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Abstract. We consider the discretization of a special class of nonlinear parabolic

equations, including the complex Ginzburg–Landau equation, by implicit–explicit

multistep methods and establish stability under a best possible linear stability con-

dition.

1. Introduction

Let T > 0, u0 ∈ H, and consider the initial value problem of seeking a function

u : [0, T ] → D(A) satisfying

(1.1)

{
u′(t) + A(t)u(t) = B(t, u(t)), 0 < t < T,

u(0) = u0,

with

(1.2) A(t) = A+ ia(t)A,

A : D(A) → H a time-independent, positive definite, self-adjoint linear operator on

a Hilbert space (H, (·, ·)), with domain D(A) dense in H, i the imaginary unit, a(t) :

[0, T ] → R a continuous real-valued function, and B(t, ·) : D(A) → H, t ∈ [0, T ],

(possibly) nonlinear operators. We assume that (1.1) possesses a smooth solution.

An example of a parabolic equation with linear operator of the form (1.2) is the

complex Ginzburg–Landau equation, given here in its simplest form in one space

dimension,

(1.3) ut = (1 + iã)uxx + (1 + ic)u− (1 + id)|u|2u,

with ã, c and d real numbers; see, e.g., [8, 9, 13, 18]. The complex Ginzburg–Landau

equation is encountered in several diverse branches of physics, for example in super-

conductivity and superfluidity, non-equilibrium fluid dynamics and chemical systems,

nonlinear optics, Bose–Einstein condensates and Rayleigh–Bénard convection. Vari-

ants of (1.3), also of the form of the differential equation in (1.1), like the cubic-quintic
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complex Ginzburg–Landau equation, appear in applications as well, for instance, in

nonlinear optics; see, e.g., [8, 10] and references therein. Furthermore, the generalized

cubic quintic complex Swift–Hohenberg equation, given here for simplicity again in

one space dimension,

(1.4) ut + (1 + iã)uxxxx = δu+ βuxx + µ|u|2u+ ν|u|4u,

with ã and δ real numbers, and β, µ and ν complex numbers, see [16], belongs also to

the class of parabolic equations considered in this paper.

Let (α, β) be a strongly A(0)−stable q−step scheme and (α, γ) be an explicit q−step

scheme, characterized by three polynomials α, β and γ,

α(ζ) =

q∑
i=0

αiζ
i , β(ζ) =

q∑
i=0

βiζ
i , γ(ζ) =

q−1∑
i=0

γiζ
i.

Let N ∈ N, k := T/N be the constant time step, and tn := nk, n = 0, . . . , N, be a

uniform partition of the interval [0, T ]. Since we consider q−step schemes, we assume

that starting approximations U0, . . . , U q−1 are given. We consider the discretization

of the initial value problem (1.1) by the implicit–explicit (α, β, γ)−scheme: More

precisely, we use the implicit scheme (α, β) for the discretization of the linear part and

the explicit scheme (α, γ) for the discretization of the nonlinear part of the equation;

see [3, 4, 1]. We thus recursively define a sequence of approximations Um to the nodal

values um := u(tm) of the solution u of (1.1) by

(1.5)

q∑
i=0

(
αiI + kβiA(t

n+i)
)
Un+i = k

q−1∑
i=0

γiB(tn+i, Un+i),

n = q, . . . , N. The unknown Un+q appears in (1.5) only linearly, since γq = 0; there-

fore, to advance with (1.5) in time, we need to solve, at each time level, just one linear

equation, which reduces to a linear system of equations, if we discretize also in space.

1.1. Abstract setting. Let |·| denote the norm ofH, and introduce in V, V := D(A1/2),

the norm ∥ · ∥ by ∥v∥ := |A1/2v|. We identify H with its dual, and denote by V ′ the

dual of V , and by ∥ · ∥⋆ the dual norm on V ′, ∥v∥⋆ := |A−1/2v|. We use the nota-

tion (·, ·) also for the duality pairing between V ′ and V ; then ∥v∥ = (Av, v)1/2 and

∥v∥⋆ = (v,A−1v)1/2. We assume that B(t, ·) can be extended to operators from V into

V ′, and satisfy the local Lipschitz condition

(1.6) ∥B(t, v)−B(t, w)∥⋆ ≤ λ2∥v − w∥+ µ2|v − w| ∀v, w ∈ Tu,

in a tube Tu, Tu := {v ∈ V : mint ∥v−u(t)∥ ≤ 1}, around the solution u, uniformly in

t, with the stability constant λ2 and a constant µ2; this is actually the condition needed,

but for simplicity we have also assumed that B(t, ·) : D(A) → H, t ∈ [0, T ].

