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Abstract—This paper investigates quality–driven cross–layer
optimization for resource allocation in Direct Sequence Code
Division Multiple Access (DS–CDMA) Wireless Visual Sensor
Networks (WVSNs). We consider a single–hop network topology,
where each sensor transmits directly to a Centralized Control Unit
(CCU) that manages the available network resources. Our aim is
to enable the CCU to jointly allocate the transmission power and
source–channel coding rates for each node, under four different
quality–driven criteria that take into consideration the varying
motion characteristics of each recorded video. For this purpose,
we studied two approaches with a different tradeoff of quality
and complexity. The first one allocates the resources individually
for each sensor, while the second clusters them according to the
recorded level of motion. In order to address the dynamic nature
of the recorded scenery and re–allocate the resources whenever
it is dictated by the changes in the amount of motion in the
scenery, we propose a mechanism based on the Particle Swarm
Optimization algorithm, combined with two restarting schemes
that either exploit the previously determined resource allocation
or conduct a rough estimation of it. Experimental simulations
demonstrate the efficiency of the proposed approaches.

Index Terms—Resource Allocation, Cross–Layer Optimization,
DS–CDMA, H.264/AVC, Clustering, Nash Bargaining Solution,
Visual Sensor Networks, Particle Swarm Optimization.

I. INTRODUCTION

RECENT advances in wireless communication systems
and digital electronics have enabled the development

of low–cost, low–power, multi–functional sensor nodes that
are small in size and communicate untethered over short
distances [1]. Our interest is focused on Wireless Visual Sensor
Networks (WVSNs) that impose several network, time, and
quality constraints in video transmission. Visual sensors can
harvest information from the physical environment, perform
simple processing on the extracted data and transmit it to
remote locations. Mobile or stationary cameras can be used for
multiple purposes, such as surveillance, tracking of physical
activities and analysis of distant explorations of hazardous
areas, among others [2].

Traditional WVSNs are comprised of distributed nodes
equipped with video cameras and a Centralized Control Unit
(CCU). Such a typical WVSN is considered in this paper.
The nodes share the same frequency and communicate with
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the CCU over the network layer. The CCU applies channel
and source decoding to obtain the received video from each
node. A significant issue that arises in WVSNs is the resource
allocation among the network nodes. Aiming at achieving an
acceptable quality level of the delivered videos, each node
has different resource requirements (e.g., source coding rate
and delay constraints). Moreover, the transmission of each
node has an effect on the other nodes due to interference.
Thus, the received video quality is degraded. Taking into con-
sideration the aforementioned factors along with each node’s
time–varying resource requirements, we propose a quality–
driven joint strategy for the optimal allocation of the network
resources, i.e., transmission power, source and channel coding
rate. Two different node grouping approaches are considered
and evaluated.

Another important issue that emerges in various multimedia
applications, such as area surveillance, is the prioritization of
the visual sensors in order to enhance the delivered video
quality for selected cameras. Specifically, the network’s re-
source allocation can be heavily dependent on the video
data “importance”, as it is dictated by the corresponding
application. More specifically, the recordings of the cameras
with high motion require a larger source coding rate than
low motion videos. High motion videos are more sensitive
to channel losses. Furthermore, assuming a fixed budget for
source and channel coding rate, less strong channel coding will
have to be used for high motion videos. On the other hand, low
motion videos can be encoded at a lower source coding rate.
This will leave more bits available for channel coding and will
allow adequate transmission using a lower transmission power.
Thus, cameras capturing scenes of high motion have different
requirements than cameras capturing scenes of low motion.
Therefore, we use a prioritization scheme based on the amount
of motion detected in a video sequence. According to it, visual
sensors that record higher motion receive a proportionally
higher priority compared to the low motion sensors, and hence
achieve relatively higher delivered video quality.

A last challenging issue that is addressed in this paper refers
to the dynamic nature of the WVSN environment, which is
implied by the changing motion level of the recorded scenes,
the changing application requirements, network load variations
etc. Thus, we propose an online optimization procedure that
is based on the Particle Swarm Optimization (PSO) algorithm,
combined with two different swarm initialization schemes.
Our procedure is capable of retaining high end–to–end video
quality by properly re–allocating the network’s resources each
time a node’s detected motion level changes significantly.
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A. Related Work

The problem of establishing a cooperative framework for the
network resource allocation among wireless nodes has been
considered in previous work [3], [4], [5], [6], [7], [8], [9].
Furthermore, game theory has proved to be a field that can
provide efficient methodologies for such problems.

The problem of allocating the bit rate simultaneously for
multiple video streams across time slots using a central
controller was addressed in [3] based on a competitive equi-
librium approach, the Edgeworth box. The authors made an
assumption that adjacent time slots have similar rate–distortion
curves, therefore in each time slot and for each node the
central controller reoptimizes the resource allocation for the
current and the future time slots. The problem objective was to
maximize the network throughput, which does not necessarily
lead to the maximum possible video quality at the receiver.
Moreover, assuming similar rate–distortion curves in adjacent
time slots does not result in good quality for the cases where
a sudden change in the captured motion level occurs. Opposed
to that, our proposed update mechanism effectively addresses
low to high changes in the rate–distortion curves and quickly
re–allocates the network resources.

A similar bit rate allocation problem among a number
of wireless video stations over an 802.11e–based network
was tackled by employing two different bargaining solutions,
namely the Nash Bargaining Solution (NBS) and the Kalai-
Smorodinsky Bargaining Solution (KSBS) in [5], [6]. In both
works the utility function was based on the end–to–end video
distortion with the motivation to depict the quality impact of
the resource allocation. Besides that, an algorithm to determine
the bargaining powers according to the allocated bit rate
per user is proposed in [5]. In [6], the previous research
problem was extended by considering the wireless stations
as autonomous users that are able to exchange information
and use the same game–theoretic criteria to allocate the bit
rate and the transmission time. In our work, we consider the
NBS criterion and a similar utility function but for a different
resource allocation problem. Moreover, we utilize different
rules for the determination of the bargaining powers of the
nodes. Nevertheless, both [5], [6] assumed static network
conditions for which the resource allocation is considered
valid. With a similar system set-up, the authors of [4] extended
the work of [5], [6] for multihop transmission and studied
three types of resource allocation solutions (centralized op-
timization, game–theoretic approaches and distributed greedy
approaches). Moreover, they pointed out the weakness of their
centralized optimization approach to adapt to the source and
network dynamics due to its high complexity.

Apart from the bit rate allocation problem, NBS was also
used in [7] for the cross–layer resource allocation of a Di-
rect Sequence Code Division Multiple Access (DS–CDMA)
WVSN with an N–class motion–based node partitioning.
Equal bargaining powers were used for each visual sensor.
Thus, the transmission power and network resources were
equally allocated for all sensors within each class. However, no
specific clustering algorithm was proposed for the partitioning
and the presented resulting quality was estimated based on

the representative centroid values of each cluster. Opposed to
that, in the present work we perform k–means clustering and,
after the resource allocation based on the centroid values, we
estimate the video quality by using each node’s real parame-
ters. In another CDMA–based WVSN, where the processing
gain per node can be adapted, we performed a quality–driven
resource allocation to the nodes [8]. Nevertheless, that work
assumed that the network conditions are static and all nodes
have the same bargaining powers in the game. The NBS was
also used for the resource allocation in a multihop video
transmission [9]. The network resources were allocated for
both the source and the relay nodes aiming at optimizing
the end–to–end video quality at the receiver. Moreover, a
motion–driven optimization criterion based on the weighted
aggregation of video distortions was introduced. Furthermore,
the nodes were grouped into classes based on their physical
position and a similar captured amount of motion for each
cluster was assumed. Again, the proposed solution concerned
a certain time instance of this network. Thus, the optimization
process needed to be repeated in order to ensure an up–
to–date resource allocation and acceptable level of network
performance.

