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ABSTRACT

The authors present two methods for examining video quality using the Structural Similarity (SSIM) 
index: Iterative Distortion Estimate (IDE) and Cumulative Distortion using SSIM (CDSSIM). In the 
first method, three types of slices are iteratively reconstructed frame-by-frame for three different 
combinations of packet loss and the resulting distortions are combined using their probabilities to give 
the total expected distortion. In the second method, a cumulative measure of the overall distortion 
is computed by summing the inter-frame propagation impact to all frames affected by a slice loss. 
Furthermore, the authors develop a No-Reference (NR) sparse regression framework for predicting 
the CDSSIM metric to circumvent the real-time computational complexity in streaming video 
applications. The two methods are evaluated in resource allocation and packet prioritization schemes 
and experimental results show improved performance and better end-user quality. The accuracy of 
the predicted CDSSIM values is studied using standard performance measures and a Quartile-Based 
Prioritization (QBP) scheme.
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1. INTRODUCTION

Smart phones and mobile devices that contain sophisticated video processing elements have become 
an integral part of our daily lives and have created a dramatic rise in demand for multimedia services 
over wireless networks. This demand underscores the need for efficient algorithms that provide optimal 
end-user quality, while taking into account capacity constraints, like storage and bandwidth. Limited 
resources on transmission systems inherently prone to dropping packets provide strong motivation for 
video processing and network entities to implement efficient encoding, resource allocation, packet 
prioritization and scheduling techniques. The end-user experience and overall perceived quality 
can be influenced by many factors but most notably by compression and transmission impairments. 
Towards this end, research in video codecs has moved at a fast pace through standards like H.264/
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Moving Picture Experts Group (MPEG) 4/Advanced Video Coding (AVC), Scalable Video Coding 
(SVC) and H.265/High Efficiency Video Coding (HEVC) (Wiegand, Sullivan, Bjøntegaard, & 
Luthra, 2003; Schwarz, Marpe, & Wiegand, 2007; Sullivan, Ohm, Han, & Wiegand, 2012). Similarly, 
wireless communication has also made rapid strides with 3G Universal Mobile Telecommunications 
System (UMTS), High Speed Downlink/Uplink Packet Access (HSDPA/HSUPA), WiMax, 4G/Long 
Term Evolution (LTE), and plans to introduce 5G before the end of this decade (HSDPA, 2006; 
DC-HSPA, 2010; LTE; METIS, 2013). These advances help address the growing demand for video 
streaming services but also emphasize the need for innovative algorithms that offer complete end-to-
end solutions. Research in cross-layer optimization, rate-distortion modeling, packet scheduling and 
resource allocation in multi-user environments (e.g. Maani, Pahalawatta, Berry, Pappas, & Katsaggelos 
2008; Li, Li, Chiang, & Calderbank, 2009; Luo, Ci, & Wu, 2011; Ismail, Zhuang, & Elhedhli, 2013; 
Sankisa, Katsaggelos, & Pahalawatta, 2015) has shown that transmission methods that are content-
aware provide noticeable performance improvements than content-agnostic techniques.

The three components for defining a cross-layer, content-aware system are the encoding 
mechanism, the transmission network and the quality assessment technique. Video coding creates 
compression artifacts that directly translate to a perceived degradation in overall quality. During the 
encoding process, sequences are broken into frames and different coding modes are applied on their 
constituent units, MacroBlocks (MBs) and Group-Of-Blocks (GOBs). The decision about the coding 
modes usually depends on the frame in which a block resides and a natural outcome of differentiated 
coding is the formation of data entities with unequal importance, a key incentive for defining a packet 
prioritization scheme. Additionally, temporal, motion-compensated prediction commonly used by 
encoders leads to inter-frame dependence and error propagation that needs to be taken into account 
when designing such a scheme. When an encoded sequence is ready for transmission, usually over 
a resource-constrained, loss-prone channel, it is broken and packaged into units that each contains a 
portion of a video frame (for instance, a GOB). All packets belonging to a frame need to be correctly 
received for error-free reconstruction at the decoder. But if some packets are lost, data can be recovered 
by applying the appropriate error-concealment technique, although it is usually accompanied by 
propagation of errors between frames.

Quality assessment on the source side is essential in designing a system that prioritizes packets 
for transmission. Full-Reference (FR) models that measure quality through distortion use the Mean-
Squared Error (MSE), Cumulative MSE (CMSE) and Peak-Signal-to-Noise Ratio (PSNR) metrics. 
These metrics provide objective mathematical models that easily extend to computational analysis and 
application of optimization techniques. However, these methods are limited in the way they model the 
quality that is perceived by the Human Visual System (HVS). Extensive research has been done in 
enhancing MSE/PSNR-based schemes to accommodate perceptual quality but they are inadequate in 
that distortion is not assessed as the degradation of structural information detected by HVS. Human 
perception is naturally adapted to extract luminance, contrast and structure in an image and is the 
basis for the Structural SIMilarity (SSIM) metric proposed by (Wang, Bovik, Sheikh, & Simoncelli, 
2004). Additionally, localized quality information provided by SSIM is particularly attractive for 
applications that study the impact of sub-frame units (such as MBs, GOBs etc.) commonly used 
during transmission (Gao, Kwong, Zhou, & Yuan, 2016).