Since the implicit scheme (α, β) is A(0)−stable, the product αqβq is positive. It then

follows immediately from the Lax–Milgram lemma that, given a w ∈ V ′, the equation

(1.7) αqv + kβq

[
1 + ia(t)

]
Av = w
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possesses a unique solution v ∈ V, for any fixed t ∈ [0, T ]. Therefore, given the

starting approximations U0, . . . , U q−1 ∈ V, the approximations U q, . . . , UN ∈ V are

well defined by the implicit–explicit scheme (1.5), under the mild condition that |a(t)|
is bounded by an arbitrary constant λ1.

Let us now briefly consider the complex Ginzburg–Landau equation (1.3), posed in

a bounded interval [a, b] and subject to homogeneous Dirichlet boundary conditions,

with initial value u(·, 0) = u0. We consider complex-valued functions on (a, b) and,

with standard notation for Sobolev spaces, let H := L2 := L2(a, b), V := H1
0 :=

H1
0 (a, b), and V ′ = H−1 := H−1(a, b).

To write the corresponding initial and boundary value problem for the complex

Ginzburg–Landau equation (1.3) in the form (1.1), we let the time-independent, pos-

itive definite, self-adjoint linear operator A : D(A) = H2 ∩ H1
0 → L2 be given, for

instance, by Av := −vxx. Then, the norm in V = H1
0 = D(A1/2) is ∥ · ∥, ∥v∥ := |vx|,

with | · | the L2−norm, i.e., the standard H1−seminorm, which is a norm in H1
0 equiv-

alent to the standard H1−norm. It is easily seen that the dual norm ∥ ·∥⋆ in V ′ is given

by

∥v∥⋆ := sup
w∈V \{0}

|(v, w)|
∥w∥

= min
c∈C

|c+ v̂| = |v̂ − v̂ave|,

with v̂ an antiderivative of v and v̂ave its mean in [a, b],

v̂(x) =

∫ x

a

v(s) ds+ c, x ∈ [a, b], and v̂ave :=
1

b− a

∫ b

a

v̂(x) dx.

In other words, the H−1−norm of a function v is equal to the L2−norm of the anti-

derivative v̂ of v with vanishing mean in (a, b), v̂ave = 0.

With B(v) := (1 + ic)v − (1 + id)|v|2v, we write the complex Ginzburg–Landau

equation (1.3) as

ut + (1 + iã)Au = B(u).

Now, since H1
0 (a, b) ⊂ C[a, b] ⊂ L2(a, b) and B : C[a, b] → C[a, b], we obviously

have B : V → V ′ (as well as B : D(A) → H). Furthermore, in view of the obvious

inequality ∣∣|z1|2z1 − |z2|2z2
∣∣ ≤ (

|z1|+ |z2|
)2|z1 − z2| ∀z1, z2 ∈ C

and the fact that the elements of the tube Tu are uniformly bounded in the maximum

norm, we easily infer that

(1.8) ∥B(t, v)−B(t, w)∥⋆ ≤ µ2|v − w| ∀v, w ∈ Tu,

with a constant µ2, i.e., that the local Lipschitz condition (1.6) is satisfied with λ2 = 0.

1.2. The stability result. We first introduce two constants that will play an important

role in the sequel, namely K(α,β) and K(α,β,γ), by

(1.9) K(α,β) := sup
x>0

max
ζ∈K

∣∣ xβ(ζ)

(α + xβ)(ζ)

∣∣, K(α,β,γ) := sup
x>0

max
ζ∈K

∣∣ xγ(ζ)

(α + xβ)(ζ)

∣∣,
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with K denoting the unit circle in the complex plane, K := {z ∈ C : |z| = 1}. Under

our hypotheses, the constants K(α,β) and K(α,β,γ) are finite; cf. [4, 1]. Actually, with ϑ

the largest angle for which the scheme (α, β) is A(ϑ)−stable, we have

(1.10) K(α,β) =
1

sinϑ
;

cf. [1]. Moreover, for some implicit–explicit multistep schemes the constants K(α,β,γ)

are explicitly given in [4] and [5]. The main result of this paper is:

Theorem 1.1 (Stability of the scheme (1.5) for (1.1) with operator A(t) of the form

(1.2)). Let λ1 := max0≤t≤T |a(t)| and λ2 be the stability constant of the local Lipschitz

condition (1.6). Then, under the linear stability condition

(1.11) (cotϑ)λ1 +K(α,β,γ)λ2 < 1

on λ1 and λ2, the implicit–explicit multistep scheme (1.5) is locally stable for (1.1) with

operator A(t) of the form (1.2) in the following sense: If U0, . . . , UN , V 0, . . . , V N ∈ Tu

satisfy (1.5) and

q∑
i=0

(
αiI + kβiA(t

n+i)
)
V n+i = k

q−1∑
i=0

γiB(tn+i, V n+i),

n = q, . . . , N, respectively, then

(1.12) |Un − V n|2 + k
n∑

ℓ=0

∥U ℓ − V ℓ∥2 ≤ C

q−1∑
j=0

(
|U j − V j|2 + k∥U j − V j∥2

)
,

n = q, . . . , N, with a constant C independent of the time step k and the approximations

Un, V n.

Actually, (1.11) is the best possible linear sufficient stability condition on the con-

stants λ1 and λ2 in the sense that none of the coefficients cotϑ and K(α,β,γ) can be

replaced by a smaller coefficient, if we want the scheme (1.5) to be stable for all equa-

tions (1.1) with linear operators A(t) of the form (1.2), and λ1 := max0≤t≤T |a(t)|, and

operators B(t, ·) satisfying the local Lipschitz condition (1.6).

Combining the stability result of Theorem 1.1 with the easily established consis-

tency of the scheme (1.5), we are led to optimal order a priori error estimates; see,

e.g., [1]. These results extend also to fully discrete schemes, if we discretize in space,

for instance, by the finite element method; cf., e.g., [4].

We note that the local Lipschitz condition (1.6) is typically satisfied in the applica-

tions in tubes Tu around the solution u defined in terms of L∞−based Sobolev norms,

often different for each argument, rather than in terms of L2−based Sobolev norms. In

such cases, our error analysis does not directly apply if we only consider the discretiza-

tion in time, since it cannot ensure that the approximations are sufficiently close to the

exact solution in the required norm; it does, however, apply, usually under mild mesh-

conditions, in the fully discrete case, i.e., if we combine the time stepping schemes

with discretization in space; cf., e.g., [4].
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Implicit–explicit multistep methods, for linear parabolic equations, were introduced

and analyzed in [11]; the analysis was extended to nonlinear parabolic equations in

[3, 4, 1]. Implicit multistep schemes are studied in [14] for nonlinear stiff differential

equations and in [19] for linear parabolic equations with time-dependent operators.

The analysis in [14, 19, 4, 1] is based on spectral and Fourier techniques. In contrast,

in [11, 3] the energy method is applied; the drawback of the specific analysis is that

it does not lead to quantified sufficient stability conditions on the stability constants

λ1 or λ2. Energy methods for high-order multistep schemes that do lead to quantified

sufficient stability conditions were only recently employed for backward difference

formula (BDF) schemes of order up to five, first in [15] for the implicit BDF schemes

for linear parabolic equations on evolving surfaces, and subsequently in [7] and [2, 6]

for the implicit–explicit methods for quasi-linear and nonlinear parabolic equations,

respectively.

An outline of the paper is as follows: In Section 2, which is of preparatory na-

ture, we recall the main stability result from [1]. In Section 3, combining the result

of Section 2 with a suitable decomposition of the operators A(t) in (1.2), we prove

Theorem 1.1, comment on the sufficient stability condition (1.11), give a necessary

stability condition, and, for the case of implicit–explicit BDF schemes of order up to

5, compare the new stability result with the one established in [7, 2, 6] by the energy

method. Actually, for the three-, four-, and five-step implicit–explicit BDF schemes,

the new sufficient stability condition (1.11) is milder than the best stability condition

used in the energy technique approach.

2. A known stability result

We present here a stability result from [1] that will be used in the sequel to prove

Theorem 1.1.

