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LINEARLY IMPLICIT METHODS

FOR NONLINEAR PARABOLIC EQUATIONS

GEORGIOS AKRIVIS⋆ AND MICHEL CROUZEIX

Abstract. We construct and analyze combinations of rational implicit and
explicit multistep methods for nonlinear parabolic equations. The resulting
schemes are linearly implicit and include as particular cases implicit–explicit
multistep schemes as well as the combination of implicit Runge–Kutta schemes
and extrapolation. An optimal condition for the stability constant is derived
under which the schemes are locally stable. We establish optimal order error
estimates.

1. Introduction

Let T > 0, u0 ∈ H, and consider the initial value problem of seeking u : [0, T ] →
D(A) satisfying

(1.1)

{

u′(t) +Au(t) = B(t, u(t)), 0 < t < T,

u(0) = u0,

with A a positive definite, selfadjoint, linear operator on a Hilbert space (H, (·, ·))
with domain D(A) dense in H, and B(t, ·) : D(A) → H, t ∈ [0, T ], a (possibly)
nonlinear operator. We assume that (1.1) possesses a smooth solution.

The schemes we will consider in this paper are expressed in terms of bounded
rational functions ρi, σi : [0,∞] → R, i = 0, . . . , q, with ρq = 1 and σq = 0; we
assume that the functions σi vanish at infinity, σi(∞) = 0. The implicit scheme
described by the functions ρi, i = 0, . . . , q, will be used for the discretization of the
linear part and the explicit scheme described by the functions σi, i = 0, . . . , q − 1,
for the discretization of the nonlinear part of the equation.

Let N ∈ N, k := T/N be the time step, and tn := nk, n = 0, . . . , N. We
recursively define a sequence of approximations Um to um := u(tm) by

(1.2)

q
∑

i=0

ρi(kA)U
n+i = k

q−1
∑

i=0

σi(kA)B(tn+i, Un+i),

assuming that starting approximations U0, . . . , U q−1 are given.
Let | · | denote the norm of H, and introduce in V, V := D(A1/2), the norm ‖ · ‖

by ‖v‖ := |A1/2v|. We identify H with its dual, and denote by V ′ the dual of V ,
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and by ‖ · ‖⋆ the dual norm on V ′. For stability purposes, we assume that B(t, ·)
can be extended to an operator from V into V ′, and an estimate of the form

(1.3) ‖B(t, v)− B(t, w)‖⋆ ≤ λ‖v − w‖+ µ|v − w| ∀v, w ∈ Tu

holds in a tube Tu, Tu := {v ∈ V : mint ‖u(t) − v‖ ≤ 1}, around the solution u,
uniformly in t, with the stability constant λ < 1 and a constant µ.

Stability assumptions. For x ∈ [0,∞] we introduce the polynomials ρ(x, ·) and
σ(x, ·) by

ρ(x, ζ) :=

q
∑

i=0

ρi(x)ζ
i, σ(x, ζ) :=

q−1
∑

i=0

σi(x)ζ
i.

We order the roots ζj(x), j = 1, . . . , q, of ρ(x, ·) in such a way that the functions
ζj are continuous in [0,∞] and the roots ξj := ζj(0), j = 1, . . . , s, satisfy |ξj | = 1;
these unimodular roots are the principal roots of ρ(0, ·) and the complex numbers

λj :=
∂1ρ(0,ξj)

ξj ∂2ρ(0,ξj)
(with ∂1 denoting differentiation with respect to the first variable)

are the growth factors of ξj . We assume that the method described by the rational
functions ρ0, . . . , ρq is strongly A(0)−stable in the sense that for all 0 < x ≤ ∞ and
for all j = 1, . . . , q, there holds |ζj(x)| < 1, and the principal roots of ρ(0, ·) are
simple and their growth factors have positive real parts, Reλj > 0, j = 1, . . . , s. This
definition is motivated by the definition of the strong A(0)−stability for multistep
schemes. Depending on the particular scheme we will use for discretizing (1.1)
in time, it will be essential for our analysis that λ be appropriately small. More
precisely, with

(1.4) K(ρ,σ) := sup
x>0

max
ζ∈S1

∣

∣

∣

xσ(x, ζ)

ρ(x, ζ)

∣

∣

∣
,

we will assume

(1.5) λ < 1/K(ρ,σ);

here S1 denotes the unit circle in the complex plane, S1 := {z ∈ C : |z| = 1}.
Under our hypotheses, K(ρ,σ) is finite. We will show local stability of the scheme
(1.2) provided the stability constant λ satisfies (1.5). Let us also note that for any
constant λ exceeding the right-hand side of (1.5) we will construct examples of
problems of the form (1.1) satisfying (1.3) for which the scheme (1.2) is unstable,
cf. Remark 2.1. Concerning the tube Tu on the other hand, we emphasize that it is
defined in terms of the norm of V for concreteness. The analysis may be modified
to yield convergence under conditions analogous to (1.3) for v and w belonging to
tubes defined in terms of other norms, not necessarily the same for both arguments,
see [2].

Consistency assumptions. Let the consistency error En, n = 0, . . . , N − q, of the
scheme (1.2) for the solution u of (1.1) be given by

(1.6) k(I + kA)−1En =

q
∑

i=0

ρi(kA)u
n+i − k

q−1
∑

i=0

σi(kA)B(tn+i, un+i).
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Let p ≥ 1, and functions ϕℓ : [0,∞) → R, ℓ = 0, . . . , p, be defined by

ϕℓ(x) :=

q
∑

i=0

[

iℓρi(x) − (ℓiℓ−1 + xiℓ)σi(x)
]

, ℓ = 0, . . . , p− 1,(1.7)

ϕp(x) :=

q
∑

i=0

[

ipρi(x)− pip−1σi(x)
]

.(1.8)

Similar functions are used in the analysis of single step schemes for inhomogeneous
parabolic equations in [3], see also [11]. Applying our scheme to initial value prob-
lems for linear scalar ordinary differential equations of the form

(1.9)

{

u′ + au = f, 0 < t < T,

u(0) = u0,

with a positive constant a and f ∈ Cp[0, T ], we see that the scheme is of order p,
i.e., the consistency error can be estimated in the form |En| ≤ Ckp with a constant
C depending on the solution u, for any smooth function f, if and only if

(Cp) ϕℓ(x) = O(xp+1−ℓ) as x→ 0+, ℓ = 0, . . . , p;

the only if part is seen by taking u(t) = (t− tn)ℓ and the corresponding f, and the
if via Taylor expansion. In particular, from ϕ0(0) = 0 we conclude

(1.10) ρ0(0) + · · ·+ ρq(0) = 0.

We say that the polynomial order of the scheme is p̃ ≤ p, or that the scheme is
strictly accurate of order p̃, if it integrates (1.9) exactly, whenever the exact solution
u is a polynomial of degree at most p̃−1. It is easily seen that the polynomial order
of our scheme is p̃ if and only if

(C̃p̃) ϕℓ = 0, ℓ = 0, . . . , p̃− 1.

To motivate the definition of these functions and to explain the condition for the
polynomial accuracy, let us introduce the notation En(k, a, u) by

En(k, a, u) =

q
∑

i=0

ρi(ka)u(t
n+i)− k

q
∑

i=0

σi(ka)
(

u′(tn+i) + au(tn+i)
)

;

then we can see that

ϕℓ(x) = E0(1, x, vℓ) with vℓ(t) := tℓ, for ℓ = 0, . . . , p− 1,

i.e., the polynomial order of the scheme (1.2) is p̃ ≤ p if and only if (C̃p̃) is satisfied.
Let us also note for later use that, with vℓ,q(t) := (t − q + 1)ℓ and ϕℓ,q(x) =

E0(1, x, vℓ,p), (C̃p̃) is clearly equivalent to

(C̃′
p̃) ϕℓ,q = 0, ℓ = 0, . . . , p̃− 1.