1.1. Related work and Motivation
Developing methods that estimate perceptive quality of encoded videos has been the focus of a lot 
of research but these methods suffer from certain drawbacks that the proposed Iterative Distortion 
Estimate (IDE) and Cumulative Distortion using SSIM (CDSSIM) methods overcome. While (Moorthy 
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& Bovik, 2006) provides FR video quality assessment by using SSIM with motion compensation, 
it does not consider source encoding modes and distortion at the decoder due to packet loss, which 
are key components in streaming video transmission over wireless networks. Models presented in 
(Seshadrinathan & Bovik, 2007; Seshadrinathan & Bovik, 2009) provide methods for motion-based 
video quality assessment in the frequency domain using a complex wavelet version of the SSIM 
metric. A FR video quality model called MOtion-based Video Integrity Evaluation (MOVIE) index 
is proposed in (Seshadrinathan & Bovik, 2010; Seshadrinathan, Soundarajan, Bovik, & Cormack, 
2010). The MOVIE model presents specific indexes that capture spatial and temporal distortions as 
a function of squared difference between Gabor coefficients. In (Wang, Rehman, Wang, Ma, & Gao, 
2012), a Reduced-Reference (RR) statistical SSIM estimate and a rate model are proposed using 
information and coefficients in the Discrete Cosine Transform (DCT) domain, while (Zhao, Wang, 
& Kwong, 2013) presents a framework for coding mode selection based on user-defined complexity 
factors on partitions larger than MBs.

Perceptive quality measures like Video Quality Metric (VQM), Just Noticeable Difference (JND), 
Perceptual Distortion Metric (PDM) and Digital Video Quality (DVQ) (Pinson & Wolf 2004; Yu & 
Wu, 2000; Winkler, 1999; Watson, 1998), including the MOVIE and the Video Intrinsic Integrity 
and Distortion Evaluation Oracle (VIIDEO) model (Mittal, Saad, & Bovik, 2016), although effective, 
are computationally complex for real-time resource allocation and low bit rate encoding scenarios. 
The reference in (Lin, Kanumuri, Zhi, Poole, Cosman, & Reibman, 2010) evaluates the effect of 
transmission errors on video quality without utilizing metrics such as MSE or SSIM. Instead, it 
approaches the issue from the visibility of a lost slice on the entire frame using factors such as scene 
cuts, motion and distance-to-reference. A Generalized Linear Model (GLM) that predicts quality 
degradation contributed by individual slice loss in H.264/AVC encoded videos is proposed in 
(Paluri, Kambhatla, Kumar, Bailey, Cosman, & Matyjas, 2012; Paluri, Kambhatla, Bailey, Cosman, 
Matyjas, & Kumar, 2014). In addition, an extension of these works is presented in (Paluri, Kambhatla, 
Medley, Matyjas, & Kumar, 2015), where a joint packet fragmentation and error protection scheme 
is proposed, for transmitting H.264/AVC compressed video over Rayleigh fading channels. However, 
these three papers, along with the work presented in (Pandremmenou, Tziortziotis, Paluri, Zhang, 
Blekas, Kondi, & Kumar, 2015), use RR features that depend on access to information in the original 
video for predicting CMSE. All these models, as mentioned previously, are based on quality metrics 
that do not provide an accurate measure of the perceptual quality as experienced by the end user. On 
the other hand, (Wang, Zhang, & Agrafiotis, 2015) introduces a very low complexity metric, which 
is incorporated into SSIM, for making video quality estimations. Similarly, in (Aabed & AlRegib, 
2015) the authors propose a video quality monitoring metric, using optical flow features. While both 
of these metrics correlate well with the Differential Mean Opinion Score (DMOS), they both rely 
on RR features, which still require an ancillary channel and access to the reference at some point.

The main contribution of this paper is the introduction of two metrics to evaluate perceived 
distortion using SSIM from individual packet loss during the transmission of encoded video over 
noisy, error-prone channels. The SSIM metric was originally defined for still images but through both 
these methods we modify its usage to evaluate the distortion in individual GOBs and video frames 
and extend it bi-directionally among dependent frames to obtain the total distortion. In each case, 
the total distortion depends on the source-side encoding mechanism and the resulting inter-frame 
error propagation due to packet loss and error concealment. The first metric, Iterative Distortion 
Estimate, utilizes the single-scale SSIM in the pixel/spatial domain to compute the overall source-
to-receiver distortion. The estimate is obtained by iteratively reconstructing three types of slices for 
three different combinations of packet loss, where each type would be considered a “random” variable 
attached with a specific probability of occurrence. The distortions of these reconstructed slices when 
compared with the original ones are then stochastically combined to provide the overall expected 
distortion. The IDE-based distortion is incorporated into the content-aware utility function proposed in 
(Maani, Pahalawatta, Berry, Pappas, & Katsaggelos, 2008) to perform packet scheduling and resource 
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allocation for the transmission of video packets. For the second metric, Cumulative Distortion using 
SSIM, we develop a mechanism that also uses SSIM to measure the overall degradation in perceived 
quality due to a packet loss. The cumulative distortion of each slice is obtained by removing the 
slice from the frame and, for every frame impacted by the loss of this slice due to inter-frame error 
propagation, comparing the error-concealed reconstructed frame with the compressed original. This 
operation is performed for every slice in every frame so that each slice can be individually assessed 
for its importance. However, this process is computationally very intensive. To avoid the per-slice 
computational overhead in real-time applications, we provide a No-Reference (NR) linear regression 
model using the Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1994; 
Tibshirani, 1997) to predict the measured distortion using key features that are specifically related 
to slice loss. We evaluate the efficiency of the results using a simple prioritization method, called 
Quartile-Based Prioritization (QBP) (Pandremmenou, Tziortziotis, Paluri, Zhang, Blekas, Kondi, & 
Kumar, 2015) and study the performance of distributing packets into four priority groups using both 
the measured and predicted values.

