Ασκήσεις 6ου κεφαλαίου

Άσκηση 6.3

\[n \in \mathbb{N}, \ \lambda_1, \ldots, \lambda_n \geq 0 \ \ \text{τώρα} \ \lambda_1 + \ldots + \lambda_n = 1. \]

\[\varphi : [a, b] \to \mathbb{R} \ \text{ανεξάρτητος} \]

\[\lambda_1 x + \lambda_2 x + \ldots + \lambda_n x = \lambda(x) \]

\[\lambda_i x \geq 0 \]

Απόδειξη:

\[\lambda_1 \varphi(x_1) + \ldots + \lambda_n \varphi(x_n) \leq \lambda_1 \max \varphi(x) + \lambda_2 \max \varphi(x) \]

\[= \max \varphi(x) \]

\[\lambda_1 + \lambda_2 + \ldots + \lambda_n = 1 \]

\[\lambda_1 \max \varphi(x) \]

\[\lambda_2 \max \varphi(x) \]

\[\vdots \]

\[\lambda_n \max \varphi(x) \]

\[\leq \lambda_1 \max \varphi(x) + \lambda_2 \max \varphi(x) \]

\[= \max \varphi(x) \]

Αρίτμησια:

\[\lambda_1 \varphi(x_1) + \ldots + \lambda_n \varphi(x_n) \geq \min \varphi(x) \]

Απότελεσμα:

\[\min \varphi(x) \leq \lambda_1 \varphi(x_1) + \ldots + \lambda_n \varphi(x_n) \leq \max \varphi(x) \]

Επομένως, έμφαση με το θεώρημα της ευθείας της ες:

\[\lambda_1 \varphi(x_1) + \ldots + \lambda_n \varphi(x_n) = \varphi(x) \quad \text{για κάποιο} \ x \in [a, b] \]

Α& της 6.3

Άσκηση 6.4

\[\lambda_1, \ldots, \lambda_n \ \text{ορισμένοι (και ανεξάρτητος από 6.3)} \]

\[\varphi : [a, b] \to \mathbb{R} \]

\[\lambda_1 \varphi(x_1) + \ldots + \lambda_n \varphi(x_n) = \lambda_1 + \ldots + \lambda_n \varphi(x) \]
Απόδειξη

Επιλεξτικό της γεωμετρίας υποθέτουμε ότι \(\eta_1, \ldots, \eta_n > 0 \)

όπως προηγούμενως είχαμε,

\[
(\eta_1 + \cdots + \eta_n) \min_{x \in \mathbb{X}} \varphi(x) \leq \eta_1 \varphi(x_1) + \cdots + \eta_n \varphi(x_n) \leq (\eta_1 + \cdots + \eta_n) \max_{x \in \mathbb{X}} \varphi(x)
\]

Στην περίπτωση \(\eta_1 = \cdots = \eta_n = 0 \), η διαφορά ισοδύναμα για όλα τα \(\varphi \).

Αν \(\eta_i > 0 \), \(i = 1, \ldots, n \), τότε \(\eta_1 + \cdots + \eta_n > 0 \)

Άρα, \(\min_{x \in \mathbb{X}} \varphi(x) \leq \eta_1 \varphi(x_1) + \cdots + \eta_n \varphi(x_n) \leq \max_{x \in \mathbb{X}} \varphi(x) \).

Συνεχίζουμε τις προηγείστες εκφράσεις αυτοκόλλητες βελούς.

Σχετικές τροποποιήσεις της Ισότητας.

