
Development of a Big Spatial Data
Management System

a diploma Thesis by

Thanasis Georgiadis

Advisor:

Nikolaos Mamoulis, Professor

Deparatment of Computer Science & Engineering

University of Ioannina
June 2021

DEDICATION

To my brother and sister, Konstandinos and Eleni, of whom I am infinitely proud.

ACKNOWLEDGEMENTS

Special thanks to Dimitris Tsitsigkos and Dinos Lampropoulos for their unlimited
help and patience.

Also, to my supervising professor Nikos Mamoulis, for his mentoring and guidance.

TABLE OF CONTENTS

Abstract iv

Περίληψη v

1 Introduction 1
1.1 Parallelism on Big Data . 1

1.1.1 Distributed Environments & Parallel Programming 1
1.1.2 Spatial Range Queries . 2

1.2 Related Work . 3
1.3 Objectives . 5
1.4 Structure . 5

2 OpenMP & MPI 7
2.1 OpenMP . 7

2.1.1 OpenMP Overview . 8
2.1.2 Sharing Attributes . 8
2.1.3 Useful Commands . 9

2.2 MPI . 10
2.2.1 MPI Overview . 11
2.2.2 MPI Setup . 11
2.2.3 Utility Commands . 13
2.2.4 Inter-Process Communication . 13

2.3 Compiling & Combined Usage . 17
2.3.1 MPI program . 17
2.3.2 Hybrid program . 18
2.3.3 Further References . 18

i

3 System Overview & Evaluation Methodology 19
3.1 System Overview . 19
3.2 Development Environment . 20
3.3 Data Sets . 20
3.4 Queries . 20

4 Parallel Partitioning 21
4.1 Partitioning . 21

4.1.1 The Two-Layer Partitioning . 22
4.1.2 Data Distribution . 24
4.1.3 Program Flow . 26

4.2 Parallelization . 26
4.2.1 Parallel Read . 27
4.2.2 Distribution Mechanism . 32
4.2.3 Data Receipt . 34

5 Query Evaluation 37
5.1 Query Evaluation Overview . 37
5.2 Two-Layer Query Evaluation . 38

5.2.1 Distributed Implementation . 38
5.3 Parallel Query Evaluation . 41

5.3.1 Possible Parallelization . 41

6 System Usage & Experimental Analysis 46
6.1 Setup . 46

6.1.1 Parameters . 48
6.1.2 Pre-Processing . 53

6.2 Runtime . 55
6.3 Experimental Analysis . 56

6.3.1 Dataset T1 . 57
6.3.2 Dataset T4 . 58
6.3.3 Dataset T8 . 59
6.3.4 Cost Breakdown . 60

ii

7 Conclusion 65
7.1 Summary . 65
7.2 Future Work & Extensions . 66

Bibliography 68

iii

ABSTRACT

Thanasis Georgiadis, M.Sc. in Computer Science, Department of Computer Science
and Engineering, University of Ioannina, Greece, June 2021.
Development of a Big Spatial Data
Management System.
Advisor: Nikolaos Mamoulis, Professor.

The purpose of this thesis is the development of a big spatial data management
system in a distributed environment, using hybrid programming techniques. More
specifically, the system performs a parallel partitioning on the big data, by assign-
ing the records to cells of a fictional two-dimensional grid, based on their position
in it. It then distributes the data accordingly to independent computers, with each
receiving the contents of specific cells exclusively. The computer nodes can then per-
form actions on their received data independently of each other, applying different
range queries depending on the user’s needs. The system is implemented in C++
using the libraries OpenMP and MPI for parallel programming and inter-process
communication respectively.

iv

ΠΈΡΊΛΉΨΉ

Θανάσης Γεωργιάδης, Μ.Δ.Ε. στην Πληροφορική, Τμήμα Μηχανικών Η/Υ και Πλη-
ροφορικής, Πανεπιστήμιο Ιωαννίνων, Ιούνιος 2021.
Ανάπτυξη Συστήματος Διαχείρισης Μεγάλων Χωρικών Δεδομένων.
Επιβλέπων: Νικόλαος Μαμουλής, Καθηγητής.