To implement (1.2), for each linear factor in the denominator of the rational
functions ρi and σi, i = 0, . . . , q, we need to solve one linear problem at every time
level. The linear problems reduce to linear systems when we discretize also in space.
Therefore, from a computational point of view it would be convenient to choose the
rational functions σi such that their denominators are all the same as that of the
functions ρj , because for each common linear factor of the denominators we have

to solve one linear problem. One way of achieving this, as well as condition (C̃p), is
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to first choose ρ̂0, . . . , ρ̂q with ρ̂q = 1 such that
∑q

i=0 i
j ρ̂i(x) = O(xp+1−j) as x →

0+, j = 0, . . . , p, i.e.,
q

∑

i=0

e−ixρ̂i(x) = O(xp+1) as x→ 0+,

and the corresponding scheme be strongly A(0)−stable, and distinguish two cases:
for q ≥ p we set ρi := ρ̂i, i = 0, . . . , q, σi := 0, i = p, . . . , q, and for p > q we set
ρi := 0, i = 0, . . . , p − q − 1, ρp−q+i := ρ̂i, i = 0, . . . , q, and then solve the linear
system

(1.11)

p−1
∑

i=0

iℓσi(x) = − ℓ!

(−x)ℓ+1

ℓ
∑

j=0

(−x)j
j!

max(p,q)
∑

i=0

ijρi(x), ℓ = 0, . . . , p− 1,

to determine the rational functions σi, i = 0, . . . , p − 1. This system is obviously
uniquely solvable and the rational functions σi are linear combinations of the right-
hand sides of (1.11). Hence, the only singularities of the σi are those of the ρj (which
are the only singularities of the right-hand sides of (1.11)), i.e., the denominator of
all σi is the least common multiple of the denominators of the functions ρ0, . . . , ρq.
Also, since the functions ρi are bounded, the right-hand sides of (1.11) are small
for large x, i.e., the numerator of σi is of lower degree than its denominator; thus
σi(∞) = 0.

Assuming that the order and the polynomial order of our scheme is p, and the
solution u of (1.1) sufficiently smooth, we shall estimate the consistency error in
the form

(1.12) max
0≤n≤N−q

‖En‖⋆ ≤ Ckp.

In our main result, we shall derive optimal order error estimates in | · |, assuming
(1.5), that the order of our scheme is p and its polynomial order p − 1, and that
appropriate starting values U0, . . . , U q−1 are given.

Let us note that the implicit–explicit multistep schemes analyzed in [1] and [2]
are particular cases of the schemes considered in this paper. Indeed, if we let (α, β)
be a strongly A(0)−stable q−step scheme and (α, γ) be an explicit q−step scheme,
characterized by three polynomials α, β and γ,

α(ζ) =

q
∑

i=0

αiζ
i , β(ζ) =

q
∑

i=0

βiζ
i , γ(ζ) =

q−1
∑

i=0

γiζ
i ,

then the corresponding implicit–explicit (α, β, γ) scheme for (1.1) is

(1.13)

q
∑

i=0

(αiI + kβiA)U
n+i = k

q−1
∑

i=0

γiB(tn+i, Un+i).

Letting now ρi(x) := (αi + βix)/(αq + βqx), i = 0, . . . , q, and σi(x) := γi/(αq +
βqx), i = 0, . . . , q− 1, it is easily seen that the scheme (1.2) reduces to (1.13). Also,
the stability and consistency conditions in this paper coincide in this case with
those of [2].

Keeling, [5], has constructed and analyzed combinations of a strongly A0−stable
implicit Runge–Kutta method (IRKM) and an extrapolation scheme for the dis-
cretization of semilinear parabolic equations. These schemes, even for stronger
nonlinearities, are included in the class considered in this paper, see Section 7.
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The analysis in this paper is based on the one in [2] and concerns a much wider
class of methods. We also note that ideas from [3] are used in our analysis in various
places.

Roughly speaking, our methods can be viewed as an extension of the Rosenbrock
methods based on an inexact Jacobian; the motivation is the same as in [10]. Other
classes of linearly implicit methods are constructed in [8] and [6]; they correspond
to the use of approximate Jacobians. Clearly the methods based on approximate
Jacobians have better stability properties and are easier to analyze. An advantage
of our methods is that they avoid recomputation of these Jacobians.

An outline of the paper is as follows: Sections 2 and 3 are devoted to the local
stability and consistency, respectively, of the linearly implicit scheme. Optimal
order error estimates are derived in Section 4. Section 5 is devoted to error estimates
for fully discrete schemes. The computation of appropriate starting approximations
is addressed in Section 6. In Section 7 we shall show that Keeling’s schemes can be
written in the form (1.2) and satisfy our hypotheses.

2. Local stability

In this section we show local stability of the scheme (1.2) under the condition
(1.5). We will also see that if λ in (1.3) exceeds the right-hand side of (1.5) then
for an appropriate choice of A and B the scheme (1.2) is unstable.

Let Um, V m ∈ Tu,m = 0, . . . , N, satisfy (1.2) and

(2.1)

q
∑

i=0

ρi(kA)V
n+i = k

q−1
∑

i=0

σi(kA)B(tn+i, V n+i),

n = 0, . . . , N−q, respectively. Let ϑm := Um−Vm, bm := B(tm, Um)−B(tm, V m),
m = 0, . . . , N. Subtracting (2.1) from (1.2) we obtain

(2.2)

q
∑

i=0

ρi(kA)ϑ
n+i = k

q−1
∑

i=0

σi(kA)b
n+i, n = 0, . . . , N − q.

The rational functions e(ℓ, ·) and f(ℓ, ·) defined through the expansions

(2.3)
(

ρ(x, ζ)
)−1

=
∑

ℓ∈Z

e(ℓ, x) ζ−ℓ,
(

ρ(x, ζ)
)−1

σ(x, ζ) =
∑

ℓ∈Z

f(ℓ, x) ζ−ℓ

will play a crucial role in the stability analysis. Since, for all x ∈ (0,∞], the modulus
of all roots of ρ(x, ·) is less than one, expansions (2.3) are valid for all ζ in the exterior
of the unit circle, |ζ| ≥ 1, and we have e(ℓ, ·) = 0 for ℓ ≤ q − 1 and f(ℓ, ·) = 0 for
ℓ ≤ 0. We also note that the only poles of these rational functions are the poles of
ρi, σi, i = 0, . . . , q, and that they vanish at ∞, e(ℓ,∞) = f(ℓ,∞) = 0. Thus, we can

define e(ℓ, kA) and f(ℓ, kA). Let ϑ01 = 0, ϑn1 = k
∑n−1

ℓ=0 f(n − ℓ, kA)bℓ. Then, in
view of (2.3), we have

(2.4)

q
∑

i=0

ρi(kA)ϑ
n+i
1 = k

q−1
∑

i=0

σi(kA)b
n+i, n = 0, . . . , N − q.

Further, let ϑn2 := ϑn − ϑn1 . From (2.2) and (2.4) we immediately obtain

(2.5)

q
∑

i=0

ρi(kA)ϑ
n+i
2 = 0, n = 0, . . . , N − q.
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With gj(n, x) =

q
∑

ℓ=j+1

e(n+ℓ−j, x)ρℓ(x), it is easily seen that ϑn2 =

q−1
∑

j=0

gj(n, kA)ϑ
j
2.

An adaptation of the techniques used in [7], see also [9], based on Parseval’s
identity allows us to prove the following result.

Lemma 2.1. There exist positive constants K2, N1 and N2, depending only on

ρi, σi, i = 0, . . . , q, such that for any n, 0 ≤ n ≤ N, the following estimates are

valid

k

n
∑

ℓ=0

‖ϑℓ1‖2 ≤ K2
(ρ,σ) k

n−1
∑

ℓ=0

‖bℓ‖2⋆,(2.6i)

|ϑn1 |2 ≤ K2 k
n−1
∑

ℓ=0

‖bℓ‖2⋆,(2.6ii)

k

n
∑

ℓ=q

‖ϑℓ2‖2 ≤ qN1

q−1
∑

j=0

(|ϑj2|2 + k‖ϑj2‖2),(2.7i)

|ϑn2 | ≤ N2

q−1
∑

j=0

|ϑj2|.(2.7ii)

In particular, with k1(x, ζ) =
xσ(x,ζ)
ρ(x,ζ) , N2 = max0≤j≤q−1 supn≥q supx>0 |gj(n, x)|,

K2 = sup
x>0

∫ 1

0

| 1√
x
k1(x, e

−2iπt)|2dt, N1 = max
0≤j≤q−1

sup
x>0

∫ 1

0

x |δj(e−2iπt, x)|2
1 + x

dt,

where δj(ζ, x) = −∑j
ℓ=0 ρℓ(x)ζ

ℓ/ρ(x, ζ).

