ΚΕΦΑΛΑΙΟ 6 2 (ΚΕΦΑΛΑΙΟ): "ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ"

Δεδομένο: \(f: [a, b] \rightarrow \mathbb{R} \), γνωστός

Σημαίνει: \(\int_a^b f(x)\,dx = I(f) \)

\(F' = f \) παράγοντα να \(f \).

Τότε, \(\int_a^b f(x)\,dx = F(b) - F(a) \).

Σημείωση για την \(F \). Αλλά να ονομάσουμε για "αντίκες" τη \(F \) να είμαστε πολύ προσεκτικοί.

\[f(x) = \frac{1}{1 + x^2}, \quad F(x) + C, \quad F(a) = \frac{\ln \sqrt{x^2 + 1} + \tan^{-1}(1)}{\sqrt{2}} \]

Συνάφεια "απεριόριστη ολοκλήρωση" Προσεκτικά το \(I(f) = \int_a^b f(x)\,dx \) με είναι βάση απεριόριστης ολοκλήρωσης \(Q_n+1 \),

\[Q_{n+1}(f) = w_0 f(x_0) + w_1 f(x_1) + \ldots + w_n f(x_n), \]

με \(w_0, w_1, \ldots, w_n \) να είναι \(\omega_i \).

1ο Περιπτώση:

• Τοποθέτηση των Newton-Cotes: Είναι \(n \in \mathbb{N} \). Θατάκε

\[h = \frac{b-a}{n} \) (το άθροισμα) και θαπτόπεμμα \(\tau \) αποκτοπροφόρο διαφοροσκόπο

\[x_i = a + ih, \quad i = 0, \ldots, n \) του \([a, b] \) με \(\varepsilon = h. \]
Για \(f \in C[a,b] \) έχει \(p_n \in P_n \) Το πολυώνυμο παρέχεται ως \(f \) η αρμονία \(x_0, \ldots, x_n \), \(p_n(x) = f(x) \), \(i = 0, \ldots, n \).

\[
Q_{n+1}(f) = \int_a^b p_n(x) \, dx.
\]

Παραπουράν: Αν \(f \in P_n \), τότε \(p_n = f \).

Επομένως, \(Q_{n+1}(f) = I(f) \).

Αρα: Ο \(Q_{n+1} \) ολοκληρώνει πολυώνυμα θερμημάτων \(\xi \).

Στόχος: Να χρησιμοποιήσετε το \(Q_{n+1}(f) \) στη μορφή:

- Είστε \(L_0, \ldots, L_n \in P_n \) τα πολυώνυμα των Lagrange ως προς τα αξίες \(x_0, \ldots, x_n \), \(L_i(x) = \prod_{j=0, j \neq i}^n \frac{x-x_j}{x_i-x_j} \), \(i = 0, \ldots, n \).

Στοιχείο, οπό \(p_n \) γράφεται στη μορφή:

\[
p_n = \sum_{i=0}^n f(x_i) L_i
\]

Επομένως, \(Q_{n+1}(f) = \int_a^b p_n(x) \, dx = \int_a^b \sum_{i=0}^n f(x_i) L_i(x) \, dx = \sum_{i=0}^n f(x_i) \int_a^b L_i(x) \, dx = \omega_i \).

\[
\omega_i = \int_a^b L_i(x) \, dx = \int_a^b \prod_{j=0, j \neq i}^n \frac{x-x_j}{x_i-x_j} \, dx = \int_a^b \prod_{j=0, j \neq i}^n \frac{a+hs-x_j}{x_i-x_j} \, ds = h \int \prod_{j=0}^n \frac{s_i}{s_i-x_j} \, ds = \Phi_i(s)
\]

\[
X = b - a = b - a = n,
\]

\[
s = \frac{b-a}{h} = \frac{b-a}{n}
\]
Oi ϕi είναι ανεξάρτητες στο διάδρομο [a, b]

\[\forall \varepsilon > 0 \exists \delta > 0 \text{ ανεξάρτητα τω [a, b], το επίπεδο } \]

\[\forall i \text{ διοικετώς } \varepsilon_i = h \text{ διοικετώς } \varepsilon_i^* \text{ Το } \varepsilon_i \ldots \text{ υπολογίζεται μία φορά, και υστέρα προσπέπτει τα } \varepsilon_i. \]

14/05/1015

(\(\forall (x) \in \mathbb{R} \text{, } \int a^b (x) = 0 \))

Ερώτηση: Για \(f \in C^1[a, b] \), \(\alpha \) \(\exists n \) \(\alpha \) \(\forall f \in C^1[a, b] \to \int_a^b f(x) dx, n \to \infty \)

Απάντηση: \(\text{Δεν υπάρχει} \)

"Ο τόπος του προελεύσιμου:"

\(h = \frac{b-a}{n} \)

\(x_0 = a, \quad x_i = a + ih = b \)

\(Q_2(f) = \frac{b-a}{2} [f(a) + f(b)] \)

Ερώτηση: Για να προελεύσει \(\forall f \in C^1[a, b] \)

\[R_2(f) = \int_a^b f(x) dx - Q_2(f) \]

Αντίκρου \(\text{Pαρακαλώ σε συμπληρώσεις το "αντικειμενικό" της ακραίας }\)

\(\exists \) \(f \in C^2[a, b] \) \(\text{το συνολικό } g \in (a, b) \) \(\text{τότε } R_2(f) = -\frac{(b-a)^3}{12} f''(3) \)

Ένων

\[p_1 \in P_1 \text{ και } p_2 (a) = f(a), \ p_2 (b) = f(b) \]
\[Q_2 (f) = Q_2 (p_2) \]
\[Q_2 (p_2) = \int_a^b p_2 (x) \, dx \]
\[\text{Συνέχεια...} \]

![Image](image-url)

\[R_2 (f) = \int_a^b \frac{f(x) - p_2 (x)}{2} \, dx \]