The organization of the rest of the paper is as follows. In Section 2 we start with the necessary 
background that lays the foundation for the rest of the paper and present the proposed iterative and 
cumulative distortion estimation models. Experimental results of incorporating the IDE values into a 
gradient-based utility function for resource allocation and packet scheduling are discussed in Section 
3. Additionally, results from comparing the measured with predicted values and the prioritization 
efficiency of the proposed CDSSIM model are also presented in Section 3. We conclude the paper 
in Section 4.

2. PROPOSED DISTORTION METRICS

The structural similarity index (Wang, Bovik, Sheikh, & Simoncelli, 2004) measures the similarity 
of two discrete images using three quality measures – luminance, contrast and structure. SSIM is a 
widely used metric in image and video processing, especially in assessing decoding and reconstruction 
quality of images and videos (Zhao, Zeng, Rehman, & Wang, 2013; Mai, Yang, Kuang, & Po, 2006; 
Yang, Wang, & Po, 2007) that experience distortion from compression artifacts, lost slices or other 
error concealment. The equations comparing luminance, contrast and structure for two discrete image 
signals, assuming two dimensional signal arrays x and y, are given by:
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where μx and μy are the means and σx
2 and σy

2 are the variances of signals x and y, respectively, and 
σxy is the cross covariance between them. Three constants C1, C2 and C3 are introduced to provide 
stability to the calculations and are selected based on the criteria specified in (Wang, Bovik, Sheikh, 
& Simoncelli, 2004).
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The overall structural similarity measure, SSIM is given by:

SSIM l c s( , ) ( , ) ( , ) ( , )x y x y x y x y=    (4)

The overall SSIM index is the average of the individual similarity indexes of 8x8-pixel sliding 
window that slides one pixel at a time. A greater similarity between compared images results in SSIM 
closer to 1 and if the two images are identical, they take the maximum value of 1.

In this work, a single row of MBs is assumed to form a slice/GOB and we use the terms “GOB” 
and “slice” interchangeably throughout the presentation without any loss or change in meaning. SSIM 
is used at a sub-image/frame-level, i.e., it is applied on transmission units, GOBs/slices, for IDE and 
at a frame-level for the CDSSIM computations. Using this metric, the corresponding distortion is 
defined as:

DSSIM SSIM= −1  (5)

The encoding of a video sequence is performed for each frame at a MB-level and after all MBs 
are fully coded, each slice is packetized for transmission. Each constituent MB is reconstructed from 
the previous slice and/or previously decoded frame using error concealment if a slice is lost during 
transmission. However, this reconstruction varies from the encoded version of the image in predictively 
coded, motion-compensated video sequences. This error propagates to all dependent frames and can 
combine to create a more complex inter-frame relationship if further packet loss is experienced in 
subsequent frames. Decisions about packet scheduling, protection, priority and resource allocation 
prior to transmission can only be made with proper distortion analysis performed at the source side. 
The sender uses probability of packet loss to estimate the expected source-to-receiver distortion after 
applying appropriate error concealment. Therefore, to accurately compute distortion, both encoder 
and decoder need to know and use the same error concealment algorithm.

The process for computing IDE, called the GOB-based Iterative Distortion Estimation using 
SSIM (GIDE-S), and the CDSSIM metric are presented in the following subsections.

2.1. GOB-Based Iterative Distortion Estimate using SSIM (GIDE-S)
We use the following notation to describe the iterative distortion estimation process. Slice i from 
frame n of the original video, So(i,n), is compressed/encoded at the source and the resulting slice is 
denoted by Se(i,n). The decoder reconstruction after error concealment is represented as Sd(i,n). We 
use s to denote a pixel when referred to in the context of a slice and m for a pixel in the context of a 
macroblock. The original slice i in frame n comprising v pixels is represented as So(i,n)={so(v,i,n)}
v i.e., the set of all pixels in the slice from 1 to v; the encoded version is Se(i,n)={se(v,i,n)}v and the 
reconstructed decoder version (at the sender) is Sd(i,n)={sd(v,i,n)}v. An original MB j with k pixels 
in GOB i of frame n is Mo(j,i,n):{mo(k)}k i.e., the set of all pixels from 1 to k; the corresponding 
encoded MB Me(j,i,n):{me(k)}k and the decoded MB after error concealment is Md(j,i,n):{md(k)}k. 
The distortion from SSSIM as given by Equation (5), between the original and decoded GOB i in 
frame n, is defined as Di,n.

