
1. Relatively cheap writes

2. Batching of multiple requests before reaching LFS

3. Flash reads avoided during garbage collection

4. Possible to adjust hotness boundary to workload 

5. Selectively journal data based on a write size threshold 
• avoid traffic duplication in case of sequential requests

5. Journal data updates at subpage granularity
• Reduce journal traffic in case of small writes

6. Reduced recovery time

Journal responsibility
• proactively clean permanent state from frequently updated 

data and metadata

Idea
• categorize pages into hot/cold based on cache timers

• respectively transfer data to journal or to LFS partition
.

LFS partition
• contains mainly valid data  cold pages

Journal Partition
• valid blocks at the front and clean at the rest  hot pages

JLFS - Journaled Log-structured File System
• combine journaling functionality with LFS

Flash storage management
• two distinct partitions; LFS and journal

1. Avoid function duplication between fs and firmware

2. Minimize write traffic without compromising 
persistence

3. Minimize data relocation traffic

4. Identify access characteristics using existing cache 
mechanisms

Fs level approach:
• use semantic knowledge and existing system operations to 

manage flash idiosyncrasies
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JLFS: Journaling the Log-Structured Filesystem for 
Proactive Cleaning in Flash Storage

Log-structured approach typically used
• avoid random writes

• need for recycling of invalid pages

FTL approach:
• separate hot/cold pages based on update frequency

• possible misclassification of access frequency

• bookkeeping overhead

2. Garbage Collection
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Attractive features

Idiosyncrasies
• workload-dependent

performance

Low-level modifications
• flash translation layer

Flash-aware fs
• semantic information

• no functionality duplication

• retroactive decisions

1. Flash Memory

3. Design Goals
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