Απόψες 6.8

\[q^\top_n T_q \]

ενός διάστημα \([-1,1]\)

τέστος simpson

τροποποιήσεις

έκφραση \(f(x) = \frac{x^6}{36} - x^2 \)

\[\text{ΝΑΟ} \quad q^\top_n f \leq \int_{-1}^{1} f(x) \, dx \leq q^\top_m f \]

Απόδειξη

Γενικά, \(q^\top_{n+1} f = \frac{b-a}{12} f''(\xi) \)

\[q^\top_m f = \frac{b-a}{180} \int_{\theta}^{\phi} f(\theta) \]

Άρα, οιν προηγιστές περίπτωση εκφράζει:

\[\int_{-1}^{1} f(x) \, dx - q^\top_n f = -\frac{2}{180} \left(\frac{2}{m-1} \right) f(\xi) \]

\[\int_{-1}^{1} f(x) \, dx - q^\top_m f = -\frac{2}{180} \left(\frac{2}{m-1} \right) f(\xi) \]

\[\leq 0 \]

\[\geq 0 \]

\[\Rightarrow \leq 0 \]

\[\Rightarrow \geq 0 \]
δηλωτικά,
\[f'(x) = \frac{6x^5 - 2x}{30} = \frac{x^5}{5} - \frac{2x}{5} \]
\[f''(x) = \frac{5x^4}{5} - 9 = x^4 - 9 \leq 0 \quad (\leq -1 \text{ προ ουσικής}) \]

Αρχά, \(Q_1(f) \leq \int_{-1}^{1} f(x) \, dx \)

(iii)
\[f(x) = 4x^3 \]

(iv)
\[f(x) = 12x^2 \geq 0 \]

Αρχά, \(Q_{\min}(f) \geq \int_{-1}^{1} f(x) \, dx \).

Άσκηση 6.9

Ως τύπος οποιασδήποτε όπολυμπράκτες σε ένα διάστημα \([a,b]\)
\[R(f) = \int_{a}^{b} f(x) \, dx - Q(f) \]

ΝΔΟ

υπάρχει το πολύ δεν κείνο \(k \) \(\in \mathbb{N} \) \(\forall f \in C^k[a,b] \) \(f \in [a,b] \)

\[R(f) = C_k f^{(k)}(c) \]

Αποδείξη

Άλλα παραπεπειρήσεις
• \(c_k = 0 \) τόσο το σφάλμα για όλες τις απαρτίσεις που είναι κ φορές αυξημένες παραμορφώσεις στο \([a,b] \), θα ήτανe μικρό. Ειδικότερα, o τύπος θα οποιασδήποτε όπολυμπράκτες πολυώνταμα aριθμών. Aυτό δηλαδή είναι αδύνατον, γιατί τέτοιοι τύποι δεν υπάρχουν. (αρα και δεν μπορεί να είναι μικρό)
• \(c_k = 0 \) τόσο για \(k \) \(\in \mathbb{N} \) είναι \(Q(f) = 0 \) ευθυγραμμιστικά \(r(x) = x^k \) εύκρυψη,
\[R(p) = C_k k! \neq 0 \]

Συμπερασμα, o τύπος οποιασδήποτε όπολυμπράκτες rυθμίζει το θέμα \(k-1 \) aριθμών, και όμως όπολυμπράκτες \(k \) aριθμών. Aυτό μπορεί υπάρχει ικανοποιητικά για ένα και περισσότερα.

Συμμετρία των τόπων των Newton-Cotes

Απόδειξη

\[\int_{-a}^{a} p(x) \, dx = G_m(p) \]

Για τα πολυώνυμα του Lagrange \(L_i(x) \) και \(L_j(x) \) όπου

\[L_i(x) = \prod_{k=0}^{n-1} \frac{x-x_k}{x_i-x_k} \quad \text{και} \quad L_j(x) = \prod_{k=0}^{n-1} \frac{x-x_k}{x_j-x_k} \]

\[W_i = \int_{-a}^{a} L_i(x) \, dx \quad \text{και} \quad W_j = \int_{-a}^{a} L_j(x) \, dx. \]

\[W_i = \int_{-a}^{a} L_i(x) \, dx = \sum_{k=0}^{n-1} \frac{x-x_k}{x_i-x_k} \, dx = \sum_{k=0}^{n-1} \frac{x+x_k}{x_i-x_k} \, dx = \sum_{k=0}^{n-1} \frac{t}{x_i-x_k} \, dt = \int_{-a}^{a} L_i(t) \, dt = W_j. \]
Από την προηγούμενη απόκρυφη φέρουμε ότι όλοι \(x_i\) και \(-x_i\) είναι κομμάτια, το σημείο των αντίστοιχων μέσων είναι ίσα, \(w_i = w_j\).

