
HIGH–ORDER FINITE ELEMENT METHODS

FOR THE KURAMOTO–SIVASHINSKY EQUATION

GEORGIOS AKRIVIS

Abstract. We discretize the periodic initial–value problem for the Kuramoto–Siva-

shinsky equation by implicit Runge–Kutta methods in time combined with the Gale-

rkin–finite element method in space. Optimal–order error estimates are established

and the linearization of the schemes is also discussed.

Résumé. Nous considérons l’équation de Kuramoto–Sivashinskymunie de conditions

aux limites périodiques et d’une donnée initiale. Nous l’approchons en utilisant une

méthode d’éléments finis de type Galerkin pour la discrétisation en espace, et un

schéma de Runge–Kutta implicite pour la discrétisation en temps. Nous obtenons

des estimations d’erreur optimales et discutons de la linéarisation de cette méthode.

1. Introduction

In this paper we shall analyze high–order finite element approximations to the so-

lution of the following periodic initial–value problem for the Kuramoto–Sivashinsky

(KS) equation: For t∗, ν > 0, we seek a real–valued function u defined on R × [0, t∗],

1–periodic in the space variable and satisfying

(1.1) ut + uux + uxx + νuxxxx = 0 in R× [0, t∗]

and

(1.2) u(·, 0) = u0 in R,

where u0 is a given 1–periodic function. An alternative form of the KS equation is

obtained through the change of variables v(x, t) :=
√
ν u(

√
νx, νt), namely

(1.1′) vt + vvx + vxx + vxxxx = 0 in R× [0,
t∗

ν
].

The function v is obviously periodic in the space variable with period 1√
ν
. It is shown

in [13] and in [22] that the periodic initial–value problem for the KS equation is well–

posed; in particular for u0 ∈ H2
per there exists a unique solution u of (1.1)–(1.2),

u(·, t) ∈ H2
per, and u(·, t) depends continuously on the initial data. Here, for m ∈

N, Hm
per denotes the periodic Sobolev space of order m, consisting of the 1–periodic

elements of Hm
loc(R), and ‖ · ‖m is the norm over a period in Hm

per. The inner product

in L2(0, 1) is denoted by (·, ·), and the induced norm by ‖ · ‖. In the sequel we assume

existence of a solution u of (1.1)–(1.2), which is smooth enough for our purposes.
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The KS equation was independently derived by Kuramoto and Sivashinsky in the

late 70’s, and is related to turbulence phenomena in chemistry and combustion, cf.

[12], [21]; it also arises in a variety of other physical problems such as plasma physics

and two–phase flows in cylindrical geometries, cf. [18]. See also, for instance, [5], [7],

[8], [11], [13], [14] and [19], for various interesting properties of the KS equation and

for related computational work. We refer the reader to Temam [23] for an overview.

In [1] the discretization of (1.1)–(1.2) by a Crank–Nicolson finite difference scheme

and a linearization thereof by Newton’s method is studied. In [2] the semidiscretization

of (1.1)–(1.2) by the standard Galerkin–finite element method as well as the discretiza-

tion of the resulting initial–value problem by the Crank–Nicolson method is considered.

In this paper we analyze the discretization of (1.1)–(1.2) by implicit Runge–Kutta

(RK) methods in time combined with the standard Galerkin–finite element method in

space. For a suitable class of algebraically stable implicit RK methods we shall show

(1.3) max
0≤n≤N

‖u(·, tn)− Un‖ ≤ c (kσ + hr)

where σ is the classical order of accuracy of the RK method and r is the optimal spatial

rate of convergence in L2; k = t∗/N is the time step, tn := nk, n = 0, . . . , N, and h is

the spatial discretization parameter, U0, . . . , UN are the RK approximations and U0 is

supposed to approximate u0 to optimal order in L2. Some mild mesh conditions are

required for (1.3) to hold. A slight modification of the results of [3] yields linearizations

of the RK schemes which preserve the overall accuracy of the methods.

Our approach is similar to the one in [10], [9] where optimal–order error estimates

for the Korteweg–de Vries equation and the cubic Schrödinger equation, respectively,

are derived. In contrast to [9], due to the spatial derivative in the nonlinearity of

the KS equation, we use a time–dependent elliptic projection operator in order to

obtain optimal–order estimates in the spatial discretization parameter h. The quasi–

interpolant of u, cf. [24], can be used instead of the elliptic projection in the error

analysis, if one is willing to restrict himself to smooth splines on uniform partitions,

cf. [10]. Note however that the quasi–interpolant technique allows also r = 3, i.e.,

quadratic splines, while in this paper we will assume r ≥ 4.

An outline of the remaining part of the paper is as follows: In section 2 we introduce

a time–dependent elliptic projection and derive some error estimates which play an

important role in the sequel. Section 3 is devoted to the time–stepping by a suitable

class of implicit RK schemes. Under some mild mesh restrictions, we establish optimal–

order error estimates and prove uniqueness of the fully discrete approximations. In the

last section we briefly discuss the linearization of the fully discrete methods by an

explicit–implicit procedure which retains the order of convergence.