In this section we allow the operators A(t) in (1.1) to be of more general form,

namely A(t) = A + A1(t) with A : D(A) → H a time-independent, positive definite

self-adjoint linear operator as before, and A1(t) : D(A) → H linear operators. We

assume that the linear operators A1(t) : V → V ′ are uniformly bounded,

(2.1) ∥A1(t)v∥⋆ ≤ λ1∥v∥+ µ1|v| ∀v ∈ V, ∀t ∈ [0, T ],

with the stability constant λ1 and a constant µ1.

It is shown in [1] that the implicit–explicit (α, β, γ)−scheme (1.5) is locally stable

in the tube Tu for (1.1), with operators A(t) as described in this section, provided

the stability constants λ1 and λ2 in the boundedness condition (2.1) and in the local

Lipschitz condition (1.6) are small enough such that

(2.2) K(α,β)λ1 +K(α,β,γ)λ2 < 1.

Furthermore, (2.2) is the best possible linear sufficient stability condition on the con-

stants λ1 and λ2 in the sense that none of the coefficients K(α,β) and K(α,β,γ) can be
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replaced by a smaller coefficient, if we want the scheme (1.5) to be stable for all equa-

tions (1.1) satisfying (2.1) and (1.6); see [1].

In [1] a necessary stability condition on the constants λ1 and λ2 for the scheme (1.5)

is also given, namely

(2.3) sup
x>0

max
ζ∈K

λ1|β(ζ)|+ λ2|γ(ζ)|
|x−1α(ζ) + β(ζ)|

≤ 1.

As before, (2.3) is necessary if we want the implicit–explicit (α, β, γ)−scheme (1.5)

to be locally stable for all equations satisfying assumptions (2.1) and (1.6) with the

given stability constants λ1 and λ2. The difference in the left-hand sides of the suffi-

cient and necessary, respectively, stability conditions (2.2) and (2.3) is that the sum

of the suprema in the former is replaced by the supremum of the sum in the latter. In

particular, in the case of an A−stable implicit scheme (α, β), the left-hand sides of the

sufficient and necessary stability conditions (2.2) and (2.3) coincide; in other words,

in this case the sufficient stability condition (2.2) is best possible, even compared to

not necessarily linear conditions on λ1 and λ2.

Let us note that both constants K(α,β) and K(α,β,γ) are larger than or equal to 1. This

is obvious for K(α,β); see (1.10). Furthermore, if the schemes (α, β) and (α, γ) are

consistent, i.e., if their orders are at least 1, then γ(1) = β(1), whence

K(α,β,γ) ≥ lim
x→∞

∣∣ xγ(1)

(α+ xβ)(1)

∣∣ = lim
x→∞

∣∣ xβ(1)

(α + xβ)(1)

∣∣ = 1.

3. Stability for our special class of parabolic equations

In contrast to Section 2, here we restrict our attention to the initial value problem

(1.1) with linear operators A(t) of the form (1.2). In this case the sufficient stability

condition (2.2) can be relaxed to (1.11), i.e., the first term on the left-hand side of (2.2)

can be multiplied by cosϑ. Notice that in the former case there is no restriction on the

“direction” of the perturbation A1(t) and the coefficient of λ1 in (2.2) is 1/ sinϑ, with

sinϑ the ratio of the distance of a positive number a from the boundary of the stability

sector Sϑ, Sϑ := {z ∈ C : z = ρeiφ, ρ ≥ 0, |φ| ≤ ϑ}, over a; analogously, in the

latter case, the perturbation A1(t) = ia(t)A is in the “direction” of the imaginary axis,

and the coefficient of λ1 in (1.11) is 1/ tanϑ, with tanϑ the ratio of the distance in the

direction of the imaginary axis of a positive number a from the boundary of the sector

Sϑ over a. These coefficients are best possible; the product of smaller constants with

λ1 may be less than 1 while some of the eigenvalues of the linear operator A+ A1(t)

may lie in the exterior of the stability sector Sϑ, in which case the method is unstable

according to the von Neumann criterion.

We will see that Theorem 1.1 follows from the results of Section 2 by using a more

favourable decomposition of the operators A(t). We shall also comment on the suffi-

cient stability condition (1.11), give a necessary stability condition, and, for the case

of implicit–explicit BDF schemes of order up to 5, compare the new stability result

with the one established in [7, 2, 6] by the energy method.
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The key point in the proof of Theorem 1.1 is the following choice of a decomposi-

tion of the operators A(t),

(3.1) A(t) = Â+ Â1(t), with Â := (1 + η)A and Â1(t) :=
(
ia(t)− η

)
A,

with η a nonnegative quantity that may depend on λ1 and λ2. We will see that a suitable

choice of η is η := (tanϑ)λ1, with λ1 = max0≤t≤T |a(t)|; see (2.1).