Finally, in our work we achieve motion–related proportional
video quality enhancement of the nodes. Particularly, we em-
ploy motion–related bargaining powers to formulate our NBS
criterion. So far, the resource allocation methods of power
and joint source-channel coding rate in video communication
applications have not taken into consideration this requirement
and formulation. Related work in video transmission has only
considered the tradeoff of video quality and channel coding
rate selection with regard to the video distortion impact [10],
[11], [12], [13]. However, the proposed approaches considered
only a single video sequence transmission. Moreover, the
proposed approaches [11], [13] were applied on a binary
symmetric channel and, additionally, the assumption that the
distortion resulting after compression can be ignored was made
in [13].

B. Contribution and Structure of the Paper

We study how the CCU can efficiently allocate the network
resources of a DS–CDMA WVSN taking into consideration
the individual rate–distortion characteristics of each node.
The paper extends the concepts introduced in our previous
work [14], [15], which only included preliminary results, and
brings the following contributions:
(a) Investigating the quality, power and complexity tradeoffs

by considering individual nodes versus clustered nodes:
We study and compare two approaches for resource al-
location in WVSNs with a different tradeoff of quality,
power and complexity. The first one allocates the resources
individually for each sensor according to its individual
rate–distortion characteristics, while the second clusters
them according to the recorded level of motion and
allocates the same resources among the cluster nodes. We
present experimental results that clearly demonstrate the
energy and complexity costs in order to achieve a higher
end–to–end video quality.
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TABLE I
LIST OF ABBREVIATIONS.

Abbreviation Definition Abbreviation Definition
AWGN Additive White Gaussian Noise PSNR Peak Signal to Noise Ratio
BPSK Binary Phase–Shift Keying PSO Particle Swarm Optimization
CCU Centralized Control Unit PSO–PS PSO with prior resource allocation
CDMA Code Division Multiple Access PSO–RE PSO with rough estimation of the resources
DS–CDMA Direct Sequence Code Division Multiple Access RCPC Rate Compatible Punctured Convolutional codes
e.NBS NBS with equal bargaining powers ROPE Recursive Optimal per–Pixel Estimate
MAD Minimizing the Average Distortion TC1 Test Case 1
MAI Multiple Access Interference TC2 Test Case 2
MMD Minimizing the Maximum Distortion URDC Universal Rate Distortion Characteristics
NAL Network Abstraction Layer VCL Video Coding Layer
NBS Nash Bargaining Solution w.NBS NBS with motion–related bargaining powers
NP Nash Product WVSN Wireless Visual Sensor Network

(b) Motion–related prioritization of nodes using game theory:
The recordings of the high motion cameras are susceptible
to channel errors, thus reach the CCU with low quality, op-
posed to the low motion videos which are more robust. It
is therefore sensible that cameras capturing scenes of high
motion have different requirements. So far, the resource
allocation methods in video communication applications
have not taken into consideration this requirement. There-
fore, we provide a simple yet effective game theoretic
motion–related prioritization of the network resources
and enhance the end–to–end video quality of the high
motion nodes. Furthermore, our approach demonstrates
the advantage of computing locally at each node (not at the
CCU) the motion characteristics of each recorded video.
This also means that the required computation is partially
decentralized.

(c) Dynamically changing environment: Unlike previous work
that considers static WVSNs, we consider a dynamic
environment with variations in the amount of motion in
the recorded scenes through time. For this reason, we
introduce two PSO–based algorithms for the re–allocation
of resources after each change in the environment. The two
approaches differ in the swarm initialization, as follows:

(i) PSO with prior resource allocation (PSO–PS): The
swarm is initialized closely to the resource allocation
of its previous state, i.e., before the appearance of the
change in the environment.

(ii) PSO with rough estimation of the resources (PSO–
RE): The swarm is initialized by using a rough first
estimation of the resource allocation, based on the
expected transmission power of each node.

The rest of the paper is structured as follows. In Sec-
tion II, the reference architecture of the WVSN considered
is described. In Section III, the actual optimization problem
is formulated and the proposed approaches and optimization
criteria are detailed. The proposed optimization algorithms
are detailed in Section IV. The experiments and results are
discussed in Section V, and, finally, in Section VI conclusions
are derived. For the reader’s convenience and easy reference,
we summarize abbreviations and their definitions in Table I.

II. SYSTEM MODEL

We consider a single–hop topology with K nodes that
transmit directly to the CCU. DS–CDMA is used for the
physical layer, thus all nodes transmit over the same frequency.
For a single bit transmission, L chips are transmitted by a
node. Hence, each node k is associated with a spreading code
sck (vector of length L). Namely, in order to transmit the
i–th bit of a bitstream, node k actually transmits bk(i)sck,
which is a vector of L chips with bk(i) ∈ {−1, 1}, depending
on the value of the transmitted bit [16]. Consequently, the
transmission bit rate Rk for node k can be expressed as:

Rk =
Rchip,k

L
, (1)

where Rchip,k is the chip rate of the reference node k.
We assume that the interference received from all other

transmitting nodes can be modeled as Additive White Gaussian
Noise (AWGN) [17]. The background and thermal noise are
assumed to be negligible compared with the interference and,
hence, they can be ignored. The k–th node operates at a
transmission power level Sk, for each of the K nodes of the
WVSN. Due to attenuation, a reduced power Sr,k is received
at the CCU. This is equal to:

Sr,k = EkRk, (2)

where Ek is the energy–per–bit, and Rk is the total bit rate
in bits/sec expressed as the ratio of the source coding rate
Rs,k in bits/sec to the channel coding rate Rc,k, which is a
dimensionless number (see Section II-B), i.e.,

Rk =
Rs,k

Rc,k
, (3)

for a node k, with k = 1, 2, . . . ,K.
The energy–per–bit to Multiple Access Interference (MAI)

ratio for each reference node k, becomes:
Ek

I0
=

Sr,k/Rk

K∑
j=1
j 6=k

Sr,j/Wt

, (4)

where I0/2 is the two sided noise power spectral density due to
MAI in Watts/Hertz, Wt is the total bandwidth in Hertz and Sr,j
is the received power of the interfering nodes in Watts [17].

In order to calculate the received power at the node of
interest from the neighboring nodes, several radio propagation
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models can be employed depending on the terrain profile.
In the present work, we assume that all visual sensors have
clear line of sight and therefore we use the Two–Ray Ground
Reflection model. This model considers both the direct path
and a ground reflected propagation path between transmitter
and receiver. The received power Sr,k at distance d from the
transmitting node k is proportional to the transmission power
Sk in Watts and inversely proportional to the distance raised
to the fourth power, i.e., Sr,k ∝ Sk/d4, and can be expressed
as:

Sr,k = GtGrh
2
t h

2
r
Sk

d4
, (5)

where Gt, Gr, are the antenna gains in dB and ht, hr, are the
antenna heights of the transmitter and the receiver in meters,
respectively [18].

