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ABSTRACT

We consider the problem of resource allocation for a Direct Se-
quence Code Division Multiple Access (DS-CDMA) wireless visual
sensor network (VSN). We use the Nash Bargaining Solution (NBS)
from game theory in order to determine the transmission power and
source and channel coding rate for each node. The NBS assumes that
the nodes negotiate (using the help of a centralized control unit) in
order to jointly determine their transmission parameters. The trans-
mission powers are allowed to take continuous values, whereas the
source and channel coding rate combination can only assume dis-
crete values. Thus, the resulting optimization problem is a mixed–
integer optimization task and is solved using Particle Swarm Opti-
mization (PSO). Experimental results are provided and conclusions
are drawn.

Index Terms— Visual sensor network, cross–layer optimiza-
tion, Nash Bargaining Solution, Particle Swarm Optimization, game
theory.

1. INTRODUCTION

Wireless visual sensor networks (VSN) consist of low–weight nodes
that are equipped with video cameras and are able to compress and
transmit video to a centralized control unit. In this work, we assume
that Direct Sequence Code Division Multiple Access (DS-CDMA)
is used for wireless transmission. The use of DS-CDMA is very ap-
propriate for this application because it allows nodes that image a
low–motion scene to use a lower transmission power. This is be-
cause low–motion video requires a lower source coding bit rate, thus
a larger bit rate may be used for channel coding, which will allow
a lower transmission power to be used. Transmission with lower
power has the dual benefit of battery conservation and reduced inter-
ference to the other nodes.

In this paper, we propose a scheme for selecting the transmission
power, source coding rate and channel coding rate for each node. In-
creasing the transmission power of a node will increase the received
quality of the video it transmits but it will also degrade the received
qualities of the other nodes’ videos, due to increased interference.
Thus, it is necessary for the transmission powers of all nodes to be
jointly selected. An appropriate optimization criterion that consid-
ers the qualities of the videos of all nodes should be used. In pre-
vious work [1, 2], we proposed cross–layer optimization schemes
that minimize either the average video distortion of all nodes, or the
maximum video distortion among the nodes.

Here, we propose a resource allocation scheme that is based on
the Nash Bargaining Solution (NBS) from Game Theory [3]. The
NBS allocates resources as a result of a negotiation between the
nodes with the help of the centralized control unit. Each node is

guaranteed a minimum video quality if negotiations fail (disagree-
ment point). The NBS has been used before in video streaming for
the allocation of the total bit rate among several users [4]. However,
in [4], no specific network setup is assumed. In [5], we used the NBS
for the cross–layer optimization of a DS-CDMA VSN. However, in
that work, the transmission powers of the nodes were restricted to
take values from a discrete set. Thus, a discrete optimization prob-
lem was formulated and solved. In the present paper, we assume
that the transmission powers can take values from a continuous set.
Since the source coding–channel coding rate combination can only
take discrete values, the resulting optimization problem is a mixed–
integer problem and is solved using Particle Swarm Optimization
[6]. Also, in the present paper, the utility function and the disagree-
ment point are defined differently than in [5].

The rest of the paper is organized as follows. In section 2, the
proposed VSN is described. In section 3, the proposed optimal re-
source allocation based on the NBS is presented. In section 4, exper-
imental results are provided and in section 5, conclusions are drawn.

2. VISUAL SENSOR NETWORK

In this section, we describe the basic architecture of the considered
wireless visual sensor network that utilizes DS-CDMA.

2.1. DS-CDMA

In DS-CDMA, all nodes transmit on the same frequency. To transmit
a single bit, a node actually transmits L “chips”. Each node k is
assigned a unique spreading code sk, which is a vector of length
L. In order to transmit the ith bit of a bit stream, node k actually
transmits bk(i)sk, which is a vector of L chips and bk(i) is either 1
or −1, depending on the value of the bit that is being transmitted.
The node of interest receives interference from the other nodes. It is
reasonable to assume that the interference can be approximated by
Additive White Gaussian Noise (AWGN) [7]. Since node k has an
associated power level, Sk = EkRk and assuming that the thermal
noise is negligible compared to the interference, the energy-per-bit
to Multiple Access Interference (MAI) ratio becomes:

Ek

N0

=

Sk

Rk∑K

j �=k

Sj

Wt

; k = 1, 2, 3, ..., K, (1)

where Ek is the energy-per-bit, N0/2 is the two–sided noise power
spectral density due to MAI in Watts/Hertz, Sk is the power of the
node of interest in Watts, Rk is the transmitted bit rate (total bit rate
used for source and channel coding) in bits per second, Sj is the
power of interfering node j in Watts, andWt is the total bandwidth
in Hertz [7].
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2.2. Source and Channel Coding

In our setup, we assume that the video captured by the nodes is com-
pressed using the H.264/AVC video coding standard. This coding
standard has been used for video transmission over various network-
ing environments and it has two major layers, the Video Coding
Layer (VCL) and the Network Abstraction Layer (NAL). VCL con-
tains specifications of the video–encoding engine including motion
compensation, transform coding of coefficients, and entropy coding.
NAL is responsible for the encapsulation of the coded slices into
transport entities of the network, the NAL units.

Regarding channel coding, we use Rate Compatible Punctured
Convolutional (RCPC) codes [8] that allow us to utilize Viterbi’s
upper bounds on the bit error probability, Pb.

3. OPTIMAL RESOURCE ALLOCATION

A centralized control unit at the network layer of a DS-CDMA VSN
determines how network resources should be allocated amongst the
nodes. It can request changes in transmission parameters, such as
the source coding rates, channel coding rates, and power levels. The
constraint for the NBS is that the chip rate be the same for all nodes.
As will be explained later in this section, assuming that the spread-
ing code length is the same for all nodes, a constraint on the chip rate
corresponds to a constraint on the transmission bit rate Rk. Thus,
we can equivalently impose a constraint on the bit rate instead of
the chip rate. We wish to determine for each node k the source
coding rate Rs,k, channel coding rate Rc,k, and power level Sk,
k = 1, . . . ,K. The objective is to optimize a function of the ex-
pected video distortions for the nodes. In this paper, the function to
be optimized is derived using the Nash Bargaining Solution.

In order to reduce the computational complexity of the solution,
we assume that there are two possible motion levels viewed by the
sensor nodes, high motion and low motion. Thus, we assume that the
K nodes are grouped into two motion classes, namely high–motion
nodes, Kh, and low–motion nodes, Kl (Kh + Kl = K). There-
fore, the goal of our optimization problem is to determine the vec-
tors S = (Sh, Sl)

�,Rs = (Rs,h, Rs,l)
�, andRc = (Rc,h, Rc,l)

�,
where Sh, Rs,h and Rc,h are the transmission parameters for the
high motion nodes, and Sl, Rs,l and Rc,l are the corresponding val-
ues for the low–motion nodes.

In this paper, we assume that the transmission powers can take
values from a continuous set of predetermined range. Specifically,
Sh, Sl ∈ S = [smin, smax] ⊂ R, unlike [5] where power levels
could only take discrete values. The source coding rates can take
discrete values from a setRs, that is,Rs,h, Rs,l ∈ Rs and the chan-
nel coding rates can also take discrete values from a set Rc, that is,
Rc,h, Rc,l ∈ Rc.

Assuming that all nodes utilize the same spreading code length
L, the transmission bit rate of each user is Rk =

Rchip

L
, where

Rchip is the chip rate. The constraint in our optimization problem
is that chip rate be the same for all nodes. Thus, this constraint
corresponds to a constraint on the transmission bit rate Rk. Given
this assumption, and since Rk =

Rs,k

Rc,k
for a node k, source coding

rates and channel coding rates share the same transmission bit rate.
Since Rc,k can only take values from a discrete set [8], if follows
that the pairs (Rs,k, Rc,k)

� can take values from a finite discrete set
Rs+c, namely (Rs,h, Rc,h)

�, (Rs,l, Rc,l)
� ∈ Rs+c. It should be

noted that the setsRs,Rc,Rs+c shall be of the same cardinality.

3.1. The Nash Bargaining Solution

We next describe the Nash Bargaining Solution. Let us first define
the utility function. The utility function Uk is given by

Uk = 10 log10
2552

E{Ds+c,k}
, (2)

where E{Ds+c,k} is the expected video distortion for a node k. In
this case the utility of a node is the PSNR of the received video.