2. An elliptic projection

In this section we introduce a time–dependent elliptic projection operator and derive

some estimates which will be useful in §3.
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We shall discretize (1.1)–(1.2) in space by the standard Galerkin method. To this

effect, let 0 = x0 < x1 < · · · < xJ = 1 be a partition of [0, 1], h := max
j

(xj+1 − xj) and

h := min
j
(xj+1 − xj). Setting xjJ+s := xs, j ∈ Z, s = 0, . . . , J − 1, this partition is

periodically extended to a partition of R. For integer r ≥ 4, let Sr
h denote a space of

at least once continuously defferentiable, 1–periodic splines of degree r − 1, in which

approximations to the solution u(·, t) of (1.1)–(1.2) will be sought for 0 ≤ t ≤ t∗. The

following approximation property of the family
{

Sr
h

}

0<h<1
is well known

(2.1) inf
χ∈Sr

h

2
∑

j=0

hj ‖v − χ‖j ≤ chs‖v‖s, v ∈ Hs
per, 2 ≤ s ≤ r,

with a constant c independent of v and h, cf., e.g., [20, §8.1].
Motivated by the following variational formulation of the KS equation

(2.2) (ut, v) + (uux, v)− (ux, v
′) + ν(uxx, v

′′) = 0 ∀v ∈ H2
per, 0 ≤ t ≤ t∗,

we define the semidiscrete approximation ũh(·, t) ∈ Sr
h, 0 ≤ t ≤ t∗, to u by

(2.3) (ũht, χ) + (ũhũhx, χ) − (ũhx, χ
′) + ν(ũhxx, χ

′′) = 0 ∀χ ∈ Sr
h, 0 ≤ t ≤ t∗,

where ũh(·, 0) := u0h ∈ Sr
h, and u

0
h is such that

(2.4) ‖u0 − u0h‖ ≤ chr.

The semidiscrete approximation is uniquely defined and has the following properties

‖ũh(·, t)‖ ≤ ‖u0h‖ e
t
4ν , 0 ≤ t ≤ t∗,(2.5)

‖ũh(·, t)‖ ≤ ‖ũh(·, s)‖, 0 ≤ s ≤ t ≤ t∗ for ν ≥ 1

4π2
,(2.6)

max
0≤t≤t∗

‖u(·, t)− ũh(·, t)‖ ≤ chr,(2.7)

cf. [2]. The error estimate (2.7) can be derived by comparing ũh(·, t) to P̃Eu(·, t), where
P̃E : H2

per → Sr
h is the time–independent elliptic projection operator defined by

ν((v − P̃E v)
′′, χ′′)− ((v − P̃Ev)

′, χ′) + λ(v − P̃Ev, χ) = 0 ∀χ ∈ Sr
h

with λ > 1
2ν
, say. In this paper we will use the time–dependent elliptic projection

operator PE(t) : H
2
per → Sr

h, 0 ≤ t ≤ t∗, defined by

(2.8)
ν ((v − PE(t)v)xx, χ

′′)− ((v − PE(t)v)x, χ
′)

+ (u(·, t)(v − PE(t)v)x, χ) + λ(v − PE(t)v, χ) = 0 ∀χ ∈ Sr
h,

with a sufficiently large constant λ, say

λ >
1

2
+

1

2ν

[

1 +
1

2
max |u(x, t)|2

]2
.

This elliptic projection will play an important role in the next section in deriving

optimal–order error estimates for fully discrete methods.
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First, for the elliptic projection we have the following estimate

(2.9)

2
∑

j=0

hj ‖v − PE(t)v‖j ≤ chs‖v‖s, v ∈ Hs
per, 2 ≤ s ≤ r,

with a constant c independent of h, v and t. This estimate can be proved in the usual

manner. For v ∈ H2
per, obviously ‖v′‖2 = −(v, v′′), i.e.,

(2.10) ‖v′‖2 ≤ ‖v‖ ‖v′′‖, v ∈ H2
per.

Now, the bilinear form a(t; ·, ·), 0 ≤ t ≤ t∗,

a(t; v, w) := ν(v′′, w′′)− (v′, w′) + (u(·, t) v′, w) + λ(v, w)

is obviously continuous in H2
per, i.e.,

(2.11) |a(t; v, w)| ≤ c1‖v‖2 ‖w‖2, v, w ∈ H2
per,

and the constant c1 can be chosen independent of t. Further, using (2.10), the Cauchy–

Schwarz and the arithmetic–geometric mean inequalities, we easily see that a(t; ·, ·) is
coercive in H2

per, i.e.,

(2.12) a(t; v, v) ≥ c2 ‖v‖22, v ∈ H2
per,

again with a positive constant c2 independent of t. Hence, the Lax–Milgram lemma

yields in view of the approximation property (2.1)

(2.13) ‖v − PE(t)v‖2 ≤ c hs−2‖v‖s, v ∈ Hs
per, 2 ≤ s ≤ r,

with a constant c independent of t. Next, to estimate ‖v − PE(t)v‖, consider the

auxiliary problem

a(t;w, ψ) = (v − PE(t)v, w) ∀w ∈ H2
per,

cf. [16]. Then, for χ ∈ Sr
h we have

‖v − PE(t)v‖2 = a(t; v − PE(t)v, ψ − χ) ≤ c1‖ψ − χ‖2 ‖v − PE(t)v‖2.
Now, the easily established regularity estimate ‖ψ‖4 ≤ c‖v−PE(t)v‖, with a constant

c independent of t, and (2.1) yield, since r ≥ 4

inf
χ∈Sr

h

‖ψ − χ‖2 ≤ c h2‖v − PE(t)v‖,

and in view of (2.13) we obtain

(2.14) ‖v − PE(t)v‖ ≤ chs‖v‖s, v ∈ Hs
per, 2 ≤ s ≤ r.

The estimate (2.9) follows now from (2.13), (2.14) and (2.10).

Consequently, setting W (·, t) := PE(t) u(·, t), we have the following estimate

(2.15) ‖u(·, t)−W (·, t)‖ ≤ chr ‖u(·, t)‖r , 0 ≤ t ≤ t∗.

Next, we want to estimate time derivatives of PE. To this end we prove the following

Lemma, cf. [4].
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Lemma 2.1. Let v ∈ Hs
per
, 2 ≤ s ≤ r. Then, with P

(j)
E (t) := ( d

dt
)jPE(t), j ≥ 0,

(2.16) ‖P (m)
E (t)v‖2 ≤ C(m)hs‖v‖s for 0 ≤ t ≤ t∗ and m > 0.