A. Source Coding

For the source coding of the captured video sequences, the
H.264/AVC video coding standard is used. The H.264/AVC
design consists of two conceptual layers: the Network Ab-
straction Layer (NAL) and the Video Coding Layer (VCL).
The NAL, which was created to fulfill the network–friendly
design objective, formats data and provides header information
for conveyance by transport layers or storage media. All data
are encapsulated in NAL units, each of which contains an
integer number of bytes. The NAL unit structure provides a
generic form for use in both packet–oriented and bitstream–
based systems. The format of NAL units is identical in both en-
vironments, except that each NAL unit is preceded by a unique
start code prefix for re–synchronization in bitstream–oriented
transport systems. The VCL is specified to efficiently represent
the content of the video data and fulfill the design objective
of enhanced coding efficiency. It is similar in spirit to designs
found in other standards in the sense that it consists of a hybrid
of block–based temporal and spatial prediction in conjunction
with scalar–quantized block transform coding [19], [20].

B. Channel Coding

Channel codes permit reliable communication of an infor-
mation sequence over a noisy channel that introduces bit errors
and distorts the transmitted signal. Extra information is added
in the data sequence at the encoder utilizing an error-correcting
code, which is used to recover the original data at the receiver.
A common type of channel coding that is extensively used in
many applications is convolutional coding. Rate Compatible
Punctured Convolutional (RCPC) codes [21] are deployed in
the present paper for channel coding. However, other types
of channel codes could be used. The idea of puncturing, in
combination with the concept of rate compatibility, offers the
benefit of using the same Viterbi decoder for all convolutional
codes derived from the same mother code. The Viterbi decoder
uses a maximum likelihood sequence estimation procedure.
The upper bounds for bit error probability Pbe,k are given by
the following inequality:

Pbe,k 6 1
P

∞∑

d=dfree

cdPd,k, (6)
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Fig. 1. Parameter α and β values for three different source coding rates.

where P is the code period, dfree is the code free distance, cd

is the information error weight, and Pd,k is the probability of
the wrong path selection at distance d for the node–of–interest
k [21]. Pd,k depends on the channel conditions, namely the
energy–per–bit to MAI ratio, and for coherent Binary Phase–
Shift Keying (BPSK) modulation on an AWGN channel it is
given by:

Pd,k = Q

(√
2dRc,k

Ek

I0

)
, (7)

where Rc,k is the channel coding rate and Q(.) is the function
that expresses the probability that a standard normal random
variable Z is equal to or larger than x, i.e. Q(x) = P (Z >
x) = (

√
2π)−1

∞∫
x

e−z2/2dz [21].

C. Video Distortion Estimation Model

Lossy compression and channel errors result in the distor-
tion of the video quality at the receiver. In order to estimate the
expected video distortion at the sender node k, we assume the
following Universal Rate Distortion Characteristics (URDC),
as in [22]:

E[Ds+c,k] = αk

[
log10

( 1
Pbe,k

)]−βk

, (8)

where Ds+c,k is the video distortion at the decoder given the
source and channel coding rate for node k, Pbe,k is the bit error
probability, and the parameters αk ∈ R+, βk ∈ R+ depend
both on the motion level of the video sequence and the source
coding rate.

Algorithm 1 details how we determine the values of pa-
rameters αk and βk for each node at the encoder. For the
accurate estimation of the decoder distortion E[Ds+c,k] at the
encoder, the Recursive Optimal per–Pixel Estimate (ROPE)
algorithm [23] is used. The ROPE algorithm recursively cal-
culates the first and second moments of the decoder recon-
struction of each pixel E[Dp

s+c,k], while it accurately takes
into account all relevant factors, i.e. quantization, packet loss,
error propagation and error concealment. Due to the fact that
ROPE uses the Packet Loss Rate (PLR) to compute the overall
expected MSE distortion of a pixel, we associate it with the
BER, as explained in [16].



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIP.2013.2286323, IEEE Transactions on Image Processing

5

Algorithm 1 Pseudocode for Computing Parameters (α, β) at
each node k.

1: for three different Pbe do
2: for each frame m do
3: for each pixel p do
4: Estimate E[Dp

s+c,k] according to the ROPE algo-
rithm [23].

5: end for
6: Estimate E[Dm

s+c,k] = 1
# of pixels

∑
p

E[Dp
s+c,k] for frame

m.
7: end for
8: Estimate the Mean E[Ds+c,k] for the video sequence.
9: end for

10: Use Least Squares to estimate (αk, βk) from the pairs of
(E[Ds+c,k],Pbe,k).

Figure 1 shows the αk and βk values for three different
source coding rates (Rs = 32 kbps for CS = 1, Rs = 48 kbps
for CS = 2 and Rs = 64 kbps for CS = 3) for 10 well–
known video sequences. These video sequences have variable
amounts of motion. In order to quantify the amount of motion,
we used the Full Search Block Matching Algorithm [24] and
estimated the motion vectors of the video sequences. Then,
we computed the mean magnitude of the motion vectors,
which revealed a clear grouping of the videos according to
the amount of motion. Particularly,

(i) for “Akiyo”, “Grandma” and “Mother-Daughter” the
mean magnitude of the motion vectors ranges from
0.0119 to 0.3630;

(ii) for “Suzie”, “Salesman”, “Hall” and “Highway” from
0.5570 to 0.8394;

(iii) for “Harbour”, “Coastguard” and “Foreman” from
0.9038 to 1.7272.

Based on this, henceforth we use the notions low, medium and
high for videos from these three groups, respectively.

As we can notice from Fig. 1(a), αk values tend to be
low for low motion video sequences (e.g. for “Akiyo”), and
as the amount of motion increases, they get higher (e.g. for
“Salesman”), too. Another important observation is that the
αk values of high motion sequences show a strong increasing
tendency as the source coding rate increases. As far as
parameter βk is concerned, we observe from Fig. 1(b) that
the βk values are moving increasingly within a narrow range
as the source coding rate increases for all video sequences.
Considering all of the above, we conclude that the values of
parameter αk can be used for the relative quantification of the
motion level since there is a clear distinction of the values’
ranges for low, medium or high amount of motion.

III. PROBLEM FORMULATION AND PROPOSED
APPROACHES

Under the consideration of a constant spreading code length,
L, and the constraint of identical chip rate, Rchip,k, for all
network nodes, the transmission bit rate Rk is correspondingly
constant within the network, as derived by Eq. (1) and is
henceforth denoted as R. Furthermore, the constant bit rate

Fig. 2. Example of a WVSN topology with 10 nodes.

R induces that the ratio Rs,k/Rc,k from Eq. (3), is identical
for each node. This means that the selection of the source and
channel coding rate (Rs,k, Rc,k) is joint, and we denote this
coding set selection with CSk for each node k.

Under these assumptions, the present paper copes with
the problem of optimally allocating to each node k, the
source coding and channel coding rate, CSk, as well as the
transmission power level Sk, such that a function F(.) of
the overall end–to–end expected distortions of each node,
F (E[Ds+c,1], . . . , E[Ds+c,K ]), is minimized. Putting it for-
mally, if we define the vectors:

CS = (CS1, CS2, . . . , CSK)> S = (S1, S2, . . . , SK)>,

then the problem can be defined as follows:

min
CS,S

F(E[Ds+c,1], E[Ds+c,2], . . . , E[Ds+c,K ]), (9)

subject to:

CS ∈ {CS1, CS2, . . . , CSM}, M ∈ N∗, (10)
R1

s

R1
c

=
R2

s

R2
c

= . . . =
RM

s

RM
c,

= R, (11)

Smin 6 S 6 Smax, (12)

where M is the number of the available source and channel
coding rates.