We base our iterative distortion calculations on the techniques presented in the ROPE algorithm 
(Zhang, Regunathan, & Rose, 2000). However, in this paper we construct three different GOBs 
with pixel values based on whether the current and previous GOBs are lost or received. The three 
combinations of packet loss are i) the packet containing the current GOB is received (R), ii) the packet 
containing the current GOB is lost but packet with the previous GOB is received (LR), and iii) the 
packets containing both the current and previous GOBs are lost (LL). The expected distortion of the 
reconstructed slice i of frame n is then given by combining the three random variables:
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E D p D p D p Di n i n
R

i n
LR

i n
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, , , ,{ }= ( )+ ( )+ ( )0 1 2  (6)

where DX
i are GOB-level distortions for each combination of packet loss X R LR LL={ }, ,  and 

p0, p1 and p2 are the probabilities assigned to each packet-loss combination.
Figure 1 illustrates the process where three GOBs are constructed based on the packet loss 

and coding modes for each macroblock. We use basic error concealment where, if a GOB is lost in 
transmission it is concealed using the median Motion Vector (MV) from the previous GOB. Since 
error concealment is done on a per-MB basis, each MB in the current (lost) GOB is concealed using 
the median motion vectors of its three nearest neighbors i.e. top-left, top and top-right MBs from 
the previous GOB. If the previous packet is also lost in transmission, the median motion vectors are 
set to zero and the current (lost) GOB is replaced with one from the same location in the previous 
decoded frame. It should be noted that all three variations are applied for every GOB. We compute 
SSIM, and therefore, the corresponding distortion given by Equation (5) for each case, and apply 
the probability of occurrence to obtain the overall expected distortion. To accomplish this, rather 
than calculate the first and second moments of the “random” decoder pixel value, we construct the 
corresponding slices one pixel (and MB) at a time. Since all pixels in a GOB are lost if a packet is 
lost, pixel loss probability is the same as the probability of packet loss, ε. The selection of the values 
for ε is described in Section 3.1. Depending on whether an MB is inter- or intra-coded, each pixel in 
the MB, and collectively the entire GOB, is reconstructed.

Two components are used for calculating the distortion in the current frame: a) the previous 
decoded frame n-1, and b) the SSIM-based distortion for each packet in the queue. The previous 
decoded frame is the estimated decoder frame after applying error concealment due to randomly 

Figure 1. GOB building process using Intra/Inter coding modes and Motion Vectors (MV). Packet loss combinations are denoted 
by: R, slice is correctly received; LR, current slice is lost but previous received; and LL current and previous slices are lost.
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dropped slices (it is a function of packet loss probability) that simulate the “actual” packet losses 
during transmission. The detailed process for the GOB reconstruction is described below.

2.1.1. Packet Containing the Current GOB is Correctly Received
When the slice is correctly received by the decoder, each pixel in the slice is reconstructed based on 
its coding mode. For an intra-coded MB j of k pixels in the current slice i of frame n, each decoded 
pixel value in every MB has the same value as the corresponding encoded MB, i.e.:

M j i n m k M j i n m kd d k e e k
(, , , ) : ( ) ( , , ) : ( ){ } = { }  (7)

For an inter (predictive)-coded MB j with k pixels in the current slice i of frame n, each pixel is 
reconstructed using the motion vector to an associated pixel in slice p in the previous decoded frame 
n-1 and the compressed residue. Therefore:

M j i n m k M j i n m k e k j i nd d k d d k k
( , , ) : ( ) ( , , ) : ( ) ( , , , ){ } = { } +{ }�  (8)

where ê(k,j,i,n) is the compressed residue of each pixel occupying 1 to k location in the MB j of the 
current slice i in frame n. From Equations (7) and (8), we have:

S i n s j i nd e j
( , ) ( , , )={ }  (9)

D gDSSIM S i n S i ni n
R

o d, ( , ), ( , )= ( )  (10)

where gDSSIM is the GOB-level distortion using SSIM obtained from Equation (5). The probability 
of occurrence of this event, as given in Equation (6) is p0 = (1-ε).

2.1.2. Packet Containing Current GOB is Lost but Previous GOB is Correctly Received
The reconstruction for both intra and inter-coded MBs is the same - each pixel in an MB of the current 
slice is error concealed and reconstructed using the median motion vectors of the three closest MBs 
(top left, top, top right of the same frame). For instance, a pixel in the current slice i of frame n is 
associated with a pixel in slice q of the previous decoded frame n-1. Therefore:

s i n s q nd d(., , ) (., , )= −1  (11)

Although not every pixel in slice i is associated with the same slice q or is at the same location 
in the previous (decoded) frame, for notational simplicity we denote the whole GOB as Sd(q,n-1):

S i n s m i n S q n s m q nd d m d d m
( , ) : ( , , ) ( , ) : ( , , ){ } = − −{ }1 1  (12)

D gDSSIM S i n S i ni n
LR

o d, ( , ), ( , )= ( )  (13)

Again, gDSSIM is the GOB-level distortion using SSIM as it is given by Equation (5). The 
probability of occurrence of this event, as given in Equation (6) is p1 = ε (1-ε).
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2.1.3. Packets Containing Current and Previous Gobs are Lost
The motion vector is set to zero to reconstruct each MB of the slice when both previous and current 
slices are lost in transmission. Therefore:

S i n s m i n S i n s m i nd d m d d m
( , ) : ( , , ) ( , ) : ( , , ){ } = − −{ }1 1  (14)

D gDSSIM S i n S i ni n
LL

o d, ( , ), ( , )= −( )1  (15)

As above, gDSSIM is the GOB-level distortion using SSIM obtained from Equation (5). The 
probability of occurrence of this event, as given in Equation (6) is p2 = ε2.

The overall expected Iterative Distortion Estimate of a slice i in frame n based on GOB-SSIM 
is obtained from Equations (10), (13) and (15):

IDE S i n D D Di n
R

i n
LR

i n
LL( , ) ( ) ( ), , ,{ }= − ( )+ − ( )+ ( )1 1 2ε ε ε ε  (16)

The loss of a slice that results in a higher IDE in Equation (16) is given higher priority over one 
that has a lower value. This distortion estimate is then incorporated into a predefined gradient-based 
utility function for packet ordering and scheduling as it is discussed in Section 3.