Από την θεωρία παρεμβολής θέσαμε:

\[\forall x \in [a, b] \exists \xi (x) \in (a, b) \]
\[f(x) - p_2 (x) = \frac{f''(\xi (x))}{2} (x-a)(x-b) \]

\[R_2 (p_2) = \int_a^b \frac{f''(\xi (x))}{2} (x-a)(x-b) \, dx \]

\[= -\frac{1}{2} \int_a^b (x-a)(b-x) f''(\xi (x)) \, dx \]

Ένων \(m := \min_{a \leq x \leq b} f''(x) \), \(M := \max_{a \leq x \leq b} f''(x) \)

Τότε,

\[m \int_a^b (x-a)(b-x) \, dx \leq \int_a^b (x-a)(b-x) f''(\xi (x)) \, dx \]
\[\int_a^b (x-a)(b-x) \, dx \]

Επομένως, διαμορφώστε με το \[\int_a^b (x-a)(b-x) \, dx \] παράγωγο:

\[m \leq \frac{\int_a^b (x-a)(b-x) f''(x) \, dx}{\int_a^b (x-a)(b-x) \, dx} \leq M \]

Σύμφωνα με τη θεώρηση των ευδιακές αλών, υπάρχει \(f'(a, b) \) τετραγωνίων

\[\frac{\int_a^b (x-a)(b-x) f''(x) \, dx}{\int_a^b (x-a)(b-x) \, dx} = f''(\xi) \]

Άνο από (1) και (2) προκύπτει:

\[R_2(f) = -\frac{1}{2} f''(\xi) \int_a^b (x-a)(b-x) \, dx \approx \frac{(b-a)^3}{12} \]

Απο:

\[R_2(f) = -\frac{(b-a)^3}{12} f''(\xi) \]

"Συνέχεια των του τραγέλων":

Εστια λ. \(h = \frac{b-a}{n} \), \(x_i = a + ih \), \(i = 0, \ldots, n \).

Επαρκούστα, δε ναι οποιαδήποτε \([x_i, x_{i+1}] \) του ανά τύπο του τραγέλων

Για παράδειγμα το αποτέλεσμα. Αυτό

Η ισοπεδω \(\text{γράφεται} \) "δώσεω" τυπολογία του

\[x_i \]

\[m \]

\[x_n \]

\[a \]
\[Q_{n+1}(f) = \sum_{i=1}^{\infty} \frac{1}{2^i} [f(x_i) + f(x_{i+1})] + \frac{1}{2^n} f(x_n) = h \left[\frac{1}{2} f(x_0) + f(x_1) + \ldots + f(x_{n-1}) + \frac{1}{2} f(x_n) \right]. \]

Προτάση: (Παραδείγμα του ερώτηματος το δύο επόμενα τέμνου τον τριγωνό)

Εδώ έχει \(C^2 \) [1, b] και \(Q_{n+1} \) ο γόνητος τέμνει τον τριγωνό τόσο δίσκο [1, b]. Με εντύπωση \(h = b - a \) και νομίζω \(x_i = a + ih \) \(i = 0, 1, 2, \ldots, n \). Τότε, έχει \(R_{n+1}^T (f) \) το ερώτημα,

\[R_{n+1}^T (f) = \int_a^b f(x) \, dx - Q_{n+1}^T (f), \]ιναξε \(f \in C^2 \) [1, b] και

\[R_{n+1}^T (f) = -\frac{b-a}{12} h^2 f''(c). \]

Συμπέρασμα:

\[|R_{n+1}^T (f)| \leq \frac{b-a}{12} h^2 \max_{a \leq x \leq b} |f''(x)| - c, \]

\[\leq c_1 h^2. \]

Το ερώτημα είναι ευέλικτος λόγω το \(h \to 0 \).
Ανοίγεται:
Το διάφορο $R_{m+1}(f) = 6$ είναι τόπος του πλανητικού εύκολο, προσδοκώτας, το αποτέλεσμα της επεξεργασίας διαφορικών του αριθμητικού είναι αριθμητικό είναι μέσο των πλανητικών διαφορικών του εύκολου $f(x)$. Εντούτοις, βρίσκουμε μέ τον Κ. Ελ.:

$$R_{m+1}(f) = \frac{h^3}{12} \left(f''(x_1) - \frac{h^3}{12} \left(f''(x_2) + \cdots + f''(x_m) \right) \right)$$

Ενοπτεύομενο

$$= \frac{h^3}{12} \left(\sum_{i=1}^{m} f''(x_i) \right) = \frac{h^3}{12} \left(\sum_{i=2}^{m} f''(x_i) \right)$$

Προ伊斯

$$\min f''(x) \leq \frac{1}{n} \sum_{i=2}^{m} f''(x_i) \leq \max f''(x)$$

οπότε γνωρίζουμε πως ο Θεορημα των Ευκλείδειας αποκατάστηκε. Ενδέχεται $g \in (a, b)$ ου το $\frac{1}{n} \sum_{i=2}^{m} f''(x_i) = f''(g)$

Αυτήν την άλλη άλλη άλλη να θέλουμε.

"Ο τόνος του Simpson:

$$h = \frac{b-a}{2}$$

$$x_0 = a, \; x_1 = a + \frac{b-a}{2}, \; x_2 = b$$

$$\int_{x_0}^{x_2} p_2(x) dx = \cdots =$$
\[
\begin{align*}
&= \frac{b-a}{2} \left[\frac{1}{3} f(a) + \frac{4}{3} f\left(\frac{a+b}{2}\right) + \frac{1}{3} f(b) \right] \\
&= \left(\frac{h}{3} \left[f\left(x_0\right) + 4 f\left(x_1\right) + f\left(x_2\right) \right] \right) \\
\end{align*}
\]

* Το τέλος γίνεται εύκολα με τη χρήση της μεθόδου του Σίμπσον.