As stated in the above problem formulation, the source
coding rate and the channel coding rate assume values from
discrete sets of the same cardinality, M , while the transmission
power assumes values from a continuous range. It can be easily
shown that combining Eqs. (3), (4), (5), (6), (7) and (8), the
expected distortion E[Ds+c,k] for node k can be written as
a function of the source coding and channel coding rates,
Rs,k and Rc,k, and the transmission powers of all nodes,
S. Hence, we can write the expected distortion of node k
as E[Ds+c,k](Rs,k, Rc,k, S) or E[Ds+c,k](CSk, S) [16]. This
distortion–related function depends on the deployed criteria,
which are described in the following sections.

A. Proposed Approaches

The resource allocation problem was considered under the
following two different node–grouping schemes. The motiva-
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Fig. 3. Block Diagram of the WVSN system model considered.

tion was to explore the end–to–end video quality versus the
computational efficiency of these schemes.
(a) Independent WVSN nodes: In this approach, each node

acts as individual with its own content– and time–varying
video and transmission parameters. The network resources
are assigned to each node separately and the respective
delivered video quality is estimated. Figure 2 depicts an
example topology, while Fig. 3 illustrates a block diagram
of the WVSN considered. Each one of the visual sensors
records a different scene and transmits its individual αk

and βk parameters to the CCU. We assume that the sensor
positions are static and that the CCU is aware of the exact
WVSN topology. The CCU estimates the energy–per–bit
to MAI ratio for each reference node k (using Eq. (4)).
Based on the employed fairness criterion, the CCU com-
putes the optimal resource allocation and transmits the
corresponding values of the parameters, (CS∗k , S∗k), as
feedback to each node k.

(b) Clustered WVSN nodes: This approach is motivated by
the need for effectively reducing the computational com-
plexity. We propose the use of clustering according to the
individual video content–related parameters. As a result,
each node becomes a member of a cluster represented
by its centroid. The transmission parameters are allocated
according to the centroids of the clusters. Based on
those, we estimate the expected video quality of each
node. The idea of clustering according to the motion
level of the recorded scenes is depicted in Fig. 2 by
considering the different colors and shapes of the nodes.
In the same vein with the previous approach, each visual
sensor transmits its individual (αk, βk) parameters to the
CCU. The CCU performs clustering according to those
parameters as shown in Fig. 3 and allocates the network
resources based on the cluster centroids (αcntrd,ct, βcntrd,ct)
(where ct ∈ {1, 2, . . . , C}, where C denotes the number
of clusters). Then, each node depending on the cluster that
it belongs to, receives from the CCU the optimal cluster
resources (CS∗cntrd,ct, S

∗
cntrd,ct).

B. Clustering Algorithm

The general purpose of clustering is to form groups of
similar objects. Several partitional clustering algorithms could
be employed for the WVSN node clustering. In the present
work we employ the k–means algorithm, which is a prototype–
based clustering technique that simply divides the objects into
non–overlapping clusters, i.e., each object belongs to only

one cluster [25]. An additional advantage of k–means is its
linear complexity in all relevant factors, namely the number
of iterations, IC , the number of clusters, C, and the dimen-
sionality, n, of the search space. In the present work, we chose
to cluster the WVSN nodes according to the motion level
of the transmitting video sequences. Parameter α is a salient
indication of the motion level. However, the formula for the
expected distortion (Eq. (8)) requires both parameters α and β
for each cluster. Thus, besides α, we also need a representative
β for each cluster. Each formed cluster is represented in the
resource allocation by its centroid’s (αcntrd,ct, βcntrd,ct) values.
Obviously, this representation results in a significant reduction
of the number of optimization parameters. Thus, the problem’s
complexity is improved, rendering our approach especially
useful for real–time applications.

C. Optimization Criteria

According to the aforementioned problem definition, for
both approaches we need to employ distortion–related func-
tions in Eq. (9). We considered four such optimization cri-
teria. The first one (see Section III-C1) is defined as the
minimization of the average end–to–end distortion among all
nodes. The second criterion (see Section III-C2) focuses on
the minimization of the maximum distortion of the network.
The third and fourth criteria (see Section III-C3) lie in the
field of Game Theory and they perform a bargaining game
among the nodes. The difference among the two criteria is the
distinct definition of the bargaining powers.

1) Minimizing the Average Distortion (MAD): The MAD
criterion minimizes the average end–to–end video distortion
over all WVSN nodes by optimally determining the vectors
of source coding and channel coding rates, CS∗, and trans-
mission powers, S∗, i.e.,

(CS∗, S∗) = arg min
CS,S

1
K

K∑

k=1

E[Ds+c,k], (13)

subject to the constraints of Eqs. (10)–(12). Obviously, this
criterion emphasizes the average performance of the network,
allowing some individual nodes to assume higher distortion
values than the rest.

2) Minimizing the Maximum Distortion (MMD): The
MMD criterion minimizes the maximum end–to–end distor-
tion over all WVSN nodes by optimally determining the
vectors of source coding and channel coding rates, CS∗, and
transmission powers, S∗, i.e.,

(CS∗, S∗) = arg min
CS,S

max
k

E[Ds+c,k], (14)

subject to the constraints of Eqs. (10)–(12). In the system
considered, reducing the distortion of a node by increasing
its transmission power causes more interference to the other
nodes and thus increases their distortion. Thus, if we want
to minimize the worst distortion among the nodes, we will
increase the transmission power of the worst node. This will
increase the distortion of the rest of the nodes. The MMD
solution occurs when an “equilibrium” is reached, i.e. all nodes
have the same distortion, and, increasing a node’s transmission
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power will increase the distortions of the other nodes, thus
leading to a higher maximum distortion.

3) Nash Bargaining Solution (NBS): As previously men-
tioned, the WVSN node requirements to achieve higher video
end–to–end quality, are conflicting. If the nodes behaved self-
ishly, they would try to maximize their video quality regardless
of the choices made by the other nodes. This would result in
all nodes transmitting using the highest available transmission
power, leading to excessive interference, and thus in quality
degradation (as already explained in the previous criterion).
Therefore, we use the game–theoretic Nash Bargaining Solu-
tion (NBS) to organize a bargaining game. This game refers
to a conflict of interest situation in which the nodes agree to
negotiate in order to conclude a mutually beneficial agreement.
The nodes will either reach an agreement or will fail [26]. It
is sensible that a node will join the game only if it is ensured
that its utility will be at least as much as it would be without
cooperation (this utility is called the disagreement point and
is denoted as dp).

For each node k from the set K = {1, 2, . . . ,K}, we define
a utility function Uk, which reflects the benefit for this node.
In the present work, the utility function reflects the video
quality of the received video, i.e. the Peak Signal to Noise
Ratio (PSNR):

Uk = PSNRk = 10 log10

2552

E[Ds+c,k]
, (15)

where E[Ds+c,k] is the expected video distortion for node k.
U denotes the feasible set of all possible utility allocations
U = (U1, U2, . . . , UK)>.

We define the NBS as a function f : 〈U, dp〉 → RK

(with dp ∈ U), that assigns to every bargaining problem
〈U, dp〉 a unique member of U. The NBS f(U, dp) satisfies
the following axioms [26]:

(I) Feasibility: f(U, dp) > dp. This axiom ensures that
each node will gain a profit at least as high as its
disagreement point.

(II) Pareto Efficiency: If there is y > f(U, dp), then y /∈
U. This axiom requires that there is no other solution
within the feasible set that gives a greater utility to at
least one node while giving the same utility to the other
nodes [27].

(III) Invariance to Equivalent Utility Representations: Given
any strictly increasing affine transformation τ(.), it holds
that f(τ(U), τ(dp)) = τ(f(U, dp)). This implies that
the final outcome should not depend on the way the
nodes calibrate their utility scales.