Ο σκοπός της συγκεκριμένης διπλωματικής εργασίας είναι η ανάπτυξη ενός συ-
στήματος διαχείρισης μεγάλόυ όγκου χωρικών δεδομένων, παράλληλα και σε κα-
τανεμημένο περιβάλλον. Πιο συγκεκριμένα, το σύστημα πραγματοποιεί παράλληλο
διαχωρισμό πάνω στα δεδομένα, αναθέτοντας τις εγγραφές στα κελιά ενός πλασμα-
τικού δισδιάστατου πλέγματος, ανάλογα με τις θέσεις τους μέσα σε αυτό. Έπειτα
διαμοιράζει τα δεδομένα στους υπολογιστές του κατανεμημένου περιβάλλοντος, με
τον καθένα να λαμβάνει αποκλειστικά τα περιεχόμενα συγκεκριμένων μόνο κελιών
του πλέγματος. Στην συνέχεια, οι υπολογιστές-κόμβοι του περιβάλλοντος μπορούν
να απαντήσουν σε χωρικά ευρετήρια εύρους ανάλογα με τις ανάγκες του χρήστη.
Το σύστημα υλοποιείται σε C++ κάνοντας χρήση των βιβλιοθηκών OpenMP και MPI
για τις παράλληλες λειτουργίες και την διαδιεργασιακή επικοινωνία αντίστοιχα.

v

CHAPTER 1

INTRODUCTION

1.1 Parallelism on Big Data

1.2 Related Work

1.3 Objectives

1.4 Structure

This first chapter consists of an introduction to the subject of the thesis as well as its
structure and chapter description.

1.1 Parallelism on Big Data

1.1.1 Distributed Environments & Parallel Programming

Efficient big data management is becoming more vital in modern data processing
every day. Humans generate massive amounts of information daily and some data
sets are too large or complex to be processed with traditional data-processing software
applications. Spatial data is one of the complex types of big data, including map
coordinates, GPS signals, communication ranges, medical application data and many
more.

Serial processing of big data is extremely time consuming and inefficient due
to its vast size, making parallel programming and distributed environments much

1

more preferable options. The database in such systems is divided into the distributed
environment’s nodes, an operation called partitioning. Thus, each node may search
its corresponding sub-database to answer queries, effectively reducing the total time
and parallelizing the whole process, especially when communication between nodes
is unnecessary or minimal.

Additionally, every computer in the environment may utilize their available pro-
cessor threads to further parallelize costly functions such as data record iteration and
large amounts of comparisons. Implementations that make use of both distributed
environment techniques and parallel programming are usually being referred to as
hybrid programs.

1.1.2 Spatial Range Queries

Effective and efficient management of large data volumes is necessary in virtually all
computer applications, from business data processing to library information retrieval
systems, multimedia applications with images and sound, computer-aided design and
manufacturing, real-time process control, and scientific computation [1].

Databases that contain spatial data, have to provide different types of query eval-
uations depending on the represented objects’ qualities. However, since spatial data
represents entities that can be positioned in 2D or 3D space, the most important
service the database needs to provide is usually range queries. This means being
able to return a group of objects that are contained within specified borders, that
intersect some line or other shape, or which include a set of specific coordinates. In
this thesis we will focus on window queries, which are represented as rectangles in
two-dimensional space. Any object that is contained inside the specified window or
that intersects its borders is considered a result to that window query.

The total number of comparisons between the database records and the query’s
values needed to evaluate it may vary and there are many techniques and algorithms
that manage to reduce this volume, effectively reducing the total cost. However, some
amount of comparisons is always required to retrieve the results and thus, in large
data sets, some significant computational cost always exists.

By using hybrid programming techniques, the query evaluation process can be
parallelized up to a degree so that the inevitable costly operations may at least be
performed in a parallel way.