Proof. The proof that K(ρ,σ), K2, N1, N2 are finite is similar to analogous results

in [2] and is omitted. It suffices to show the estimates for bℓ = 0 for ℓ ≥ n, and n

replaced by ∞ on the right-hand sides. We introduce b̂, ϑ̂1 and ϑ̂2 by

b̂(t) =

∞
∑

ℓ=0

bℓ e2iπℓt, ϑ̂1(t) =

∞
∑

ℓ=0

ϑℓ1 e2iπℓt, ϑ̂2(t) =

∞
∑

ℓ=q

ϑℓ2 e2iπℓt;

from the definition of ϑ1 and (2.3), we deduce

ϑ̂1(t) = k
(

ρ(kA, e−2iπt)
)−1

σ(kA, e−2iπt) b̂(t).

Therefore, we have ‖ϑ̂1(t)‖ ≤ K(ρ,σ)‖b̂(t)‖⋆, and, using Parseval’s identity,

∞
∑

ℓ=0

‖ϑℓ1‖2 =

∫ 1

0

‖ϑ̂1(t)‖2 dt ≤ K2
(ρ,σ)

∫ 1

0

‖b̂(t)‖2⋆ dt = K2
(ρ,σ)

∞
∑

ℓ=0

‖bℓ‖2⋆,

i.e. (2.6i) holds. For the estimate (2.6ii), we use the relation

ϑn1 =

∫ 1

0

e−2iπnt ϑ̂1(t) dt =

∫ 1

0

e−2iπnt A−1k1(kA, e
−2iπt) b̂(t) dt,

and obtain

|ϑn1 |2 =

∫ 1

0

e−2iπnt (b̂(t), A−1k1(kA, e
2iπt)ϑn1 ) dt,
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and thus

|ϑn1 |2 ≤ (

∫ 1

0

‖b̂(t)‖2⋆ dt)1/2(
∫ 1

0

‖A−1k1(kA, e
2iπt)ϑn1‖2 dt)1/2.

Introducing the operator A by

A =

∫ 1

0

(kA)−1 k1(kA, e
−2iπt) k1(kA, e

2iπt) dt,

we then have
∫ 1

0

‖A−1k1(kA, e
2iπt)ϑn1 ‖2 dt = k(Aϑn1 , ϑn1 ) ≤ k‖A‖L(H)|ϑn1 |2.

Since A is selfadjoint we have

‖A‖L(H) ≤ sup
ν∈Sp(A)

∫ 1

0

|k1(kν, e−2iπt)|2
kν

dt ≤ K2

with Sp(A) denoting the spectrum of A, and conclude |ϑn1 |2 ≤ kK2

∫ 1

0 ‖b̂(t)‖2⋆ dt
and (2.6ii) follows. In order to prove (2.7i), we first note that, in view of (2.3), an
easy calculation shows that

ϑ̂2(t) =

q−1
∑

j=0

δj(e
−2iπt, kA)ϑj2e

2iπjt,

cf. [2]. Further, as in the proof of (2.6ii),

k

∫ 1

0

‖δj(e−2iπt, kA)ϑj2e
2iπjt‖2 dt ≤ N1 (|ϑj2|2 + k‖ϑj2‖2),

and, therefore,

k

∫ 1

0

‖ϑ̂2(t)‖2 dt ≤ qN1

q−1
∑

j=0

(|ϑj2|2 + k‖ϑj2‖2),

which immediately yields (2.7i). The estimate (2.7ii) is obvious. �

In Theorem 2.1 we will estimate ϑn in terms of ϑ0, . . . , ϑq−1. Part of ϑn, namely
ϑn2 , will be estimated in terms of ϑ0, . . . , ϑq−1 in the following Lemma.

Lemma 2.2. There exists a constant C such that, for n = 0, . . . , N,

(2.8) |ϑn2 |2 + k

n
∑

ℓ=0

‖ϑℓ2‖2 ≤ C

q−1
∑

j=0

(|ϑj |2 + k‖ϑj‖2).

Proof. Obviously, we have ϑj2 = ϑj − k
∑j−1

ℓ=0 f(j− ℓ, kA)bℓ, j = 0, . . . , q− 1. There-
fore

|ϑj2| ≤ |ϑj |+
√
k

j−1
∑

ℓ=0

mj−ℓ‖bℓ‖⋆, and ‖ϑj2‖ ≤ ‖ϑj‖+
j−1
∑

ℓ=0

nj−ℓ‖bℓ‖⋆,

with mℓ = supx>0 |
√
xf(ℓ, x)| and nℓ = supx>0 |xf(ℓ, x)|. Then (2.8) follows from

(2.7) and (1.3). �

The main result in this section, the local stability of the scheme (1.2), is given
in the following theorem:
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Theorem 2.1. Let Um, V m ∈ Tu satisfy (1.2) and (2.1), respectively. Then, with

ϑm = Um − V m, we have the local stability estimate

(2.9) |ϑn|2 + k

n
∑

ℓ=0

‖ϑℓ‖2 ≤ Cecµ
2tn

q−1
∑

j=0

(

|ϑj |2 + k‖ϑj‖2
)

,

n = q − 1, . . . , N, with constants C and c independent of Um, V m and k.

Proof. In view of (1.3) and Minkowski’s inequality we have

(

k

n−1
∑

ℓ=0

‖bℓ‖2⋆
)1/2

≤
(

k

n−1
∑

ℓ=0

(λ‖ϑℓ‖+ µ|ϑℓ|)2
)1/2

≤ λ an−1 + µ dn−1 + en−1

with

an =
(

k
n
∑

ℓ=0

‖ϑℓ1‖2
)1/2

, dn =
(

k
n
∑

ℓ=0

|ϑℓ1|2
)1/2

, and en =
(

k
n
∑

ℓ=0

(λ‖ϑℓ2‖+µ|ϑℓ2|)2
)1/2

.

Thus, (2.6i) and (2.6ii) yield, for n ≥ 1,

an ≤ K(ρ,σ)(λ an−1 + µ dn−1 + en−1) ≤ K(ρ,σ)(λ an + µ dn−1 + en−1),

and
d2n − d2n−1

k
≤ K2(λ an + µ dn−1 + en−1)

2;

therefore, in view of (1.5), we have λK(ρ,σ) < 1 and

d2n − d2n−1

k
≤ K2

(µdn−1 + en−1

1− λK(ρ,σ)

)2 ≤ 2c(µ2d2n−1 + e2n−1),

with c = K2

(1−λK(ρ,σ))2
. Hence, we deduce (note that d0 = 0)

d2n ≤ 2ck

n−1
∑

ℓ=0

e2cµ
2(tn−1−tℓ)e2ℓ ≤ 2ck

e2cµ
2tn − 1

e2cµ2k − 1
e2n−1 ≤ e2cµ

2tn − 1

µ2
e2n−1.

Thus, we have µdn ≤ ecµ
2tnen−1 and

(2.10i) an ≤ K(ρ,σ)

1−K(ρ,σ)λ
(1 + ecµ

2tn)en−1,

(2.10ii) |ϑn1 | ≤
√
c (µdn−1 + en−1) ≤

√
c (1 + ecµ

2tn)en−1.

Now, (2.10) and (2.8) yield

(2.11) |ϑn1 |2 + k
n
∑

ℓ=0

‖ϑℓ1‖2 ≤ Cecµ
2tn

q−1
∑

j=0

(

|ϑj |2 + k‖ϑj‖2
)

.

From (2.11) and (2.8) we easily obtain (2.9) and the proof is complete. �

Remark 2.1. The condition (1.5) is sharp in the sense that, for any constant λ ex-
ceeding the right-hand side of (1.5), we can give examples of operators A and B sat-
isfying (1.3) for which the scheme (1.2) is unstable. Indeed, assume that λK(ρ,σ) >
1. In view of this hypothesis and the fact that lim|ζ|→∞[xσ(x, ζ)/ρ(x, ζ)] = 0, there
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exists a positive x and a ζ ∈ C with |ζ| > 1 satisfying |λxσ(x, ζ)/ρ(x, ζ)| = 1;
therefore, there exists a Θ ∈ R such that

q
∑

i=0

ρi(x)ζ
i = λxeiΘ

q−1
∑

i=0

σi(x)ζ
i.

Choosing then B(t, u) := λeiΘAu, it is easily seen that the scheme is unstable, see
Remark 2.3 in [2].