The expected video distortion for a node is due to both the lossy
compression and the channel errors. In this paper, we utilize Uni-
versal Rate–Distortion Characteristics (URDC), which present the
expected distortion as a function of the bit error rate, after chan-
nel decoding. So, we assume the following model for the URDC

for each node k: E{Ds+c,k} = a
[
log10

(
1

Pb

)]−b

, where a > 0

and b > 0 are determined using mean square optimization from a
few (E{Ds+c,k}, Pb) pairs that are obtained experimentally. The
parameters a and b depend on the amount of motion of the video
sequence and the source coding rate. It can be shown that, using
Eq. (1), Viterbi’s upper bound for Pb, and the URDC model, the ex-
pected video distortion of node k can be expressed as a function of
the source and channel coding rates of node k and the power levels
of all nodes [2]. Thus, the expected video distortion can be written
as E{Ds+c,k}(Rs,k, Rc,k, S).

The feasible set,U, is the set of all possible vectors (U1, U2, . . . ,
UK)�. Each vector inU results from a different combination of the
source coding rates, channel coding rates and transmission powers
of all K nodes. The requirement for the feasible set U is that it
should be convex, closed and bounded above. We conducted a num-
ber of experiments in order to verify the convexity of the feasible
set for the NBS, considering that free disposal is allowed [3]. In
all cases, we assumed two motion classes for the nodes. Pictorially,
it follows that the feasible set is convex for all node distributions
we considered. The feasible set with the NBS shown on it for 70
high–motion nodes and 30 low–motion nodes is depicted in Fig. 1.
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Fig. 1: Illustration of the convexity of the feasible set for 70 high–
motion and 30 low–motion nodes, d = (28, 28)�dB.

The centralized control unit should help nodes negotiate in order
to reach a mutually acceptable agreement on a combination of setU.
Each node joins the bargaining game with the goal of gaining at least
as high a utility as what it would get without negotiating. The min-
imum utility each node can still get if negotiations fail is called the
disagreement point. The disagreement point, d = (d1, d2, ..., dK)�,
is the vector of minimum utilities each user expects by joining the
game, without cooperation. In the present work, we assume that d
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is the minimum acceptable utility (in our case, PSNR) for each node
and is imposed by the designer of the system. Clearly, the imposed
d should belong to the feasible setU.

The bargaining set consists of all Pareto–optimal points (ele-
ments ofU) that assign to all nodes a utility that is at least as high as
the disagreement point. An outcome of a utility allocation is Pareto–
optimal if there is no other outcome that all nodes prefer. Thus, a
utility allocation U = (U1, U2, ..., UK)� is not Pareto–optimal if
there is another allocation where each node increases its utility.

The bargaining solution that fulfills the following axioms [3] is
known as the Nash Bargaining Solution.
1. i) F (U, d) ≥ d.
ii) y > F (U, d) ⇒ y /∈ U.

2. Given any strictly increasing affine transformation τ(.)
F (τ(U), τ(d)) = τ(F (U, d)).

3. If d ∈ Y ⊆ U, then
F (U, d) ∈ Y ⇒ F (Y, d) = F (U, d).

The first axiom stipulates that the solution should lie in the bargain-
ing set. The second axiom states that if the utility function or the
disagreement point are scaled by an affine transformation, it should
not make a difference in the solution. The third axiom formalizes
the Independence of Irrelevant Alternatives [3].

In order to find the Nash Bargaining Solution, we need to deter-
mine the source coding rate, channel coding rate and power for each
node that result in the utility vector U = (U1, U2, . . . , UK)� that
maximizes the Nash product:

F (U, d) = argmax
U

(U1 − d1)
α1(U2 − d2)

α2 · · · (UK − dK)αK ,

(3)
subject to the requirement that U ≥ d. ak is the bargaining power
of each node. Specifically, a node with a higher bargaining power is
more advantaged by its role in the bargaining game than a node with
a lower bargaining power. Here, there is no reason to assume that
some nodes are more advantaged than others, thus we set αk = 1/K
for all k.

After node clustering into high–motion nodes and low–motion
nodes, the vectors of utilities and disagreement point become U =
(Uh, Ul)

� and d = (dh, dl)
�, respectively. Therefore, we need to

maximize

F (U, d) = argmax
U

(Uh − dh)
Kh
K (Ul − dl)

Kl
K , (4)

Since the transmission powers can take values from a continuous set,
while the source and channel coding rates can take values from dis-
crete sets, the optimization problem of Eq. (4) is a mixed–integer
problem, which we solve using the particle swarm optimization al-
gorithm.