2

1.2 Related Work

The need for efficient big spatial data management has led the research community
to develop multiple modern spatial data analytics systems. Each one with its own
unique implementation and features, these systems are being used by academia and
industry worldwide.

Most of the spatial data analytics systems run on large-scale data processing and
distributed computing engines such as Apache Spark [2] and Hadoop [3], with the
first prevailing in performance and thus being preferred by the community.

Some of these systems such as Apache Sedona [4] (formerly GeoSpark), Magellan
[5] and SIMBA [6] along with their performance for various data types and datasets
are analyzed in depth and thoroughly discussed in [7] but due to resource and time
limitations, we do not compare the implemented program with any of them. In the
following subsections we briefly describe the systems’ characteristics, strengths and
weaknesses.

Apache Sedona

Apache Sedona [4], formerly ’GeoSpark’ before being acquired by ASF, is a cluster
computing system for processing large-scale spatial data that extends Apache Spark /
SparkSQL. With a set of out-of-the-box Spatial Resilient Distributed Datasets (RDD)
/ SpatialSQL that efficiently load, process, and analyze large-scale spatial data across
machines.

It supports spatial range, kNN and join queries but not kNN joins. It runs on
Java/Scala and supports different types of spatial data such as Points, Polygons, Rect-
angles and LineStrings. It offers multiple spatial proximity partitioning schemes such
as KDB-Tree, R-Tree, Quad-Tree and more. The indexing can be performed using
either R-Tree or Quad-Tree.

Sedona currently beats the rest of the spatial data analytics systems in terms of
performance and speed. Along with providing a wide variety of query and data types,
it dominates the query evaluation benchmarks and is considered the prevailing system
at this moment.

However, Sedona is an in-memory cluster computing framework, meaning that for
big datasets it has high memory consumption, even reaching almost 3x more memory
for every dataset [7] (p. 1667).

3

Magellan

Magellan [5] is a distributed execution engine for spatial analytics on big data. It is
implemented on top of Apache Spark and deeply leverages modern database tech-
niques like efficient data layout, code generation and query optimization in order to
optimize geospatial queries.

It supports a great variety of data types such as points, rectangles, polygons,
linestrings, multipoints and multipolygons. It supports range queries and spatial joins
but does not support kNN queries, distance joins and kNN joins. It uniquely adds
geometric predicates such as intersects, within and contains. It indexes the data using
Z-curve but can also leverage the indices if they were persisted earlier. It uses the
Z-curve in a way that acts as a spatial partitioning technique, by inner joining and
then filtering the datasets.

Magellan has lower memory footprint than Sedona, however the indexing costs,
especially for linestring, are huge. It scales well but its query evaluation remains
worse than Sedona’s in most cases. It does not have an optimization option, ending
up scanning all partitions for all datasets.

SIMBA

SIMBA (Spatial In-Memory Big Data Analytics) [6] is a distributed in-memory spatial
analytics engine based on Apache Spark. It extends the Spark SQL engine across the
system stack to support rich spatial queries and analytics through both SQL and
DataFrame query interfaces. Besides, Simba introduces native indexing support over
RDDs in order to develop efficient spatial operators. It also extends Spark SQL’s query
optimizer with spatial-aware and cost-based optimizations to make the best use of
existing indexes and statistics.

To partition the data, Simba uses a method where an R-tree is constructed by
sampling the input dataset and filled using the STR algorithm [8] to get the first
level of the tree that represents the partition boundaries. It provides flexibility to the
user to specify its own partitioning scheme. It uses an R-tree for indexing by default.
It supports range (rectangle and circle) queries, kNN queries (points), distance joins
(points) and kNN joins (points) but not spatial joins. One of Simba’s greatest features
is that it optimizes the index so that queries can be executed in parallel, increasing
analytical throughput.

4

Simba is one of the best frameworks for point datasets regarding indexing costs.
However, in evaluating range queries, Sedona still performs better than Simba.

