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Abstract

Parallel Recombinative Reinforcement Learning (PRRL) [4, 3] constitutes a population
based technique (genetic algorithm) suitable for function optimization in high dimensional
binary domains. We present here an extension of this method to the case of popuiation
strings whose elemenss may take any value from a finite discrete set. To achieve this,
a new type of stochastic unit {the multivelued discrete stochastic unit} is defined that
can be used in reinforcement learning problems, and a REINFORCE update scheme
for the adaptable parameters of the unit is presented. By considering a population of
optimizers of this kind that are appropriately recombined at each step (in a manner
analogous o PRRL), we obtain the Muliivelued Perollel Recombinalive Reinforcement
Learning {MPRREL) technigue and present experimental results [rom the application of
the rechnique te some tesy problems. '

1 Introduction

Parallel Recombinative Reinforcement Learning (PRRL) 1. 3; constitutes a population bused
recombinative technigue for the solution of discrete 0-1 optimization problems. Population-
based scarch techniques consider as current state the focations of many points in the state
space and derive new points by suitably manipulating the current ones. Such techuiques have
gained much attention mainly since they are suitable for parallel implementation,

A degenerate example of population-based search technique is parallel point-based hill-
climbing, where there is a population of point-based hillelimbers operating in parallel and
independently, with no information exchange among them. Their exploration capability is
limited by thepapabi]inies'of individual optimizers. The main interest is focnused on recombi-
native population based technicues which generate points for testing by combining information
from the current population. The most widely studicd optimization procedures of this kind
are based on genetic algorithms 2} and their hybrids that extend she traditional simple ge-

netic approach by incorporating more sophisticated hillclimbing procedures. The first such
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hybrid that has been developed was the SIGH algorithm {Stochastic Iterated Genetic Hill-
climbing) [1] and many other attempts followed, such as Parallel Recombinative Simulated
Annealing (PRSA) [6] and PRRL {4, 3]. The PRRL method constitutes a populaticn-based
technique that tackles discrete optimization problems defined on binary domains {(i.e. on the
unit hypercube). It is based on the parallel operation and combination of individual rein-
forcement learning optimizers. The approach can be considered as an extension of traditional
genetic algorithms in the sense that it considers vectors of probabilities instead of bit vectors
as population members. At cach step these members are recombined and, in addition, the
components of the resulting vectors of probabilities are adjusted according to the reinforce-
ment learning rules. More specifically, the REINFORCE family of algorithms is used that
have been proved to follow the stochastic hillclimbing property [8].

It must be noted that no attempt has been previously made to employ reinforcement
learning for multivalued discrete optimization problems. For this reason, the PRRL method
suffers from the limitation that i concerns binary population strings and, consequently, it
requires the spéciﬁcation of the discrete optimization problem in a 0-1 formulation. This
18 natural for several problems, but there are also many cases where the problem variables
assume values from finite discrete sets with more than two elements {for example the k-graph
coloring problem, where cach variable may be assigned any of the k colors). The formulation
of multivalued problems as 0-} problems has two major drawbacks: i) I, ki binary variables
are needed for a problem with NV variables, where each variable ¢ assumes k; discrete values
and 1j) additional constraints must be imposed so that no more that one binary variable
corresponding to the same problem variable may be one simuitaneously.

[n order to avoid the abuve drawbacks and maintain the multivalued formulation, we
propose the multivalued discrete stechastic (MDS) unit and a update scheme for the adaptable
parameters of the MDS unit based on the REINFORCE theorem. Using a team of MDS unity
{In a manner analogous to the case of binary stochastic unics (called Bernoulli units) [7]), a
reinforcement learning optimizer is obtained suitable for treating multivalued problems. Then,
following the principles of the PRIRL algorithm, we propose the Multivalued PRRL (MPRRL)
algorithm that constitutes a population based technique based on the parallel operation and

recombination of reinforcement optimizers with MDS units.

2 Multivalued discrete reinforcement learning

[n the reinforcement learning approach to fanction optimization [7. 3. the state of the learning
systent is determined through a probability distribution. At each step, a point in the func-

tion space is generated according to the above distribution. and the corresponding function




value, which is called reinforcement, is provided to the system. Then, the parameters of the '
Jdistribution are updated so as to direct the search towards the generated point in case of a
high reinforcement value. In the opposite case, the point is made less probable to be sampled
again in the upcoming trials. In order to judge whether a point is ‘good’ or not, a.siandard of
comparison must be specified which in most cases is considered as a trace (weighted average)
of past reinforcement values {eq. (4)).

Reinforcement learning schemes have been applied to both continuous and binary {7, 3]
function optimization problems. In what concerns the application to problems defined on
binary domains, the simplest scheme considers that the point y = {y1,...,¥n) (¥ € {0,1})
of the problem state space to be cvaluated at each step is generated by a team of Bernoulli
units. Bach Bernoulli unit § determines the component y; of the binary output vector through
a Bernoulli selection with probabilisy p; = f(wj), where W = (w,...,w,) is the vector of

adjustable parameters {weights} and f is a sigmoid function of the form

p; = flws) = 1/(1 + exp(~w;)) [y

The MDS unit constitutes an extension of the Bernoulii unit that provides as output y one-
out-of M possible values {a1,...,arr}. An MDS unit is characterized by a parameter vector

w = (wy,...,ws), where each parameter w; corresponds to the output value ¢;. During

selection, using the péra.metcr vector w, a probability vector p = {py,...,pas) is computed as
follows:
explus /T) -
Pi o= i . 2}
Y= explw; /T)

It is obvious that 2221 pi = 1. By performing selection using the probability vector p one of
the M values a; is selected as the output y of the MDS unit.