(IV) Independence of Irrelevant Alternatives: If dp ∈ V ⊆
U, then f(U, dp) ∈ V implies that f(V, dp) =
f(U, dp). This means that the NBS should be inde-
pendent of the availability or unavailability of irrelevant
alternatives.

In order to find the solution f(U, dp), we first define the
Nash Product (NP):

NP = (U1 − dp1)bp1(U2 − dp2)bp2 . . . (UK − dpK)bpK , (16)

where bpk is the bargaining power of node k. The bargaining

powers show which nodes are favored by the rules of the
bargaining game.

Particularly, given a total transmission bit rate Rk, we
determine U such that the NP is maximized. Mathematically,
this can be expressed as follows:

f(U, dp) = arg max
U

NP, (17)

subject to the constraints of Eqs. (10)–(12). Since the utility
function defined in Eq. (15) depends on the expected end–
to–end distortion E[Ds+c,k], it also depends on the source
coding rate Rs,k, the channel coding rate Rc,k and the vector
of transmitted powers of all nodes S. This implies that Eq. (17)
can be alternatively written as

(CS∗, S∗) = arg max
CS,S

NP. (18)

In the present work, we assume that dp ∈ U is the minimum
acceptable quality (in terms of PSNR) and is determined by the
system operator. The bargaining powers are assigned according
to the rules of the bargaining game and show which player
(node) is favored. Based on the different definition of the
nodes’ bargaining powers, we formulate two distinct NBS–
based criteria:
(1) e.NBS Criterion: We assume that there is no necessity for

favoring some of the nodes against the others. Thus, all
nodes are equally treated. The bargaining powers are equal
for all K nodes and we define that:

bpk =
1
K

, k ∈ K. (19)

This criterion is a special case of the NBS in which the
symmetry axiom is valid. The axiom explains in simple
words that, in the case where the players’ labels are
swapped, each one will still get the same payoff as it
would originally get [27].

(2) w.NBS Criterion: According to this criterion, we propose
the assignment of different bargaining powers to the nodes
that are in accordance with the amount of motion recorded
in the video scenes. As explained earlier in Section II-C, a
salient metric for the level of motion in a video sequence is
parameter αk from the deployed rate–distortion model of
Eq. (8). The higher the motion level in a video sequence,
the higher the value of parameter αk, and vice versa. Thus,
for the w.NBS criterion, we define the bargaining power
of each node k as the fraction:

bpk =
αk

K∑
k=1

αk

, k ∈ K. (20)

This implies that the higher the motion level of a node,
the higher its bargaining power, as well.

IV. EMPLOYED OPTIMIZATION ALGORITHMS

The Particle Swarm Optimization (PSO) algorithm served
as our optimizer in all cases. PSO belongs to the category
of Swarm Intelligence methods, which draw inspiration from
the collective intelligence that emerges in physical systems of
living organisms [28]. Since its development, PSO has gained
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immense popularity due to its simplicity and efficiency in a
wide range of applications [29]. PSO has also been used for
resource allocation in WVSNs [7], [14], [15] and for optimized
video transmission over erasure channels [12]. Also, the use
of PSO does not require convexity of the problem or the con-
structions of hierarchies of (mixed-integer) convex relaxations
and the approximation of the problem’s nonlinearities with
convex under- and concave overestimators (i.e., the convex
and concave envelopes of the objective function). This can
be particularly useful in practical situations. These features as
well as its robustness in solving dynamic problems [29] and
its recognized tolerance in uncertain environments, motivated
its use in our problem.

If the general n–dimensional global optimization problem
min

x∈X⊂Rn
F(x) is under investigation, PSO uses a set of search

points, called the swarm, S = {x1, x2, . . . , xN}, xi ∈ X, i ∈
I = {1, 2, . . . , N}, to probe the search space. Each search
point in S is called a particle xi = (xi1, xi2, . . . , xin)> ∈
X, i ∈ I . Each particle is randomly initialized in X
and iteratively probes it. Its motion is based on stochas-
tically determined position shifts, called velocity, vi =
(vi1, vi2, . . . , vin)>, i ∈ I, while it retains in memory the best
position pi = (pi1, pi2, . . . , pin)>, i ∈ I, it has ever visited.
The best positions serve as the guiding mechanism that attracts
the particles towards the most promising regions of the search
space, i.e., regions that possess lower function values.

Naturally, the rapid convergence of the particles to the
best points detected so far in the search space fosters the
danger of getting trapped in local minimizers. This premature
convergence effect has been alleviated by introducing the
concept of neighborhood to the particles [30], [31]. Putting
it formally, a neighborhood of the i–th particle is defined as a
set NBi,s = {j1, j2, . . . , js}, jk ∈ I, k = 1, 2, . . . , s, i ∈ NBi,s,
which consists of the indices of all the particles with which
it can exchange information. Then, the neighborhood’s best
position is given by the following equation:

pgi = arg min
j∈NBi,s

{F(pj)}. (21)

The neighborhood’s best position is used to update the i–th
particle’s velocity at each iteration. The parameter s (with 1 6
s 6 N ) defines the number of particles that constitute the
neighborhood.

Based on the definitions above, the iterative scheme of PSO
is defined as follows [32]:

vij(t + 1) = χ
[
vij(t) + c1R1

(
pij(t)− xij(t)

)
+

+c2R2

(
pgi,j(t)− xij(t)

)]
, (22)

xij(t + 1) = xij(t) + vij(t + 1), (23)

where, i = 1, 2, . . . , N ; j = 1, 2, . . . , n; the parameter χ is the
constriction coefficient; acceleration constants c1 and c2 are
called the cognitive and social parameter, respectively; and
R1, R2, are random variables uniformly distributed in the
range [0, 1]. It shall be noted that a different value of R1

and R2 is sampled for each i and j in Eq. (22). Also, the
best position of each particle is updated at each iteration, as

Algorithm 2 Pseudocode of PSO–PS.
Require: Previous and current parameters αk,t−1, αk,t and

βk,t−1, βk,t for each node k, previous resource allocation
(R∗s , R∗c , S∗)t−1, parameter αk variation threshold δα.

1: loop
2: if any |αk,t−1 − αk,t| > δα then
3: Run the clustering algorithm to form the new clusters.

/* Only for Clustered WVSN nodes */
4: Initialize half of the swarm around the previous

allocation (CS∗, S∗)t−1.
5: Initialize the other half of the swarm in random

positions within the predefined ranges.
6: Run the PSO update function.
7: Send to the nodes the updated resource allocation

(CS∗, S∗)t.
8: end if
9: end loop

follows:

pi(t+1) =
{

xi(t + 1), if F(
xi(t + 1)

)
< F(

pi(t)
)
,

pi(t), otherwise, i ∈ I.

(24)
This PSO variant was introduced in [32], and based on its
stability analysis, the parameter set χ = 0.729, c1 = c2 =
2.05, was determined as a satisfactory setting that produces
a balanced convergence speed of the algorithm. Nevertheless,
alternative settings have been introduced in relevant work [33].

A. PSO–based Algorithms for Efficient Update

As previously mentioned, the problems that are studied in
the present paper require the application of the optimization
procedure each time a change in the recorded amount of
motion occurs, due to the consequent need for resource
reallocation. Since optimization from scratch can be laborious
and time consuming, we proposed two techniques which
effectively reduce the time consumption. Both techniques are
inspired by the application of PSO in dynamic optimization
environments and differ in the swarm initialization. The first
technique requires the information of the prior WVSN re-
source allocation for the swarm initialization, while the second
uses the information of the recorded amount of motion per
sensor. Exploiting prior information is a common practice,
especially in cases where changes of the environment are not
expected to radically modify the objective function.