3. Consistency

In this section we will derive an optimal order estimate for the consistency error
En, see (3.5) below, assuming that the order and the polynomial order of the scheme
is p.We will also derive some preliminary consistency estimates for polynomial order
p− 1 which will be used in Section 4 to establish optimal order error estimates.

Letting

En
1 :=

p
∑

ℓ=0

kℓ

ℓ!
ϕℓ(kA)u

(ℓ)(tn)(3.1a)

En
2 :=

1

p!

q
∑

i=0

ρi(kA)

∫ tn+i

tn
(tn+i − s)pu(p+1)(s)ds(3.1b)

En
3 := − k

(p− 1)!

q−1
∑

i=0

σi(kA)

∫ tn+i

tn
(tn+i − s)p−1

(

u(p+1) +Au(p)
)

(s)ds,(3.1c)

and Taylor expanding the right-hand side of (1.6) we easily see that

(3.2) k(I + kA)−1En = En
1 + En

2 + En
3 .

Assume now that the order and the polynomial order of our scheme is p, see (C̃p̃).

Then, in view of (3.1a), En
1 = kpϕp(kA)u

(p)(tn)/p!, i.e.,

(3.3) (I + kA)En
1 =

kp+1

p!

[

(kA)−1ϕp(kA) + ϕp(kA)
]

Au(p)(tn).

Using now the fact that ϕp and ϕ̃p, ϕ̃p(x) := ϕp(x)/x, are bounded, we easily
conclude

(3.4a) ‖(I + kA)En
1 ‖⋆ ≤ Ckp+1‖u(p)(tn)‖.

Similarly, using the boundedness of ρi, σi and σ̂i, σ̂i(x) := xσi(x), we easily obtain

‖(I + kA)En
2 ‖⋆ ≤ Ckp

∫ tn+q

tn

(

‖u(p+1)(s)‖⋆ + k‖u(p+1)(s)‖
)

ds,(3.4b)

‖(I + kA)En
3 ‖⋆ ≤ Ckp

∫ tn+q−1

tn

(

‖u(p+1)(s)‖⋆ + ‖u(p)(s)‖
)

ds.(3.4c)

From (3.4) and (3.2) we immediately obtain the desired consistency estimate

(3.5) max
0≤n≤N−q

‖En‖⋆ ≤ Ckp.
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Remark 3.1. The case of polynomial order less than p can be treated as well,
but to obtain optimal order error estimates some compatibility conditions would
be required; without such conditions order reduction would occur, cf. [3] and [4].
However, if the polynomial order is p− 1, using the fact that the function η,

(3.6) η(x) = ϕp−1(x)/[x ρ(x, 1)],

is bounded in [0,∞], we will prove in Theorem 4.2 optimal order error estimates
without any compatibility conditions. First of all, let us note that η is bounded
in a neighborhood of 0 since ρ(0, 1) = 0, ∂2ρ(0, 1) 6= 0 and ϕp−1(x) = O(x2); it is
also bounded in [c,∞] for any positive c, since ρ(·, 1) is there uniformly bounded
away from 0. As a preliminary result for Theorem 4.2, let us note that in this case,
according to (3.1a), there is an additional term to En

1 which can be written as

kp−1

(p− 1)!
ϕp−1(kA)u

(p−1)(tn)

=
kp

(p− 1)!
η(kA) ρ(kA, 1)Au(p−1)(tn)

= k(I + kA)−1Ẽn +
kp

(p− 1)!
η(kA)

q
∑

i=0

ρi(kA)A(u
(p−1)(tn)− u(p−1)(tn+i)),

with Ẽn such that

k(I + kA)−1Ẽn =
kp

(p− 1)!
η(kA)

q
∑

i=0

ρi(kA)Au
(p−1)(tn+i).

Thus in this case, since η̃, η̃(x) := (1 + x)η(x), is bounded, (3.5) is replaced by

(3.7) max
0≤n≤N−q

‖En − Ẽn‖⋆ ≤ C kp.

4. Error estimates

In this section we assume (1.5), that the order of our scheme is p and its polyno-
mial order p− 1, and shall derive optimal order error estimates. In our first result,
Theorem 4.1, we will assume polynomial order p, and in our main result, Theorem
4.2, we relax this condition to polynomial order p− 1.

We note that we will use similar notation as in Section 2; however several quan-
tities, like ϑm and bm, do not coincide with those in Section 2.

Let ϑm := um − Um, bm := B(tm, um)− B(tm, Um), m = 0, . . . , N. Subtracting
(1.2) from (1.6) we obtain

(4.1)

q
∑

i=0

ρi(kA)ϑ
n+i = k

q−1
∑

j=0

σj(kA)b
n+j + k(I + kA)−1En,

n = 0, . . . , N − q. Let

ϑ01 = 0, ϑn1 = k

n−1
∑

ℓ=0

f(n− ℓ, kA)bℓ,

ϑn3 = k

n−q
∑

ℓ=0

e(n− ℓ, kA)(I + kA)−1Eℓ.
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It is then easily seen that ϑn2 := ϑn − ϑn1 − ϑn3 satisfies

(4.2)

q
∑

i=0

ρi(kA)ϑ
n+i
2 = 0, n = 0, . . . , N − q,

cf. (2.5). Now ϑj3 = 0 for j ≤ q− 1; therefore ϑ02, . . . , ϑ
q−1
2 , and thus all ϑn2 , depend

only on the initial entries u0, . . . , uq−1, U0, . . . , U q−1.
The quantities ϑn1 , ϑ

n
2 can be estimated as in Lemma 2.1. Similarly, for ϑn3 we

have

k

n
∑

ℓ=0

‖ϑℓ3‖2 ≤M2
1 k

n−q
∑

ℓ=0

‖Eℓ‖2⋆,(4.3i)

|ϑn3 |2 ≤M2 k

n−q
∑

ℓ=0

‖Eℓ‖2⋆,(4.3ii)

with M1 = supx>0 maxζ∈S1 | x
(1+x)ρ(x,ζ) | and M2 = supx>0

∫ 1

0 |
√
x

(1+x)ρ(x,e−2iπt) |2dt.
As in [2] we can see that M1 and M2 are finite.

In our main results, Theorems 4.1 and 4.2, we will need to estimate ϑn. Part of
it, namely ϑn2 + ϑn3 , can be estimated in terms of ϑ0, . . . , ϑq−1 and the consistency
errors E0, . . . , EN−q. This result follows by combining Lemma 2.2 and (4.3).

Lemma 4.1. There exists a constant C such that, for n = 0, . . . , N,

(4.4) |ϑn − ϑn1 |2 + k

n
∑

ℓ=0

‖ϑℓ − ϑℓ1‖2 ≤ C
{

q−1
∑

j=0

(|ϑj |2 + k‖ϑj‖2) + k

n−q
∑

ℓ=0

‖Eℓ‖2⋆
}

.

In the following theorem we establish optimal order error estimates, assuming
polynomial order p; this condition will be relaxed in Theorem 4.2.

Theorem 4.1. Let the order and the polynomial order of the scheme be p. Assume

we are given starting approximations U0, U1, . . . , U q−1 ∈ V to u0, . . . , uq−1 such

that

(4.5) max
0≤j≤q−1

(

|uj − U j|+ k1/2‖uj − U j‖
)

≤ Ckp.

Let Un ∈ V, n = q, . . . , N, be recursively defined by (1.2). Let ϑn = un − Un, n =
0, . . . , N. Then, there exist constants C and c, independent of k and n, such that,

for k sufficiently small,

(4.6) |ϑn|2 + k

n
∑

ℓ=0

‖ϑℓ‖2 ≤ Cecµ
2tn

{

q−1
∑

j=0

(

|ϑj |2 + k‖ϑj‖2
)

+ k

n−q
∑

ℓ=0

‖Eℓ‖2⋆
}

,

n = q − 1, . . . , N, and

(4.7) max
0≤n≤N

|u(tn)− Un| ≤ Ckp.

