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Outline 

 

• Clustering multimodal data 

• Multimodality as a index for dataset inhomogeneity 

– data clustering and sequence segmentation without 
a priori knowledge of the number of clusters or 
segments 

• Application to video summarization based on visual 
content (key frame extraction) 
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Clustering 
• Clustering definition: Partition a given set of objects 

into (M) groups (clusters) such that the objects of each 
group are ‘similar’ and ‘different’ from the objects of 
the other groups. 
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Clustering 
 

• A distance (or similarity) measure is necessary 

 

• Clustering is NP-complete 

 

• Unsupervised learning: no class labels  Difficult to 
evaluate solutions 

 

 

• Deciding on the number of clusters is often difficult 
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Clustering 
 

• Clustering Methods 

− Hierarchical (agglomerative, divisive) 

− Density-based (non-parametric, eg DBSCAN) 

− Parametric/model-based  (k-means, mixture models, 
fuzzy c-means etc) 

− Graph-Based 

 

• Clustering Inputs 

– Data Vectors 

– Similarity/Distance  

    Matrix 
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k-means 
• Partition a dataset X of N vectors xi into M subsets (clusters) 

Ck such that intra-cluster variance is minimized. 

• Intra-cluster variance: sum of distances from the cluster 
prototype mk 

 

• k-means: Prototype = cluster center 

• Finds local minima w.r.t. clustering  error 

 

 
– sum of intra-cluster variances 

 

• Requires computation of   
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Kernel-Based Clustering 

              k-means                             kernel k-means (RBF kernel,σ=1) 

2 rings dataset 

• k-means implements linear cluster separation   
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Kernel-Based Clustering 
(non-linear cluster separation) 

 

– Given a set of objects and the kernel 
matrix K=[Kij] containing the 
similarities between pairs of objects 

 

– Kernel trick assumption: Data points 
are mapped from input space to a 
higher dimensional feature space 
through a transformation φ(x). 
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K(x,y)=exp(-||x-y||2 /σ2) 
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Kernel k-Means 
 

• Kernel k-means = k-means in feature space 
 

– Minimizes the k-means clustering error in feature space 
 
 
 
 

 
• Differences from k-means 

– Cluster centers mk in feature space cannot be computed 
 

– Each cluster Ck is explicitly described by its data objects 
 
– Computation of distances from centers in feature space: 
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Clustering Multimodal Data 
 

 

 

 



Multimodal Data 

Web pages 

 
Web page text 

HyperLinks 

Web page images 

Social Network Nodes 

 

 

Text 

Images 

 Friend/Follower Links 

  

 

 

Image/Video 

 

Color 

Texture 

Annotation Text 

• Several representations (‘views’) of the same data object 
  
•Each view: either the data vectors or a distance/similarity matrix  
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Multimodal clustering 
• Multimodal dataset  X with N examples and V views: 

 

 

• Partition a multimodal dataset into M disjoint homogeneous 
groups by taking into account every view 

• Early fusion: combine views before clustering 

• Late fusion: aggregate clustering solutions from individual views 

• A better approach: weighted fusion: automatically estimate the 
relevance (weight) of each view during clustering 

– views participate in the solution according to their quality 
(clustering error) 

– ‘irrelevant’ views are assigned low weight and do not affect 
the clustering solution 
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Multi-view Kernel k-means(MVKKM) 
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• Weighted multi-view extension of kernel k-means (Tzortzis and 
Likas, ICDM’12) 

• Assume a multimodal dataset  X with N examples and V views 

 

• For each view: a kernel K(v)  feature transformation φ(v)  

 

• θv the weight of view v (parameters) 

 

• We define a composite Kernel Kθ  : 

 

 

• p exponent (user defined) 
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Multi-view Kernel k-means(MVKKM) 
 

• Find partition y (in M clusters) and view weights θ that minimize 
kernel k-means error for kernel matrix Kθ 

 

 

 

 

 

 

 

Kernel k-means clustering error of y for view v 
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Multi-view Kernel k-means(MVKKM) 
• Starting from some initial θv  (usually 1/V) and an initial clustering 

y,  perform the following two steps until convergence: 

– update the cluster assignments y using kernel k-means with 
current Kθ 

   

– update θv : 

 

 

 

 

 

    

• Views with lower clustering error are assigned higher weight 

• Feature space changes at each clustering iteration; however 
convergence is guaranteed 

• p regulates weight sparsity (typical value p=2) 
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Experiments – Real Datasets 
 

 

 

 

 

 

• Multiple Features – Collection of handwritten digits 
– Five views 
– Ten classes 
– 200 instances per class 
– Extracted several four class subsets 

 

• Corel – Image collection 
– Seven views (color and texture) 
– 34 classes 
– 100 instances per class 
– Extracted several four class subsets 



Experiments – Digits 

 

 

 

 

 

 

 

 

Digits 0236 Digits 1367 



Experiments – Corel 

 

 

 

 

 

 

 

 

bus, leopard, 
train, ship 

owl, wildlife, 
hawk, rose 

MVKMM provides best results for p=2 



Key-frame Extraction 

• Video summarization based on visual content 

• Usually a video sequence is decomposed into shots. 