1) PSO with Prior Resource Allocation (PSO–PS): Ac-
cording to this technique, the previous resource allocation
is used to initialize the swarm, as reported in Algorithm 2.
PSO–PS requires that PSO has run at least for the first
time to allocate the WVSN resources based on the initial
motion levels. The proposed updating mechanism is triggered
whenever the change of the currently recorded motion level
is higher than a user–defined threshold, δα, from the previous
one. This threshold highly depends on the number of sensors
in the network. In the case of the Independent Nodes approach,
Step 3 of Algorithm 2 is omitted.
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Algorithm 3 Pseudocode of PSO–RE.
Require: Previous and current parameters αk,t−1, αk,t and

βk,t−1, βk,t for each node k, and parameter αk variation
threshold δα.

1: loop
2: if any |αk,t−1 − αk,t| > δα then
3: Run the clustering algorithm to form the new clusters.

/* Only for Clustered WVSN nodes */
4: Make a rough estimation of the transmission power

based on Eq. (25).
5: Initialize half of the swarm at this rough estimation

Ŝ.
6: Initialize the other half of the swarm in random

positions within the predefined ranges.
7: Run the PSO update function.
8: Send to the nodes the updated resource allocation

(CS∗, S∗)t.
9: end if

10: end loop

2) PSO with Swarm Initialization based on a Rough Esti-
mation (PSO–RE): A close inspection of the resource allo-
cation results from our previous work [14], [15], that used
the same optimization criteria, revealed that the transmission
power of each node k can be associated with the amount
of motion of the recorded scenes. Particularly, the higher the
motion level of a node, the higher its transmitting power. Based
on this observation, we can make a rough estimation of the
transmission power of the node–of–interest k, according to its
relevant motion level, as follows:

Ŝk,t =
αk,t

min(αt)
Smin, (25)

where αt is the vector of the αk,t values for each node
k, αt = (α1, α2, . . . , αK)> and min(αt) is the minimum
element of vector α. In order to comply with the problem
formulation, Ŝk,t should lie in the transmission power range,
i.e. Smin 6 Ŝk,t 6 Smax, where Smin and Smax are the lowest
and highest valid transmission powers, respectively. Then, for
half of the particles of the swarm, we initialize the components
that correspond to the transmission powers, at the estimated
value, Ŝ = (Ŝ1, Ŝ2, . . . , ŜK)>, as described in Algorithm 3.
We do not use rough estimation for the source and channel
coding rates, due to the fact that these parameters lie in a rather
limited range, i.e., they can assume only three possible values
(see Table II). Opposed to PSO–PS, PSO–RE can be utilized
even for the first resource allocation. Similarly to PSO–PS,
the updating mechanism of PSO–RE is triggered whenever
the change of the currently recorded motion level from the
previous is higher than a user–defined threshold, δα.

V. EXPERIMENTAL RESULTS

For the evaluation of our proposed approaches, a number of
test cases were considered. The test cases were selected such
that real situations are resembled, where each sensor node may
record a scene of different motion. We considered a single–hop
WVSN topology, similar to the one depicted in Fig. 2, where

TABLE II
NOTATION AND PARAMETER VALUES.

Description Notation Value(s)
Number of WVSN nodes K 10
Total Bandwidth Wt 2.5 MHz
Total Transmission Rate Rk 96 kbps
Valid Coding Sets CS {1:(32 kbps, 1/3), 2:(48 kbps, 1/2), 3:(64 kbps, 2/3)}
Transmission Power Sk [0.050, 0.500] W
Video Sequence Format QCIF
Frame Rate 15 fps
RCPC Mother Code Rate 1/4
Disagreement Point dp 24dB (same for all nodes and test cases)
Transmitter Antenna Height ht 3.0 m
Receiver Antenna Height hr 3.0 m
Propagation Distance d 120 m
Transmitter Antenna Gain Gt 2.5 dB
Receiver Antenna Gain Gr 2.5 dB
PSO Swarm Size SS TC1: 150

TC2 SSMAD = SSw.NBS = 30, SSMMD = 50, SSe.NBS = 40
PSO Maximum # of Iterations Imax TC1: IMAD

max = 870, IMMD
max = 1000, Ie.NBS

max = Iw.NBS
max = 700

(for the initial motion levels) TC2: Imax = 100 for all criteria

all nodes are equidistant from the CCU and have the same
antenna gain and height for the transmitter and the receiver,
respectively.

In our formulation, the source and channel coding rates
for each node are selected from a prespecified discrete set
of combinations (Rs, Rc). As we can see in Table II, these
combinations are denoted with the labels 1, 2 and 3, respec-
tively. Thus, PSO has to decide between 1, 2, and 3, regarding
the combination of (Rs, Rc). However, PSO was originally
defined as a real–valued optimization algorithm. In relevant
work [7], [14], [15], integer problems are typically tackled by
rounding the variables’ (real) values to the nearest integers,
without modifying PSO’s dynamic. Thus, in our case, we let
the corresponding PSO’s coordinate lie within the real interval
[0.6, 3.4] and, by rounding to the nearest integer, we obtain
either 1, 2, or 3. The default PSO variant reported in Section IV
is used. Since PSO is a stochastic algorithm, for each problem
instance we conducted 30 independent experiments in order
to ensure validity of the results. The swarm size SS and the
maximum number of PSO iterations Imax were dependent on
the test case considered. Imax is the maximum number of
iterations among the 30 experiments. During each experiment,
the best detected solution was recorded. Our experiments
confirmed that the optimal power allocation is not unique, but
there is a set of optimal transmission powers S∗ that satisfy
the proposed optimization criteria. To explain this, we have to
refer to Eq. (4). If all received powers are multiplied by the
same constant, then Ek/I0 remains the same. This leads to a
set of optimal solutions. Hence, we present the results with
the lowest values for transmission power for all criteria and
both test cases.

A. Testing of the two Proposed Approaches and Results

The first test case (denoted as TC1) consisted of a WVSN
with 10 nodes admitting different fields of view. We assumed
that the fundamental difference between the recorded scenes
was the amount of motion in each one of them. Therefore, we
used the first 150 frames of 10 well–known YUV sequences
of various amounts of motion and computed the (αk, βk)
parameters for each node. The values of (αk, βk) for the three
available source coding rates and for all video sequences are
depicted in Fig. 1. Regarding the complexity of the (αk, βk)



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIP.2013.2286323, IEEE Transactions on Image Processing

10

computation, we need to note that the complexity of the
ROPE algorithm is not high and can therefore run for real-
time applications [23], [34]. The complexity of Algorithm 1
is not high as well, since it is executed for a small number
of different Pbe. Beyond this, the Least Squares Regression
complexity depends on the number of training examples and
features, which in our case is rather low.

In the second test case (denoted as TC2), we performed
k–means clustering of the 10 nodes of TC1 using the param-
eters (αk, βk) as data set, and allocated equally the network
resources within the same cluster. We have conducted experi-
ments with different values for the number of clusters, namely
C = 2, . . . , 5. For each one of the clusters, three centroids
(pairs of (αcntrd,ct, βcntrd,ct) values) were produced with regard
to the three admissible source coding rates. After determining
at the CCU the clusters’ transmission power level and the
source and channel coding rates based on the centroids, the
real PSNR values were calculated for each node of the cluster
based on each node’s individual (αk, βk) values.