In order to use the MDS unit for function optimization the update scheme of the param-
eters w; must be specified. In our approach we have selected an npdate scheme based on the
REINFORCE theorem {7, 8].

REINFORCE algorithms (8} constitute an important class of reinforcement learning al-
gorithms. When applied to a team of stochastic units a REINFORCE algorithm prescribes

that at each step the weights are updated according to the formula:

Aoy = alr ~ F) 00120 (3)

where « is the learning rate factor, » is the reinforcement signal delivered by the environment

and 7 the reinforcement comparison:

F(t) = 4Fit ~ 1)+ {1 - vIr(t) (4)
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(v is a decay rate positive and less than 1}. In addition, g(e,w) = Prob{y = ajw} is the
probability that the output y will be equal to the value a given that the parameter vector is
w.

Ar important result proved in [8] is that, for any REINFORCE algorithm the average
update in parameter space W lies in a direction for which the expected value.of r is increas-
ing, i.e., the algorithm is characterized by the stochastic hillclimbing property. Therefore,
REINFORCE algorithms can be used to perform stochastic function maximization {7, 8, 3.

In the case of the MDS unit it holds that

81}1‘9— pi.- if'gmai {—)
9p; | 0 otherwise ?
Moreover,
@ In g Olng Opx 1
; Opr w; (6)
and from eq. (2)
Op | oppll-m) k=i )
By ~ ik ifh+#1

Using the above equations we finally find that the in the case where the selected output is ay
the parameter update equation suggested by the REINFORCE theorem is

S alr =gl ) Hi=k <

A { —alr ~ F)ppaps ifosk &)

It must be noted that the above pure REINFORCE scheme converges, for this reason a

simple modification has been suggested {7} that incorporates a decay term —dw; in the update

equasion {8) in order to achieve the sustained exploration objective:

1 y iy -
Auy = a(r —7 *P(I“Pz‘)“du:i ifi=~k%
S { TR )

where 0 < & < 1. The above equation is the reinforcement update equation used in the
MPRRI: algorithm.

Using a team of n MDS units, with each unit ¢ (¢ = 1,...,n) having parameter vector
u* and set of output values Iy = {dyi,... . di } {where &; = |D;}}, it is possible to tackie
multivalued discrete optimization problems with n variables Xy, each one assuming values
from the discrete set Dy (1 = 1,...,n). The algorithm is simple: at each step each MDS
unit i selects the output », {using the parameter vector w') and thus a point v = (yy,... . yn)
of the problem state space is obtained. The reinforcement signal r delivered to the learning
system is the fitness of the point v and, in the sequent. all MDS units update their parameter

vectors w' using eq. (9).
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3 The MPRRL algorithm

Multivalued Parallel Recombinative Reinforcement Learning (MPRRL) can be considered as
a population-based recombinative extension of the MDS reinforcement learning approach to
multivalued discrete optimization. Tt is based on the employment of p population members,
where each population member ¢ is an MDS reinforcement learning optimizer.

Consider an discrete optimization problems with n variables, where each variable i take
values from a finite discrete set D; = {dsy, ..., dipr}- Without loss of generality, let M denote
the size of cach set ;. This means that each member ¢ of the population (i==1,...,p)isa
team of n MDS units with weight set w;- (j =1,...,n), ie. each member i can be considered
as a parameter vector Wi = (wl,. .., wh), where w} = (w};, ..., w}y ). In this sense, we can
say that each reinforcement optimizer  is assigned one population slot, where its parameter
vector W is kept. At each step, first a reproduction procedure takes place, during which
the parameter vectors arc recombined and a new generation of vectors is created. Then a
sampling procedure is performed and p points Y; = (yit, ... ¥in) (1 = 1,...,p) (with yi; € Dj)
of the problem state space are generated using the MDS selection scheme described in the
previous section. The fitness 7; {corresponding function value) of each point Y; is evaluated
and a reinforcement update of the paramcter vectors W, takes place using equation (9) sc
that the search is guided towards promising regions of the space.

At each generation step, the p new population members are created as follows: for each
current member 1 we decide with probability p, whether crossover will be applied or not. If the
decision is negative, the parameter vector of slot 1 does not change, otherwise, another member
k is randomly selected (with probability analogous to its fitniess ry)and crossover is performed
between the probability vectors corresponding to the two parents. The recombination operator
that we have adopted is a variant of single-point crossover. The new parameter vector W, is

created in the following manner:
o We randomly select the crossover point ¢ (1 £ <n— 1).
o 1ft < {n/2], then we set wyy = wyj for j=1,...,¢ and wyy; = wi; for y=t+1,...,n

e Ift> n/2], then weset wyy = wy; for j=1,....¢ and wy; =wy; for j=t+1,...,n

According to the above approach, the new vector W, remains as close as possible to the vector
W,. That child becomes the new parameter vector W, for slot 2. Inthis way, the characteristics
of individual population members are preserved to sote extent, thus retarding the decrease

of population diversity. It ust be noted that the above reproduction scheme is synchronous,
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i.c., all p children can be created simultaneously and independently based on the precedent
generation, thus achieving a high degree of parallelism.