Proof. Differentiating (2.8) m times with respect to t, we obtain

(2.17)

a(t;P
(m)
E (t)v, χ) =

(

∂mu

∂tm
(·, t) [v − PE(t)v]x, χ

)

−
m−1
∑

j=1

(

m

j

)(

∂ju

∂tj
(·, t) [P (m−j)

E (t)v]x, χ

)

.

Taking now χ = P
(m)
E (t)v, using (2.12), integrating by parts the first term on the

right–hand side of (2.17), applying the Cauchy–Schwarz inequality, and using (2.14),

we can easily show inductively that (2.16) holds. �

Remark 2.1. Setting W (m)(·, t) := ( ∂
∂t
)mW (·, t), u(m)(·, t) := ( ∂

∂t
)mu(·, t), we have

W (m)(·, t) =
m
∑

j=0

(

m

j

)

P
(j)
E (t) u(m−j)(·, t),

and, therefore,

‖u(m)(·, t)−W (m)(·, t)‖ ≤ ‖u(m)(·, t)− PE(t) u
(m)(·, t)‖

+

m
∑

j=1

(

m

j

)

‖P (j)
E (t) u(m−j)(·, t)‖.

Hence, in view of (2.9), (2.16), we have

(2.18) ‖u(m)(·, t)−W (m)(·, t)‖ ≤ Chr, m ≥ 0.

3. Runge–Kutta discretizations

In this section we discretize in time the semidiscrete problem by suitable implicit RK

methods, and, under some mild mesh hypotheses, derive optimal–order error estimates

and prove uniqueness of the RK approximations.

For q ∈ N, a q–stage implicit RK method is specified by a set of constants arranged

in tableau form
a11 a12 . . . a1q τ1
...

...
...

...

aq1 aq2 . . . aqq τq

b1 b2 . . . bq

=:
A τ

bT

We shall assume that these methods satisfy certain stability and consistency conditions.

We start with the well–known algebraic stability condition

(S)

{

bi ≥ 0, i = 1, . . . , q,

the matrix M, mij := aijbi + ajibj − bibj , is positive semidefinite.
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The consistency conditions are given by the simplifying assumptions

(B)

q
∑

j=1

bj τ
ℓ
j =

1

ℓ+ 1
, ℓ = 0, . . . , σ − 1,

(C)

q
∑

j=1

aij τ
ℓ
j =

τ ℓ+1
i

ℓ+ 1
, i = 1, . . . , q, ℓ = 0, . . . , p− 1,

(D)

q
∑

i=1

aij τ
ℓ
i bi =

bj
ℓ+ 1

(1− τ ℓ+1
j ), j = 1, . . . , q, ℓ = 0, . . . , ̺− 1,

for some integers σ, p, ̺ ≥ 1, where p and σ is the stage–order and the classical order,

respectively. We will assume that

(3.1a) σ ≤ ̺+ p + 1

(3.1b) σ ≤ 2p+ 2.

The positivity property

(P)

{

A is invertible and there exists a diagonal matrix D with positive

diagonal elements such that C := DA−1D−1 is positive definite

plays an important role in proving existence of the numerical approximations.

The Gauss–Legendre methods, the Radau IIA methods (with τq = 1) and the two–

and three–stage optimal–order diagonally implicit (DIRK) methods are examples of

implicit RK methods which satisfy all these assumptions (except of the three–stage

DIRK that does not satisfy (3.1a)), see [6]. These methods satisfy also the hypothesis

(H) r(p+ 1) ≥ σ

which will be occasionally used in the sequel to avoid mesh conditions in the consistency

proofs.

Let Fh : Sr
h → Sr

h be defined by

(3.2) (Fh(v), χ) = −(vv′, χ) + (v′, χ′)− ν(v′′, χ′′) ∀v, χ ∈ Sr
h.

Then, (2.3) may be written in the form

(3.3)

{

ũht = Fh(ũh) 0 ≤ t ≤ t∗

ũh(·, 0) = u0h.

Let N ∈ N, k := t∗/N, and tn := nk, n = 0, . . . , N. The RK approximations

U0, . . . , UN ∈ Sr
h to u0, . . . , uN , un := u(·, tn), are defined by U0 := u0h, and

(3.4) Un+1 = Un + k

q
∑

j=1

bjFh(U
n,j), n = 0, . . . , N − 1,
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where Un,1, . . . , Un,q ∈ Sr
h are such that

(3.5) Un,j = Un + k

q
∑

i=1

ajiFh(U
n,i), j = 1, . . . , q, n = 0, . . . , N − 1.

Note that (3.4) can also be written in the form

(3.4′) Un+1 = Un + bTA−1(Un,1 − Un, . . . , Un,q − Un)T , n = 0, . . . , N − 1.

Existence. For sufficiently small k (independent of h), the existence of U1, . . . , UN ∈
Sr
h can be shown inductively via a well–known variant of the Brouwer fixed–point

theorem. The proof proceeds along similar lines to analogous proofs in [10], [9], using

(P), (2.10) and the arithmetic–geometric mean inequality, and will be omitted.

Remark 3.1. Let us note for later use that the same argument that shows existence of

the RK approximations, allows us also to conclude that the homogeneous linear system

V n,j − k

q
∑

i=1

ajiLhV
n,i = 0, j = 1, . . . , q, n = 0, . . . , N − 1,

where Lh denotes the linear part of Fh,

(Lhv, χ) = (v′, χ′)− ν(v′′, χ′′) ∀v, χ ∈ Sr
h,

has for k < cν, where c depends only on the specific RK scheme, only the trivial

solution in (Sr
h)

q.

Error estimates. Given n, 0 ≤ n ≤ N − 1, let the 1–periodic functions αjℓ, j =

1, . . . , q, be recursively defined by

(3.6)















αj0 := u(·, tn)

αj,ℓ+1 := −
q

∑

i=1

aji{α′′
iℓ + να′′′′

iℓ +

ℓ
∑

m=0

αimα
′
i,ℓ−m}, ℓ = 0, . . . , σ − 1.