2.2. Cumulative Distortion using SSIM and Feature-Based LASSO Regression
During motion compensation, when content is reconstructed, there exists a strict decoding order 
that must be followed, based on data dependencies arisen from the spatio-temporal correlations of a 
video content. Therefore, when an error occurs within a frame, it propagates to all dependent frames, 
degrading video quality of the thereby reconstructed content. In such cases of induced distortion, the 
overall impact of error propagation to multiple frames is better captured through a summation of the 
per-frame distortion instead of a summation of the similarity. In this context, we define the proposed 
cumulative metric, as the sum of distortion in the current frame and induced distortion in dependent 
frames as a result of a slice loss (see Equation (5)).

2.2.1. Cumulative Distortion using SSIM (CDSSIM)
In this work, the cumulative distortion metric was calculated for a typical Group-Of-Pictures 
(GOP) structure of “IBBP”, consisting of 16 frames. The considered GOP structure provides an 
I-frame with a sufficient frequency to allow the decoder to quickly begin correct decoding. As 
it is shown in Figure 2, for an “IBBP” GOP structure, I-frames are used to predict two B-frames 
in the previous GOP along with the next two B-frames and the first P-frame in the current 
GOP. A P-frame is used to predict the previous two B-frames, subsequent two B-frames and the 
next P-frame within the same GOP, while B-frames are not used as a reference for previous or 
subsequent frame predictions.

This bi-directional prediction results in the propagation of errors between the frames. As each 
of the I- and P-frames is used next as a reference to predict subsequent P-frames, the loss of a slice 
from a frame of such a type does not only affect the frames that depend on them, but the error is 
propagated to all future frames in the same GOP. For instance, as shown in Figure 2, the loss of a 
P-slice from frame 21, will not only affect B-frames 19, 20, 22, 23 and P-frame 24, but also all the 
frames until the end of the GOP, i.e., B-frames 25, 26, 28, 29 and P-frame 27.
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The cumulative distortion due to a lost slice n in frame i based on the SSIM index can be expressed 
differently according to the type of the considered slice loss. Specifically, if the lost slice is from 
I- or P-frames, CDSSIM is given by:

I P CDSSIM n i fDSSIMk
k i

GOP
, : ( , )= ( )∑

= −2
 (17)

and when it comes to a slice loss from a B-frame, CDSSIM is computed as:

B CDSSIM n i fDSSIMi: ( , ) ( )=  (18)

where fDSSIMj is the frame-level distortion using structural similarity from Equation (5) of frame j, 
between the uncorrupted encoded video sequence and the packet-loss-impaired sequence. It is to be 
noted that the distortion summation is performed to the end of the GOP, and that the same procedure 
of cumulative distortion calculation is made for every slice loss of each frame in a sequence. It is 
expected that I-frames incur higher CDSSIM than P- and B-frames, and P-frames higher CDSSIM 
than B-frames. Finally, each “previous” P-frame incurs a higher CDSSIM as compared to each 
“subsequent” P-frame in a GOP, as it is used as a reference for the prediction of more frames.

2.2.2. LASSO Regression using Network Features
In the previous subsection we presented the rationale for calculating the CDSSIM metric, taking into 
account the type of each particular slice loss. Although the indicated method is the most accurate 
strategy for calculating the cumulative distortion in terms of SSIM, it involves a huge computational 

Figure 2. GOP structure for video encoding in CDSSIM computation



International Journal of Multimedia Data Engineering and Management
Volume 7 • Issue 3 • July-September 2016

43

complexity that renders its use prohibitive in real-time applications; a complete decoding of the 
frame that includes the loss and of all the frames that depend on it, is required. For this purpose, we 
propose a method that is able to estimate CDSSIM values, making use of a number of NR features 
that are expected to describe perceptual video quality with high accuracy.

In this direction, we apply a simple linear regression model that performs simultaneously feature 
selection and response variable estimation. More specifically, the use of LASSO is proposed in order 
to estimate both the regression coefficients and the response variables at the same time. This approach 
is less complex than other methods because it eliminates the need to first do feature selection using a 
specific technique and then to apply another technique to perform regression. LASSO was originally 
proposed in (Tibshirani, 1994; Tibshirani, 1997) as a linear regression analysis tool that helps solve 
ill-posed multi-variable estimation problems by providing sparse and interpretable solutions.

In more detail, LASSO minimizes the square of the input-output residuals with an additional 
constraint imposed through the sum of the absolute values of the regression coefficients, given by:

min,w w p iy w w xii

p
wT

0
0 1

1
2

2

1
− −( )

=
∑ +











λ  (19)

where p represents the total number of slices, yi is the actual CDSSIM value of slice i and xi is the 
vector of the values of all examined features (explained in detail later) of slice i. The term w is the 
vector of regression coefficients, w0 is the intercept and λ is the regularization parameter.

The l1 norm of Equation (19) forces some of the regression coefficients to take zero values. For 
larger λ values, i.e., as the penalty increases, the number of coefficients that take a zero value also 
increases, and vice versa. Therefore, LASSO is able to shrink a broader set of features to a smaller 
one, improving the estimation accuracy of the model through the elimination of the “prediction noise”.