1.3 Objectives

This thesis’ goal is to create a system that effectively partitions big sets of data into
a distributed environment and efficiently evaluates range queries regarding objects’
MBRs. It is based on the Two-Level Partitioning [9] method, attempting to improve
its performance by utilizing the hybrid programming’s benefits.

We aim to create a system that efficiently partitions and indexes big spatial data to
any number of machines, in a way that enables fast range query evaluation. Our goal is
to achieve better overall performance, less memory usage and faster query evaluation
than the currently existing systems. We focus on non-point spatial data (rectangles)
and window range queries, instead of a grand variety of data types and queries. By
the end of this thesis, we aim to have a functioning first version of the system that
performs all of the above and works for computers with different specifications and
limitations, with respect to memory usage and network bandwidth. Finally, it must
provide scalability and be open to future extensions and improvements.

In summary, this thesis will show the methodology and line of thought that lead
to the system’s current version. The following chapters:

• Examine ways to optimize the parallel partitioning

• Analyze hybrid methods for the range query evaluation

• Evaluate the system’s performance

• Suggest possible future extensions and modifications

1.4 Structure

This thesis is organized in 7 chapters. Their contents are briefly explained below.
Chapter 1 contains a brief introduction to the thesis’ subject and goals.
Chapter 2 describes the tools, programming language, libraries and compilers used

to implement the system as well as the technical specifications it needs to be able to

5

run.
Chapter 3 gives an overview of the system. It also describes the environment in

which the system was tested in as well as the resources used during research and
development.

Chapter 4 covers an in depth analysis of the parallel partitioning. It compares
different implementations for its individual operations and backs the final version
with real time experiments.

Chapter 5 thoroughly describes the query evaluation part of the system. It tests
multiple parallel versions and attempts to determine the optimal way for it to be
implemented.

Chapter 6 describes extensively how the user may setup the system and use it
to fit their needs. It also provides examples of how the system’s configuration may
affect its performance.

Chapter 7 contains the thesis’ conclusion and suggestions for future work.

6

CHAPTER 2

OPENMP & MPI

2.1 OpenMP

2.2 MPI

2.3 Compiling & Combined Usage

2.1 OpenMP

The OpenMP [10] API supports multi-platform shared-memory parallel program-
ming in C/C++ and Fortran. It defines a portable, scalable model with a simple and
flexible interface for developing parallel applications on platforms from the desktop
to the supercomputer.

OpenMP is fully supported by almost all modern compilers but this thesis will
cover its usage with the C++ MPI compiler mpicxx, which is needed for compiling
and linking MPI programs, as explained in Section 2.2.

Like most shared memory programs, OpenMP is usually used with the fork/join
model meaning that only one thread is active at the beginning of the program until
more are created by the code. Usually, threads are generated for specific purposes
and are then destroyed or joined when they finish their task [11]. These threads are
usually referred to as workers while the creator thread is typically called master.

7

2.1.1 OpenMP Overview

OpenMP offers a collection of #pragma omp commands that parallelize sections of
code in various ways, without altering them. Standard serial compilers ignore these
commands, preserving the program’s ability to be compiled and run serially.

The most common and arguably primitive of the aforementioned type of com-
mands is #pragma omp parallel. It creates a new set of threads and then each one,
along with the creator thread, executes the code that is encapsulated in the com-
mand’s curly brackets. The moment that all of the threads reach the end of the
parallel region, the generated threads are destroyed leaving the creator thread to be
the only one executing the next lines of code, if any.

The #pragma omp commands take arguments that specify various aspects of their
functionality. For example, #pragma omp parallel num_threads(N) instructs the com-
piler to create exactly N− 1 more threads, so that there will be N threads in total
executing the specified area’s code. This option combined with OpenMP’s default
function omp_get_max_threads(), which is explained below, allows the developer to
make sure that the program uses all of the system’s available resources, in terms of
thread usage.