The following auxiliary results will be used to prove consistency, see Proposition 3.2

below. The proofs of Lemmata 3.1, 3.2 and of Corollary 3.1 are similar to analogous

results in [10], [9] and are omitted.

Lemma 3.1. Let αℓ := (α1ℓ, . . . , αqℓ)
T , Dℓ

tu := ∂ℓu
∂tℓ

(·, tn), u := u(·, tn), T := diag{τ1, . . . ,
τq}, and e := (1, . . . , 1)T ∈ R

q. Then, if (C) and (3.1b) hold, we have

(3.7) αℓ =
1

ℓ!
Dℓ

tu T
ℓe, ℓ = 0, . . . , p if p ≤ σ,

(3.8) αp+1 =
1

p!
Dp+1

t u AT pe if p ≤ σ − 1,
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(3.9)











































αℓ+1 =
1

ℓ!
Dℓ+1

t u AT ℓe− A
(

α′′
ℓ −

1

ℓ!
Dℓ

tuxx T
ℓe
)

− νA
(

α′′′′
ℓ − 1

ℓ!
Dℓ

tuxxxx T
ℓe
)

− A
ℓ

∑

m=p+1

1

(ℓ−m)!
Dℓ−m

t ux
(

T ℓ−mαm − 1

m!
Dm

t u T
ℓe
)

− A

p
∑

m=0

1

m!
Dm

t u
[

Tmα′
ℓ−m − 1

(ℓ−m)!
Dℓ−m

t ux T
ℓe
]

, ℓ = p+ 1, . . . , σ − 1.

Lemma 3.2. Assume that (B), (C), (D) and (3.1) hold. Then

(3.10) bTT sαℓ =
1

ℓ! (ℓ+ s+ 1)
Dℓ

tu, s, ℓ = 0, . . . , σ− 1, s+ ℓ ≤ σ− 1. �

Corollary 3.1. Assume that (B), (C), (D) and (3.1) hold, or that the RK method is

the 3–stage DIRK. Then

(3.11) bTA−1αℓ =
1

ℓ!
Dℓ

tu, ℓ = 1, . . . , σ. �

Now, given n, 0 ≤ n ≤ N − 1, define the pseudointermediate stages un,j by

(3.12) un,j :=

σ
∑

ℓ=0

kℓαjℓ, j = 1, . . . , q,

and ũn+1 by

(3.13) ũn+1 := un + bTA−1(un,1 − un, . . . , un,q − un)T ,

cf. (3.4′). Using (3.12) and (3.11), we have

ũn+1 = un + bTA−1

σ
∑

ℓ=1

kℓαℓ =

σ
∑

ℓ=0

kℓ

ℓ!
Dℓ

tu(·, tn),

and, consequently,

(3.14) ‖un+1 − ũn+1‖m ≤ cmk
σ+1, m = 0, 1, 2, . . . .

The main step towards a consistency proof is undertaken in the following proposition.

For the sake of brevity we set F (v) := −(vvx + vxx + νvxxxx).

Proposition 3.1. Let the truncation errors en,j, en+1 be given by

(3.15) un,j = un + k

q
∑

i=1

ajiF (u
n,i) + en,j, j = 1, . . . , q,

(3.16) ũn+1 = un + k

q
∑

j=1

bjF (u
n,j) + en+1.

Then, under the hypotheses of Corollary 3.1, we have

(3.17) ‖en+1‖m +

q
∑

j=1

‖en,j‖m ≤ cmk
σ+1, m = 0, 1, 2, . . . .
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Proof. We have

en,j =
σ

∑

ℓ=0

kℓαjℓ − un + k

q
∑

i=1

aji
{

σ
∑

ℓ=0

kℓ(α′′
iℓ + να′′′′

iℓ ) + (
σ

∑

ℓ=0

kℓαiℓ)(
σ

∑

ℓ=0

kℓα′
iℓ)
}

=

σ
∑

ℓ=1

kℓαjℓ + k

q
∑

i=1

aji
{

σ−1
∑

ℓ=0

kℓ(α′′
iℓ + να′′′′

iℓ +

ℓ
∑

m=0

αimα
′
i,ℓ−m)

}

+ εn,j

=

σ−1
∑

ℓ=0

kℓ+1αj,ℓ+1 + k

σ−1
∑

ℓ=0

kℓ
{

q
∑

i=1

aji(α
′′
iℓ + να′′′′

iℓ +

ℓ
∑

m=0

αimα
′
i,ℓ−m)

}

+ εn,j

with ‖εn,j‖m = O(kσ+1). Using (3.6) we conclude en,j = εn,j, i.e.,

(3.18)

q
∑

j=1

‖en,j‖m ≤ cmk
σ+1.

Further, using (3.15), (3.13), we obtain

en+1 = ũn+1 − un − k

q
∑

j=1

bjF (u
n,j)

= ũn+1 − un −
q

∑

j=1

bj

q
∑

i=1

(A−1)ji(u
n,i − un − en,i)

=

q
∑

i,j=1

bj(A
−1)jie

n,i,

and (3.17) follows from (3.18). �

Henceforth we shall let W n := W (·, tn) = PE(t
n)u(·, tn), tn,j := tn + kτj , u

n,j
h :=

PE(t
n,j)un,j and ũn+1

h := PE(t
n+1)ũn+1, respectively, see (2.8).

Lemma 3.3. Let ηn,j, j = 1, . . . , q, ηn+1 in Sr
h be given by

(3.19) un,jh = W n + k

q
∑

i=1

ajiFh(u
n,i
h ) + ηn,j, j = 1, . . . , q,

(3.20) ũn+1
h = W n + k

q
∑

j=1

bjFh(u
n,j
h ) + ηn+1.

