
1. Relatively cheap writes

2. Batching of multiple requests before reaching LFS

3. Flash reads avoided during garbage collection

4. Possible to adjust hotness boundary to workload 

5. Selectively journal data based on a write size threshold 
• avoid traffic duplication in case of sequential requests

5. Journal data updates at subpage granularity
• Reduce journal traffic in case of small writes

6. Reduced recovery time

Journal responsibility
• proactively clean permanent state from frequently updated 

data and metadata

Idea
• categorize pages into hot/cold based on cache timers

• respectively transfer data to journal or to LFS partition
.

LFS partition
• contains mainly valid data  cold pages

Journal Partition
• valid blocks at the front and clean at the rest  hot pages

JLFS - Journaled Log-structured File System
• combine journaling functionality with LFS

Flash storage management
• two distinct partitions; LFS and journal

1. Avoid function duplication between fs and firmware

2. Minimize write traffic without compromising 
persistence

3. Minimize data relocation traffic

4. Identify access characteristics using existing cache 
mechanisms

Fs level approach:
• use semantic knowledge and existing system operations to 

manage flash idiosyncrasies

1. Chen, F., Koufaty, D. A., and Zhang, X. Understanding intrinsic
characteristics and system implications of flash memory based
solid state drives. In ACM SIGMETRICS/IFIP Performance (2009).

2. Hatzieleftheriou, A., and Anastasiadis, S. V. Okeanos: Wasteless
journaling for fast and reliable multistream storage. In USENIX
Annual Technical Conference (2011).

3. Kawaguchi, A., Nishioka, S., and Motoda, H. A flash memory based
file system. In USENIX Winter Technical Conference (1995).

4. Lee, S., Shin, D., Kim, Y-.J., and Kim, J. Last: locality-aware sector
translation for nand flash memory-based storage systems.
Operating Systems Review 42, 6 (2008).

JLFS: Journaling the Log-Structured Filesystem for 
Proactive Cleaning in Flash Storage

Log-structured approach typically used
• avoid random writes

• need for recycling of invalid pages

FTL approach:
• separate hot/cold pages based on update frequency

• possible misclassification of access frequency

• bookkeeping overhead

2. Garbage Collection

Andromachi Hatzieleftheriou and Stergios V. Anastasiadis
{ahatziel, stergios}@cs.uoi.gr

Dept. of Computer Science, University of Ioannina, Greece

Attractive features

Idiosyncrasies
• workload-dependent

performance

Low-level modifications
• flash translation layer

Flash-aware fs
• semantic information

• no functionality duplication

• retroactive decisions

1. Flash Memory

3. Design Goals

Cache

Flash Translation Layer

Journal 
Partition

LFS 
Partition

JLFS

FLASH MEMORY

read 
write
erase

write
erase

7. References

5. JLFS Concepts

4. Proposed Architecture

FLASH MEMORY

PAGE CACHE

LFS Journal

hot data cold data invalid data

flush timer 
expiration

Flash Translation Layer

FLASH MEMORY

Filesystem

Pager
ead

Block 
erase

Page
write

Page
Page
…

Blocks

Logical block 
write/ read

6. JLFS Features

USENIX Annual Technical Conference, Portland, OR, June 2011


