s environment.
For our purposes nine sensors seemed to be adequate.
Four of them were placed at the front side of the ve-
hicle, two on both the left and right side and finally
one sensor was situated at the back.
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Each sensor can detect the presence of an obstacle
sitnated within a conic space in front of it and provides
a measure of the distance of the obstacle. To this end,
every sensor cone was partitioned logarithmically into
T areas, thus making possible the distinction of 8 dif-
ferent distances, each one binary coded in 3 bits. The
coding was made in such a way that two neighboring
areas differ in only one bit. Furthermore, the larger
the number of 1’s in a vector the closer to the vehi-
cle is the detected obstacle. It should be noted that
the logarithmic partitioning of the sensors results in
more areas in the near range of the vehicle than there
are far away. This is desirable since irformation con-
cerning the environment close to the vehicle has more
influence on driving decisions. From the above it is
obvious that the sensors are supplying a 27 bit vector
describing the environmental state of the vehicle.

The network is able to give eight different driving
commands in response to the current state of the ve-
hicle, each one coded as 2 3 bit vector: forward, 90
degrees left, 60 degrees left, 30 degrees left, 90 degrees
right, 60 degrees right, 30 degrees right and backward.
Therefore, the learning network- has 3 binary valued
outputs.

In what follows we will describe in more detail the
neural adaptive controller and the algorithm used to
train it.

4 Specification of the Reinforcement
Learning System

in order to construct our learning system we should
effectively deal with the two issues involved in a rein-
forcement learning task. As far as our application is
concerned, the first issue relates to the performance
evaluation of the vehicle in a way that is appropriate
to the learning objective, i.e. the movement of the car
along a path without collision. Therefore, the eval-
uation of the vehicle’s state should be based on how
probable is for the car to collide and go off the road.
This probability can be measured by the distances of
the obstacles detected by the sensors. The farther are
the obatacles the better is the state of the system. The
performance evaluation is supplied to every unit of the
neural controller by means of a scalar signal called re-
inforcement. In our system we assume that the rein-
forcement signal is provided by an agent external to
the network. The latter is not aware of the mechanis-
m used to compute it. Moreover, the reinforcemen-
t is real-valued ranging over {0,1], thus indicating a
graded degree of success. One can think of r =1 as
‘success’ and r = O as ‘failure’. In our control task,
failure corresponds to the situation where at least one
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of the nine sensors detects an obstacle at its closest
distance. Moreover, success relaies to the situation
where there is no obstacle in the range covered by any
of the front sensors. In general, the reinforcement sig.
nal r supplied to the network controiler is obtained as
an average of the partial reinforcements ri, i = 1., 4
computed by the four front sensors according to the

following rule: '

r= (o= $) M

where £ takes on values from the set {0,1,2,3,4,5,6}.
The value £ = { indicates that there is no obstacle in

_the range covered by a specific sensor, while larger val-

ues of £ correspond to obstacles at a closer distance.
Exception to the aforementioned rule constituies the
case of failure which is determined by examining the
values of all sensors to meet the punishment condi-
tion {£ = 7) referred to above. It is obvious from the
above description of the evaluation mechanism that
large reinforcements correspond to actions leading to
improved performance of the controlled system.

Another point that should be noted is that the more
complex is a control task the more informative should
be the evaluative signal, in order to help the system
avoid undesired states, thus leading to faster learning.
This is necessary in order to compensate as much as
possible for the lack of an explicit signal specifying the
desired response of the controller or the system to be
controlled. In the zutonomons vehicle navigation task,
apart from the evaluation strategy presented above
we used a heuristic based on the notion of favourite
direction. The role of the favourite direction is to help
the vehicle decide in situations where different actions
(e.g. a left or right turn) can be chosen, all resulting
in rewarding evaluations by the environment. If in
such cases the vehicle does not follow the favourite
direction, then its action is evaluated as a failure. In
fact, favourite direction serves as a means to help the
vehicle avoid driving in a course without chjective e.g.
going forward and backward along the same segment
of the path.

We now turn to the second issue encountered in a2
reinforcement learning task. This concerns the con-
struction of a real-time neural controller which learn-
s to adapt action probabilities in order to maximize
some function of the reinforcement signal, specifical-

"1y the expectation of its value on the upcoming trial.

The controller decides which action to apply given the
state of the vehicle. By correlating the actions chosen
and the received reinforcement signal, the controller
adapts the probability of choosing an action by modi-
fying the connection weights. Thus, rewarded actions
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become more probable while the probability of penal-
ized actions is decreased.