First, obviously, withA1(t) = ia(t)Awe have |A−1/2A1(t)v| = |a(t)| |A1/2v|,whence

(3.2) |A−1/2A1(t)v| ≤ λ1|A1/2v| ∀v ∈ V, ∀t ∈ [0, T ],

i.e., (2.1) is satisfied with the constant λ1 mentioned above and µ1 = 0; furthermore,

assumption (1.6) may be equivalently written in the form

(3.3) |A−1/2
(
B(t, v)−B(t, w)

)
| ≤ λ2|A1/2(v − w)|+ µ2|v − w| ∀v, w ∈ Tu.

Now, with the notation of the decomposition (3.1),

|Â−1/2Â1(t)v| =
|ia(t)− η|

1 + η
|Â1/2v|,

and it is easily seen that the operators Â, Â1(t) and B(t, ·) satisfy the estimates

(3.4) |Â−1/2Â1(t)v| ≤
|iλ1 − η|
1 + η

|Â1/2v| ∀v ∈ V, ∀t ∈ [0, T ],

and

(3.5) |Â−1/2
(
B(t, v)−B(t, w)

)
| ≤ λ̂2|Â1/2(v − w)|+ µ̂2|v − w| ∀v, w ∈ Tu,

with

(3.6) λ̂2 :=
λ2

1 + η
, µ̂2 :=

µ2√
1 + η

.

Compare (3.4) with (3.2), and (3.5) with (3.3), respectively.

We infer from (2.2) and (3.4), (3.5), (3.6) that the scheme (1.5) is locally stable for

(1.1) with operator A(t) of the form (1.2), if λ1 and λ2 are such that

(3.7)
1

sinϑ

|iλ1 − η|
1 + η

+K(α,β,γ)
λ2

1 + η
< 1,

for some nonnegative η. We will now see that the new sufficient stability condition

(1.11) follows immediately from (3.7) by a suitable choice of η.

We first rewrite (3.7) in the equivalent form

(3.8)
( 1

sinϑ

√
λ2
1 + η2 − η

)
+K(α,β,γ)λ2 < 1,

and notice that the term in parentheses attains its minimum if and only if η = (tanϑ)λ1.

For this choice of η, we have

1

sinϑ

√
λ2
1 + η2 − η = (cotϑ)λ1

and condition (3.8) reduces to the desired sufficient stability condition (1.11).
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Let now φ ∈ [0, π
2
) be such that tanφ = λ1. Then, the first term on the left-hand side

of (1.11) is tanφ/ tanϑ, and we infer that (1.11) can be satisfied for some positive λ2

if and only if φ < ϑ. This is a sharp condition on λ1. Indeed, since the eigenvalues

of the operator (1 + iλ1)A are of the form ρeiφ, with ρ positive, in the case φ > ϑ the

scheme (α, β) is unstable for the equation u′ +Au+ iλ1Au = 0, according to the von

Neumann criterion.

Remark 3.1 (Nonlinear sufficient stability conditions). Conditions (3.7) and (3.8)

are obviously equivalent. The left-hand sides of (3.8) and (3.7) attain their minima at

η = η(λ1) := (tanϑ)λ1 and at η = η(λ1, λ2),

(3.9) η(λ1, λ2) :=
K2

(α,β)λ
2
1 +K(α,β,γ)λ1λ2

√
K2

(α,β)(1 + λ2
1)−K2

(α,β,γ)λ
2
2

K2
(α,β) −K2

(α,β,γ)λ
2
2

,

respectively. Substituting the latter value of the parameter η in (3.7), we obtain a

nonlinear sufficient stability condition, namely

(3.10) K(α,β)
|iλ1 − η(λ1, λ2)|
1 + η(λ1, λ2)

+K(α,β,γ)
λ2

1 + η(λ1, λ2)
< 1,

which is obviously equivalent to the linear sufficient stability condition (1.11). In par-

ticular, choosing λ2 = 0 in (3.9), we see that the first term on the left-hand side of (3.7)

attains its minimum at η(λ1, 0) = λ2
1; see Figure 3.1 for the geometric interpretation.