Proof. In view of (4.5) and (3.5), it is easily seen that (4.7) follows from (4.6). Thus,
it remains to prove (4.6). According to (4.5) and (3.5), there exists a constant C⋆

such that the right-hand side of (4.6) can be estimated by C2
⋆k

2p,

(4.8) Cecµ
2T

{

q−1
∑

j=0

(|ϑj |2 + k‖ϑj‖2) + k

N−q
∑

ℓ=0

‖Eℓ‖2⋆
}

≤ C2
⋆k

2p.
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The estimate (4.6) is obviously valid for n = q − 1. Assume that it holds for
q− 1, . . . , n− 1, q ≤ n ≤ N. Then, according to (4.8) and the induction hypothesis,
we have, for k small enough,

(4.9) max
0≤j≤n−1

‖ϑj‖ ≤ C⋆k
p−1/2 ≤ 1/2,

and thus U j ∈ Tu, j = 0, . . . , n − 1. It is then easily seen, cf. the derivation of
(2.11), that

(4.10) |ϑn1 |2 + k

n
∑

ℓ=0

‖ϑℓ1‖2 ≤ Ce2cµ
2tn

q−1
∑

j=0

(

|ϑj |2 + k‖ϑj‖2
)

.

From (4.4) and (4.10) it easily follows that (4.6) holds for n as well, and the proof
is complete. �

The main result in this section is given in the following theorem:

Theorem 4.2. Let the polynomial order of the scheme be p − 1 and all other

conditions of Theorem 4.1 be satisfied. Then the estimates of Theorem 4.1 are

valid.

Proof. We let ϑn1 , ϑ
n
2 be as before and split ϑn3 in two parts, ϑ̂n3 and ϑ̃n3 , with

ϑ̂n3 := k

n−q
∑

ℓ=0

e(n− ℓ, kA) (I + kA)−1 (Eℓ − Ẽℓ)

ϑ̃n3 := k

n−q
∑

ℓ=0

e(n− ℓ, kA) (I + kA)−1 Ẽℓ.

In view of (4.3) and (3.7), ϑ̂n3 can be easily estimated. Further, using (2.3) we have

n−q
∑

ℓ=0

e(n− ℓ, x)

q
∑

i=0

ρi(x) z
ℓ+i =

q−1
∑

i=0

gq−1−i(q + i, x) zn−i −
q−1
∑

i=0

gq−1−i(n− i, x) zi,

and we deduce

ϑ̃n3 =
kp

(p− 1)!
η(kA)

(

q−1
∑

i=0

gq−1−i(q + i, kA)Au(p−1)(tn−i)

−
q−1
∑

i=0

gq−1−i(n− i, kA)Au(p−1)(ti)
)

,

and thus easily, in view also of the fact that η̃, η̃(x) = (1 + x)η(x), is bounded,

(4.11) |ϑ̃n3 |2 + k

n
∑

ℓ=0

‖ϑ̃ℓ3‖2 ≤ Ck2p .

Combined with the other estimates this shows that the results of Theorem 4.1 are
valid also for polynomial order p− 1. �



LINEARLY IMPLICIT METHODS FOR NONLINEAR PARABOLIC EQUATIONS 13

Remark 4.1. The constants in this and previous sections as well as conditions
like “k sufficiently small” do not directly depend on the particular choice of the
operators A and B; they only depend on λ, µ, the discretization scheme and on
various norms of the solution u. This fact will play a crucial role in the analysis of
fully discrete schemes in the next section.

5. Fully discrete schemes

In this section we establish optimal order error estimates for fully discrete sche-
mes assuming that the order and the polynomial order of the scheme is p and p−1,
respectively.

For the space discretization we shall use a family Vh, 0 < h < 1, of finite di-
mensional subspaces of V. In this section the following discrete operators will play
an essential role: Define Po : V ′ → Vh, Ah : V → Vh, and the nonlinear operators
Bh(t, ·) : V → Vh by

(Pov, χ) = (v, χ) ∀χ ∈ Vh

(Ahϕ, χ) = (Aϕ, χ) ∀χ ∈ Vh

(Bh(t, ϕ), χ) = (B(t, ϕ), χ) ∀χ ∈ Vh.

The semidiscrete problem corresponding to (1.1) is to seek a function uh, uh(t) ∈ Vh,
satisfying

{

u′h(t) +Ahuh(t) = Bh(t, uh(t)), 0 < t < T,

uh(0) = u0h,

with u0h ∈ Vh a given approximation to u0.
To construct a fully discrete scheme we discretize (5) in time. Assuming that

starting approximations U0, . . . , U q−1 ∈ Vh to u0, . . . , uq−1 are given, we define
recursively a sequence of approximations Um ∈ Vh to um := u(tm) by

(5.1)

q
∑

i=0

ρi(kAh)U
n+i = k

q−1
∑

i=0

σi(kAh)Bh(t
n+i, Un+i).

Let B(t, ·) : V → V ′ be differentiable, and assume that the linear operator M(t),
M(t) := A − B′(t, u(t)) + κI, is uniformly positive definite, for an appropriate
constant κ. We introduce the ‘elliptic’ projection Rh(t) : V → Vh, t ∈ [0, T ], by

PoM(t)Rh(t)v = PoM(t)v

and refer to [2] for motivation of this definition. We will show consistency of
the semidiscrete equation for Rh(t)u(t); to this end we shall use approximation
properties of the elliptic projection operator Rh(t). We let W (t) := Rh(t)u(t), and
assume that Rh(t) satisfies the estimates

(5.2) |u(t)−W (t)|+ hd/2‖u(t)−W (t)‖ ≤ Chr

| d
dt
[u(t)−W (t)]| ≤ Chr

with two integers r and d, 2 ≤ d ≤ r. We further assume that

(5.3) ‖d
jW

dtj
(t)‖ ≤ C, j = 1, . . . , p+ 1.
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For consistency purposes with respect to the space discretization, we assume for
the nonlinear part the estimate

(5.4) ‖B(t, u(t))−B(t,W (t))−B′(t, u(t))(u(t)−W (t))‖⋆ ≤ Chr.

Let Eh(t) ∈ Vh denote the consistency error of the semidiscrete equation (5) for
W,

(5.5) Eh(t) :=W ′(t) +AhW (t)−Bh(t,W (t)), 0 ≤ t ≤ T.

From the definition of W we easily conclude

(5.6) (AhW (t), χ) = (Au(t)−
[

B′(t, u(t))− κI
]

(u(t)−W (t)), χ) ∀χ ∈ Vh.

Therefore, using (1.1),

Eh(t) =W ′(t)− Pou
′(t) + κ

[

Pou(t)−W (t)
]

+ Po

[

B(t, u(t))− B(t,W (t))−B′(t, u(t))(u(t) −W (t))
]

,

and, in view of (5.2), (5) and (5.4), we easily obtain the following optimal order
estimate for the consistency error Eh,

(5.7) max
0≤t≤T

‖Eh(t)‖⋆ ≤ Chr.

The main result in this paper is given in the following theorem:

Theorem 5.1. Let the order and the polynomial order of the scheme be p and p−1,
respectively. Assume we are given initial approximations U0, U1, . . . , U q−1 ∈ Vh
to u0, . . . , uq−1 such that

(5.8) max
0≤j≤q−1

(

|W j − U j |+ k1/2‖W j − U j‖
)

≤ C(kp + hr).

Let Un ∈ Vh, n = q, . . . , N, be recursively defined by (5.1). Then, there exists a

constant C, independent of k and h, such that, for k and h2rk−1 sufficiently small,

(5.9) max
0≤n≤N

|u(tn)− Un| ≤ C(kp + hr).

Proof. Let ρn := un −Wn, n = 0, . . . , N, with un := u(tn) and Wn := W (tn). In
view of (5.2), we have

(5.10) max
0≤n≤N

|ρn| ≤ Chr.

Obviously B̃(t, v) := B(t, v)+Eh(t), cf. (5.5), satisfies (1.3) with the same constants

λ and µ. Now let W̃ j := W j , j = 0, . . . , q − 1, and define W̃n, n = q, . . . , N, by
applying the time discretization scheme to the equation (5.5), i.e. by

(5.11)

q
∑

i=0

ρi(kAh)W̃
n+i = k

q−1
∑

i=0

σi(kAh)B̃h(t
n+i, W̃n+i),

with B̃h(t, v) = Bh(t, v) + Eh(t). Then, according to Theorem 4.2, and in view of
(3.4) and (5.3),

(5.12) max
0≤n≤N

|Wn − W̃n| ≤ Ckp.
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In view of (5.10) and (5.12), it remains to estimate ϑn := W̃n − Un. Subtracting
(5.1) from (5.11), we obtain

q
∑

i=0

ρi(kAh)ϑ
n+i = k

q−1
∑

i=0

σi(kAh)
[

Bh(t
n+i, W̃n+i)−Bh(t

n+i, Un+i)
]

+ k

q−1
∑

i=0

σi(kAh)Eh(t
n+i).