Επομένως, \(Q(0) = 0\). Επομένως, θα έχουμε ότι:

\[
Q_n(f) = \sum_{i=1}^{n/2} w_i \left[f(x_i) + f(-x_i) \right] = 0 \quad \text{από την προηγούμενη}
\]

Από την προηγούμενη απόκρυφη φέρουμε ότι \(a\) και \(-a\) είναι κομμάτια, το σημείο των αντίστοιχων μέσων είναι ίσα, \(w_i = w_j\).

Επομένως, \(Q(0) = 0\). Επομένως, θα έχουμε ότι:

\[
Q_n(f) = \sum_{i=1}^{n/2} w_i \left[f(x_i) + f(-x_i) \right] = 0 \quad \text{από την προηγούμενη}
\]

Γεωμετρικά, \(Q(f)\) είναι η έκθεση των συνόρων του οπτικού τόπου του ηπειροστοιχίου και η έκθεση των συνόρων του οπτικού τόπου του ηπειροστοιχίου.

\[
Q(f) = \int_a^b f(x) \, dx - Q(f)
\]

\[
Q(f) = \int_a^b f(x) \, dx - Q(f)
\]
a) \(\Delta [a, b] \) ο α ολοκληρώσεις συμπληρώσεις αριθμών.

\[
\begin{align*}
\Delta & \quad f(x) = x \quad \forall x \in [a, b] \\
R(f) & = \int_a^b \left(f(x) - f(a) \right) \, dx \\
& = (b-a)x - (b-a)x = 0
\end{align*}
\]

\(\text{α ερώτημα} \)

b) \(\Delta [a, b] \) ο άλλοι \(\varepsilon (a, b) \) \(R(f) = \frac{(b-a)^2}{2} f'(\varepsilon) \)

\[
\begin{align*}
\Delta & \quad b - a = \int_a^b f(a) \, dx \\
R(f) & = \int_a^b f(x) \, dx - (b-a)f(a) \\
& = \int_a^b [f(x) - f(a)] \, dx
\end{align*}
\]

\(\text{μορφή} \quad b \) \(\text{να παραμετρίσουμε} \) \(\int_a^b (x-a) f'(f(x)) \, dx \)

\[
\Rightarrow \quad \min f'(\varepsilon) \int_a^b (x-a) \, dx \leq R(f) \leq \max f'(\varepsilon) \int_a^b (x-a) \, dx
\]

\[
\Rightarrow \quad \min f'(\varepsilon) \leq \frac{R(f)}{b-a} \leq \max f'(\varepsilon)
\]

\(\text{έπεξεργάζονται το σεβόμαλ συμπλήρωσεις της} \) \(\Delta [a, b] \) \(R(f) = \frac{(b-a)^2}{2} f'(\varepsilon) \)

\[
\begin{align*}
\frac{R(f)}{b-a} & = f'(\varepsilon) \\
\Delta & \quad R(f) = f'(\varepsilon) \int_a^b (x-a) \, dx
\end{align*}
\]

\[
\Rightarrow \quad R(f) = f'(\varepsilon) \int_a^b (x-a) \, dx = \frac{(b-a)^2}{2} f'(\varepsilon)
\]

\(\text{α ερώτημα} \)
1) Συνθέτως τύπος του ορθογώνιου (θα τον βρούμε αργότερα)

\[n \in \mathbb{N}, \ h = \frac{b-a}{n}, \ x_i = a + ih, \ i=0, \ldots, n \]