Tables III and IV report the allocated resources and the
resulting video quality in terms of PSNR for all four criteria
in both test cases. As we observe, from the video quality point
of view for both test cases, MAD and e.NBS favored the low
motion sequences, while w.NBS gave priority to the higher
motion levels. MMD achieved the same quality level for all
nodes for TC1.

In order to compare the resulting video quality when using
a different number of clusters C, we computed the mean
absolute PSNR difference, |∆PSNR| (with |∆PSNRk| =
|PSNRTC1,k − PSNRTC2,C,k| the absolute PSNR difference
per node k) and the standard error σ(|∆PSNR|). These
values are illustrated in Fig. 4. We needed the mean value of
the absolute differences, due to the fact that for some nodes
the PSNR difference is positive, while for others negative. This
is due to the distance of each node’s (αk, βk) values from its
cluster’s centroid, (αcntrd,ct, βcntrd,ct). Since (αk, βk) values are
important for the resource allocation process, the distance of
those values from the centroids strongly affects the allocated
resources and the video quality. This becomes more evident
in the results for w.NBS, in which the αk values are used
to favor the high motion nodes. This criterion has the highest
|∆PSNR| and σ(|∆PSNR|) compared to all the other crite-
ria. On the other hand, for the other optimization criteria, using
three or four clusters results in |∆PSNR| < 1 dB. Another
important observation, that is also related to the (αk, βk)
values distance from its cluster’s centroid (αcntrd,ct, βcntrd,ct),
is that a different number of clusters results in the lowest
|∆PSNR| for this experimental setup. Particularly, from the
quality point of view the optimal number of clusters for MAD
and w.NBS is three, while for e.NBS is four and for MMD
five. Please, also note, that the results reported in Table IV
refer to these numbers of clusters per criterion.

From the transmission power allocation point of view,
in both test cases and with every criterion, the allocated
transmission powers are in accordance with the motion level
of the transmitted video sequences. Namely, the transmission
powers for the nodes with high motion are higher than the
transmission powers of the low motion nodes. Moreover, the
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Fig. 4. Comparison of (a) the |∆PSNR| and (b) σ(|∆PSNR|) values
per criterion and varying number of clusters.

following inequality is valid for both test cases:
K∑

k=1

S∗e.NBS,k <

K∑
k=1

S∗MAD,k <
K∑

k=1

S∗MMD,k <
K∑

k=1

S∗w.NBS,k. It is important to

point out that e.NBS results in the lowest total transmission
power, while the highest total transmission power results from
w.NBS and this is considered as the tradeoff for achieving
higher quality for the nodes of high motion. Moreover, al-
though more or less transmission power per node is allocated
in some cases, the sum of the allocated transmission power in
the two test cases, as given by the total values at the bottom of
Tables III and IV, is on average around 6.33% higher than the
total transmission power allocated in TC2 for all optimization
criteria. This implies that, besides the higher computational
cost, TC1 also induces a higher energy cost compared to TC2.

In Table V we give an example of the execution times of
the two proposed approaches for each experiment performed
in an Intel Core Quad CPU @2.33GHz with 2GB RAM. As far
as the quality/complexity tradeoff of the different approaches
is concerned, we shall consider several issues. Firstly, taking
into account that the number of the particles and number of
iterations both depend on the number of the WVSN nodes,
the optimization algorithm complexity is directly related to the
number of nodes included in the WVSN considered. The worst
case complexity for the first approach, following the definition
in [35], is O(SS×Imax×n), while for the second O(IC×C×
n)+O(SS×Imax×n). Taking into consideration the SS and
the Imax from Table II for TC1 and TC2, it is evident that the
worst case complexity of the second approach is lower than
that of the first. This fact is verified by the execution times
reported in Table V. On the other hand, in TC2 the number
of WVSN nodes K and the selected number of clusters C
regulate the complexity. It is also clear that the complexity of
the second approach will be equal to the first approach only
if the number of clusters approximates the number of WVSN
nodes.

Taking into consideration the quality and power tradeoffs, it
is suggested that the optimization criterion has to be decided
each time with respect to the application requirements that
may set specific restrictions on the delivered video quality.
For example, if a specific application requires to favor certain
nodes according to the recorded motion level, then it is evident
that the w.NBS is recommended. If the system requires the best
possible quality for the low motion video sequences, then we
recommend the e.NBS. Finally, for the case that the system
requirements demand similar quality levels, we recommend
the MMD deployment.
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TABLE III
EXPERIMENTAL RESULTS FOR ALL CRITERIA FOR TC1 FOR THE INITIAL MOTION LEVELS, NAMELY RESULTING VIDEO QUALITY PSNR (dB),

ALLOCATED TRANSMISSION POWER S (W), SOURCE AND CHANNEL CODING RATES (RS(kbps), RC).

TC1 Independent Nodes
MAD MMD e.NBS w.NBS

Nodes PSNR S (Rs, Rc) PSNR S (Rs, Rc) PSNR S (Rs, Rc) PSNR S (Rs, Rc)
“Akiyo” 36.6234 0.0062 (64,2/3) 33.8121 0.0055 (32,1/3) 37.9888 0.0066 (64, 2/3) 29.4613 0.0055 (32,1/3)
“Grandma” 38.0863 0.0050 (32,1/3) 33.8121 0.0050 (32,1/3) 35.5382 0.0050 (32, 1/3) 29.9293 0.0050 (32,1/3)
“Mother-Daughter” 35.3274 0.0053 (32,1/3) 33.8121 0.0053 (32,1/3) 35.9640 0.0054 (32, 1/3) 30.5080 0.0057 (32,1/3)
“Highway” 34.6034 0.0066 (32,1/3) 33.8121 0.0071 (32,1/3) 34.8619 0.0064 (32, 1/3) 32.0027 0.0089 (32,1/3)
“Salesman” 34.0969 0.0094 (64,2/3) 33.8121 0.0108 (64,2/3) 34.0756 0.0088 (64, 2/3) 30.1598 0.0098 (32,1/3)
“Suzie” 34.8449 0.0064 (32,1/3) 33.8121 0.0068 (32,1/3) 35.2492 0.0063 (32, 1/3) 31.9931 0.0085 (32,1/3)
“Hall” 34.8972 0.0065 (32,1/3) 33.8121 0.0068 (32,1/3) 35.3416 0.0064 (32, 1/3) 32.2888 0.0088 (32,1/3)
“Foreman” 32.6868 0.0111 (64,2/3) 33.8121 0.0148 (64,2/3) 32.0829 0.0098 (64, 2/3) 35.5397 0.0272 (64,2/3)
“Harbour” 31.5727 0.0108 (48,1/2) 33.8121 0.0172 (64,2/3) 30.6105 0.0089 (48, 1/2) 31.5017 0.0191 (48,1/2)
“Coastguard” 33.5929 0.0110 (64,2/3) 33.8121 0.0133 (64,2/3) 33.3102 0.0101 (64, 2/3) 42.1464 0.0414 (64,2/3)
Total Power 0.0783 0.0924 0.0735 0.1398

TABLE IV
EXPERIMENTAL RESULTS FOR ALL CRITERIA FOR TC2 FOR THE INITIAL MOTION LEVELS, NAMELY RESULTING VIDEO QUALITY PSNR (dB),

ALLOCATED TRANSMISSION POWER S (W), SOURCE AND CHANNEL CODING RATES (RS(kbps), RC).