Then, under the hypotheses of Corollary 3.1, unconditionally if (H) is satisfied and for

k = O(h
1

p+1 ) otherwise, we have

(3.21)

q
∑

j=1

‖ηn,j‖ ≤ c k(kσ + hr),

(3.22) ‖ηn+1‖ ≤ c k(kσ + hr).
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Proof. Subtracting (3.19) from (3.15) we get

(3.23) ηn,j = en,j + [(un,jh − un,j)− (W n − un)] + k

q
∑

i=1

aji[F (u
n,i)− Fh(u

n,i
h )].

Now, using (3.12), we have

(un,jh − un,j)− (W n − un) = (PE(t
n,j)− PE(t

n))un +
σ

∑

ℓ=1

kℓ(PE(t
n,j)αjℓ − αjℓ);

thus, by (2.16) and (2.9),

(3.24) ‖(un,jh − un,j)− (W n − un)‖ ≤ c khr.

Further, let ωn,j := P0F (u
n,j)−Fh(u

n,j
h ), P0 being the L2−orthogonal projection oper-

ator onto Sr
h. Then, with ϑ

n,j := un,j − un,jh ,

‖ωn,j‖2 = (F (un,j)− Fh(u
n,j
h ), ωn,j)

= −(un,jun,jx − un,jh un,jhx , ω
n,j) + (un,jx − un,jhx , ω

n,j
x )− ν(un,jxx − un,jhxx, ω

n,j
xx )

= −(un,jun,jx − un,jh un,jhx , ω
n,j) + (u(·, tn,j)(un,jx − un,jhx ), ω

n,j) + λ(un,j − un,jh , ωn,j)

= −([un,j − u(·, tn,j)]ϑn,jx + ϑn,jun,ihx − λϑn,j, ωn,j).

Therefore, using (2.9), (3.12) and (3.7), we easily see that, with p′ := min(p, σ),

(3.25) ‖ωn,j‖ ≤ C(kp
′+1hr−1 + hr).

Now by Young’s inequality

(3.26) kp+1hr−1 ≤ C(kr(p+1) + hr).

Combining (3.23) with (3.17), (3.24)and (3.25), (3.26), we get (3.21). Now, using

(3.19), (3.20),

ηn+1 = ũn+1
h −W n − k

q
∑

j=1

bjFh(u
n,j
h )

= ũn+1
h −W n −

q
∑

i,j=1

bj(A
−1)ji(u

n,i
h −W n − ηn,i),

and by (2.16)

ηn+1 =PE(t
n)(ũn+1 − un − bTA−1(un,1 − un, . . . , un,q − un)T )

+

q
∑

i,j=1

bj(A
−1)ji η

n,i + εn+1,

with ‖εn+1‖ ≤ c khr; thus, (3.22) follows from (3.13) and (3.21). �
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Lemma 3.4. Assume that the implicit RK method satisfies (P), k is sufficiently small,

and vn,1, . . . , vn,q, vn+1 ∈ Sr
h satisfy

(3.27) vn,j = W n + k

q
∑

i=1

ajiFh(v
n,i), j = 1, . . . , q,

(3.28) vn+1 =W n + k

q
∑

j=1

bjFh(v
n,j).

Then, under the hypotheses of Lemma 3.3,

(3.29) ‖un,jh − vn,j‖ ≤ c k(kσ + hr), j = 1, . . . , q,

and

(3.30) ‖ũn+1
h − vn+1‖ ≤ c k(kσ + hr).

Proof. The existence of vn,1, . . . , vn,q for sufficiently small k can be shown in exactly the

same way as the existence of Un,1, . . . , Un,q satisfying (3.5). Letting ζn,j := un,jh − vn,j,

from (3.19), (3.27), we obtain

q
∑

j,i=1

cjididj(ζ
n,i, ζn,j) = k

q
∑

j=1

d2j(Fh(u
n,j
h )− Fh(v

n,j), ζn,j) +

q
∑

j,i=1

(A−1)jid
2
j(η

n,i, ζn,j) =

k

q
∑

j=1

d2j{‖ζn,jx ‖2 − ν‖ζn,jxx ‖2} − k

q
∑

j=1

d2j (u
n,j
h un,jhx − vn,jvn,jx , ζn,j) +

q
∑

j,i=1

(A−1)jid
2
j(η

n,i, ζn,j).

Now

− (un,jh un,jhx − vn,jvn,jx , ζn,j) = −(un,jhx ζ
n,j, ζn,j) + (ζn,jζn,jx , ζn,i)

− (un,jh ζn,jx , ζn,j) = (un,jh ζn,j, ζn,jx ).

Hence, using (P), the Cauchy–Schwarz inequality, (2.10) and the arithmetic–geometric

mean inequality,

(3.31) c1

q
∑

j=1

‖ζn,j‖2 ≤ c2k max
i

‖un,ih ‖2L∞

q
∑

j=1

‖ζn,j‖2 +
q

∑

j,i=1

(A−1)jid
2
j(η

n,i, ζn,j),

and (3.29) follows from (3.21) in view of (2.9), (3.12) and (3.7). Further, from (3.19),

(3.20), (3.27), (3.28), we get

ũn+1
h − vn+1 =

q
∑

j,i=1

bj(A
−1)ji(u

n,i
h − vn,i − ηn,i) + ηn+1

and (3.30) follows from (3.29), (3.21) and (3.22). �

We are now ready to prove consistency.
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Proposition 3.2. Assume that u, the solution of (1.1)–(1.2), is sufficiently smooth.

Then, under the hypotheses of Lemma 3.4,

(3.32) ‖vn+1 −W n+1‖ ≤ c k(kσ + hr).

Proof. SinceW n+1−vn+1 = (W n+1−ũn+1
h )+(ũn+1

h −vn+1), it suffices, in view of (3.30),

to show that

‖W n+1 − ũn+1
h ‖ ≤ c k(kσ + hr).

