Multimodality in Data Clustering: Application to Video Summarization

Aristidis Likas CSE Department University of Ioannina arly@cs.uoi.gr

AIAI 2016 Conference

Outline

- Clustering multimodal data
- Multimodality as a index for dataset inhomogeneity
 - data clustering and sequence segmentation without a priori knowledge of the number of clusters or segments
- Application to video summarization based on visual content (key frame extraction)

Clustering

 Clustering definition: Partition a given set of objects into (M) groups (clusters) such that the objects of each group are 'similar' and 'different' from the objects of the other groups

the other groups.

Clustering

- A distance (or similarity) measure is necessary
- Clustering is NP-complete
- Unsupervised learning: no class labels → Difficult to evaluate solutions

• Deciding on the **number of clusters is often difficult**

Clustering

- Clustering Methods
 - Hierarchical (agglomerative, divisive)
 - Density-based (non-parametric, eg DBSCAN)
 - Parametric/model-based (k-means, mixture models, fuzzy c-means etc)
 - Graph-Based
- Clustering Inputs
 - Data Vectors
 - Similarity/Distance
 Matrix

k-means

- Partition a dataset X of N vectors x_i into M subsets (clusters)
 C_k such that intra-cluster variance is minimized.
- Intra-cluster variance: sum of distances from the cluster prototype *m*_k

AIAI 2016

- **k-means**: Prototype = cluster center
- Finds local minima w.r.t. clustering error

$$E(y) = \sum_{i=1}^{N} \sum_{k=1}^{M} y_{ik} || x_i - m_k ||^2, \ y_{ik} = I(x_i \in C_k)$$

- sum of intra-cluster variances
- Requires computation of $||x_i m_k||^2$

Kernel-Based Clustering

2 rings dataset

k-means

kernel k-means (RBF kernel, σ =1)

• k-means implements linear cluster separation

Kernel-Based Clustering (non-linear cluster separation)

 $K(x,y)=exp(-||x-y||^2/\sigma^2)$

- Given a set of objects and the kernel matrix K=[K_{ij}] containing the similarities between pairs of objects
- Kernel trick assumption: Data points are mapped from input space to a higher dimensional feature space through a transformation $\varphi(\mathbf{x})$.

 $K_{ii} = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_i) \implies \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_i)\|^2 = K_{ii} + K_{ii} - 2K_{ii}$

Kernel k-Means

• Kernel k-means = k-means in feature space

- Minimizes the k-means clustering error in feature space

$$E(\boldsymbol{m}_{1}, ..., \boldsymbol{m}_{M}) = \sum_{i=1}^{N} \sum_{k=1}^{M} I(\boldsymbol{x}_{i} \in C_{k}) \|\phi(\boldsymbol{x}_{i}) - \boldsymbol{m}_{k}\|^{2} \text{ where } \boldsymbol{m}_{k} = \frac{\sum_{i=1}^{N} I(\boldsymbol{x}_{i} \in C_{k})\phi(\boldsymbol{x}_{i})}{\sum_{i=1}^{N} I(\boldsymbol{x}_{i} \in C_{k})}$$

- Differences from k-means
 - Cluster centers **m**_k in **feature space cannot** be computed
 - Each cluster C_k is explicitly described by its data objects
 - Computation of distances from centers in **feature space**:

$$\|\phi(\mathbf{x}_{i}) - \mathbf{m}_{k}\|^{2} = K_{ii} - \frac{2\sum_{j=1}^{N} I(\mathbf{x}_{j} \in C_{k})K_{ij}}{\sum_{j=1}^{N} I(\mathbf{x}_{j} \in C_{k})} + \frac{\sum_{j=1}^{N} \sum_{l=1}^{N} I(\mathbf{x}_{j} \in C_{k})I(\mathbf{x}_{l} \in C_{k})K_{jl}}{\sum_{j=1}^{N} \sum_{l=1}^{N} I(\mathbf{x}_{j} \in C_{k})I(\mathbf{x}_{l} \in C_{k})}$$