At the beginning, all the components of the parameter vectors are set equal to zero, Le.,
no initial knowledge is provided to the optimization system. In case no decay term is used in
the reinforcement update rule, the search process converges, in the sense that all probability
vectors tend to be similar to each other and, in addition, their individual components tend to
be 1 or 0. This convergence behavior is justified by the use of both the crossover mechanism
and the reinforcement update rule. The crossover mechanism destroys population diversity
and eventually all optimizers search the same region of the function space. On the other hand,
the local search performed through the use of reinforcerent updates eventually converges to a
point of high fitness value. If a. decay term is added, the search algorithm does not converge, in
the sense that it does not continuously produce the same points. Thus, sustained exploration
is achieved, but we still have a lack of sustained diversity due to the effects of crossover, since

the parameter vectors of population members are relatively close.

3.1 Sustained Diversity

In analogy with the PRRL case,- in order to reduce the effects of crossover and avoid genetic
drift, the MPRRL algorithm employs a mechanism based on the notion of apathy (1] that has
proved very effective in maintaining population diversity.

According to the latter approach, some population members remain apathetic for some
generations in the sense that they cannot be selected for recombination. Apathetic members
cannot change their state through crossover, but can be chosen for crossover by other members
of the population. To effectively apply this principle, a criterion is needed for a member to
become apathetic as a well as a crizerion for becoming active again. We have chosen o put a
member into apathy whenever it generates a point of the state space yielding a higher htness
than the best value achieved so far. Thus, from the moment the search attains a high fitness
region, the optimizer is allowed to explore that region following the reinforcement learning
rule. If for a specified number of steps no better solution is chiained the member is brought
hack to the active state. Thus, an apathy step counter is necessary for cach population
member.

Following the discussion presented above, the MPRRL algorithm has the following finai

form.
« Initialize all parameter vectors to zero.

o Repeatedly generate a new population from the current one until a maximum number

of generations is attained. Each new population is created by performing the following



S iy

e rimin T e e AE A e B R e 2t e Mt i eme et i d Bt e £ s e o B M S e e i R A R T

MPRRL MPRL GA
No. of nodes | Suce (%) | Avg. Steps | Succ (%) | Avg. Steps Suce {%}  Avg. Steps
30 100 329 106 - 421 40 1892 I
60 100 372 1GO 834 16.7 3512
90 100 1102 100 1356 6.7
120 160 1543 90 1778 0

Table 1: Comparative results for the 3-graph coloring probiem

steps for each location i =1,...,p:

1. If member ¢ is in apathy proceed to Step 4.
9. With probability p. decide whether crossover will be performed or not. If the
decision is negative proceed to Step 4.

3. Randomly choose a member from the rest of the population with probability anal-
ogous to its fitness. Combine the two parents to produce a new parameter vector

as described previously. The new vector replaces the current one in location 4.

4. Based on the created parameter vector, generate a point of the state space using
the MDS approach and evaluate its fitness ;.

5. Update the parameters Wi of location ¢ according to the reinforcement learning
rule.

6. If ry > ™ set p = gy If moreover the population member ¢ is not in apathy

then put it into apathy and proceed to Step 3.

-1

. If the member is in apathy increase the value of its counter by 1. If the value of
the counter is the maximum ailowed put the member back into the active state

and set the counter to zero.

8. Update the value of reinforcement comparison T,.

4 Experimental results and Comparisons

Experiments have been conducted on several multivalued discrete optimization problems to
compared the effectiveness of MPRRI: against the traditional genetic algorithm (GA) and
the MPRL (multivalued parallel rcinforcement learning) approach, which considers a popu-
lation of independent multivalued reinforcement learning optimizers. The latter was tested
in order to study the effectiveness of recombination, We report here results concerning the

NP-complete 3-graph coloring preblem. on difficult graph instances, concerning sparse graphs
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with a very small number of solutions. For each graph size, 30 experiments were performed
using each technigue. The maximuim allowed number of generations was 5000, while the pop-
lation size was 100. The values of the parameters of the MPRRL and MPRL methods were
o =01,6=0002and T =10 and the crossover probability for MPRRL was p. = 1.0. Also
ihe number of apathetic steps was 150. The parameters of the GA were: crossover probability
pe = 0.6 and mutation probability p, = 0.01. Average values concerning the percentage of
runs that provided a problem solution and the average number of generation steps required
to find the solution are displayed Table 1. Tt is clear that the MPRRL method is much more
effective compared with the other approaches. It must also be noted that the MPRL approach

also yielded encouraging results, although of lower quality than the MPRRL method.
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