Έσφαλη η άμεση όπως το παραπάνω.

\[\int_a^b p(x) \, dx = Q_3(p) \]

\[\text{Έκφραση:} \quad \text{∀ } p \in P_2, \quad \int_a^b p(x) \, dx = Q_3(p)\]

Δηλαδή, ο τίτλος των Σίμπσον αποτελεί ουσιαστικά πολυώροφα θεαματικά μορφή και άρα.

\[\text{Απόσβεση:} \quad \text{Αποκάλυψη:} \quad \text{Η} \; q_3(x) = x^3 \; \text{ολοκληρώθηκε ομαλά.}\]

\[\begin{align*}
\text{Μετρήσεις:} \\
\int_a^b x^3 \, dx - Q_3(q_3) &= \int_a^b x^3 \, dx - \frac{b-a}{6} \left[a^3 + 4 \left(\frac{a+b}{2} \right)^2 + b^3 \right] \\
&= 0.
\end{align*}\]

\[\text{Γραφικά,} \quad q_3(x) = x^3 = (x - \frac{a+b}{2})^3 + q(x)\]

\[\text{και } q \in P_2\]

\[\text{Το} \; \text{θεαμα} \; \mathcal{R}_3(q_3) = \mathcal{R}_3(p) + \mathcal{R}_3(q)\]

\[\int_a^b \left(x - \frac{a+b}{2} \right)^3 \, dx - Q_3(p) = -Q_3(p)\]

\[= \frac{b-a}{6} \left[p(a) + 4 p\left(\frac{a+b}{2}\right) + p(b) \right] - p(a) \]

\[= 0\]
Πρόβλεμα: (Παραπέμπω σε έρευνες του ομίλου του Σίμπσον)

Εδώ πο Q ∈ (a,b). Τούτο, μετά που είναι (a,b) τώρα.

\[R_3(f) = \int_a^b f(x) \, dx - Q_3(f) = \frac{(b-a)^5}{240} f^{(4)}(\xi) \]

Ανάλυση: Εδώ πο P ∈ R_3 τώρα

\[p(a) = f(a), \quad p\left(\frac{a+b}{2}\right) = f\left(\frac{a+b}{2}\right), \quad p(b) = f(b) \]

\[p'(x_0) = f'(x_0) \]

Τώρα, εφαρμόζοντας την σύμπτωση της, εκάλεε \(\xi \) \(x \in [a,b] \)

Εάν \(5(x) \in (a,b) \).

\[P(x) - p(x) = \frac{f^{(4)}(\xi(x)) (x-x_0) (x-x_1)^2 (x-x_2)}{4!} \]

Από,

\[R_3(f) = \frac{1}{240} \int_a^b (x-a) (x-a+\frac{b}{2})^2 (x-b) f^{(4)}(\xi(x)) \, dx \]

\[= \frac{-b}{240} \int_a^b (x-a) (x-a+\frac{b}{2})^2 (b-x) f^{(4)}(\xi(x)) \, dx = \ldots = \]

πρέπει να συμπλήρωσε την ισορροπία της ισορροπίας της νύχτας που καλείται πρίν.
\[\ldots = \frac{-1}{24} \int_a^b (x-a)^2 \left(\frac{x-a+b}{2}\right)^2 (b-x) \, dx \]

\[(b-a)^5 = -\frac{(b-a)^5}{2^3} \frac{f^{(4)}(5)}{2^4} \]

\[2^{3.15} \quad 2^{4.180} \]
Διαδοχικά τύποι του Simpson:

Εάν n ένας ευς απρόσοδος αριθμός, h = (b-a)/n, x_i = a + ih, i = 0, n

Για κάθε τύπο αποτελεί το Σίμπσον, έχει ισοδύναμη παράγοντα

\[Q_{n+1} = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] + \frac{h}{3} [f(x_1) + 4f(x_2) + f(x_3)] + \cdots + \frac{h}{3} [f(x_{n-1}) + 4f(x_n) + f(x_{n+1})] \]

Ως αποτέλεσμα, \(Q_n^S \) του Simpson έχει

\[Q_n^S (f) = \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)] \]
\[R_{n+1}(f) = \int_a^b f(x) \, dx - Q_{n+1}^S(f) \]

Περατώστε (Παραπάνω έκφραση έχει βαθμούς των 6 του Simpson)

Εάν η \(f \in C^4([a,b]) \), τότε \(n \) αριθμός \(Q_{n+1}^S \) των βαθμούς του Simpson \(6 \) ίσο \(h = \frac{b-a}{n} \). Το \(n \) ορισμένο \(\xi \in (a,b) \) του \(x \) αποδίδει \(R_{n+1}(f) \): \(\int_a^b f(x) \, dx - Q_{n+1}^S(f) \) να είναι:

\[R_{n+1}^S(f) = \frac{b-a}{180} h^4 f^{(4)}(\xi) \]

Από την πλευρά:

Το έναδιπλο έστεγα \(R_{n+1}(f) \) είναι το αποτέλεσμα των επιπέδων με τον κόλπο που \(f \in C^4([a,b]; \xi \in (x_{i-1}, x_i), i = 1, \ldots, \frac{n}{2} \).

Ενδεικτικά, εφαρμόζοντας την πρώτη έκφραση:

\[R_{n+1}^S(f) = -\frac{(x_2 - x_0) f^{(4)}(\xi_1) + (x_4 - x_2) f^{(4)}(\xi_2) + \ldots + (x_n - x_{n-2}) f^{(4)}(\xi_{\frac{n}{2}})}{24 \times 180} \]

(όπου \(\xi_i \in (x_{i-1}, x_i), \xi_{\frac{n}{2}} \in (x_{n-2}, x_n), \ldots, \xi_{\frac{n}{2}} \in (x_{2i-2}, x_{2i}) \ldots \))

\[= - \frac{(x_1 - x_0)^5}{24 \times 180} \left[f^{(4)}(\xi_1) + f^{(4)}(\xi_2) + \ldots + f^{(4)}(\xi_{\frac{n}{2}}) \right] \]

\[= - \frac{9^5}{24 \times 180} \sum_{i=1}^{\frac{n}{2}} f^{(4)}(\xi_i) \]

\[= - \frac{9^5}{180} \sum_{i=1}^{\frac{n}{2}} f^{(4)}(\xi_i) \]

και άλλοι νομίζω \[- \frac{9^5}{180} \sum_{i=1}^{\frac{n}{2}} f^{(4)}(\xi_i) \] ή \[\frac{b-a}{180} h^4 f^{(4)}(\xi) \]
Τύποι ολογράμμων του Gauss:

Εστώ \([a, b] \subset \mathbb{R}\), και \(\omega : [a, b] \rightarrow \mathbb{R}_+\) συνήθως θεωρήσετε \(\omega \cdot \chi_{[a, b]}\). Όταν \(0 < \int_a^b \omega(x) \, dx < \infty\).