3.2. The Particle Swarm Optimization algorithm

Particle Swarm Optimization (PSO) is a population–based, stochas-
tic optimization algorithm [6] and it is categorized as a swarm in-
telligence algorithm. PSO exploits a population (called a swarm) of
search points (called particles) to probe the search space. Each par-
ticle moves in the search space with an adaptable velocity, recording
the best position it has ever visited. In minimization problems, such
positions have the lowest function values. The velocity is adapted
based on information coming from the particle itself as well as from
the rest of the swarm. More specifically, each particle assumes a
“neighborhood” that consists of some other particles. The best posi-
tion ever attained by any member of the neighborhood is then com-
municated to the particle and influences its velocity’s update.

To put it formally, let f(x), x ∈ V ⊂ R
n, be the objec-

tive function under minimization. Then, a swarm to tackle this
problem consists of N particles, S = {x1, x2, . . . , xN}, which
are n–dimensional vectors, xi = (xi1, xi2, . . . , xin)

� ∈ V ,
i = 1, 2, . . . , N . The velocity, vi = (vi1, vi2, . . . , vin)

�, of the ith
particle, as well as its best position, pi = (pi1, pi2, . . . , pin)

� ∈ V ,
are also n–dimensional vectors. The neighborhoods are usu-
ally defined based on the particles’ indices. The most common
neighborhood topology is the “ring” topology, where the neighbor-
hood of a particle consists of particles with neighboring indices.
Thus, a neighborhood of radius m of xi is the set of indices,
NBi = {i − m, . . . , i, . . . , i + m}, where index 1 is assumed
to follow immediately after N .

Let gi ∈ NBi denote the index of the particle that attained the
best previous position among all the particles in the neighborhood
of xi, i.e., f(pgi) � f(pj), ∀ j ∈ NBi, and let t be the iteration
counter. Then, the velocity and position of xi are updated according
to the equations [6]:

vi(t+1) = χ
[
vi(t)+c1R1

(
pi(t)−xi(t)

)
+c2R2

(
pgi(t)−xi(t)

)]
,

xi(t+ 1) = xi(t) + vi(t+ 1), (5)

where χ is a parameter called the constriction coefficient; c1, c2 are
positive acceleration parameters called cognitive and social parame-
ter, respectively; andR1,R2 are vectors with components uniformly
distributed in the range [0, 1]. All vector operations in Eqs. (5) are
performed componentwise. The best position of a particle is updated
as soon as a better position (i.e., one with lower function value) is
discovered by the particle. Clerc and Kennedy [9] studied the stabil-
ity of PSO, proposing values of its parameters that promote conver-
gence of the algorithm towards the most promising solutions in the
search space. Its efficiency and the minor required implementation
effort, rendered PSO one of the most popular intelligent optimization
approaches.

4. EXPERIMENTAL RESULTS

In order to evaluate the proposed game–theoretic multinode resource
allocation method, we conducted a number of experiments, some of
which are presented here. Since we assumed two motion classes, the
“Foreman” video sequence was used to represent the scene viewed
by a high–motion node, while “Akiyo” was used to represent the
scene viewed by a low–motion node, both at QCIF resolution. Thus,
it is necessary to have two sets of URDC curves, one for each level of
motion. The characteristics were obtained for both video sequences
at a frame rate of 15 frames/s and the H.264/AVC High profile for
4:2:0 color format video was selected. The data points used to ob-
tain the parameters a and b in the URDC model were obtained by
corrupting the video stream with packet errors based on a bit error
ratePb, decoding the corrupted video bit streamwith the H.264/AVC
codec, calculating the distortion, repeating this experiment 300 times
and then taking the average distortion.

We assumed Binary Phase Shift Keying (BPSK) modulation and
RCPC codes with mother rate 1/4 from [8]. The total bandwidthWt

was set to 20 MHz. Moreover, we assumed a target bit rate of Rk =
96000bps. The set of admissible source and channel coding rate
combinations is C ∈ {1 : (32kbps, 1/3), 2 : (48kbps, 1/2), 3 :
(64kbps, 2/3)}, for a node k. The power levels assumed continu-
ous values from the set S = [5.0, 15.0], (representing Watts). Let
Ch and Cl denote the index of the source and channel coding rate
combination selected for the high–motion and the low–motion users,
respectively (Ch, Cl ∈ {1, 2, 3}).
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Regarding PSO, a swarm of 20 particles was used under the ring
topology of radius 1. Each particle consisted of four unknowns,
namely Sh, Sl (continuous values) and Ch, Cl (discrete values).
In our implementation, the discrete parameters were allowed to take
continuous values for the position and velocity update, although they
were rounded to the nearest integer for the evaluation of the particle.
The default PSO parameter values, χ = 0.729, c1 = c2 = 2.05 [9],
were used. Since PSO is a stochastic algorithm, its performance was
assessed on average over a number of 30 independent experiments
and it was allowed to execute 500 iterations for each problem. At
each experiment, the best detected solution was recorded. We can
see from Eq. (1) that multiplying all powers with the same constant
does not change Ek/N0. This is because we assumed that thermal
noise is negligible and the AWGN is entirely due to interference.
Thus, the optimization essentially determines the optimal Sh/Sl ra-
tio rather than specific values for the powers.