Εφαρμόζομε σε κάθε υποσύστημα \([x_i, x_{i+1}]\) του αριθμητικού τύπου του ορθογώνιου, \(h f(x_i) \) και αποδίδουμε τα αποτελέσματα \(h \sum_{i=0}^{n-1} f(x_i) \)

Τι μπορούμε να πούμε για το σφάλμα;

\[\int_a^b f(x) \, dx - h \sum_{i=0}^{n-1} f(x_i) = \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f(x) \, dx - h \sum_{i=0}^{n-1} f(x_i) \]

\[= \sum_{i=0}^{n-1} \left[\int_{x_i}^{x_{i+1}} f(x) \, dx - h f(x_i) \right] \]

\[= \frac{h^2}{2} \left(\frac{1}{n} \sum_{i=0}^{n-1} f'(f_i) \right) \]

το ερώτημα \(f'(f) \) δια το \(g(x) \) αναφερόμενα εμφάνισε με \(\min, \max \theta \).

\[\text{Aρκετό 6.11} \]

\[f \in [a, b] \]

\[Q(f) = (b-a) f\left(\frac{a+b}{2} \right) \]

και απόδειξη του τύπου \(a) \) της Ριμάττη το \(R(f) = 0 \) (το κομματικό \(x \) υπό το \((b-a) \).

\[\text{Aπόδειξη} \]

\[p(x) = q x + \delta \]

\[R(p) = \int_a^b (q x + \delta) \, dx - Q(p) = \left[\frac{q^2 (a+b)^2}{2} + \delta (b-a) \right] - (b-a) \left[\delta \frac{a+b}{2} + \delta \right] = \text{κάνουμε} \]

\[4 \]
Σος τέρων

Αρκεί αυτ σημείο για το τέρος οι πολυώνυμα αριθμοί πολυώνυμα (ρούμαρα) \(p(x) = 1 \) και \(p(x) = x \)

Απόδειξη

- \(p(x) = 1 \), \(R(p) = 1 = \) ταύτης πρόαστις = 0
- \(p(x) = x \), \(R(p) = 0 = \) έκφραση τέρων

Απόδειξη

\(p \in P_1 \). \(p \left(\frac{a+b}{2} \right) = f \left(\frac{a+b}{2} \right) \) ουσιαστικά και \(p' \left(\frac{a+b}{2} \right) = f' \left(\frac{a+b}{2} \right) \), Ημίτρη με την εισαγωγή της Καρένιος.

Αναπτύσσεται κατά ταυτόπια \(f - p \) και οι ονοματείς \(\frac{a+b}{2} \) βρίσκονται \(\frac{a+b}{2} \).

\(f(x) - p(x) = \left[f \left(\frac{a+b}{2} \right) - p \left(\frac{a+b}{2} \right) \right] + \left(x - \frac{a+b}{2} \right) \left[p' \left(\frac{a+b}{2} \right) - \frac{a+b}{2} \right] + \left(\frac{a+b}{2} \right)^2 \left[\frac{1}{2} \right] \left(x - \frac{a+b}{2} \right)^2 \left[f'' \left(\frac{a+b}{2} \right) - p'' \left(\frac{a+b}{2} \right) \right]

Από το εκθέτον \(R(f) = \int_a^b f(x) \, dx = Q(f) \)

\(b \)

\(a \)

\(Q(f) = \int_a^b f(x) \, dx - Q(p) = \int_a^b (f(x) - p(x)) \, dx = \int_a^b f(x) \, dx - \int_a^b p(x) \, dx = \int_a^b \left[f(x) - p(x) \right] \, dx = \frac{1}{2} \left(x - \frac{a+b}{2} \right)^3 \bigg|_{x=a}^{x=b} = \frac{1}{2} f''(f) \left[(b - \frac{a+b}{2})^3 - (a - \frac{a+b}{2})^3 \right]