Προπέδευση για το \(I(f) = \int_a^b \omega(x) f(x) \, dx \) με τόσος τυπούς ολογράμμων.

\[Q_n(f) = \sum_{i=1}^n w(x_i) f(x_i) \]

Στάσεις:

Να προβεβληθούν τους αυτόχθονα \(x_i\) και τα τετραγωνικά \(x_i^2\), επίσης \(Q_n\) με ολογράμματα αναλυτικού τύπου χωρίς διακομισμούς.

16χρονος:

Κανένας τύπος τυπού ολογράμμων \(Q_n\) δεν ολογραμματίζει αναλυτικές πολυώνυμα ίσης μέγιστου \(2n\).

Για ολογράμματα τύπο \(Q_n\) επίλεξες:

\[p(x) = (x-x_1)^2(x-x_2)^2 \cdots (x-x_n)^2 \]

Τότε \(p \in P_{2n}\) \(Q_n(p) = 0\). Εκισές, \(I(p) = \int_a^b \omega(x) p(x) \, dx = \int_a^b \omega(x) (x-x_1)^2 (x-x_2)^2 \cdots (x-x_n)^2 \, dx > 0\).

16χρονος:

Αναφέρει αναφερόμενος \(\omega\) δύο τύποι τυπού ολογράμμων \(Q_n\) που ολογραμματίζουν αναλυτικά πολυώνυμα ίσης μέγιστου \(2n-2\). Αυτός τύπος \(Q_n\) κάνει \(\langle \text{τύπος}\rangle = \text{Gauss}\).

Αναφέρει αναφερόμενος ενα πολυώνυμο \(p_n\) έναν αντίστοιχο αναφερόμενο \(\omega\) \(p_n \in P_n\) των \(\int_a^b \omega(x) \, p_n(x) \, p_{n-1}(x) \, dx = 0 \forall n-1 \in P_{n-1}\) \(\omega\) αναφερόμενο "\(\text{τύπος} = \text{Gauss}\)"

• Οι \(x_i\), \(x_i\) ένα \(\in P_n\) είναι αναφερόμενοι \(\in \mathbb{R}\) σε διάστημα \((a, b)\).
Τα πολυώνυμα πρέπει με σωτή την δίωξη λέγοντας "αρχικό πολυώνυμο" ως προς τη γεωμετρία βαρών.

ΘΕОРΗΜΑ ("Η φιλοσοφία η τεχνοφυσική του Μάνος")

Είδω [a,b] στ. w: [a,b] → R η ομοιότητα είναι, όταν προς το λιμίωση το συνόλο των w(x) προς την πρόκληση πολυώνυμα με ίδιος τύπο

\[\sum_{p \in \mathbb{P}_{n-1}} \int_a^b w(x)p(x) \, dx = q_n(p) \]

Να ισούση τα w₁, ... , wₙ (τετράδια) είναι θεωρηματική.

(5) Αν o Qn με σωτής x₁, ... , xₙ και επαριά w₁, ... , wₙ ομοιότητα αρχική πολυώνυμα βαρών είναι και ζήτηση τοτε τα x₁, ... , xₙ είναι μεταφορικά του Qn.

Ανάλυση:

(1) Είναι p ∈ \mathbb{P}_{n-1}. Αν \ q ∈ \mathbb{P}_{n-1} τότε \ q(x_i) = p(x_i), i = 1, ..., n.

Τότε προκάταλπτικά \((p−q) = (x−x_1) \cdots (x−x_n) \overline{\gamma}_{n−1}(x) \) p e \(\mathbb{P}_{n−1} \).

Συνεπώς, \ p = q + p_{n-1}, Απο,

\[\int_a^b w(x)p(x) \, dx = \int_a^b w(x)q(x) \, dx + \int_a^b w(x)p_{n−1}(x) \, dx \]

Ωστόσο, \[\int_a^b w(x)p(x) \, dx = \int_a^b w(x)q(x) \, dx. \]
Μέλη $L_i \ldots L_n \in \mathbb{P}_{n-1}$ τα πολυώνυμα του Lagrange ως προς τα $x_1 \ldots x_n \in \mathbb{R}$. $L_i(x) = \prod_{j \neq i} \frac{x-x_j}{x_i-x_j}$, $i = 1 \ldots m$, εκτός x_i.

$$ q = \sum_{i=1}^m p(x_i) L_i(x). $$

Ενσαρκώστε, η $q \to$ δίνεται

$$ \int_a^b \omega(x) p(x) \, dx = \int_a^b \omega(x) \sum_{i=1}^m p(x_i) L_i(x) \, dx = \sum_{i=1}^m \left[\int_a^b \omega(x) L_i(x) \, dx \right] p(x_i), $$

$\omega: L^2 \to \mathbb{R}$.

Ημετέρωτα στη σειρά:

Έχουμε $Q_n(p) = \sum_{i=1}^n \omega(x_i) L_i(x)$, ενώ τον τρόπο του ενδιαφέρουμε

αμφότερα πολυώνυμα θα έχαμε $\omega(x) \in \mathbb{P}_{n-1}$. Τότε:

$L^2 \in \mathbb{P}_{n-1}$, οπότε $\int_a^b \omega(x) \left[L_i(x) \right]^2 = Q_n(L_i^2) = Q_n'(L_i^2)$.

Οπως: $Q_n(L_i^2) = \sum_{j=1}^n \omega_j \left[L_i(x_j) \right]^2 = \omega_i \left[L_i(x_i) \right]^2 = \omega_{ii}$.

και αντίστοιχα,

$Q_n'(L_i^2) = \omega_i'$, οπότε $\omega_i' = \omega_i$, $i = 1 \ldots m$.

Ενιόψης, $\omega_i = \int_a^b \omega(x) \left[L_i(x) \right]^2 \, dx > 0$.