Clustering Multimodal Data

Multimodal Data

• Several representations ('views') of the same data object

•Each view: either the data vectors or a distance/similarity matrix

Multimodal clustering

• **Multimodal dataset** *X* with N examples and V views:

$$X = \{\mathbf{x}_1, ..., \mathbf{x}_N\}, \ \mathbf{x}_i = (x_i^{(1)}, ..., x_i^{(V)}), \ x_i^{(v)} \in \mathbb{R}^{d_v}$$

- Partition a **multimodal dataset** into *M* disjoint homogeneous groups by taking into account every view
- Early fusion: combine views before clustering
- Late fusion: aggregate clustering solutions from individual views
- A better approach: **weighted fusion**: automatically estimate the relevance (weight) of each view **during clustering**
 - views participate in the solution according to their quality (clustering error)
 - 'irrelevant' views are assigned low weight and do not affect the clustering solution

Multi-view Kernel k-means(MVKKM)

- Weighted multi-view extension of kernel k-means (Tzortzis and Likas, ICDM'12)
- Assume a **multimodal dataset** *X* with N examples and V views
- For each view: a kernel $K^{(v)} \rightarrow$ feature transformation $\Phi^{(v)}$
- θ_v the weight of view v (parameters)
- We define a composite Kernel K_{θ} : $K_{\theta} = \sum_{\nu=1}^{V} \theta_{\nu}^{p} K^{(\nu)}, \quad \theta_{\nu} \ge 0, \quad \sum_{\nu=1}^{V} \theta_{\nu} = 1, \quad p \ge 1$
- **p** exponent (user defined)

Multi-view Kernel k-means(MVKKM)

 Find partition y (in M clusters) and view weights θ that minimize kernel k-means error for kernel matrix K_θ

$$E(\theta, y) = \sum_{i=1}^{N} \sum_{k=1}^{M} y_{ik} \| \phi_{\theta}(x_i) - m_k \|^2, \ y_{ik} = I(x_i \in C_k)$$

$$\downarrow$$

$$E(\theta, y) = \sum_{\nu=1}^{V} \theta_{\nu}^{p} D_{\nu}(y), \ \theta_{\nu} \ge 0, \ \sum_{\nu=1}^{V} \theta_{\nu} = 1$$

$$D_{\nu}(y) = \sum_{i=1}^{N} \sum_{k=1}^{M} y_{ik} \| \phi_{\nu}(x_i^{\nu}) - m_k^{\nu} \|^2, \ y_{ik} = I(x_i \in C_k)$$
Kernel k-means clustering error of y for view v

Multi-view Kernel k-means(MVKKM)

- Starting from some initial θ_{v} (usually 1/V) and an initial clustering
 - y, perform the following two steps until convergence:
 - **update** the cluster assignments **y** using **kernel k-means** with current K_{θ}
 - update θ_v :

$$\theta_{v} = 1 / \sum_{v'=1}^{V} \left(\frac{D_{v}(y)}{D_{v'}(y)} \right)^{1/(p-1)} \mathbf{p} > \mathbf{1}$$

 $\theta_{v} = 1, v = \arg \min D_{v'}, \theta_{v} = 0, v \neq \arg \min D_{v'}, \mathbf{p} = \mathbf{1}$

- Views with lower clustering error are assigned higher weight
- Feature space changes at each clustering iteration; however convergence is guaranteed
- p regulates **weight sparsity** (typical value p=2)

Experiments – Real Datasets

- Multiple Features Collection of handwritten digits
 - Five views
 - Ten classes
 - 200 instances per class
 - Extracted several four class subsets
- Corel Image collection
 - Seven views (color and texture)
 - 34 classes
 - 100 instances per class
 - Extracted several four class subsets

Experiments – Digits

Experiments – Corel

MVKMM provides best results for p=2

Key-frame Extraction

- Video summarization based on visual content
- Usually a video sequence is decomposed into shots.
- A shot is defined as an unbroken sequence of video frames taken from a single camera.
- **Keyframes**: summarization of a video shot
 - rapid assessment of the video content by inspecting the keyframes of the shot
 - define **shot similarity**: scene segmentation, content-based retrieval, rushes summarization.
- Keyframes should represent the whole video content without missing important information.
- Keyframes should not be similar, in terms of video content information.