Writing W n+1 − ũn+1
h = {(ũn+1 − un+1)− PE(t

n+1)(ũn+1 − un+1)}+ (un+1 − ũn+1) the

result follows from (3.14) and (2.9). �

In addition to our assumptions on Sr
h, we suppose in the sequel for the family of

partitions that

(3.33) h ≥ c h2µ

for some positive constants c and µ. It is well known that this hypothesis implies, cf.

[15],

(3.34) ‖χ‖L∞ ≤ c h−µ ‖χ‖ ∀χ ∈ Sr
h .

We next prove stability.

Proposition 3.3. Let Un+1, vn+1 satisfy (3.4) and (3.28), respectively, and assume

that the implicit RK method satisfies (S) and (P). Then, for kσ+1h−µ and khr−µ

bounded,

(3.35) ‖Un+1 − vn+1‖ ≤ (1 + ck)‖Un −W n‖.

Proof. Let εn,j := vn,j − Un,j and δF j
h := Fh(v

n,j) − Fh(U
n,j). Subtracting (3.4) from

(3.28), and taking inner products, we obtain

‖vn+1 − Un+1‖2 = ‖W n − Un‖2 + 2k

q
∑

j=1

bj(δF
j
h ,W

n − Un) + k2
q

∑

j,i=1

bjbi(δF
j
h , δF

i
h).

Subtracting (3.5) from (3.27) we have

W n − Un = εn,j − k

q
∑

i=1

ajiδF
i
h.

Therefore

‖vn+1 − Un+1‖2 = ‖W n − Un‖2 + 2k

q
∑

j=1

bj(δF
j
h , ε

n,j)− k2
q

∑

i,j=1

mij(δF
j
h , δF

i
h),

i.e., by (S),

(3.36) ‖vn+1 − Un+1‖2 ≤ ‖W n − Un‖2 + 2k

q
∑

j=1

bj(δF
j
h , ε

n,j).
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Now

(δF j
h , ε

n,j) = ‖εn,jx ‖2 − ν‖εn,jxx ‖2 − (vn,jvn,jx − Un,jUn,j
x , εn,j)

= ‖εn,jx ‖2 − ν‖εn,jxx ‖2 + (vn,jεn,j, εn,jx )

≤ 2‖εn,jx ‖2 − ν‖εn,jxx ‖2 +
1

4
‖vn,j‖2L∞‖εn,j‖2,

and, using (2.10),

(δF j
h , ε

n,j) ≤ (
1

4
‖vn,j‖2L∞ +

1

ν
)‖εn,j‖2.

Therefore, in view of (3.29) and the inverse inequality (3.34),

(δF j
h , ε

n,j) ≤ c ‖εn,j‖2,
and (3.36) yields

‖vn+1 − Un+1‖2 ≤ ‖W n − Un‖2 + ck

q
∑

j=1

‖εn,j‖2.

Moreover, it can be easily seen that

(3.37)

q
∑

j=1

‖εn,j‖2 ≤ c ‖W n − Un‖2,

cf. the proof of Lemma 3.4, and the result follows. �

Combining consistency and stability we can now easily prove convergence.

Theorem 3.1. Assume that u, the solution of (1.1)–(1.2), is sufficiently smooth,

kσ+1h−µ and khr−µ are bounded, and that (3.33) holds. In case (H) is not satisfied

assume further k = O(h
1

p+1 ). Then, under our hypotheses on the implicit RK method,

we have

(3.38) max
0≤n≤N

‖un − Un‖ ≤ c (kσ + hr).

Proof. From (3.32), (3.35) we obtain

‖W n+1 − Un+1‖ ≤ ‖W n+1 − vn+1‖+ ‖vn+1 − Un+1‖
≤ c k(kσ + hr) + (1 + ck)‖W n − Un‖,

and we easily conclude

(3.39) max
0≤n≤N

‖W n − Un‖ ≤ c (kσ + hr).

Now, the result follows from (3.39) and (2.15). �

Uniqueness. For fixed n, 0 ≤ n ≤ N − 1, let V n,1, . . . , V n,q ∈ Sr
h be such that

(3.40) V n,j = Un + k

q
∑

i=1

ajiFh(V
n,i), j = 1, . . . , q.
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Let En,j := Un,j − V n,j, j = 1, . . . , q. Subtracting (3.40) from (3.5), we obtain

En,j = k

q
∑

i=1

aji[Fh(U
n,i)− Fh(V

n,i)], j = 1, . . . , q.

Proceeding as in the proof of Lemma 3.4, we see that for sufficiently small k

(3.41)

q
∑

j=1

‖En,j‖2 ≤ ck max
i

‖Un,i‖2L∞

q
∑

j=1

‖En,j‖2.

Now, from (3.29), (3.37) and (3.39) we conclude

‖un,ih − Un,i‖ ≤ c (kσ + hr), i = 1, . . . , q,

i.e., using (3.34),

‖un,ih − Un,i‖L∞ ≤ c h−µ(kσ + hr), i = 1, . . . , q.

Therefore, using (3.12), (3.6) and (2.9), we have

max
i,n

‖Un,i‖L∞ ≤ C(1 + kσh−µ + hr−µ),

and (3.41) yields, under the hypotheses of Theorem 3.1, for k2σ+1h−2µ and kh2r−2µ

sufficiently small, En,j = 0, i.e., uniqueness of the RK approximations.