In the following, we cite the network features associated with transmission and slice loss that 
we extracted from each bitstream. Feature TD represents the Temporal Duration i.e., the number of 
frames that are affected by a slice loss. Evidently, a higher TD value is expected for the loss of an 
I-slice as compared to a P and/or B-slice loss. FrameCenter is a Boolean feature, which is set to true 
if a slice lies in the center of a frame i.e., if it is one of the middle slices of a frame. For a Common 
Intermediate Format (CIF) resolution frame, we consider six slices in the center of a frame, while 
for a 4CIF resolution frame, we consider 12 slices in the center, as it results by dividing the total 
number of slices of each resolution by three, and thus having an “upper”, a “middle” and a “lower” 
frame part. DistToRef feature refers to the distance that a slice/frame is from the reference frame, 
measured in frames. For our considered GOP structure, it holds that P-frames are concealed using 
images three frames ago, while both I-frames and B-frames are concealed using images one frame ago. 
FarConceal is a Boolean feature set to true if DistToRef ≥ 3. SBM is the Slice Boundary Mismatch 
metric described in (Reibman & Poole, 2007), which captures the impact of the impairment on the 
boundary between correctly received and concealed slices. MeanResEngy and MaxResEngy are the 
mean and maximum values, respectively, of residual energy. Residual energy is the sum of the squares 
of the motion-compensated transform coefficients taken over all the MBs in a slice. The value of the 
residual energy of a slice provides some information about the goodness of the error concealment as 
well as about the level of motion described by a slice. Particularly, a high value for the residual energy 
implies that the motion vectors probably do not represent the actual scene motion precisely and that 
the particular slice captures a high degree of motion. On the contrary, the opposite comes true for a 
small value of residual energy. SigMean and SigVar are the mean and variance, respectively, of the 
Y-component of the signal. DMVX and DMVY are the average motion vector difference values of 
a slice in the x and y axes, respectively. Finally, the features absMVX and absMVY are the average 
measures of the absolute motion vector values of a slice along the x and y axes, respectively.
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It is worth highlighting that the features that are related to a packet loss are evaluated at the slice-
level, while the motion-related features, i.e., DMVX, DMVY, absMVX and absMVY, are computed 
in the context of a macroblock and hence, they are averaged over an entire slice.

3. EXPERIMENTAL RESULTS

In this section, we present experimental results after testing each of the proposed SSIM-based distortion 
metrics under different scenarios and parameter settings.

3.1. Gradient-Based Utility Function and Packet Scheduling using IDE
We conducted experiments by incorporating the IDE values obtained from Equation (16) into a 
content-aware, gradient-based utility function, specifically, the two-step implementation for resource 
allocation described in (Maani, Pahalawatta, Berry, Pappas, & Katsaggelos, 2008). As a first step, the 
probability of packet loss ε is fixed for each packet in the transmission queue and the optimal values 
of spreading code ni and power assignment Pi, for each user, are determined by varying the rate ri. 
Then, with ni and Pi fixed to these optimal values, the probability of packet loss ε becomes a function 
of the rate, i.e., at a small ri, when the rate is gradually increased, the per-user expected distortion 
decreases due to the fact that more bits are transmitted. But at a larger ri, the probability of packet 
loss increases as the rate increases (due to higher collisions, errors, dropped packets etc.), causing 
an increase in the expected distortion. Therefore, the expected distortion is a convex function of the 
rate assignment, and the optimal ri that leads to the minimum expected distortion, can be calculated 
separately for each user as a simple one-dimensional line search.

The proposed GOB-based Iterative Distortion Estimate using SSIM algorithm is executed for 
five video sequences (users), carphone, hall monitor, mother and daughter, news and silent, using 
10 different channel realizations. The sequences used were in Quarter Common Intermediate Format 
(QCIF) (176x144) format at 30 frames per second with 33ms for transmission and playback at the 
decoder. They were encoded using the H.264 (JVT reference software, JM) using variable bit rate 
encoding to achieve an average PSNR of 35dB for each decoded frame. All frames except for the first 
one were encoded as P-frames and 15 random I-MBs (encoded using constrained intra prediction) 
were inserted into each frame. This was done mainly to limit the propagation of error due to packet 
loss and to apply the techniques on different MBs. A 2ms transmission timeslot HSDPA wireless 
channel with a total base station power P = 25W, total number of spreading codes for all users, N 
= 15, and maximum per-user Signal-to-Interference-plus-Noise Ratio (SINR) constraint of 1.8dB 
are used. A Nakagami channel with a shaping parameter m=10, models the channel characteristics. 
Media Access Control (MAC) layer partitioning of the application layer packets mandates that all 
fragments of the application layer packet be received at the decoder for the decoding process to be 
complete and correct. For this purpose, a 10ms ACKnowledge/Negative ACKnowledge (ACK/NACK) 
feedback delay is assumed for each transmission. A NACK during the 10ms feedback delay of the 
application layer packet would reinsert and reorder the packet into the transmission queue provided 
that the NACK has arrived within the decoding deadline of the transmitted packet.