(6) $E 650 \text{ } m-1 \in \mathbb{P}_{n-1}$. Θέσου $p(x) = (x-x_1) \ldots (x-x_n) L_{u-1}(x)$.

Προαναφέροντας, $p \in \mathbb{P}_{n-1}$ και $Q_n(p) = 0$.

Συνεπώς: $\int_a^b \omega(x) (x-x_1) \ldots (x-x_n) L_{u-1}(x) \, dx \neq 0$ $\Leftrightarrow u-1 \in \mathbb{P}_{n-1}$.

Πολύ μια συμπεριφέρεται τα αρκετά ωνομίσιμο (με το $\omega(x)$

βεβαιότατα ισχύει τα x_i) εκτός $u = n$, δηλαδή

τα $x_1 \ldots x_n$ είναι πολύ τα \mathbb{P}_n.

(6) $E 650 \text{ } m-1 \in \mathbb{P}_{n-1}$. Θέσου $p(x) = (x-x_1) \ldots (x-x_n) L_{u-1}(x)$.

Προαναφέροντας, $p \in \mathbb{P}_{n-1}$ και $Q_n(p) = 0$.

Συνεπώς: $\int_a^b \omega(x) (x-x_1) \ldots (x-x_n) L_{u-1}(x) \, dx \neq 0$ $\Leftrightarrow u-1 \in \mathbb{P}_{n-1}$.

Πολύ μια συμπεριφέρεται τα αρκετά ωνομίσιμο (με $\omega(x)$

βεβαιότατα ισχύει τα x_i) εκτός $u = n$, δηλαδή

τα $x_1 \ldots x_n$ είναι πολύ τα \mathbb{P}_n.
ΘΕΟΡΗΜΑ ("Παραστάσεις των 6θοντας λύσεις ανθυποθέσεως των Gauss").

Εστω \([a, b] \subset \mathbb{R}, f: [a, b] \to \mathbb{R}\) μια ενδεδειγμένη βιοποιό και \(p_n \in \mathbb{P}_n\) τα ως μορφές ανθυποθέσεως (νε υπερβολικά
βιοποιοί θά λεγομεναι). Αν \(Qn\) οι οινοσ του Gauss το \(p_n \in \mathbb{P}_n\) \(\to p_n\) απόψεις \(\xi \in (a, b)\) τω

\[
\int_a^b w(x) f(x) \, dx = - Qn(f) = \frac{1}{(2n)!} \int_a^b w(x) \left[p_n(x) \right]^2 \, dx
\]

Ανάλυση: Εστω \(\xi, \chi\) ανωφοί σε \(Qn\) και \(\lambda, \ldots, \lambda_n\) τα ανιχνευτικά τεσσάρα.
Εστω \(p \in \mathbb{P}_{2n-1}\) το \(p_n\)

\[p(x) = f(x_i), \quad p'(x_i) = f'(x_i), \quad i = 1, \ldots, n.\] (Παραλλαγή Hermita).

Τότε, \(Qn(p) = Qn(f)\). (έχει ίσες ανησυχίες \(6\) με \(x_i)\)

και \(\int_a^b w(x) p(x) \, dx = Qn(p)\)

Επομένως,

\[
\int_a^b w(x) f(x) \, dx = Qn(f) = \int_a^b w(x) \left[f(x) - p_0(x) \right] \, dx.
\]

Οπως, \(\forall x \in (a, b)\) \(\xi\) \(x \in (a, b)\) έτσι ορίζεται \(f(x) - p_0(x) =

\[
\frac{f(\xi)}{(2n)!} \left[p_n(x) \right]^2 \quad (\text{Παραλλαγή Hermita}).
\]

Απο, \(\int_a^b w(x) f(x) \, dx = Qn(f) = \int_a^b w(x) \frac{f(\xi)}{(2n)!} \left[p_n(x) \right]^2 \, dx\)

\[= \frac{f(\xi)}{(2n)!} \int_a^b w(x) \left[p_n(x) \right]^2 \, dx\]

Δομής 6ος Κεφάλαιον:

Δομής 6.3:

\[n \in \mathbb{N}, \lambda_1, ..., \lambda_n > 0, \lambda_1 + \lambda_2 + \ldots + \lambda_n = 1. \]

\[\phi : [a,b] \rightarrow \mathbb{R}, \text{ γωνίας} \]

\[x_1, ..., x_n \in [a,b]. \]

Ν.Δ.Ο. \[\exists \varepsilon \in [a,b], \lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n) = \phi(\varepsilon) \]

Απόδειξη:

\[\lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n) \leq \lambda_1 \max_{x} \phi(x) + \ldots + \lambda_n \max_{x} \phi(x) \]

\[= \frac{\lambda_1 + \ldots + \lambda_n}{\lambda_1 + \ldots + \lambda_n} \max_{x} \phi(x) \]

\[= \lambda_n \max_{x} \phi(x) \]

Απόδειξη να παιρθεί:

\[\lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n) \leq \min_{x} \phi(x) \]

Συμπεράσματα:

\[\min_{x} \phi(x) \leq \lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n) \leq \max_{x} \phi(x) \]

Για \[\varepsilon \in [a,b], \exists \alpha \in [a,b], \phi(\alpha) = \lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n) \]

Δομής 6.4:

\[\phi, x_1, ..., x_n \in \mathbb{R}, \text{ γωνίας} \]

Ν.Δ.Ο. \[\exists \varepsilon \in [a,b], \lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n) \leq \lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n) \phi(\varepsilon) \]

Απόδειξη:

\[\lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n) \leq \lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n) \max_{x} \phi(x) \]

\[\geq \frac{\lambda_1 + \ldots + \lambda_n}{\lambda_1 + \ldots + \lambda_n} \min_{x} \phi(x) \]
\[
\begin{align*}
\Rightarrow \min_{a \leq x \leq b} \phi(x) & \leq \left(\sum_{i=1}^{n} \lambda_i \phi(x_i) + \ldots + \sum_{n=1}^{m} \lambda_n \phi(x_n) \right) = \max_{a \leq x \leq b} \phi(x) \\
& \Rightarrow \phi(\xi)
\end{align*}
\]

Περιπτώσεις: \(\lambda_1, \ldots, \lambda_n \leq 0\)

Τότε, \(\phi(\xi) = 0\)...