(5.13)

Using now the boundedness of σi and (4.6), we get

(5.14) |ϑn|2 + k

n
∑

ℓ=0

‖ϑℓ‖2 ≤ Cecµ
2tn

{

q−1
∑

j=0

(

|ϑj |2 + k‖ϑj‖2
)

+ k

n−q
∑

ℓ=0

‖Eh(t
ℓ)‖2⋆

}

.

From this estimate, in view of (5.7) and our condition on the starting approxima-
tions, we easily conclude

(5.15) max
0≤n≤N

|W̃n − Un| ≤ C(kp + hr).

Let us note that it is in the derivation of (5.14) and (5.15) where we need the
meshcondition “h2rk−1 sufficiently small”; this is due to the fact that the analog
of (4.9) now reads

max
0≤j≤n−1

‖ϑj‖ ≤ C⋆(k
p−1/2 + hrk−1/2) ≤ 1/2,

and for the last estimate to be satisfied we need to assume k and h2rk−1 to be
sufficiently small; it is then easily seen that U j ∈ Tu, j = 0, . . . , n− 1. From (5.10),
(5.12) and (5.15) the desired estimate (5.9) follows and the proof is complete. �

For several examples of multistep schemes as well as for partial differential equa-
tions satisfying the conditions of this paper we refer the reader to [2] and [1].

Remark 5.1. If the estimate (1.3) holds in tubes around u defined in terms of
other norms, the meshcondition “h2rk−1 small” of Theorem 5.1 has to be modified,
see Remark 2.2 in [2].

6. Computation of starting approximations

In this section we present two schemes, one nonlinear and one linear, for the
computation of starting approximations satisfying condition (5.8). We assume that
B(t, ·) can be modified to yield an operator B(t, ·) : V → V ′ coinciding with B(t, ·)
in the tube Tu, B(t, ·) = B(t, ·) for all v ∈ Tu, and satisfying the global Lipschitz
condition, cf. (1.3),

(6.1) ‖B(t, v)− B(t, w)‖⋆ ≤ λ‖v − w‖ + µ|v − w| ∀v, w ∈ V.

Otherwise, for the nonlinear scheme the assumptions of Section 5 will be sufficient,
while for the linear scheme some additional natural hypotheses will be needed. In
particular, we assume that k and h2rk−1 are sufficiently small.
A nonlinear scheme. Assume that the data of problem (1.1) are smooth enough
such that one can determine the derivatives u(j), j = 0, . . . , p− 1, of the solution at

t = 0. Let ϕm be given by ϕm := u0−∑p−1
j=2

j−1
j (mk)ju(j)(0); these functions may

be considered given since u′(0), . . . , u(p−1)(0) may be recursively determined from
the data of (1.1).
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Let m ∈ {1, . . . , q − 1}. It is easily seen that

(6.2) u(tm)−mku′(tm) = ϕm + ψm,

with ψm such that

(6.3) |ψm| ≤ Ckp.

Using in (6.2) the differential equation of (1.1) and letting um := u(tm) we obtain

(6.4) um +mk[Aum −B(tm, um)] = ϕm + ψm

which motivates the definition of Um ∈ Vh by

(6.5) Um +mk[AhU
m −Bh(t

m, Um)] = Poϕ
m.

Besides this scheme, we consider also the modified scheme

(6.5′) V m +mk[AhV
m − Bh(t

m, V m)] = Poϕ
m

with Bh(t, ·) : V → Vh such that (Bh(t, ϕ), χ) = (B(t, ϕ), χ) for all χ ∈ Vh. We shall
show that V m is well defined by (6.5′), then we will estimate Wm − Vm, and will
finally conclude that under our meshcondition Um is a locally unique solution of
(6.5) satisfying (5.8).

Existence. To establish existence of V m we shall make use of the following version
of the Brouwer fixed–point theorem.

Lemma 6.1. Let (H, (·, ·)) be a finite dimensional inner product space and denote

its norm by | · |. Let g : H → H be continuous, and assume that, for some positive

δ, (g(x), x) > 0 for all x ∈ H such that |x| = δ. Then, there exists an x⋆ ∈ H with

|x⋆| < δ such that g(x⋆) = 0. �

To apply Lemma 6.1 to show existence of a solution of (6.5′) let g : Vh → Vh
be given by g(v) := v +mk[Ahv − Bh(t

m, v)] − Poϕ
m. Obviously, g is continuous.

Further,

(g(v), v) = |v|2 +mk(Av, v) −mk(B(tm, v), v)− (ϕm, v)

= |v|2 +mk‖v‖2 −mk(B(tm, v)− B(tm, 0), v)− (mkB(tm, 0) + ϕm, v)

≥ |v|2 +mk‖v‖2 −mk‖B(tm, v)− B(tm, 0)‖⋆ ‖v‖ − |mkB(tm, 0) + ϕm| |v|.
Now, using (6.1) and the algebraic–geometric inequality we obtain

(g(v), v) ≥ 1

4
|v|2 +mk(1− λ−mkµ2)‖v‖2 − 1

2
|mkB(tm, 0) + ϕm|2,

i.e., for k sufficiently small such that 1− λ−mkµ2 ≥ 0,

(6.6) (g(v), v) ≥ 1

4
|v|2 − 1

2
|mkB(tm, 0) + ϕm|2.

Letting v ∈ Vh in (6.6) be such that |v| = 1√
2
|mkB(tm, 0) + ϕm| + 1 we have

(g(v), v) > 0, and conclude, in view of Lemma 6.1, existence of a solution Vm ∈ Vh
of (6.5′), provided k is sufficiently small such that 1− λ−mkµ2 ≥ 0.

Uniqueness. Let Ṽ m ∈ Vh be such that

(6.5′′) Ṽ m +mk[AhṼ
m − Bh(t

m, Ṽm)] = Poϕ
m.

Subtracting (6.5′′) from (6.5′), and letting em := Vm − Ṽ m, we obtain

em +mkAhe
m −mk[Bh(t

m, V m)− Bh(t
m, Ṽm)] = 0.
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Taking here the inner product with em and using (6.1) we have

|em|2 +mk‖em‖2 −mk(λ‖em‖+ µ|em|)‖em‖ ≤ 0,

i.e.,

(6.7)
1

2
|em|2 +mk(1− λ− mkµ2

2
)‖em‖2 ≤ 0.

For k sufficiently small such that 1 − λ − mkµ2

2 ≥ 0 we conclude from (6.7) that

em = 0, i.e. Ṽ m = V m.
Error estimates. To derive an estimate for Wm − V m we need an equation for

Wm. For χ ∈ Vh we have

(Wm +mk[AhW
m −Bh(t

m,Wm)]− Poϕ
m, χ) =

= (Wm, χ) +mk(AWm −B′(tm, um)Wm + κWm, χ)

−mk(B(tm,Wm)−B′(tm, um)Wm + κWm − ϕm, χ),

i.e., in view of the definition of Rh(t),

(Wm +mk[AhW
m −Bh(t

m,Wm)]− Poϕ
m, χ) =

= (Wm, χ) +mk(Aum −B(tm, um), χ) +mkκ(um −Wm, χ)− (ϕm, χ)

+mk(B(tm, um)−B(tm,Wm)−B′(tm, um)(um −Wm), χ).

Using here (6.4) we get

(Wm +mk[AhW
m −Bh(t

m,Wm)]− Poϕ
m, χ) =

= (Wm − um, χ) + (ψm, χ) +mkκ(um −Wm, χ)

+mk(B(tm, um)−B(tm,Wm)−B′(tm, um)(um −Wm), χ),

i.e., in view of (5.2), (5.4) and (6.3),

(6.8) Wm +mk[AhW
m −Bh(t

m,Wm)] = Poϕ
m + ζm1 + kζm2

with

(6.9) |ζm1 |+ ‖ζm2 ‖⋆ ≤ C(kp + hr).

Let now ϑm :=Wm − V m. Subtracting (6.5′) from (6.8) we obtain

ϑm +mkAhϑ
m −mk[Bh(t

m,Wm)− Bh(t
m, V m)] = ζm1 + kζm2 .