2.1.2 Sharing Attributes

OpenMP is based on shared memory, so it is crucial that the program handles vari-
able scopes with caution. When a group of new threads is created, they all share
the same address space for shared variables as the creator thread. It is the pro-
grammer’s responsibility to make sure that changes to these variables are carried out
properly in order to ensure consistency. By adding one of the following arguments
in the #pragma omp command, the developer can specify which of the creator thread’s
variables need to be shared among the threads and which do not:

• shared(x,y,...): The specified variables will be shared by the threads. Value up-
dates by the threads must be properly protected by the programmer.

• private(x,y,...): The threads will each receive a copy of the specified variables,
private to them. Only the creator thread’s instance of the variable will continue
to exist after the parallel region.

8

• firstprivate(x,y,...): Works like the private() argument, but each copy is initialized
to match the creator thread’s variable current value.

Moreover, any variables declared by a thread inside the parallel area in which it
exists, will be private to them. This makes it easier for the developer to implement
complex operations and algorithms by individual threads, without having to declare
all variables beforehand and adding them to the #pragma command’s private field. All
worker threads’ private address spaces are freed when they join and any data not
saved in shared space known to the master thread will be lost. Any variables declared
inside the parallel area, including the master thread’s, are also deleted when all the
threads join.

2.1.3 Useful Commands

OpenMP provides many commands that give flexibility to the developer to approach
problems from different angles. Some of the following commands were used in the
implemented system while others are being mentioned simply for being noteworthy.

One very important issue in shared memory systems is mutual exclusion, meaning
that there may be code that needs to be accessed serially by the threads and not
simultaneously. For instance, when a thread is attempting to alter the value of a
variable shared by the rest of the group. It is a classic example where mutual exclusion
is needed, due to the fact that parallel changes to it will probably lead to random
results. The #pragma omp critical command specifies a critical area, so that any code
enclosed inside will be executed by just one thread at a time. More specifically, when
a thread reaches the beginning of the critical area, it continues inside only if no other
thread is currently executing the protected code, otherwise it waits until that code
becomes available. The order in which the threads enter the critical area is random.

In case there is code that must be executed only once, OpenMP provides the com-
mand #pragma omp single which allows only one thread to execute the enclosed code
while the rest ignore it. The first thread that encounters the command is the one
which will execute it and upon semi-simultaneous arrival of multiple threads, it is
random which will be the one that enters the area.

9

Utility

OpenMP offers some utility commands that can be used by any thread, anywhere, to
collect valuable information about the program’s state or the system in general.

• int omp_get_max_threads(): Returns an upper bound on the number of threads
that could be used to form a new team. If only one thread is in use, this routine
effectively informs the program of the maximum available threads in the system.

• int omp_get_thread_num(): Returns the number or ID of the executing thread
inside the group. It allows threads to identify themselves and to help the de-
veloper further customize parallelization. Outside a parallel area or in serial
portions of code, it always returns 0.

• int omp_get_num_threads(): Returns the number of active threads in the team
currently executing the parallel region from which it is called. Outside a parallel
area or in serial portions of code, it always returns 1.

• int omp_set_num_threads(int N): Sets the number of threads to be used in the
next parallel area to be N. This can help pre-define the number of threads
needed, to avoid using the num_threads() clause in subsequent parallel com-
mands.

2.2 MPI

The Message Passing Interface (MPI) [12] is a standardized message-passing pro-
totype designed to function in a wide variety of parallel and distributed computer
architectures. It allows inter-process communication between processors of the same
or different computers and supports a variety of high-speed networks through which
they can communicate. Both point-to-point and collective communications are sup-
ported, rendering MPI the go-to standard for process communication among the
parallel programmers and shared memory system developers.

Two major MPI implementations along with their respective compilers are cur-
rently dominating the community, being preferred as the de facto message passing
interfaces in most shared memory systems of any kind. OpenMPI [13] and MPICH
[14] are both developed by an international group of collaborators, originating from

10

both academic backgrounds and the private sector. This thesis uses the MPICH im-
plementation and the mpicxx.mpich compiler version 3.3.