= \frac{1}{6} f''(f) \left[(b - \frac{a+b}{2})^3 - (a - \frac{a+b}{2})^3 \right]

= \frac{1}{6} \cdot 2 \cdot \left(b - a \right)^3 = \frac{1}{2} \left(b - a \right)^3 \) (ταύτης πρόαστις)

\(\left(b - a \right)^3 \)

\(\frac{1}{24} \)
Δος τον

\[
R(f) = \int_a^b f(x) \, dx - Q(f) = \int_a^b \left[f(x) - f\left(\frac{a+b}{2}\right) \right] \, dx
\]

για τον Taylor

\[
= \int_a^b \left[f\left(\frac{a+b}{2}\right) + \left(x - \frac{a+b}{2}\right) f'\left(\frac{a+b}{2}\right) + \frac{1}{2!} \left(x - \frac{a+b}{2}\right)^2 f''(f(x)) - f\left(\frac{a+b}{2}\right) \right] \, dx
\]

από την \(0 \) \(\rightarrow \) \(b \)

\[
\int_a^b \left(x - \frac{a+b}{2} \right) f'(\frac{a+b}{2}) \, dx + \frac{1}{2} \int_a^b \left(x - \frac{a+b}{2} \right)^2 f''(f(x)) \, dx
\]

από την \(a \) \(\rightarrow \) \(b \)

ελήφθη το αποτέλεσμα που βρήκαμε πριν. Δος τον

α(β) κείμενο

\[h = \frac{b-a}{n} \]

\[x_i = a + ih \quad i = 0, \ldots, n \]

Ν. Ο.: \(f \in C^2[a,b] \) \(\exists (c,b) \) \(\int_a^b f(x) \, dx = \frac{b-a}{2n} \sum_{i=0}^{n-1} \left(x_i + \frac{h}{2} \right) \]

\[
\int_a^b f(x) \, dx \ni h \sum_{i=0}^{n-1} (x_i + \frac{h}{2}) = \frac{b-a}{2n} \int_a^b f(x) \, dx
\]

άποτελεσμα

\[\int_a^b f(x) \, dx = \frac{b-a}{2n} \sum_{i=0}^{n-1} (x_i + \frac{h}{2}) \]

Εναρμονίστηκε \(\int_a^b f(x) \, dx \)

\[
\sum_{i=0}^{n-1} \left[\int_{x_i}^{x_{i+1}} f(x) \, dx - h f(x_i + \frac{h}{2}) \right] = \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f(x) \, dx - h \sum_{i=0}^{n-1} f(x_i + \frac{h}{2})
\]

\[
= \frac{(x_{i+1} - x_i)^2}{24} f''(f_i) = \frac{h^3}{24} \sum_{i=0}^{n-1} f''(f_i)
\]

από τον \(n \) \(\rightarrow \) \(\infty \)

\[f''(f) = \frac{(b-a)}{2u} f''(f) \]

α(β) κείμενο
Διανύειο 6.15

\[f \in C^2[a,b], Q(f) = (b-a)f(a) + \frac{(b-a)^2}{2} f'(a) \]

\[R(f) = \int_a^b f(x) dx - Q(f) \]

\[\text{Ανάλογα:} \quad R(p) = 0 \]

\[p(x) = bx + \delta \]

\[R(p) = \int_a^b (bx + \delta) dx - \left[(b-a)(bx + \delta) + \frac{(b-a)^2}{2} f'(a) \right] \]

= τεταιοπενήσεις = \[y \frac{b-a}{2} + \delta (b-a) - \left[(b-a)(bx + \delta) + \frac{(b-a)^2}{2} f'(a) \right] \]