• A shot is defined as an unbroken sequence of video frames taken 
from a single camera. 

• Keyframes: summarization of a video shot 

– rapid assessment of the video content  by inspecting the key-
frames of the shot 

– define shot similarity: scene segmentation, content-based 
retrieval, rushes summarization. 

• Keyframes should represent the whole video content without 
missing important information. 

• Keyframes should not be similar, in terms of video content 
information.  AIAI 2016 





AIAI 2016 



Key-frame Extraction Approaches 

• Clustering-based (e.g. k-means, spectral approaches) 

– The medoid frame of each group of frames is selected 
as key-frame 

 

• Frames are represented as feature vectors: image 
descriptors based on color, texture, interest points 

• A single image descriptor does not suffice for all cases. 

• Weighted Fusion of different image descriptors (e.g. 
color, SIFT etc) (Ioannidis, Chasanis and Likas, ICPR’14, PRL’16) 
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Image Descriptors 

• HSV Color Histograms: 

• HSV1D (96 bins -> 64H + 16S + 16V) 

• HSV3D (128 bins-> 8H x 4S x 4V) 

• Census Transform Histogram (CENTRIST) (251 bins) 

• Wavelet:  

– 9 Haar wavelet sub-bands are used on 3x3 grids to 
form a 81-d feature vector. 

• SIFT (20 or 50 visual words) 
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Example (V=2) 

GROUND TRUTH 
(M=5) 

HSV 

CENTRIST 

WAVELET 

HSV+CENTRIST 

HSV+WAVELET 

CENTRIST+WAVEL
ET 

HSV Centrist Wavelet 

0.9880 0.0120 - 

0.9449 - 0.0551 

- 0.3286 0.6714 

Weights 



Performance Evaluation 

 

• No single descriptor dominates the other single 
descriptors -> fusion necessary 

 

• Regardless of the pair of descriptors, the weighted 
fusion of two descriptors always provides better or 
equal performance than  

– using each descriptor individually or 

– using the unweighted combination of the two 
descriptors 
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Detection Accuracy 
Descriptors 

Incremental 
single view 

Spectral 
single view 

HSV1D 63.08 61.90 

HSV3D 64.52 69.28 

SIFT20 61.96 71.28 

SIFT50 61.16 69.65 

CEN 62.98 68.41 

WAV 66.03 66.47 

Unweighted-
multiview 

Weighted 
multiview 

HSV1D-SIFT20 73.17 78.82 

HSV1D-SIFT50 72.70 79.44 

HSV3D-SIFT20 74.25 83.26 

HSV3D-SIFT50 73.94 83.88 

HSV1D-CEN 70.98 83.26 

HSV1D-WAV 69.74 81.72 

HSV3D-CEN 69.74 80.79 

HSV3D-WAV 70.42 82.03 



Multimodality  
for number of clusters estimation 

 

 

 



Deciding on the # of clusters 

 

 

 

 

• Selection Approaches: Use a Criterion to select among  the  
solutions for several values of M (kmeans or GMMs are used) 

• Clustering Objective(M) + Model Complexity(M) (BIC, MML) 

•  Marginal Likelihood (Bayesian GMMs) 

• Gap Statistic 

• Variance Ratio Criterion (VRC):  

  (intracluster variance)/ (intercluster variance) 
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Deciding on the # of clusters 

 

 

 

 

• Optimal solutions  wrt clustering error do not always reveal the 
true clustering structure 
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Deciding on the # of clusters 

 

• The critical issue:  

    deciding on the content homogeneity of a set of 
data objects given either the data vectors or the 
similarity matrix. 
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Deciding on dataset homogeneity 
 

• One approach: split the set in two subsets, apply a 
criterion (e.g. BIC) for M=1 and M=2 and decide if 
there is improvement or not (x-means algorithm) 
 