\(\lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n) = (-\lambda_1 \phi(x_1) + \ldots - \lambda_n \phi(x_n)) \phi(\xi)\)

\(\Rightarrow \lambda_1 \phi(x_1) + \ldots + \lambda_n \phi(x_n) = (\lambda_1 + \ldots + \lambda_n) \phi(\xi)\)

Abwmen 6.8

\([-1, 1], Q^n_1, Q^m_3\)

\(f(x) = \frac{x^6 - x^2}{30}\)

Ν.Δ.Ο: \(\int_a^b f(x) \, dx \leq Q^m_3(f)\)

\(Q^T_n(f) \leq \)....

Απάντηση:

\(R^{n+1}_T(f) = -b - a \cdot \frac{h^2 f''(\xi)}{12} \quad (6.4)\)

\(R^3(f) = -b - a \cdot \frac{h^4 f^{(4)}(\delta)}{180} \quad (6.9)\)

Ερώτηση:

\(\int_{a}^{b} f(x) \, dx - Q^n_T(f) = -\frac{1}{12} \left(\frac{2^{n-1}}{n-1} \right)^2 f''(\xi) > 0 \quad \xi \in (a, b)\)

\(\Rightarrow f'(x) = \frac{x^5}{5} - 2x\)

\(\Rightarrow f''(x) = x^4 - 2x \leq -1 < 0 \quad \forall x \in [-1, 1]\)
\[
\int x^3 \, dx - Q_m(f) = -\frac{2}{180} \binom{2}{m-1} \int x^3 \, dx - Q_m(f) \\
= -\frac{1}{30} \binom{2}{m-1} f(x)(x) \geq 0
\]

\[f'''' = 4x^3\]
\[f^{(n)}(x) = 12x^2 > 0, \forall x \in [1, 1]
\]

\[\text{Λύση 6.9:} \]
\[\text{[a, b]} \quad Q \]
\[R(f) = \int_a^b f(x) \, dx - Q(f) \]

\[\text{Ν.Δ.] \quad \text{Υπάρχει το πολυώνυμο } Q \text{ τω} \]
\[\exists \text{ } c \in [a, b] \quad \exists \text{ } g \in [a, b] \]
\[R(f) = c_k f^{(k)}(g) \]

\[\text{Απάντηση:} \quad \text{Αν μια σειρά εξελεμένη έχει } Q \text{ } \text{και } c_k = 0, \text{τότε θα έχει έξοδο} \]
\[R(f) = 0, \forall f \in C^k[a, b]. \text{ Ως αποτέλεσμα ο Συνολικός Ολοκλήρωσης θα έχει πολυώνυμο ανοιχτού, έτσι.} \]
\[\text{Εάν η } Q \text{ } \text{έχει για ενα ξημερώνον } k \text{ (με } c_k \neq 0) \]

\[\text{Συμπέρασμα:} \quad \text{Αν } p_{k-1}, \text{ } R(p) = C_k p^{(k)}(c) \quad \text{, αλλάζει } Q \text{ } \text{σε αντιπαράθεση με} \]
\[\text{πολυώνυμα δεν παίζει ρόλος} \text{ στο} \]
\[k - 1. \]
\[p(x) = x^k \]
\[\text{Tότε } R(p) = C_k p^{(k)}(c) \neq 0 \]
Σύμπερα: Αν δώσουμε η θ (με \(x \neq x_k \)), τότε ένα θεωρητικά απλούστερα πολυώνυμο θεωρητικά θεωρικά κ-1, αφού ένα πολυώνυμα βαθμού κ.
Αυτό προφέρουμε αρχείο για είνα έτσι πολύ κ-1.

Αρμόδιο 6.10:

\([-a,a] \)

Ως τόμος των Newton-Cotes με \(n \) γωνίες

\[Q_n(f) = w_0 f(x_0) + \cdots + w_{n-1} f(x_{n-1}) \]

Αν \(x_i \neq x_j \), v.δ.0, \(w_i = w_j \)

(Ο τόμος είναι συμμετρικός)

Αναδεικνύω:

Εκτός \(p \in P_{n-1} \)

\[\int_{-a}^{a} p(x) \, dx = Q_n(p) \]

Για τα πολυώνυμα των Lagrange \(L_i, L_j \)

\[L_i(x) = \prod_{k=0}^{n-1} \frac{x - x_k}{x_i - x_k} \]

\[L_j(x) = \prod_{k=0}^{n-1} \frac{x - x_k}{x_j - x_k} \]

\[\eta \odot \delta \int_{-a}^{a} L_i(x) \, dx = w_i \Delta \quad \text{και} \quad \int_{-a}^{a} L_j(x) \, dx = w_j \]

\(Q_n(L_i) \)

Τώρα,

\[w_i = \int_{-a}^{a} L_i(x) \, dx = \int_{-a}^{a} \prod_{k=0}^{n-1} \frac{x - x_k}{x_i - x_k} \, dx = \int_{-a}^{a} \prod_{k=0}^{n-1} \frac{x + x_k}{x_i - x_k} \, dx \]

\[= \int_{-a}^{a} \prod_{k=0}^{n-1} \left(t + x_k \right) (-dt) = -\int_{-a}^{a} \prod_{k=0}^{n-1} \left(t(x_k - x_j) \right) \, dt \]

\[= \int_{-a}^{a} \prod_{k=0}^{n-1} \left(x_j - x_k \right) \, dt = w_j \]

\(L_n = L_j(\cdot) \)
Άσμα 6.11:

\[[-a, a], \ \text{που} \ \text{πως} \ \text{ως} \ \text{Newton - Cotes} \]

ΝΔC: \(\Phi: [-a, a] \rightarrow \mathbb{R} \) περιττά (οθονοπροσαρμογή)

\[
\int_{a}^{\phi(x)} d\phi = \Phi_n(\phi)
\]

"Ο εκατομμυρίων λογαριασμών ενδεχομένως αρνητικό, οριζόμενο η οθονοπροσαρμογή να τον επιτύχει, που το να είναι περίπτωση.