This choice of η leads to the nonlinear sufficient stability condition

(3.11)
1

sinϑ

λ1√
1 + λ2

1

+K(α,β,γ)
λ2

1 + λ2
1

< 1.

Let φ ∈ [0, π
2
) be such that tanφ = λ1. Then, obviously,

λ1√
1 + λ2

1

= sinφ and 1 + λ2
1 =

1

cos2 φ
,

whence (3.11) can be equivalently written in the form

1

sinϑ
sinφ+K(α,β,γ)(cos2 φ)λ2 < 1.

This condition can be satisfied for some positive λ2 if and only if φ < ϑ. As already

mentioned, this is a sharp condition on λ1.

For positive λ2, the nonlinear sufficient stability condition (3.11) is less favourable

than the equivalent sufficient stability conditions (1.11) and (3.10). □

3.1. A necessary stability condition. In the case of an A−stable implicit method

(α, β) the sufficient stability condition (1.11) takes the form K(α,β,γ)λ2 < 1, which is

sharp, even for λ1 = 0; cf. [4]. Furthermore, in the case λ2 = 0, the sufficient stability

condition (1.11) is also sharp, as we already mentioned.
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x

y

C
1 1+x

φ λ1

Figure 3.1. Geometric interpretation of the choice η(λ1, 0) = λ2
1: Let φ

be such that tanφ = λ1. Obviously
|x−iλ1|
1+x

= |(1+x)−(1+iλ1)|
1+x

≥ sinφ for

all x > −1 and equality is attained if and only if the segment joining

1 + x and 1 + iλ1 in the complex plane is orthogonal to the half-line

passing through the origin and the point 1 + iλ1. Then, 1 + x = |1 +

iλ1|/ cosφ = 1/ cos2 φ, whence x = tan2 φ = λ2
1.

Next, we assume that the implicit (α, β) method is A(ϑ)−stable with ϑ < π/2, λ2

is positive and λ1 < tanϑ. We will see that a necessary stability condition on the

constants λ1 and λ2 for the scheme (1.5), with operators A(t) of the form (1.2), is then

(3.12) λ2 sup
x>0

max
ζ∈K

max
−λ1≤y≤λ1

|γ(ζ)|
|xα(ζ) + (1 + yi)β(ζ)|

≤ 1.

To this end, we consider the function k,

(3.13) k(x, y, ζ) :=
λ2xγ(ζ)

α(ζ) + x(1 + yi)β(ζ)
, x > 0, −λ1 ≤ y ≤ λ1, |ζ| ≥ 1,

which is holomorphic for |ζ| ≥ 1, and x > 0,−λ1 ≤ y ≤ λ1, and notice that, if (3.12)

is not valid, then we have

(3.14) ∃z ∈ K , x > 0, −λ1 ≤ y ≤ λ1 |k(x, y, z)| > 1.

Since

lim
|ζ|→∞

k(x, y, ζ) = 0,

we infer that there exists a ζ⋆ ∈ C with |ζ⋆| > 1 such that |k(x, y, ζ⋆)| = 1, i.e.,

λ2xγ(ζ
⋆)

α(ζ⋆) + x(1 + yi)β(ζ⋆)
= e−iφ,

for a suitable φ ∈ [0, 2π). Therefore,

(3.15) α(ζ⋆) + x(1 + yi)β(ζ⋆)− λ2xeiφγ(ζ⋆) = 0.

Then, choosing the linear operator B(t, ·) := λ2e
iφA, we easily see that the Lipschitz

condition (1.6) is satisfied. According to the von Neumann criterion, a necessary

stability condition is that, if ν is an eigenvalue of A, the solutions of

(3.16)

q∑
i=0

[
αi + kν

(
(1 + yi)βi − λ2e

iφγi
)]
vn+i = 0
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are bounded; for kν = x this is not the case, since in view of (3.15) the root condition

is not satisfied. Therefore, the scheme is not unconditionally stable for the equation

u′(t) + (1 + yi)Au(t) = λ2e
iφAu(t). (In (3.16) we used the notation γq = 0.)