Taking here the inner product with ϑm, and using the fact that Wm ∈ Tu, we have

|ϑm|2 +mk‖ϑm‖2 −mk(B(tm,Wm)− B(tm, Um), ϑm) = (ζm1 , ϑ
m) + k(ζm2 , ϑ

m),

i.e., in view of (6.1),

|ϑm|2 +mk(1− λ)‖ϑm‖2 − µmk|ϑm| ‖ϑm‖
≤ |ζm1 | |ϑm|+ k‖ζm2 ‖⋆‖ϑm‖.

Using now the algebraic–geometric inequality we obtain

1

4
|ϑm|2 + k(m− λm− µ2m2k − 1

2
k)‖ϑm‖2 ≤ 1

2
|ζm1 |2 + 1

2
‖ζm2 ‖2⋆.

Letting here k be sufficiently small such that m(1 − λ) − (µ2m2 + 1
2 )k ≥ c with a

positive constant c, we easily obtain, in view of (6.9),

(6.10) |ϑm|2 + k‖ϑm‖2 ≤ C(kp + hr)2.
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In view of our meshcondition, it easily follows from (6.10) and (5.2) that V m ∈ Tu;
thus V m is also a locally unique solution of (6.5). Further, obviously, if (6.10) is
satisfied for m = 1, . . . , q − 1 (and U0 =W 0), then (5.8) is also satisfied.
A linear scheme. In the analysis of the linear scheme we will present in the sequel,
besides (6.1) and the hypotheses of Section 5, we shall assume three additional
natural conditions, two for the nonlinearity B, namely that

(6.11) ‖B(t, v)−B(t, w)−B′(t, w)(v − w)‖⋆ ≤ C‖v − w‖2 ∀v, w ∈ Tu

and that the operator A−B′(t, v)+κI is, for an appropriate constant κ and v ∈ Tu,
positive definite, uniformly in t and v, cf. the hypothesis on M(t) in Section 5, and
one analog to (5.2). To formulate the third condition, we let Rh : V → Vh denote
an ‘elliptic’ projection defined, in terms of the linear operator A only, by

(6.12) PoARhv = PoAv,

cf. the definition of Rh(t) in Section 5. The assumption then is that Rh satisfies
the estimate

(6.13) ‖u(t)−Rhu(t)‖ ≤ Chr−
d
2 ,

cf. (5.2).
We shall linearize the scheme (6.5) by Newton’s method and will show that, for

appropriate starting approximations Um
0 , one Newton iteration suffices to obtain

initial approximations Um
1 satisfying (5.8).

We begin with the definition of an appropriate starting approximation Um
0 . Let

T p
mu(0) be given by

T p
mu(0) := u0 +mku′(0) + · · ·+ (mk)p−1

(p− 1)!
u(p−1)(0), m = 1, . . . , q − 1.

We then let Um
0 := RhT

p
mu(0) ∈ Vh —notice that Rh(t

m)T p
mu(0) can not be com-

puted since the solution at tm, and consequently M(tm), is not known—, i.e. Um
0

is given by

(6.14) (AhU
m
0 , χ) = (AT p

mu(0), χ) ∀χ ∈ Vh.

To estimate Um − Um
0 we let W̃m := Rhu

m, i.e. W̃m is given by

(6.15) (AhW̃
m, χ) = (Aum, χ) ∀χ ∈ Vh.

Subtracting (6.14) from (6.15) we obtain

(Ah(W̃
m − Um

0 ), χ) = (A(um − T p
mu(0)), χ) ∀χ ∈ Vh.

Letting here χ := W̃m − Um
0 we get

‖W̃m − Um
0 ‖ ≤ ‖um − T p

mu(0)‖,
and conclude

(6.16) ‖W̃m − Um
0 ‖ ≤ Ckp.

Let us notice here for later use that, in view of (6.13) and (6.16), Um
0 ∈ Tu.

Further

Um − Um
0 = (Um −Wm) + (Wm − um) + (um − W̃m) + (W̃m − Um

0 );

since, according to (5.2) and (6.13),

‖Wm − um‖+ ‖um − W̃m‖ ≤ Chr−
d
2 ,



LINEARLY IMPLICIT METHODS FOR NONLINEAR PARABOLIC EQUATIONS 19

in view of (6.10) and (6.16) we get

‖Um − Um
0 ‖ ≤ Ck−

1
2 (kp + hr) + C(kp + hr−

d
2 ),

i.e.,

(6.17) ‖Um − Um
0 ‖ ≤ C(kp−

1
2 + hrk−

1
2 + hr−

d
2 ).

Starting with Um
0 , we let Um

1 ∈ Vh be an approximation to Um given by per-
forming one iteration with Newton’s method applied to (6.5), i.e., Um

1 is given
by

[I +mkAh −mkB′
h(t

m, Um
0 )](Um

1 − Um
0 )

+ Um
0 +mkAhU

m
0 −mkBh(t

m, Um
0 ) = Poϕ

m

which can be written in the form

[I +mkAh −mkB′
h(t

m, Um
0 )]Um

1

= mkBh(t
m, Um

0 ) +mkB′
h(t

m, Um
0 )Um

0 + Poϕ
m.

(6.18)

Using the fact that Um
0 ∈ Tu and the assumption that A−B′(t, Um

0 )+κI is positive
definite, we easily see that Um

1 is well defined for k < 1
κm .

Let now emi := Um − Um
i . Subtracting (6.18) from (6.5) we obtain

em1 +mkAhe
m
1 −mkB′

h(t
m, Um

0 )em1 =

= mk[Bh(t
m, Um)−Bh(t

m, Um
0 )−B′

h(t
m, Um

0 )(Um − Um
0 )],

i.e.,

(1− κmk)em1 +mk[Ah −B′
h(t

m, Um
0 ) + κI]em1 =

= mk[Bh(t
m, Um)−Bh(t

m, Um
0 )−B′

h(t
m, Um

0 )(Um − Um
0 )].

(6.19)

Taking here the inner product with em1 , and using the fact that A − B′(t, v) + κI
is positive definite, uniformly in t and v, v ∈ Tu, and U

m, Um
0 ∈ Tu, and (6.11), we

get
(1− κmk)|em1 |2 + cmk‖em1 ‖2 ≤ Ck‖em0 ‖2 ‖em1 ‖,

with a positive constant c, i.e., for k < 1
2κm ,

(6.20) |em1 |2 + k‖em1 ‖2 ≤ Ck‖em0 ‖4.
From (6.20) and (6.17) we obtain

|em1 |2 + k‖em1 ‖2 ≤ Ck(k4p−2 + h4rk−2 + h4r−2d),

i.e.,
|em1 |2 + k‖em1 ‖2 ≤ C(k2p + h4rk−1 + h2r)

and thus
|em1 |2 + k‖em1 ‖2 ≤ C(k2p + h2r),

i.e.,

(6.21) |em1 |2 + k‖em1 ‖2 ≤ C(kp + hr)2.

From (6.10) and (6.21) we finally conclude

(6.22) |Um
1 −Wm|+

√
k‖Um

1 −Wm‖ ≤ C(kp + hr).

Remark 6.1. Condition (6.11) can easily be relaxed or modified if one is will-
ing to perform more iterations with Newton’s method in order to obtain starting
approximations satisfying the analog of (6.22).
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7. Combination of implicit Runge–Kutta schemes and extrapolation

Keeling [5] constructs and analyzes implicit–explicit schemes for semilinear par-
abolic equations. The linear part of the equation is discretized by implicit Runge–
Kutta methods (IRKM) and the nonlinear part by extrapolation from previous
time levels. One advantage of the resulting implicit–explicit schemes is that their
polynomial order coincides with their order and hence, in contrast to IRKM, they
do not suffer from order reduction; a computational advantage of these schemes is
that to advance in time linear problems with the same operator for all time levels
have to be solved. We will see in the sequel that Keeling’s schemes applied to (1.1)
are particular cases of the schemes (1.2). Let us note that in this particular case
the results of this paper improve those of [5] in various aspects: we allow stronger
nonlinearities, and in particular have an optimal bound for the stability constant
λ, and also get by with milder meshconditions, cf. also [2] and [1] for concrete
parabolic equations.