\[
\int_{a}^{\phi(x)} d\phi = \int_{a}^{\phi(x)} \phi(t) (-dt) = \int_{a}^{\phi(x)} \phi(t) dt
\]

\[
= -\int_{a}^{\phi(x)} \phi(-t) dt = \int_{a}^{\phi(x)} \phi(-t) dt = -\int_{a}^{\phi(x)} \phi(t) dt
\]

\[
\int_{a}^{\phi(x)} d\phi = 0.
\]

προς υ.δ.ο. και το \(\Phi_n(\phi) = 0. \)

\\· \text{Όπως} \ οι \ \text{νόμιμοι} \ \chi_1, \ldots, \chi_n \ \text{του} \ \Phi_n, \ -a = \chi_1 < \chi_2 < \ldots < \chi_n = a, \]

\text{είναι} \ \text{αλήθως} \ \text{αισθητό} \ \text{και} \ \text{αισθητό} \ \text{υγόμενο} \ \text{και} \ \text{και} \ \text{ως} \ \text{αποτέλεσμα} \ \text{αυτών,}

\text{όπως} \ \phi(a) = 0,

\[
\Phi_n(\phi) = \frac{1}{2^n} \ \sum_{i=1}^{n} \phi(\chi_i) + \frac{\phi(-\chi_i)}{2^n} = 0.
\]

\text{Απο,} \ \int_{a}^{\phi(x)} d\phi = \Phi_n(\phi). \]

\[\\]
Theorem 6.13:
\[Q(f) = (b-a) f(a) \]
\[R(f) = \int_{a}^{b} f(x) \, dx - Q(f) \]

(a) \(\forall p \in \mathbb{R} \), \(R(p) = 0 \)
- \(p(x) = c \)
- \(R(p) = \int_{a}^{b} c \, dx = Q(p) = c(b-a) - c(b-a) = 0 \)

(b) \(\not\exists f \in C^{1}([a,b]) \) \(\exists \xi \in (a,b) \)
\[R(f) = \frac{(b-a)^2}{2} \cdot f'(\xi) \]
- \(R(f) = \int_{a}^{b} f(x) \, dx - (b-a) f(a) \)
- \(= \int_{a}^{b} [f(x) - f(a)] \, dx \)
- \(= \int_{a}^{b} (x-a) f'(\xi(x)) \, dx \)
- \(= f'(\xi) \int_{a}^{b} (x-a) \, dx \)
- \(= f'(\xi) \left[\frac{(x-a)^2}{2} \right]_{x=a}^{x=b} \)
- \(= \frac{(b-a)^2}{2} f'(\xi) \)

Taylor's formula:
\[f(x) = f(a) + (x-a) f'(\xi) \]
\(\int_a^b \frac{f(x)}{n} \, dx = \frac{1}{2} \int_{\alpha}^{\beta} f(x) \, dx - h \sum_{i=0}^{n-1} f(x_i) = b - a \, h \, f'(\xi) \)

\[\int_a^b f(x) \, dx - h \sum_{i=0}^{n-1} f(x_i) = \frac{1}{2} \int_{\alpha}^{\beta} f(x) \, dx - h \sum_{i=0}^{n-1} f(x_i) \]

\[= \frac{1}{2} \left[\int_{\alpha}^{\beta} f(x) \, dx - h \sum_{i=0}^{n-1} f(x_i) \right] = \frac{1}{2} \left[\int_{\alpha}^{\beta} f(x) \, dx - (x_{n-1} - x_0) f(x) \right] \]

\[= \sum_{i=0}^{n-1} \left(x_{n-1} - x_i \right)^2 \frac{f'(\xi_i)}{2} \quad \text{where} \quad \xi_i \in (x_i, x_{n-1}) \]

\[= \frac{h^2}{2} \sum_{i=0}^{n-1} f'(\xi_i) = \frac{h^2}{2} m \cdot \frac{1}{m} \sum_{i=0}^{n-1} f'(\xi_i) = \frac{m \, h^2}{2} \frac{f'(\xi)}{2} = \frac{m \, h \, h \, f'(\xi)}{2} \]

Theorem 6.14:

\[Q(p) = (b-a) \, f\left(\frac{a+b}{2} \right) \]

\[R(p) = \frac{b-a \, f'(\xi)}{2} \]

\(\text{Consider polynomial} \)

\[R(p) = \int_a^b \frac{f(x)}{n} \, dx - (b-a) \, f\left(\frac{a+b}{2} \right) \]

\(\text{Then} \)

\[\int_a^b f(x) \, dx = \int_a^b \left(y + \delta \right) \, dx = \frac{b^2-a^2}{2} + \delta \]

\[Q(p) = (b-a) \left[\frac{y}{2} + \delta \right] \]

\[= \frac{b^2-a^2}{2} + \delta (b-a) \]

\(\text{Hence,} \) \(\int_a^b f(x) \, dx = Q(p) \)
\((6) \) \(f \in C^2 [a, b] \) \(f' \in C[a, b] \) \(f'' \in C[a, b] \), \(R(f) = \frac{(b-a)^3}{24} f''(x) \)

- \(R(f) = \int_a^b f(x) \, dx - (b-a)f \left(\frac{a+b}{2} \right) \)

\[\int_a^b f \left(\frac{a+b}{2} \right) \, dx \]

- \(= \int_a^b \left[f(x) - f \left(\frac{a+b}{2} \right) \right] \, dx \)

\(\text{Taylor: } f(x) = f \left(\frac{a+b}{2} \right) + (x - \frac{a+b}{2}) f' \left(\frac{a+b}{2} \right) + \frac{(x - \frac{a+b}{2})^2}{2} f''(\xi(x)) \)

\(\xi \in [a, b] \) because \(a+b \) was \(x \) in \(\xi(x) \).