We will next slightly simplify the necessary stability condition (3.12). Let d(ζ) :=

α(ζ)/β(ζ) = −ρeiφ(ζ), for ζ in the unit circle K such that β(ζ) ̸= 0, represent the

points of the root locus curve of the scheme (α, β), with ρ ≥ 0 and −π ≤ φ(ζ) < π.

Since the coefficients of α and β are real, we have d(ζ̄) = d(ζ), i.e., the root locus

curve is symmetric with respect to the real axis. For all points d(ζ) of the root locus

curve of an A(ϑ)−stable scheme, with ϑ as large as possible, there holds

(3.17) | Im d(ζ)|+ tanϑRe d(ζ) ≥ 0,

i.e., the root locus curve is located outside the sector −Sϑ. Furthermore,

(3.18) sinϑ = inf
{ | Im d(ζ)|

|d(ζ)|
: ζ ∈ K , Re d(ζ) < 0

}
;

see, e.g., [1].

Now,

xα(ζ) + (1 + yi)β(ζ) = β(ζ)
[
1 + xRe d(ζ) + i[y + x Im d(ζ)]

]
,

whence

|xα(ζ) + (1 + yi)β(ζ)| = |β(ζ)|
[
1 + x2|d(ζ)|2 + 2x

(
Re d(ζ) + y Im d(ζ)

)]1/2
.

Thus,

(3.19)

max
−λ1≤y≤λ1

1

|xα(ζ) + (1 + yi)β(ζ)|

=
1

|β(ζ)|
[
1 + x2|d(ζ)|2 + 2x

(
Re d(ζ)− λ1| Im d(ζ)|

)]1/2 .
Now, we distinguish two cases, ζ ∈ K +

λ1
and ζ ∈ K −

λ1
, with

K +
λ1

:= {ζ ∈ K : Re d(ζ)− λ1| Im d(ζ)| ≥ 0},
K −

λ1
:= {ζ ∈ K : Re d(ζ)− λ1| Im d(ζ)| < 0}.

For ζ ∈ K +
λ1
, (3.19) obviously yields

(3.20) sup
x>0

max
−λ1≤y≤λ1

1

|xα(ζ) + (1 + yi)β(ζ)|
=

1

|β(ζ)|
.

Furthermore, for ζ ∈ K −
λ1
, it is easily seen that the supremum over all positive x is

attained at x⋆,

x⋆ := −Re d(ζ)− λ1| Im d(ζ)|
|d(ζ)|2

;

thus,

sup
x>0

max
−λ1≤y≤λ1

1

|xα(ζ) + (1 + yi)β(ζ)|
=

1

|β(ζ)|
(
1−

(
Re d(ζ)−λ1| Im d(ζ)|

)2

|d(ζ)|2

)1/2
,
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whence

(3.21)

sup
x>0

max
−λ1≤y≤λ1

1

|xα(ζ) + (1 + yi)β(ζ)|

=
|d(ζ)|

|β(ζ)| | Im d(ζ)|
1(

1 + λ2
1 − 2λ1

Re d(ζ)
| Im d(ζ)|

)1/2
.

Let, now, φ(ζ) ∈ (0, π), denote the angle between the negative real half-axis and the

half-line passing through the origin and the point d(ζ) of the root locus curve. Then,

obviously,

|d(ζ)|
| Im d(ζ)|

=
1

| sinφ(ζ)|
and

Re d(ζ)

| Im d(ζ)|
= − cotφ(ζ).

Therefore, (3.21) can be equivalently written as

(3.22)

sup
x>0

max
−λ1≤y≤λ1

1

|xα(ζ) + (1 + yi)β(ζ)|

=
1

|β(ζ)| | sinφ(ζ)|
1(

1 + λ2
1 + 2λ1 cotφ(ζ)

)1/2 , ∀ζ ∈ K −
λ1
.

In view of (3.20) and (3.22), we can write the necessary stability condition (3.12)

in the form

(3.23) λ2 max
{

max
ζ∈K −

λ1

|γ(ζ)|
|β(ζ)|

, sup
ζ∈K +

λ1

|γ(ζ)|
| sinφ(ζ)| |β(ζ)|

1(
1 + λ2

1 + 2λ1 cotφ(ζ)
)1/2}≤1.

In the case λ1 = 0, condition (3.23) reduces to K(α,β,γ)λ2 ≤ 1; see [1, (2.10)].