In this Section we will focus on single step schemes for the discretization of the
linear part of equation (1.1). Thus we let ρq = 1, ρq−1 = −ρ, and ρi = 0, i =
0, . . . , q − 2. It is then easily seen that the strong A(0)−stability condition of a
consistent scheme described by (ρ0, . . . , ρq) reads in this case

(7.1) ρ(0) = 1, ρ′(0) < 0, |ρ(x)| < 1 for x ∈ (0,∞].

Given an integer r ≥ 1, an r−stage IRKM is characterized by a set of constants
arranged in tableau form

Oι τ

bT

with Oι = (aij) ∈ R
r,r, b = (b1, . . . , br)

T and τ = (τ1, . . . , τr)
T . Let p ≥ 1 be the

order of the IRKM; actually we will only need the relations

(7.2) bTOιℓ−1e =
1

ℓ!
, ℓ = 1, . . . , p,

with e := (1, . . . , 1)T . For stability purposes, we assume that the IRKM is strongly
A0−stable, i.e., for the corresponding rational approximation ρ, ρ(z) := 1−zbT (I+
zOι)−1e, to the exponential e−z there holds

(7.3) sup
x≥x0

|ρ(x)| < 1 ∀x0 > 0.

Let us note that, for p ≥ 1, (7.3) is equivalent to (7.1). Further, we assume
that the eigenvalues of Oι have nonnegative real parts, and Oι is invertible, i.e.,
σ(Oι) ⊂ {z ∈ C : Rez ≥ 0, z 6= 0}, with σ(Oι) the spectrum of Oι.

Following Keeling, we define the extrapolation associated with an r−stage IRKM
of order p in terms of the constants αij , i = 1, . . . , r, j = 0, . . . , p− 1, given by

(7.4)

p−1
∑

j=0

jℓαij = (−1)ℓℓ! êTi Oιℓe, ℓ = 0, . . . , p− 1, i = 1, . . . , r,

with êi ∈ R
r, (êi)j = δij .
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Suppose that approximations Um to um,m = 0, . . . , n, have been computed. We
introduce the extrapolation operator En : V p → (V ′)r, n ≥ p− 1, by

(7.5)
(

Enṽn
)

i
:=

p−1
∑

j=0

αijB(tn−j , vn−j), i = 1, . . . , r,

with ṽn := (vn, . . . , vn−p+1)T . Let also A : (D(A))r → Hr,A := diag (A, . . . , A).
Now, Keeling’s scheme applied to (1.1) yields Un+1 ≈ un+1, n ≥ p − 1, defined

by

Un = Une− kOιAUn + kOιEnŨ
n

(7.6i)

Un+1 =
(

I − bTOι−1e
)

Un + bTOι−1Un,(7.6ii)

with Un = (Un,1, . . . , Un,r)T . We will write this scheme in the form (1.2) and will
show that its order and polynomial order is p. Then, the results of the previous
sections apply. First, (7.6) can be written in the form

Un+1 =
(

I − kAbT (I + kOιA)−1e
)

Un + kbT (I + kOιA)−1EnŨ
n

= ρ(kA)Un + kbT (I + kOιA)−1EnŨ
n

= ρ(kA)Un + kbT (I + kOιA)−1

p−1
∑

i=0

αiB(tn−i, Un−i)

with αi := (α1i, . . . , αri)
T . Therefore,

Un+p = ρ(kA)Un+p−1 + kbT (I + kOιA)−1

p−1
∑

i=0

αiB(tn+p−1−i, Un+p−1−i),

i.e.,

(7.7) Un+p = ρ(kA)Un+p−1 + kbT (I + kOιA)−1

p−1
∑

i=0

αp−1−iB(tn+i, Un+i).

With σi(x) := bT (I + xOι)−1αp−1−i, i = 0, . . . , p− 1, (7.7) can be written as

(7.8) Un+p − ρ(kA)Un+p−1 = k

p−1
∑

i=0

σi(kA)B(tn+i, Un+i),

which is of the form (1.2) with q = p.
Next, let us show that the polynomial order of the scheme (7.8) is p. First, let us

rewrite (7.4): Let A denote the p× r matrix with entries αij , fℓ := (0, 1ℓ, . . . , (p−
1)ℓ)T , and f0 := (1, . . . , 1)T . Then, (7.4) can be written in the form

(7.4′) Afℓ = (−1)ℓ ℓ!Oιℓe, ℓ = 0, 1, . . . , p−1.

Therefore,

−ℓAfℓ−1 + xAfℓ = (−1)ℓℓ!(I + xOι)Oιℓ−1e,

and, using the notation of Section 1,

ϕℓ,p(x) = E0(1, x, vℓ,p)

= 1− (−1)ℓbT (I + xOι)−1(−ℓAfℓ−1 + xAfℓ)

= 1− ℓ! bTOιℓ−1e.
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Using here (7.2) we see that ϕℓ,p = 0 for 1 ≤ ℓ ≤ p − 1. For ℓ = 0, since v0,p = 1
and Af0 = e, we have

ϕ0,p(x) = E0(1, x, v0,p) = 1− ρ(x) − xbT (I + xOι)−1e = 0.

Hence, in view of (C̃′
p̃), the polynomial order of the method is p.

Similarly, we have ϕp,p(0) = 0, and thus ϕp,p(x) = O(x); consequently ϕp(x) =
O(x), and we conclude that the order of the scheme is p.

Let us also note that letting q = p, the ρi’s be as in the beginning of this section
and determining the σi’s from (1.11), is an alternative way leading to Keeling’s
schemes.

Remark 7.1. The strongA(0)−stability condition can not be relaxed toA(0)−stabi-
lity, because then K(ρ,σ) may be infinite and, consequently, our stability condition
(1.5) may deteriorate. We demonstrate this with an example. Let us consider the
one-stage Gauss–Legendre Runge–Kutta method, i.e., the midpoint scheme; the
scheme is described by the tableau

1
2

1
2

1

and the corresponding rational approximation ρ to the exponential is given by
ρ(x) = (1− x

2 )/(1 +
x
2 ). The order of the method is two, and according to (7.4) we

have α10 = 3/2, α11 = −1/2. Therefore

σ0(x) = −1

2

1

1 + x
2

, σ1(x) =
3

2

1

1 + x
2

.

Thus, we choose q = 2, and the implicit scheme is described be the rational functions
(ρ0, ρ1, ρ2) with ρ0 = 0, ρ1 = −ρ, ρ2 = 1. In this case we have

ρ(x, ζ) =
ζ

1 + x
2

(

− (1 − x

2
) + (1 +

x

2
)ζ
)

, σ(x, ζ) =
1

2(1 + x
2 )

(−1 + 3ζ).

Hence,

max
ζ∈S1

|xσ(x, ζ)
ρ(x, ζ)

| ≥ |xσ(x,−1)

ρ(x,−1)
| = x,

and thus K(ρ,σ) = ∞.

Remark 7.2. Assume that ρ0, . . . , ρq−1 vanish at infinity; this means in the case
of implicit multistep schemes that β0 = · · · = βq−1 = 0, which holds for the
BDF schemes of order up to six, and for IRKM that the corresponding rational
approximation ρ vanishes at infinity. Then, the argument showing K2 < ∞ shows

also that Ñ1, Ñ1 = max0≤j≤q−1 supx>0

∫ 1

0
x |δj(e−2iπt, x)|2dt, is finite. As a

consequence, (2.7i) can be replaced by

(2.7′i) k
n
∑

ℓ=q

‖ϑℓ2‖2 ≤ qÑ1

q−1
∑

j=0

|ϑj2|2.
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Assume now that (1.3) is satisfied with λ = 0. Then, in view of (2.7′i), our analysis
yields

(5.16′) |ϑn|2 + k
n
∑

ℓ=q

‖ϑℓ‖2 ≤ Cecµ
2tn

{

q−1
∑

j=0

|ϑj |2 + k

n−q
∑

ℓ=0

‖Eh(t
ℓ)‖2⋆

}

instead of (5.14); this leads to the error estimate (5.9) under the following relaxed
hypothesis on the starting approximations

(5.10′) max
0≤j≤q−1

|W j − U j| ≤ C(kp + hr) and U0, . . . , U q−1 ∈ Tu.

Let us also note that conversely Ñ1 <∞ implies that ρ0, . . . , ρq−1 vanish at infinity.
Consequently, an inequality of the form (2.7′i) with a finite constant is only valid
for a subclass of the schemes considered in this paper.
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