The neural controller was implemented as a connec-
tionist network consisting of Bernoulli logistic units
[10]. There are 27 input and 3 output units in the
network whereas there are no hidden layers. The net-
work receives the reinforcement signal » from the ex-
ternal environment and updates the weights using the
following modified version of the REINFORCE rule:

Awij{t) = a(r(t) - F{t ~ 1)JE; (1) (2)
where a is a learning rate factor, r(t) is the real valued
punish/reward signal at time t, F{t—~1) is an exponen-~
tlally weighted average, or trace, of prior reinforce-
ment signals and €;;(t) is an exponentially weighted
average of recent values of the eligibility e;; of wyy,

called eligibility trace.
The eligibility trace is computed by

(8 = eei{t — 1) + (1 — 8)ei; (1) (3)
where § is a decay rate positive and less than 1, while
the eligibility :;{) of the weight w; at time ¢ is given
by

eij (1) = (it} ~ pi(t))z;(1) (4)
where y; denotes the output of the i'* unit, p; denotes
the probability that the i** unit produces a 1 and 7
denotes the input to the i** unit from the 7** unit.

The trace of prior reinforcement values is given by

e =47t~ 1)+ (1~ 1)(1) (5)

where v is a decay rate positive and less than 1.
Qualitatively, the weight update rule in equation (2}
has the effect of rewarding actions which lead to better
than usual reinforcement and penalizing actions lead-
ing to worse than usual reinforcement. In fact, the use
of reinforcement comparison leads to faster and more
reliable learning. Specifically, an a priori prediction
of what reinforcement value to expect on a particu-
lar trial is wsed as the basis for comparison. This
prediction computed as an exponentially weighted av-
erage of past reinforcement values, is itseil adaptive.
It should be pointed out that the reinforcement trace
¥ is computed and stored for each state of the vehi-
cle. This can be implemented using a lookup table
or any other function approximation technique such
as connectionist networks. Another point that should
be mentioned is the use of the eligibility trace in the
weight update rule. Eligibility trace is a quantity in-
dicating how much responsibility (or credit) an eazlier
state, as well as the taken action, has for the curren-
t system status. The decay rate indicates that this

Figure 2: A typical ground

responsibility (or credit) decreases with time. By as-
cribing the credit/blame of the current state to earlier
actions, we perform 2 kind of temporal credit assign-
ment: the consequences of an action unfold over time.
Moreover, this causes the weights to change ‘smooth-
ly’. Thus, the performance of the learning algorithm

is improved.

5 Results

Each experiment we performed consisted of a number
of runs that differed only in the seed values for the
random number generator. Each run consisted of a
sequence of cycles, where each cycle began with the
vehicle at the same inifial state and ended with a fail-
ure signal. At the siart of each run the vehicle was
placed to a randomly chosen state. Except for the
random initial state, identical parameter values were
used for all runs. Statistical results of the effectiveness
of learning during each run were obtained as follows.
For smoothing purposes, at the end of each cycle an
average value of the number of steps per cycle was
computed by averaging over all cycles from the begin-
ing of the run up to that point. Finally, curves were
plotted at the end of each experiment by averaging
over all runs. This representation aims at giving an
overall view of the progress of learning without be-
ing affected by random fiuctuations. Of course, under
this style of presentation, the contribution of high s-
cores is not readily visualized, since it slowly affects
the average value.

The learning system was ‘naive’ at the start of each
run, i.e., all the weights wi; were set to zero. This
made all the actions equally probable. Initially, we
tried to optimize the parameters of the weight modifi-
cation equations by manually searching for values re-
sulting in best performance. For this purpose, various
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Figure 3: Performance of the vehicle

types of grounds were tested and for each ground we
simulated a series of runs. After testing approximate-
ly 10 sets of values, we found that the best parameter
values are; & = 0.7, ¥ = 0.9 and § = 0.65.

After having selected the values of the parameters
we investigated the behavior of the vehicle under the
commands of the reinforcement learning controller. To
this end, a large number of grounds were tested. Al-
though the search was initially uniformily random over
the possible actions, it gradually gained direction as
the action probabilities became biased in favor of more
successiul actions. As a result, in the initial stages,
when the network was ‘naive’, the behavior of the ve-
hicte was very unstable. The vehicle conld not stay on
the road before significant training was accomplished.
However, at the end the vehicle exhibited very good
behavior, i.e. very long cycles were accomplished.

Among the grounds used in our experiments a typ-
ical one is shown in Figure 2. Figure 3 shows the
performance of the system during learning te move on
the above ground, by presenting the average number
of steps per cycle as a function of the number of cycles.
As can be seen the vehicle attained excellent perfor-
mance. Analogous was the behavior of the system in
all experiments with similar grounds.

6 Conclusions

The objective of this paper has been the achievement
of a greater understanding of the role of reinforcement
learning in control. Our experiments revealed that we
can take advantage of the exploratory nature of rein-
forcement learning to directly modify control rules in
order to obtain improvements in system performance.

Several extensions or alterations to the presented
approach may be considered in the {uture in order
to gain a deeper understanding of the reinforcement
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learning strategy., Among these we can mention the
use of sensors with continuous-valued areas and incor-
poration to the system of the ability of the vehicle for
analog movements, the employment of temporal differ-
ence methods to effectively deal with combined struc-
tural and temporal credit assignment and the adop.
tion of a hybrid approach, e.g. combination with an
expert system te achieve a more effective evaluation
of the performance of the vehicle.
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