3.2. The implicit–explicit BDF methods. A particularly interesting example of mul-

tistep schemes satisfying our assumptions are the BDF methods, described by the

polynomials

(3.24) α(ζ) =

q∑
j=1

1

j
ζq−j(ζ − 1)j, β(ζ) = ζq, γ(ζ) = ζq − (ζ − 1)q.

The corresponding implicit (α, β)−schemes are the well-known BDF methods, which

are strongly A(ϑq)−stable for q = 1, . . . , 6, with ϑ1 = ϑ2 = 90◦, ϑ3 = 86.03◦, ϑ4 =

73.35◦, ϑ5 = 51.84◦ and ϑ6 = 17.84◦; see [12, Section V.2]. Their order is p = q.

For a given α, the scheme (α, γ) is the unique explicit q−step scheme of order p = q.

The one-step scheme is the implicit–explicit Euler method. For these methods, the

constants K(α,β,γ) in (1.9) are explicitly known, namely

(3.25) K(α,β,γ) = |γ(−1)| = 2q − 1;

see [4].
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According to (1.11), the implicit–explicit Euler and the implicit–explicit two-step

BDF methods are stable for (1.1), with linear operator A(t) of the form (1.2), for all

λ1, if

(3.26) λ2 < 1 and λ2 <
1

3
,

respectively. For q = 3, 4, 5, 6, we write the sufficient stability condition (1.11) in the

form

(3.27) λ2 <
1

2q − 1

[
1− (cotϑq)λ1

]
=: fq(λ1).

For q ∈ {1, . . . , 5}, stability results for the implicit–explicit BDF methods for (1.1)

have also been established via energy techniques that were based on suitable mul-

tipliers for the q−step BDF schemes; see [7, 2, 6]. More precisely, in [7, 2] the

Nevanlinna–Odeh multipliers from [17] were used, while in [6] more favourable mul-

tipliers were determined and used for the three- and five-step methods. In these sta-

bility results a constant η̂q plays a crucial role: the values of η̂q are

(3.28) η̂1 = η̂2 = 0, η̂3 = 1/13 = 0.07692, η̂4 = 0.2878, η̂5 = 0.80973;

see [6].

For the initial value problem (1.1) with operators A(t) of the form (1.2) the best sta-

bility results by the energy technique are obtained using in V the norm ∥·∥ introduced

in Section 1; cf. [2, 6]. Since, obviously,

∀v ∈ V ∥
(
A+ ia(t)A

)
v∥⋆ = |1 + ia(t)| ∥Av∥⋆ = |1 + ia(t)| ∥v∥,

in the notation of [2, 6], we have ν(t) = |1 + ia(t)| ≤
√
1 + λ2

1. Furthermore,

∀v ∈ V Re((A+ ia(t)A)v, v) = (Av, v) = ∥v∥2,

whence, again in the notation of [2, 6], we have κ(t) = 1. According to [6, Theorem

5.1], we infer that the implicit–explicit q−step BDF method is stable for the initial

value problem (1.1) with operators A(t) of the form (1.2), provided

(3.29) λ2 <
1

2q − 1

1

1 + η̂q

(
1− η̂q

√
1 + λ2

1

)
=: gq(λ1).

Analogous stability results, with slightly larger constants ηq for the three- and five-step

methods, are given in [2, Theorem 2.1] and [7, Theorem 3].

Now, since η̂1 = η̂2 = 0, for the implicit–explicit Euler method and the implicit–

explicit two-step BDF method, the stability condition (3.29) is satisfied for all λ1 and

for λ2 < 1 and λ2 < 1/3, respectively. Thus, for these two schemes, both the present

technique (see (3.26)) and the energy technique lead to best possible stability condi-

tions.

Furthermore, since η̂q ≥ cosϑq, for λ1 ≤ tanϑq, we have

(cotϑq)λ1 ≤ (cosϑq)
√

1 + λ2
1 ≤ η̂q

√
1 + λ2

1.
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Therefore, for the implicit–explicit three-, four-, and five-step BDF methods the sta-

bility condition (3.27) is more favourable than (3.29); see also the graphs of fq and

gq, q = 3, 4, 5, in Figure 3.2.

λ1

λ2

g3

f3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
7

O

λ1

λ2

g4

f4

O

1
15

1 2 3 4
λ1

λ2

g5
f5

O

1
31

1

Figure 3.2. The functions fq and gq of the stability conditions (3.27) and (3.29).
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