The efficiency of the proposed algorithm is evaluated both in terms of the average per-user PSNR 
and SSIM and the overall per-frame PSNR and SSIM. The per-user PSNR and SSIM are the frame 
averages of each user from all runs and they represent the average quality of each user; the per-frame 
PSNR and SSIM are the averages of each corresponding frame of all video sequences from multiple 
executions of the algorithm and they represent the average quality over all users. Figure 3 shows a 
comparison of the per-user quality in PSNR (dB) and SSIM, where each bar is the average over 130 
QCIF frames for the 10 channel realizations. Figure 4 is the per-frame PSNR and per-frame SSIM 
of each corresponding frame averaged over all five video sequences and 10 separate realizations. 
The MSE-based method presented in (Maani, Pahalawatta, Berry, Pappas, & Katsaggelos, 2008) 
studied four different resource allocation schemes – expected distortion gradient with variable and 
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fixed probability of packet loss and content-agnostic methods such as Queue Length and Max C/I 
methods. The values shown for the MSE-based method in Figure 3 and Figure 4 represent the best 
performance as compared to the other four aforementioned schemes. The results in these two figures 
show that the proposed GIDE-S algorithm performs consistently better than the MSE-based method.

3.2. Evaluation of CDSSIM and a Packet Prioritization Scenario
The specific metric was examined on a set of CIF resolution sequences, including foreman, hall 
monitor, mobile and paris and a set of 4CIF resolution sequences, including crowdrun, harbour, ice, 
and soccer. These sequences were encoded using the H.264/AVC variable bit rate encoding, while 
the first 100 frames of each sequence were used to conduct our experiments. At the decoder, Motion 
Copy Error Concealment (MCEC) was applied to conceal any slice losses in P- and B-frames, and 
spatial interpolation was used to conceal losses in the IDR-frames. Due to the different resolution 
of the video sequences, for the CIF case we had a total of 1800 slices per sequence (18 slices per 
frame) and 1800 x 4 = 7200 slices (and thus, CDSSIM values) in total. Similarly, for the 4CIF case, 
we obtained a total of 3600 slices per sequence (36 slices per frame) and 3600 x 4 = 14400 slices 
(and thus, CDSSIM values) in total.

Figure 3. Average per-user quality in (a) PSNR and (b) SSIM

Figure 4. Average per-frame quality for all users combined using (a) PSNR and (b) SSIM
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Instead of randomly splitting the dataset into training and test sets, we assumed an a priori 
partitioning into the two sets, such that the performance of the model is evaluated on specific 
sequences at each time. In this context, three sequences were used for training and one for testing, 
for each resolution separately. A percentage of 75% of the whole data was used to train our model, 
while it was tested on the remaining 25% of the dataset, represented by a single sequence. We tried 
all different dataset partitions, leaving always one sequence for testing. As the performance of each 
different sub-partition of each corresponding resolution did not show a significant variation, we 
present results when the foreman, hall monitor and mobile sequences are used for training and paris 
for testing, for the CIF case, and correspondingly, for the 4CIF case, using crowdrun, ice, and soccer 
as our training set and harbour for testing. Particular emphasis is given to the tradeoff between the 
efficiency of the proposed model in terms of prediction accuracy and on the complexity it involves, 
in terms of the number of the employed features used for making the CDSSIM estimations. The 
smaller the number of the employed features the lower the computational complexity of the model, 
usually at the cost of a reduced prediction capability on behalf of the latter.

Table 1 presents the features that were used as input to LASSO and the corresponding sparse 
coefficients it generates along with the intercept term and the λ value. Two sets of results, Set-1 and 
Set-2 for CIF and 4CIF sequences, highlight the use of different λ values for each format that result 
in different feature coefficients. For the CIF sequences, Set-1 results were obtained using lower λ 
values as compared to Set-2, while for 4CIF, Set-1 had a higher λ value than Set-2. In each case, a 
higher λ value results in a sparser set of features. It is interesting to notice that each sparser set of 
a specific resolution includes a subset of the features of the larger set. Moreover, the values of the 
regression coefficients offer an intuition about the significance of each of the selected features, i.e., 
a higher regression coefficient value implies a higher importance for the specific feature and vice 
versa. The data indicates that a fairly sparse representation is able to predict CDSSIM to a high level 
of accuracy, as it is evident from Table 2, which presents standard statistical performance measures, 
i.e., the Pearson Correlation Coefficient (PCC), Spearman Rank Ordering Correlation Coefficient 
(SROCC), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) (OQM Evaluation, 
2002; Hinkle, Wiersma, & Jurs, 2003; VQEG, 2009).

These results are representative of our experiments using different combinations of training and 
test sequences and reflect an optimal compromise between prediction accuracy and number of selected 
features. For example, comparing the results for Set-1 and Set-2 for CIF and 4CIF sequences, it can 

Table 1. Linear regression coefficients

Features CIF 
(Set-1)

CIF 
(Set-2)

4CIF 
(Set-1)

4CIF 
(Set-2)

TD 
FrameCenter 
DistToRef 
FarConceal 
SBMMeanResEngy 
MaxResEngy 
SigMean 
SigVar 
DMVX 
DMVY 
absMVX 
absMVY

0.0314 
0 
0 
0 
0 
0.0412 
0.0025 
0.0008 
0 
0 
0 
0 
0

0.0308 
0 
0 
0 
0 
0.0409 
0.0024 
0 
0 
0 
0 
0 
0

0.0132 
0 
0 
0 
0 
0.0121 
0 
0 
0 
0 
0 
0 
0.0003

0.0143 
0 
0 
0 
0 
0.0136 
0.0002 
0 
0 
0 
0 
0.0010 
0.0012

Intercept 0.0534 0.0528 0.0183 0.0174

λ 0.0085 0.0093 0.0041 0.0019
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be seen that with a larger λ, we select a sparser set of features but it does not necessarily result in 
worse performance. This is mainly because some features with non-zero coefficients may actually 
be considered unrelated, without a big influence on the prediction accuracy. More specifically, by 
observing the results of Table 2, we note that both Set-1 and Set-2 of each video sequence resolution 
offer comparable performance in terms of all examined metrics. It can be argued that the inclusion of 
one or two additional features, while it can have a positive impact on the accuracy of the prediction 
process it can also adversely impact it by just adding noise and possibly harming the overall quality 
of the estimation.