4. Solving the nonlinear systems arising in the Runge–Kutta methods

The implementation of the implicit RK method (3.4)–(3.5) requires solving the non-

linear system (3.5). The quite general theory of [3] for linearizing RK equations by

Newton’s method or by a modified Newton method applies to the KS equation as

well and yields under some mild mesh conditions optimal–order error estimates for

the resulting approximations provided that at least a specific number of iterations is

performed at every time step and accurate starting values are used. In [3] a simpler

iterative scheme of explicit–implicit type, explicit in the nonlinear and implicit in the

linear part of the equation, for implementing RK methods is also analyzed. This result

is not directly applicable in our case, since, due to the presence of a spatial derivative

in the nonlinear part of the KS equation, the nonlinear part of Fh does not satisfy hy-

pothesis (H6) of [3] with γ = 0, an assumption for the analysis of the explicit–implicit

scheme in [3], cf. [3, Theorem 6.1]. However, the particular form of the linear part of

the KS equation allows us to modify the analysis slightly and prove that the explicit–

implicit scheme retains the order of convergence of the RK methods shown in section

3.

Let ϕh : Sr
h → Sr

h denote the nonlinear part of Fh,

(ϕh(v), χ) = −(vv′, χ) ∀v, χ ∈ Sr
h.

Note that ϕh(v) = −P0(vv
′), where P0 denotes the L2–orthogonal projection operator

onto Sr
h. Separating linear and nonlinear parts in (3.5), we define V n,j

ℓ ∈ Sr
h recursively
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by

(4.1) V n,j
ℓ+1 − k

q
∑

i=1

ajiLhV
n,i
ℓ+1 = V n + k

q
∑

i=1

ajiϕh(V
n,i
ℓ ), j = 1, . . . , q,

ℓ = 0, . . . , ℓn − 1. Given V n,i
ℓ , i = 1, . . . , q, the V n,j

ℓ+1, j = 1, . . . , q, are, for sufficiently

small k, well defined by (4.1), cf. Remark 3.1. The starting values are assumed given,

and ℓn ≥ 1 is the number of iterations to be performed at step n. We then define V n+1

by

(4.2) V n+1 := V n + bTA−1(V n,1
ℓn

− V n, . . . , V n,q
ℓn

− V n)T ,

cf. (3.4′). Starting values V n,i
0 may be generated by extrapolating previously computed

values V n, V n−1, . . . , according to

(4.3) V n,i
0 :=

pn
∑

j=0

µpn
ij V

n−j, i = 1, . . . , q, n = 0, . . . , N − 1,

where pn ≤ n is a nonnegative integer, and where the extrapolation coefficients are

generated as follows: For integer ℓ, 0 ≤ ℓ ≤ n, let Lℓ,n
i , i = 0, . . . , ℓ, be the Lagrange

polynomials of degree ℓ that satisfy Lℓ,n
i (tn−j) = δij , i, j = 0, . . . , ℓ. Then set

(4.4) µℓ
ij := Lℓ,n

j (tn + kτi), i = 1, . . . , q, j = 0, . . . , ℓ.

It is easily seen that for a smooth function y

(4.5)

ℓ
∑

j=0

µℓ
ijy(t

λ−j) = y(tλ + kτi) +O(kℓ+1), i = 1, . . . , q, λ ≥ ℓ.

Since the accuracy of the extrapolated values is limited by the number of available past

data as well as by p+ 1 and σ, we shall take

(4.6) pn := min(n, p, σ − 1).

It is easily seen that the Fréchet derivativeDϕh(ω) is given byDϕh(ω)v = −P0((ωv)
′), ω, v

∈ Sr
h. Hence, (Dϕh(ω)v, w) = (ωv, w′), i.e., for K > 0,

(4.7) (Dϕh(ω)v, w) ≤
K2

4
‖v‖2 + ‖w′‖2 ∀ω, v, w ∈ Sr

h, ‖ω‖L∞ ≤ K.

Further, obviously,

(4.8) (Lhv, v) = ‖v′‖2 − ν‖v′′‖2 ∀v ∈ Sr
h.

Theorem 4.1. Assume that the hypotheses of Theorem 3.1 are satisfied and that we

are given initial data V 0, . . . , V p̃, p̃ := min(p, σ − 1), in Sr
h satisfying

(4.9) max
0≤j≤p̃

‖uj − V j‖ ≤ c (kσ + hr).

Then for r > µ and kp̃+1h−µ sufficiently small, ℓn ≥ 2(σ − p̃) + 1, and V p̃+1, . . . , V N

given by (4.1)–(4.2), we have

(4.10) max
0≤n≤N

‖un − V n‖ ≤ c (kσ + hr).
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Proof. It follows from (2.15) and (4.9) that

(4.11) ‖W n − V n‖ ≤ cn (kσ + hr), n = 0, . . . , p̃.

We shall prove inductively that

(Ii) ‖W n − V n‖ ≤ cn (kσ + hr), n = p̃, . . . , N,

(Iii) cn = (1 + c̃k)cn−1 + c̃k, n = p̃+ 1, . . . , N,

where c̃ depends only on the implicit RK method and the constant c in (3.32), (3.35).

It follows easily from (Iii) that

cn ≤ c∗ := (cp̃ + 1)ec̃T , n = p̃, . . . , N.

Let V n,1, . . . , V n,q and Ṽ n+1 in Sr
h be such that for n = 0, . . . , N − 1

(4.12) V n,j = V n + k

q
∑

i=1

ajiFh(V
n,i), j = 1, . . . , q,

(4.13) Ṽ n+1 = V n + bTA−1(V n,1 − V n, . . . , V n,q − V n)T .

Now assume that (Ii), (Iii) hold up to some n, p̃ ≤ n ≤ N − 1. To extend these to

n + 1, we shall prove inductively that

(IIi) max
1≤i≤q

‖V n,i
ℓ ‖L∞ ≤ K, ℓ = 0, . . . , ℓn,

(IIii) max
1≤i≤q

‖V n,i − V n,i
ℓ ‖ ≤ (cK

√
k)ℓ max

1≤i≤q
‖V n,i − V n,i

0 ‖, ℓ = 0, . . . , ℓn,

where K := 2max{|u(x, t)| : 0 ≤ x ≤ 1, 0 ≤ t ≤ t∗}. Next, we verify (IIi) for ℓ = 0.