• Another approach: Test for Gaussianity (if data 
vectors available):  
– Project the data in the principal direction and 

apply 1-d Gaussianity test (g-means algorithm) 
 

• Our approach: tests for unimodality applied to the 
similarity matrix (does not require the data vectors) 
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Dip test for unimodality 

• Given a set X of real numbers 

• Hartigans’ dip-test for unimodality (Annals of Statistics, 1984)  

•  computes dip measure: “departure from unimodality” of the 
empirical distribution (histogram) of X 

• Dip(X): distance of the empirical data distribution of X from the 
closest unimodal distribution  

 

 
 
 
 

                         dip=0.11                               dip=0.03 
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http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.aos/1176346577


Dip test for unimodality 

 

• Uniform is considered as the ‘extreme’ unimodal 
distribution 

• The statistical significance (pval) of a dip value is 
assessed through bootstrapping (off-line) 

• pval=0  multimodality, pval=1 unimodality 
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Dataset Multimodality: 
             Dip-dist criterion (Kalogeratos & Likas NIPS’12) 

• Reference object (‘viewer’) 

• The histogram of its distances of 
all the dataset objects is checked 
for multimodality (dip test)  

• Viewer detecting multimodality 
 ‘split viewer’ (multimodal 
viewer) 



Dataset Multimodality: 
Dip-dist criterion 

• How to select viewers?  

• Each object xi is used as ‘viewer’ -> dip-test applied on the 
elements of row i of the distance (similarity) matrix 

• dip-dist criterion: dip-test applied on each rows of the similarity 
(distance) matrix  

• Sufficient split viewers   dataset multimodal 
AIAI 2016 



Dip-dist criterion – unimodal examples 
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Incremental Dip (Dip-means) 

• Divisive clustering using k-means and cluster splitting 

• Determine and split multimodal clusters until all clusters become 
unimodal 

• Dip-means algorithm (starts with k=1)  

•  apply dip-dist for each cluster j and find the multimodal 
cluster with maximum score: 

 

• split this cluster in two sub-clusters and run k-means with k+1 
clusters. Set k:=k+1 

• until all clusters are unimodal 

• Kernel Dip-means : Kernel k-means is used instead of k-means 
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Dip-means examples 
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Agglodip (Agglomerative Clustering) 

• Merge test: merge two datasets and decide on the unimodality 
of the resulting set   

• Starts with an initial partition of the dataset into small 
unimodal clusters (e.g. using k-means or kernel k-means) 

• At each iteration  

• a merge-test is applied to all pairs of clusters in the current 
solution and the unimodal pairs are identified. 

• The unimodal pair with the minimum dip-value (maximum 
unimodality) is selected for merging and a new iteration 
starts. 

• Terminate when there does not exist any pair of clusters 
succeeding in the merge-test. 
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Aggodip example 
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Aggodip issues 

•  When merging a large cluster with a distinct small cluster, it is 
possible that the merge-test will decide unimodality. 

•  Solution: merge clusters with comparable sizes 

 

•  Use the cluster centroids as viewers (two viewers only) 

 

• Create a 0-1 neighborhood graph of the initial clusters based on 
the merge test and find the connected components of this graph  
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Agglodip 

Ioannidis, Chasanis 
and Likas, ICMV’14 
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Sequence segmentation (SegmentDip) 
 

• Assume a sequence (stream) of data objects 

• A similarity/distance measure between pairs of data 
objects is given 

• Segmentation Task: Partition the sequence into 
homogeneous segments by determining appropriate cut 
points (number of segments is not given) 

 

• SegmentDip method  

– Sliding window of fixed size w over the sequence 

– Test the homogeneity of each window with dip-dist 

– If a window is found multimodal,  a cut point may be 
set in this window. 
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SegmentDip 

 

 

 

 

 

 

 

• The method is fast since it applies dip-dist criterion on 
w data objects each time 
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Ioannidis, Chasanis , Likas, 
ICSP’14 



Video Segmentation 

 

– Segmentation into shots: small window, detects 
sharp changes in video content  

 

 

– Segmentation of each shot (keyframe extraction): 
larger window, detects smoother variations in video 
content 
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Video Segmentation Example 
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VideoSum software 
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Multimodality in Data Clustering 

 

• Open problem: Combining the two notions of 
multimodality into an algorithm for multimodal 
clustering that estimates automatically both the 
number of clusters M and the weights θ of each 
view. 

 

– Multiview clustering methods assume M is given 
and estimate kernel matrix Kθ 

– Dip-based methods assume kernel matrix K is 
given and estimate number of clusters M.  
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Thank you! 