Having calculated both the measured and estimated CDSSIM values, as they result from the loss 
of each possible slice of a video sequence, we followed a slice prioritization approach, by grouping 
the slices into four categories. Specifically, we applied a Quartile-Based Prioritization scheme 
(Pandremmenou, Tziortziotis, Paluri, Zhang, Blekas, Kondi, & Kumar, 2015) on both the actual and 
estimated CDSSIM values. Therefore, we computed the three points (quartiles) that divide the data 
into four equal sized groups. In more detail, the values in each corresponding vector were sorted in 
an ascending order and the median values (corresponding to Q2  quartiles) of each of them were 
computed. The same procedure was also followed with the lower and upper halves of each dataset, 
giving the Q1  and Q3  quartiles, respectively. Figure 5 illustrates this procedure.

As shown in Figure 5, the slices belonging to the class with the highest CDSSIM values are 
assigned the highest priority (1st priority), the slices with CDSSIM values between the Q3  and Q2  
quartiles are assigned the 2nd priority, slices with CDSSIM between the Q2  and Q1  quartiles the 3rd 
priority and last, the rest of the slices are assigned the lowest priority (4th priority).

In an effort to evaluate the efficiency of our prediction model in terms of the CDSSIM estimations 
it was able to provide, we checked for correspondences between the actual and estimated CDSSIM 
values in each of the priority classes. A slice was considered “misclassified” if it was placed in a 
priority group that was different in the predicted set as compared to the measured one. Using this 
method, the percentage of slice misclassifications was considered as an indicator of the efficiency of 
the proposed model. The lower the misclassification percentages the better the performance of the 
prediction mechanism and the greater the potential for its use as a prioritization scheme.

An evaluation of the prediction accuracy using QBP for comparing the predicted CDSSIM with 
the computed values for Set-1 results, as representative sets for CIF and 4CIF sequences, is shown 
in Table 3. The low percentages of misclassifications for each category demonstrate that the NR 

Table 2. Standardized performance metrics

CIF 
(Set-1)

CIF 
(Set-2)

4CIF 
(Set-1)

4CIF 
(Set-2)

PCC 
SROCC 
RMSE 
MAE 

0.9141 
0.8220 
0.0399 
0.0287

0.9142 
0.8085 
0.0392 
0.0533

0.9466 
0.8601 
0.0077 
0.0058

0.9497 
0.8578 
0.0077 
0.0185

Figure 5. Quartile-based prioritization procedure
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sparse prediction model provides a reliable framework for packet prioritization. It should be noted 
that packets belonging to the highest priority group, i.e., the most important packets needing the 
highest protection, have very low misclassification percentages. The efficiency of the regression 
model is further underlined by the small numbers of misclassifications that extend beyond one priority 
group (e.g., 1 3 1 4 4 2st rd st th th nd  ↔ ↔ ↔, , or ).

4. CONCLUSION

In this paper, we presented two new perceptive quality metrics, an iterative estimate and a cumulative 
index, based on SSIM, to evaluate the overall distortion due to dropped packets during video 
transmission over loss-prone networks. For both these methods, the decoder distortion was evaluated 
on the source side using a motion-compensated predictive coding mechanism employed in video 
compression. The iterative expected distortion was plugged into a utility function in order to perform 
optimal resource allocation and packet ordering in a multi-user wireless transmission environment. 
Experiments showed that the proposed IDE metric provided, on average, a better estimate of the 
expected distortion when compared to existing MSE-based approaches and it is reflected in the 
overall performance and end-to-end video quality. We also developed a cumulative distortion index 
and an NR sparse prediction model to circumvent the complexity of its computation in real-time 
streaming applications. Standard performance measures showed that the predicted results were highly 
correlated with the computed CDSSIM values and the prediction was achieved with only a subset of 
features extracted from the encoded bitstream. A Quartile-based Prioritization scheme demonstrated 
that the distortion prediction provides a reliable basis for prioritizing packets for video transmission. 
We utilized QCIF, CIF and 4CIF video sequences encoded with the H.264/AVC standard, but future 
work can include extending these algorithms to videos encoded with H.265/HEVC coding standards 
and transmitted over LTE/4G or 5G high-speed wireless networks.

Table 3. QBP misclassification percentages

Misclassification CIF 
(Set-1)

4CIF 
(Set-1)

1st→ 2nd 2.9% 3.1%

1st→ 3rd 1.5% 0.0%

1st→ 4th 1.1% 0.0%

2nd→ 1st 5.4% 3.1%

2nd→ 3rd 4.4% 7.4%

2nd→ 4th 2.3% 1.3%

3rd→ 1st 0.1% 0.0%

3rd→ 2nd 8.5% 5.7%

3rd→ 4th 1.2% 8.4%

4th→ 1st 0.0% 0.0%

4th→ 2nd 0.8% 2.3%

4th→ 3rd 3.9% 6.8%
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