We compared the Nash Bargaining Solution for d = (28, 28)�

dB to a method that minimizes the average distortion of the nodes
(MAD) and a method that minimizes the maximum distortion among
the nodes (MMD). Tables 1, 2 and 3 show the results of the three
methods for 70 high–motion and 30 low–motion nodes, 50 high–
motion and 50 low–motion nodes, and 30 high–motion and 70 low-
motion nodes, respectively. Ch, Sh and PSNRh are the source–
channel coding rate combination, transmission power and PSNR for
the high–motion nodes, while Cl, Sl and PSNRl are the corre-
sponding parameters for the low–motion nodes.

Ch Cl Sh Sl PSNRh PSNRl

MAD 2 1 15.0000 7.6069 29.2296 32.2581
MMD 3 1 13.4344 5.0000 29.7737 29.7737
NBS 3 1 15.0000 6.3195 29.5508 30.8520

Table 1: Optimal resource allocation for the three criteria (MAD,
MMD, NBS) for 70 high–motion and 30 low–motion nodes.

Ch Cl Sh Sl PSNRh PSNRl

MAD 3 1 15.0000 7.0428 30.9419 32.8537
MMD 3 1 13.0847 5.0000 31.6114 31.6114
NBS 3 1 10.8085 5.0000 30.9947 32.7705

Table 2: Optimal resource allocation for the three criteria (MAD,
MMD, NBS) for 50 high–motion and 50 low–motion nodes.

Ch Cl Sh Sl PSNRh PSNRl

MAD 3 3 8.6240 5.0000 31.3844 35.1131
MMD 3 1 12.6814 5.0000 33.4049 33.4049
NBS 3 3 8.4217 5.0000 31.2350 35.2603

Table 3: Optimal resource allocation for the three criteria (MAD,
MMD, NBS) for 30 high–motion and 70 low–motion nodes.

We can see that, in order to minimize the average distortion of
the nodes, the MAD always results in a greater PSNR for the low–
motion nodes. We observed a difference between the PSNR of the
low–motion and the high–motion nodes of up to 3.73 dB. The MMD
minimizes the maximum distortion among the nodes. This always
results in equal PSNR for the high–motion and low–motion nodes.
However, the PSNR increase compared to the MAD for the high–
motion nodes is lower than the PSNR decrease of the low–motion
nodes. Thus, on one hand, we can say that the MMD is fair because
it offers equal PSNR between the two node classes. On the other
hand, the PSNR of the low–motion nodes drops significantly. The
NBS can be seen as a compromise between MAD and MMD. With
NBS, the low–motion nodes always get a significantly higher PSNR

than with MMD. The high–motion nodes also get a higher PSNR
than with MAD, except when the number of low–motion nodes is
significantly larger than the number of high–motion nodes, in which
case the PSNR of the high–motion nodes is slightly lower compared
with MAD, and the PSNR of the low–motion nodes is slightly higher
compared with MAD and significantly higher compared with MMD.

5. CONCLUSIONS

We have presented a resource allocation scheme for DS–CDMA vi-
sual sensor networks, which is based on the Nash Bargaining So-
lution from Game Theory. Since the power levels assume continu-
ous values while the source and channel coding rate combinations
can only take discrete values, the resulting optimization problem is
a mixed–integer problem, which is solved using Particle Swarm Op-
timization. We experimentally compared the NBS with two other
optimization criteria, the MAD and the MMD. The NBS can be seen
as a compromise between MAD and MMD, in which high–motion
nodes receive a higher PSNR than MAD in most cases, while low–
motion nodes receive a higher PSNR than MMD. Since it is impor-
tant to improve the video quality of high–motion nodes, which are
usually more important in surveillance applications, without reduc-
ing the video quality of the low–motion nodes too much, we believe
that the NBS will be the criterion of choice in many practical appli-
cations.
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