Obviously

max
1≤i≤q

‖V n,i − vn,i‖ ≤ c ‖W n − V n‖,

see (3.37), and consequently by the induction hypothesis,

(4.14) max
1≤i≤q

‖V n,i − vn,i‖ ≤ cc∗ (kσ + hr).

Further

V n,i −W (·, tn,i) = (V n,i − vn,i) + (vn,i − un,ih ) + (un,ih − un,i) + (un,i −W (·, tn,i)),
and, hence, in view of (4.14), (3.29), (2.9) and (3.7), (3.12), (3.6)

(4.15) max
1≤i≤q

‖V n,i −W (·, tn,i)‖ ≤ C (kp̃+1 + hr).

Therefore, by (2.9) and (3.34), for k and h sufficiently small,

(4.16) max
1≤i≤q

‖V n,i‖L∞ ≤ 2

3
K.

Further

V n,i − V n,i
0 = [V n,i −W (·, tn,i)] + [W (·, tn,i)−

p̃
∑

j=0

µp̃
ijW

n−j] +

p̃
∑

j=0

µp̃
ij(W

n−j − V n−j),
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and, using (4.15), (4.5), (2.18) and the induction hypothesis,

(4.17) max
1≤i≤q

‖V n,i − V n,i
0 ‖ ≤ Cc∗ (kp̃+1 + hr),

where C does not depend on k, h, n and the induction indices. Thus, by (4.16) and

(3.34) we see that, under our hypotheses, for sufficiently small k and h, (IIi) holds for

ℓ = 0.

Now assume that (IIi) and (IIii) hold up to some ℓ, ℓ < ℓn. We shall next prove, for

k sufficiently small, the estimate

(4.18) max
1≤i≤q

‖V n,i − V n,i
ℓ+1‖ ≤ cK

√
k max

1≤i≤q
‖V n,i − V n,i

ℓ ‖,

for some constant c depending only on the RK method and ν. Indeed, from (4.1),

(4.12), we obtain, for j = 1, . . . , q,

V n,j − V n,j
ℓ+1 − k

q
∑

i=1

ajiLh(V
n,i − V n,i

ℓ+1) = k

q
∑

i=1

aji[ϕh(V
n,i)− ϕh(V

n,i
ℓ )]

= k

q
∑

i=1

aji

1
∫

0

Dϕh(sV
n,i + (1− s)V n,i

ℓ )(V n,i − V n,i
ℓ )ds.

Multiplying this system by D2A−1, taking inner products, using (4.7), (4.16) and the

induction hypothesis, for k and h sufficiently small, we obtain
q

∑

j,i=1

cij di dj(V
n,j − V n,j

ℓ+1, V
n,i − V n,i

ℓ+1)− k

q
∑

i=1

d2i (Lh (V n,i − V n,i
ℓ+1), V

n,i − V n,i
ℓ+1)

= k

q
∑

i=1

d2i

1
∫

0

(Dϕh (sV n,i + (1− s)V n,i
ℓ )(V n,i − V n,i

ℓ ), V n,i − V n,i
ℓ+1)ds

≤ K2

4
k

q
∑

i=1

d2i ‖V n,i − V n,i
ℓ ‖2 + k

q
∑

i=1

d2i ‖(V n,i − V n,i
ℓ+1)

′‖2,

C and D being as in (P). Hence, in view of (P) and (4.8),

c1

q
∑

i=1

‖V n,i − V n,i
ℓ+1‖2 ≤ k

q
∑

i=1

d2i [2‖(V n,i − V n,i
ℓ+1)

′‖2 − ν‖(V n,i − V n,i
ℓ+1)

′′‖2]

+
K2

4
k

q
∑

i=1

d2i ‖V n,i − V n,i
ℓ ‖2,

and (4.18) follows easily using (2.10). From (4.18) we conclude that (IIii) holds for

ℓ + 1 as well. We next verify (IIi) for ℓ+ 1. From (IIii) and (4.17),

max
1≤i≤q

‖V n,i − V n,i
ℓ+1‖ ≤ C(cK)ℓ+1(c∗

√
k)(

√
k)ℓ (kp̃+1 + hr);

therefore, for k sufficiently small,

(4.19) max
1≤i≤q

‖V n,i − V n,i
ℓ+1‖ ≤ (

√
k)ℓ (kp̃+1 + hr).
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Using (4.16) and (3.34), we see that, for k and h sufficiently small, (IIi) is satisfied for

ℓ + 1. This completes the secondary induction argument (II), and we return to the

primary argument (I). For ℓn ≥ 2(σ − p̃) + 1 it follows from (4.2), (4.13) and (4.19)

(4.20) ‖V n+1 − Ṽ n+1‖ ≤ C k(kσ + hr).

Now, W n+1 − V n+1 = (W n+1 − vn+1) + (vn+1 − Ṽ n+1) + (Ṽ n+1 − V n+1), and thus in

view of the consistency and the local stability of the RK method, cf. (3.32), (3.35),

respectively, and (4.20)

‖W n+1 − V n+1‖ ≤ [(1 + c̃k)cn + c̃k](kσ + hr).

This establishes both (Ii) and (Iii). The estimate (4.10) follows now immediately using

(2.9) and (4.9). �

Remark 4.1. The implementation of the method described in this section requires

solving at every time step a number of q dimSr
h × q dimSr

h linear systems, see (4.1).

These systems have the same matrix, and in some important cases, e.g. for Gauss–

Legendre and for Radau IIA methods, can be decomposed into q dimSr
h × dimSr

h

systems independent of each other, which can be solved simultaneously on a computer

with at least q processors, see [3] and the references therein. We refer the reader also

to [3] for some techniques for generating initial data V 0, . . . , V p̃ satisfying (4.9).
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