AIAI 2016

Key-frame Extraction Approaches

- **Clustering**-based (e.g. k-means, spectral approaches)
 - The medoid frame of each group of frames is selected as key-frame
- Frames are represented as feature vectors: image descriptors based on color, texture, interest points
- A single image descriptor does not suffice for all cases.
- Weighted Fusion of different image descriptors (e.g. color, SIFT etc) (Ioannidis, Chasanis and Likas, ICPR'14, PRL'16)

Image Descriptors

- HSV Color Histograms:
 - HSV1D (96 bins -> 64H + 16S + 16V)
 - HSV3D (128 bins-> 8H x 4S x 4V)
- Census Transform Histogram (CENTRIST) (251 bins)
- Wavelet:
 - 9 Haar wavelet sub-bands are used on 3x3 grids to form a 81-d feature vector.
- SIFT (20 or 50 visual words)

Performance Evaluation

- No single descriptor dominates the other single descriptors -> fusion necessary
- Regardless of the pair of descriptors, the weighted fusion of two descriptors always provides better or equal performance than
 - using each descriptor individually or
 - using the unweighted combination of the two descriptors

Detection Accuracy

Descriptors	Incremental single view	Spectral single view
HSV1D	63.08	61.90
HSV3D	64.52	69.28
SIFT20	61.96	71.28
SIFT50	61.16	69.65
CEN	62.98	68.41
WAV	66.03	66.47
	Unweighted-	Weighted
	multiview	multiview
HSV1D-SIFT20	73.17	multiview 78.82
HSV1D-SIFT20 HSV1D-SIFT50	73.17 72.70	multiview 78.82 79.44
HSV1D-SIFT20 HSV1D-SIFT50 HSV3D-SIFT20	multiview 73.17 72.70 74.25	multiview 78.82 79.44 83.26
HSV1D-SIFT20 HSV1D-SIFT50 HSV3D-SIFT20 HSV3D-SIFT50	multiview 73.17 72.70 74.25 73.94	multiview 78.82 79.44 83.26 83.88
HSV1D-SIFT20 HSV1D-SIFT50 HSV3D-SIFT20 HSV3D-SIFT50 HSV1D-CEN	multiview 73.17 72.70 74.25 73.94 70.98	multiview 78.82 79.44 83.26 83.88 83.26
HSV1D-SIFT20 HSV1D-SIFT50 HSV3D-SIFT20 HSV3D-SIFT50 HSV1D-CEN HSV1D-WAV	multiview 73.17 72.70 74.25 73.94 70.98 69.74	multiview 78.82 79.44 83.26 83.88 83.26 83.26 83.26 81.72
HSV1D-SIFT20 HSV1D-SIFT50 HSV3D-SIFT20 HSV3D-SIFT50 HSV1D-CEN HSV1D-WAV HSV3D-CEN	multiview 73.17 72.70 74.25 73.94 70.98 69.74 69.74	multiview 78.82 79.44 83.26 83.88 83.26 83.26 81.72 80.79

Multimodality for number of clusters estimation

Deciding on the # of clusters

- Selection Approaches: Use a Criterion to select among the solutions for several values of M (kmeans or GMMs are used)
 - Clustering Objective(M) + Model Complexity(M) (BIC, MML)
 - Marginal Likelihood (Bayesian GMMs)
 - Gap Statistic
 - Variance Ratio Criterion (VRC):

(intracluster variance)/ (intercluster variance)

Deciding on the # of clusters

• Optimal solutions wrt clustering error **do not** always reveal the true clustering structure

Deciding on the # of clusters

• The critical issue:

deciding on the content homogeneity of a set of data objects given either the data vectors or the similarity matrix.