TC2 Clustered Nodes
MAD with C = 3 MMD with C = 5 e.NBS with C = 4 w.NBS with C = 3

Nodes PSNR S (Rs, Rc) PSNR S (Rs, Rc) PSNR S (Rs, Rc) PSNR S (Rs, Rc)
“Akiyo” 35.1377 0.0050 (32,1/3) 33.4973 0.0050 (32,1/3) 38.1085 0.0063 (64, 2/3) 29.7106 0.0050 (32,1/3)
“Grandma” 35.7730 0.0050 (32,1/3) 34.2068 0.0050 (32,1/3) 35.9387 0.0050 (32, 1/3) 30.5917 0.0050 (32,1/3)
“Mother-Daughter” 35.6163 0.0050 (32,1/3) 33.8135 0.0050 (32,1/3) 35.8071 0.0050 (32, 1/3) 29.6520 0.0050 (32,1/3)
“Highway” 34.5432 0.0060 (32,1/3) 35.0769 0.0078 (32,1/3) 34.9931 0.0061 (32, 1/3) 30.8157 0.0074 (32,1/3)
“Salesman” 30.5164 0.0060 (32,1/3) 30.8589 0.0078 (32,1/3) 30.8051 0.0061 (32, 1/3) 28.1244 0.0074 (32,1/3)
“Suzie” 35.0654 0.0060 (32,1/3) 35.6072 0.0078 (32,1/3) 35.5221 0.0061 (32, 1/3) 31.2813 0.0074 (32,1/3)
“Hall” 35.0105 0.0060 (32,1/3) 33.8165 0.0065 (32,1/3) 35.4802 0.0061 (32, 1/3) 31.1192 0.0074 (32,1/3)
“Foreman” 33.3120 0.0108 (64,2/3) 34.4701 0.0151 (64,2/3) 32.4323 0.0096 (64, 2/3) 36.6813 0.0290 (64,2/3)
“Harbour” 32.0850 0.0108 (64,2/3) 33.1662 0.0151 (64,2/3) 31.2637 0.0096 (64, 2/3) 35.2306 0.0290 (64,2/3)
“Coastguard” 34.4099 0.0108 (64,2/3) 33.8164 0.0126 (64,2/3) 33.3340 0.0096 (64, 2/3) 38.5301 0.0290 (64,2/3)
Total Power 0.0712 0.0879 0.0695 0.1316

TABLE V
EXECUTION TIMES PER EXPERIMENT IN ms.

C = 2 C = 3 C = 4 C = 5 TC1
MAD 0.009 0.019 0.035 0.075 2.750
MMD 0.009 0.019 0.076 0.190 3.170
e.NBS 0.009 0.020 0.037 0.090 2.420
w.NBS 0.009 0.021 0.053 0.230 2.460

Concerning the issue of which approach is preferable ac-
cording to the delivered video quality for each node, it is clear
that this exclusively depends on the application considered.
Using clustering, we effectively reduce the dimensionality
of the optimization problem, a fact that makes the system
(computationally) less complicated, thus more time–efficient.
Moreover, the WVSN power consumption is reduced. How-
ever, it still fosters the danger of degradation of the received
video quality.

B. Testing of the PSO–based algorithms in dynamic WVSNs
and Results

For the testing of both PSO–based algorithms, the case that
the initial motion levels of the recorded videos change through
time was considered. In order to assess the performance of
the proposed mechanism, large motion variations per time
instance were used. Namely, at each time instance one node’s
motion level changes from high to low or vice versa. For
all criteria and test cases, the swarm size was the same as
the one used in the initial resource allocation. On the other
hand, the maximum number of iterations was dependent on the

number of nodes with different motion level compared with
the initial states. Therefore, we use the maximum number of
objective function evaluations, i.e. the product of Imax and SS.
Our experimental setting consisted of different levels of the
maximum number of function evaluations that were provided
to the PSO approaches. Each approach was run until the
maximum number of evaluations was exceeded, and its best
solution was recorded. For each algorithm, our interest was
focused on the corresponding level that allowed the algorithm
to be successful in all the 30 independent experiments. This
level can be considered as the expected number of function
evaluations required by the algorithm to achieve convergence.
These levels per algorithm and test case with regard to the
percentage of nodes with different motion levels than the initial
ones are reported in Figs. 5 and 6.

A close inspection of the graphs in Fig. 5 reveals that
for TC1 the number of objective function evaluations has an
increasing tendency as the percentage of nodes with different
motion level from the initial levels increases. On the contrary,
for TC2 the number of objective function evaluations using
PSO–PS demonstrates a smoother increasing tendency, and
in some cases remains the same or slightly decreases. It is
remarkable that using the approach of clustered nodes results
in a much smaller number of algorithm iterations to reach
convergence. For example, for the MAD criterion, in the
case that 10% of the initial motion levels have changed,
using clustering results in 97.33% fewer objective function
evaluations. Moreover, the MMD criterion requires the highest
number of maximum objective function evaluations in order to
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converge to the optimal solution compared to all other criteria
in all cases.

As already explained, PSO–PS initializes the swarm around
the prior solution, which was computed based on the initial
αk values, and does not result in a constant maximum number
of objective function evaluations. Opposed to this, PSO–RE
performs the rough estimation of the transmitted power based
on the current time instance αk values. Hence, it locates the
swarm close to the optimal solution, and it converges after a
small and constant maximum number of function evaluations
every time there is a change of motion in the scenery for all
the criteria and test cases, as observed in Fig. 6. Furthermore,
similarly to PSO–PS, TC2 converges faster than TC1.

Regarding these two optimization algorithms, it is important
to point out that both algorithms succeed in optimally allocat-
ing the WVSN resources quicker than the PSO algorithm did
in this and our previous work [14], [15], as well. Additionally,
as anticipated, the resulting optimal solutions from PSO–PS
and PSO–RE are identical for the same motion allocation.
Moreover, the PSO–RE requires far fewer iterations to con-
verge for all optimization criteria and both test cases. Hence, it
outperforms PSO and PSO–PS in terms of computation time.

VI. CONCLUSIONS

We have presented two approaches for the problem
of quality–driven cross–layer optimization of DS–CDMA
WVSNs. We considered a single–hop topology, where each
sensor transmits directly to the CCU, which handles the task
of resource allocation. The two approaches have different qual-
ity/energy/complexity tradeoffs: the first considers independent
visual sensors, while the second clusters them according to
the recorded motion level. Overall, selecting the approach
of clustering instead of having independent nodes offers the
advantages of a time efficient resource allocation update and of
a slightly reduced power consumption. However, a reasonable
quality decline for some nodes might be the tradeoff. For the
resource allocation, we considered four different optimization
criteria: the MAD, the MMD, the e.NBS and the w.NBS.
Using MAD results in an optimal average end–to–end quality.
The MMD criterion achieves the same quality levels at the
receiver. e.NBS and w.NBS apply the cooperative NBS by
using equal and motion–based bargaining powers, respectively.
The dynamic nature of the recorded scenery requires a constant
allocation of resources. Thus, we introduced two PSO–based
algorithms for the fast reallocation of the WVSN resources.
The two algorithms differ in the swarm population initializa-
tion step; PSO–PS initializes half of the swarm based on the
prior resource allocation, while PSO–RE performs a rough
estimation of the resources based on their current relevant
motion levels. Both algorithms offer enhanced time efficiency
compared to PSO. However, PSO–RE ensures a constant and
low maximum number of objective function evaluations, which
is of great importance especially for real–time applications.
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Fig. 5. PSO–PS maximum number of Objective Function Evaluations vs. % of nodes with different motion level for all criteria for (a) TC1 and (b) for TC2
(e.g. 20% means that 2 out of 10 nodes have different motion level compared to its initial motion level).
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