= \ldots = 0 \quad \text{α (ά) ερώτημα}

4) \text{ΝΔΩ}

\[f \in C^2[a,b] \quad \exists \ f' \in (a,b) \quad \text{τώ�} \quad R(f) = \frac{(b-a)^3}{6} f''(\xi) \]

\[p\ Choose(\xi) = f(a) + (x-a)f'(a) \quad \text{τώρε} \quad Q(p) = \int_a^b p(x) dx \]

\[\text{Απαντά:} \quad R(f) = \int_a^b f(x) dx - Q(f) \]

\[= \int_a^b [f(x) - p(x)] dx = \int_a^b f(x) dx - \int_a^b \left[f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2} f''(\xi) - f(a) - (x-a)f'(a) \right] dx \]

= \frac{(b-a)^3}{6} f''(\xi) \quad \text{α (ά) ερώτημα}

7) \text{n ∈ N, } h = \frac{b-a}{n}, \ \xi_i = a + ih, \ i = 0, \ldots, n \quad \text{ΝΔΩ:} \quad \forall \ f \in C^2[a,b] \quad \exists \ f' \in (a,b) \quad \text{τώρο}

\[\int_a^b f(x) dx = \sum_{i=0}^{n-1} \left[h f(\xi_i) + \frac{h^2}{2} f'(\xi) \right] = \frac{(b-a)^2}{6} h^2 f''(\xi) \]

\[\text{Απάντησε:} \]

\[\text{Σεωρητώντας, } p(x) = f(a) + (x-a)f'(a) \]

\[\text{πολλαπλασιάζοντας το } \frac{(b-a)^2}{6} \text{ εισάγοντας το } a. \]

\[b \]

\[\int_a^b p(x) dx = (b-a)f(a) \]

\[+ \frac{(b-a)^2}{2} f'(a) \]

\[\text{γραμμα} \text{της } \text{τεταιοπενήσεως,} \]

\[\text{τεταιοπενήσεως,} \]

\[\text{ερώτημα:} \]

\[\text{πολλαπλασιάζοντας το } \frac{(b-a)^2}{6} \text{ εισαγώντας το } a. \]

\[b \]

\[\int_a^b p(x) dx = (b-a)f(a) \]

\[+ \frac{(b-a)^2}{2} f'(a) \]

\[\text{γραμμα} \text{της } \text{τεταιοπενήσεως,} \]

\[\text{ερώτημα:} \]

\[\text{πολλαπλασιάζοντας το } \frac{(b-a)^2}{6} \text{ εισαγώντας το } a. \]
\[\text{Εξακολουθεί, } \int_{a}^{b} f(x) \, dx = \sum_{i=0}^{n-1} \left[h f(x_i) + \frac{h^3}{2} f'(x_i) \right] \]

\[= \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f(x) \, dx - \sum_{i=0}^{n-1} \left[h f(x_i) + \frac{h^2}{2} f'(x_i) \right] \]

\[= \sum_{i=0}^{n-1} \left(\int_{x_i}^{x_{i+1}} f(x) \, dx - \left[h f(x_i) + \frac{h^2}{2} f'(x_i) \right] \right) \]

\[= h^3 \sum_{i=0}^{n-1} \frac{f''(\xi_i)}{6} = \text{ώγεταμα} = \frac{(x_{i+1} - x_i)^3}{6} f''(\xi_i) \text{ με } \xi_i \in (x_i, x_{i+1}) \]

\[= \frac{h}{6} \sum_{i=0}^{n-1} f''(\xi_i) \]

\[= \frac{n h}{6} f''(\xi) = \frac{(b-a)}{6} h \cdot f''(\xi) \]

\[\implies \text{ώγεταμα.} \]

\[\min_{a \leq x \leq b} f''(x) \leq \frac{1}{n} \sum_{i=0}^{n-1} f''(\xi_i) \leq \frac{1}{n} \sum_{i=0}^{n-1} \max_{a \leq x \leq b} f''(x) \]

\[= \frac{1}{n} \cdot \frac{1}{b-a} \max_{a \leq x \leq b} f''(x) \]