Deciding on dataset homogeneity

- One approach: split the set in two subsets, apply a criterion (e.g. BIC) for M=1 and M=2 and decide if there is improvement or not (x-means algorithm)
- Another approach: Test for **Gaussianity** (if data vectors available):
 - Project the data in the principal direction and apply 1-d Gaussianity test (g-means algorithm)
- Our approach: tests for unimodality applied to the similarity matrix (does not require the data vectors)

Dip test for unimodality

- Given a set X of real numbers
- Hartigans' dip-test for unimodality (<u>Annals of Statistics, 1984</u>)
 - computes dip measure: "departure from unimodality" of the empirical distribution (histogram) of X
- **Dip(X)**: distance of the empirical data distribution of X from the closest unimodal distribution

Dip test for unimodality

- Uniform is considered as the 'extreme' unimodal distribution
- The **statistical significance** (**pval**) of a dip value is assessed through bootstrapping (off-line)
- $pval=0 \rightarrow multimodality$, $pval=1 \rightarrow unimodality$

Dataset Multimodality: Dip-dist criterion (Kalogeratos & Likas NIPS'12)

distance

0.8

0.6

cuenteu

- Reference object ('viewer')
- The histogram of its distances of all the dataset objects is checked for multimodality (dip test)
- Viewer detecting multimodality → 'split viewer' (multimodal viewer)

Dataset Multimodality: Dip-dist criterion

- How to select viewers?
- Each object x_i is used as 'viewer' -> dip-test applied on the elements of row i of the distance (similarity) matrix
- **dip-dist criterion: dip-test** applied on each **rows** of the similarity (distance) matrix
- Sufficient split viewers → dataset multimodal

Dip-dist criterion – unimodal examples

Incremental Dip (Dip-means)

- Divisive clustering using k-means and cluster splitting
- Determine and split multimodal clusters until all clusters become unimodal
- **Dip-means algorithm** (starts with k=1)
 - apply **dip-dist** for each cluster j and find the **multimodal** cluster with **maximum score**: $score_{j} = \frac{1}{|v_{j}|} \sum_{x \in v_{j}} dip(dist(x))$
 - split this cluster in two sub-clusters and run k-means with k+1 clusters. Set k:=k+1
 - until all clusters are unimodal
- Kernel Dip-means : Kernel k-means is used instead of k-means

Dip-means examples

Agglodip (Agglomerative Clustering)

- **Merge test**: merge two datasets and decide on the unimodality of the resulting set
- Starts with an **initial partition** of the dataset into **small unimodal** clusters (e.g. using k-means or kernel k-means)
- At each iteration
 - a **merge-test** is applied to all pairs of clusters in the current solution and the **unimodal pairs** are identified.
 - The **unimodal** pair with the **minimum dip-value (maximum unimodality)** is selected for merging and a new iteration starts.
- Terminate when there does not exist any pair of clusters succeeding in the merge-test.

Aggodip example

Aggodip issues

- When merging a **large** cluster with a distinct **small** cluster, it is possible that the merge-test will decide unimodality.
 - Solution: merge clusters with comparable sizes

• Use the **cluster centroids as viewers** (two viewers only)

• Create a **0-1 neighborhood graph** of the initial clusters based on the merge test and find the **connected components** of this graph

Ioannidis, Chasanis and Likas, ICMV'14

Agglodip

Sequence segmentation (SegmentDip)

- Assume a **sequence** (stream) of **data objects**
- A similarity/distance measure between pairs of data objects is given
- Segmentation Task: Partition the sequence into homogeneous segments by determining appropriate cut points (number of segments is not given)
- SegmentDip method
 - Sliding window of fixed size w over the sequence
 - Test the **homogeneity of each window** with dip-dist
 - If a window is found multimodal, a cut point may be set in this window.

SegmentDip

Ioannidis, Chasanis, Likas, ICSP'14

 The method is **fast** since it applies dip-dist criterion on w data objects each time

Video Segmentation

 – Segmentation into shots: small window, detects sharp changes in video content

 Segmentation of each shot (keyframe extraction): larger window, detects smoother variations in video content

Video Segmentation Example

VideoSum A Video Storage, Processing and Summarization Platform

Multimodality in Data Clustering

- Open problem: Combining the two notions of multimodality into an algorithm for multimodal clustering that estimates automatically both the number of clusters M and the weights θ of each view.
 - Multiview clustering methods assume M is given and estimate kernel matrix $K_{\boldsymbol{\theta}}$
 - Dip-based methods assume kernel matrix K is given and estimate number of clusters M.

Thank you!