- Ended up:

\[R(f) = \int_a^b \left(x - \frac{a+b}{2} \right) f' \left(\frac{a+b}{2} \right) \, dx + \int_a^b \frac{(x - \frac{a+b}{2})^2}{2} f''(\xi(x)) \, dx \]

\[= \frac{1}{2} \int_a^b \frac{(x - \frac{a+b}{2})^2}{2} f''(\xi(x)) \, dx \]

\[= \frac{1}{2} f''(\xi) \int_a^b \left(x - \frac{a+b}{2} \right)^2 \, dx = \frac{1}{2} f''(\xi) \left[\frac{(x - \frac{a+b}{2})^3}{3} \right]_{x=b}^{x=a} \]

\[= \frac{1}{2} f''(\xi) \left(\frac{(b-a)^3}{2} - \frac{(a-a+b)^3}{2} \right) \]

\[= \frac{1}{6} f''(\xi) \cdot 2 \cdot \frac{(b-a)^3}{2} = \frac{1}{6} f''(\xi) \cdot \frac{(b-a)^3}{2} \]

\[= \frac{(b-a)^3}{24} f''(\xi) \]
2ος τετράγωνο

\(p \in P_1 \)

\[
P'(a+b) = \frac{f'(a+b)}{2}
\]

\[
\int_a^b f(x) \, dx = \left[\frac{f(a+b)}{2} - \frac{p(a+b)}{2} \right] \Delta x
\]

\[
\Delta x = \frac{b-a}{n}
\]

\[
f(a) - p(a) = \left[f\left(\frac{a+b}{2} \right) - p\left(\frac{a+b}{2} \right) \right]
\]

\[
+ \left(x - \frac{a+b}{2} \right)^2 \left[f''(\xi(x)) - p''(\xi(x)) \right] = 0
\]

\[
\text{L1 ανεξαρτώτες υποκαταστάσεις}
\]

3ος τετράγωνο

Παραπάνω τα εκφράσεις παραβιάζουν. Η συνεχεία:

\(f(x) - p(x) = \frac{f''(\xi(x))}{2} \left(x - \frac{a+b}{2} \right)^2 \)

\(\text{Επομένως,} \)

\[
R(f) = \int_a^b \frac{f''(\xi(x))}{2} \left(x - \frac{a+b}{2} \right)^2 \, dx
\]

\(n \in \mathbb{N} \) \(\implies \) \(h = \frac{b-a}{n} \), \(x_i = a + ih \), \(i = 0, \ldots, m \)

\(\text{ΝΔΔ} \) \(f \in C^2([a,b]) \) \(\) \(\) \(\text{και} \) \(\xi \in (a,b) \) \(\text{κω.} \)

\[
\int_a^b f(x) \, dx - h \sum_{i=0}^{n-1} \left[f\left(\frac{x_i + h}{2} \right) \right] = \frac{b-a}{24} h^2 f''(\xi)
\]

\(x_i + \frac{h}{2} \)
\[\int_a^b f(x) \, dx = h \sum_{i=0}^{n-1} f \left(x_i + \frac{h}{2} \right) \]

\[= \sum_{i=0}^{n-1} \left[\int_{x_i}^{x_{i+1}} f(x) \, dx - h f \left(\frac{x_i + x_{i+1}}{2} \right) \right] \]

\[= \sum_{i=0}^{n-1} \left[\int_{x_i}^{x_{i+1}} f(x) \, dx - \frac{(x_{i+1} - x_i)^3}{24} f''(\xi_i) \right] \quad \text{where } \xi_i \in (x_i, x_{i+1}) \]

\[= \frac{h^3}{24} \sum_{i=0}^{n-1} f''(\xi_i) = \frac{h^3}{24} \sum_{i=0}^{n-1} \frac{m}{n} f''(\xi_i) = f''(\xi) \]

\[= \frac{n}{a^4} f''(\xi) - \frac{b - a}{2} \frac{h^2}{24} f''(\xi) \]

\[\text{Theorem 6.15:} \]
\[Q(f) = (b - a) f(a) + \frac{(b - a)^2}{2} f'(a) \]

\[p(x) = f(a) + (x - a) f'(a) \]
\[p(x) \text{ is the Taylor polynomial of } f \text{ up to degree } 1 \text{ at } a. \]

\[\int_a^b p(x) \, dx = (b - a) f(a) + \frac{(b - a)^2}{2} f'(a) \]

\[= Q(f) \]

\[R(f) = \int_a^b f(x) \, dx - Q(f) \]
(a) \(p \in P_1, \quad R(p) = 0 \)

\[
P(x) = qx + 5
\]

\[
\int_a^b P(x) \, dx = \frac{b^2 - a^2}{2} + 5(b - a)
\]

\[
Q(p) = (b-a) P(a) + \frac{(b-a)^2}{2} P'(a) = \int_a^b P(x) \, dx
\]

(b) \(f \in C^2 [a,b] \quad \text{and} \quad x \in (a,b) \)

\[
R(f) = \frac{(b-a)^3}{6} f''(x)
\]

\[
R(f) = \int_a^b f(x) \, dx - Q(f) = \int_a^b [f(x) - p(x)] \, dx
\]

Taylor:

\[
f(x) = f(a) + (x-a)p'(a) + \frac{(x-a)^2}{2} f''(\xi(x))
\]

\[
x = \int_a^b \frac{(x-a)^2}{2} f''(\xi(x)) \, dx = \frac{1}{2} \int_{\xi_0}^{\xi(b)} \frac{(x-a)^2}{2} f''(\xi(x)) \, dx
\]

\[
= \frac{1}{2} f''(\xi) \int_a^b (x-a)^2 \, dx = \frac{(b-a)^3}{6} f''(\xi)
\]

(c) \(m \in \mathbb{N}, \quad h = \frac{b-a}{n}, \quad x_i = a + ih, \quad i = 0, \ldots, n \)

\[
\sum_{i=0}^{n-1} \left[hf(x_i) + \frac{h^2}{2} f'(x_i) \right] = \frac{b-a}{6} h^2 f''(\xi)
\]
Answer: \[\int_a^b f(x) \, dx - \sum_{i=0}^{n-1} \left[h f(x_i) + \frac{h^2 f'(x_i)}{2} \right] = \]

\[\sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f(x) \, dx - \frac{h^3}{6} \sum_{i=0}^{n-1} f''(\xi_i) = \frac{b-a}{6} \cdot h^2 f''(\xi) \]