2.2.1 MPI Overview

Usually, at the beginning of an MPI program, the user selects how many processes
or nodes are needed. The creating process called parent will always be in the local
processor of the computer executing the program, but the worker processes can be
either in the same system or in an another computer, connected through a network.
MPI programs are intended to run on homogeneous networks such as clusters, but
can also run in a long distance heterogeneous network if needed.

Each process is assigned an integer identifier called rank beginning from 0, so
that there is a way that the user/system can distinguish the nodes of the environment.
The parent process is always assigned rank 0, so that it can be easily identified.

The processes execute the program in its entirety and it is the programmer’s
responsibility to organize them depending on their needs. When they need to com-
municate with each other, the processes may do so by a collection of communication
commands offered by the MPI. These functions can be point-to-point or collective
and will be thoroughly discussed in the following subsections.

Each process has its own private memory, along with copies of the program’s
defined variables which are completely private. Since MPI does not follow the shared
memory model, there is no need for mutual exclusion mechanisms. All the processes
run in parallel without interfering with each other and when needed, the communi-
cate with messages.

2.2.2 MPI Setup

At the beginning of every MPI program, the execution environment must be initial-
ized. This is done with the command

int MPI_Init(

int *argc,

char ***arv,

)

which is called by all the processes specified by the arguments. However, this com-

11

mand initializes the environment for single thread execution, meaning that individual
threads created by OpenMP will not be able to make MPI calls. Since the implemented
system needs every thread to be able to communicate with the environment’s pro-
cesses independently, the initialization must be carried out with the command

int MPI_Init_thread(

int *argc,

char ***arv,

int required,

int *provided,

)

It works in the same way as the serial initialization, with the main difference being
that the value of the field required will set the environment’s thread-process commu-
nication behavior accordingly, depending on the program’s needs. From the official
MPI documentation, the field’s value may be:

• MPI_THREAD_SINGLE - Only a single thread in the program will execute.

• MPI_THREAD_FUNNELED - The process may contain multiple threads, but the thread
that called MPI_Init_thread is the only one that makes MPI function calls.

• MPI_THREAD_SERIALIZED - The process may contain multiple threads, and all of
those threads may make MPI function calls, but only one at a time.

• MPI_THREAD_MULTIPLE - Multiple application threads may call MPI functions with
no restrictions. This value is currently only supported on MS-MPI V6 running
on Windows Server 2012, Windows Server 2012 R2, Windows 8, and Windows
8.1.

Since the system needs complete freedom regarding threads making MPI calls, the
environment will be initialized by passing MPI_THREAD_MULTIPLE at the required field’s
value, which the function stores in the provided local variable.

Moreover, the program must properly finalize the MPI environment before finish-
ing. This is done by simply calling the MPI_Finalize() routine which must be placed
at the program’s very end and must be called by every process’s main thread be-
fore exiting. After this routine is called, no other MPI function calls may be made,
including the MPI initialization methods.

12

2.2.3 Utility Commands

Various organization models and parallel implementations require the participating
nodes to know the total size of the environment as well as their position in it. MPI
provides two commands that can inform the nodes of their own rank and the total
of active processes in the environment.

int MPI_Comm_size(

MPI_Comm comm,

int *size,

)

saves the total number of available processes in the communicator into the size local
variable and can be called any moment during runtime. The same goes for

int MPI_Comm_rank(

MPI_Comm comm,

int *rank,

)

which saves the rank of the caller process into the rank local variable.
MPI also offers a high resolution timing function to properly measure time during

a parallel program:

MPI_Wtime ()

which returns an elapsed time on the calling processor, avoiding any possible confu-
sion between the environment’s processes.

2.2.4 Inter‐Process Communication

The most important part of a non-shared memory environment of multiple pro-
cesses is their cooperation, which is based solely on communication and information
exchanging. The nodes must be able to communicate with each other both point-to-
point privately between them and collectively all together.

The standard point-to-point information exchanging methods for sending and
receiving messages respectively are

13

int MPI_Send(

void *buf,

int count,

MPI_Datatype datatype,

int dest,

int tag,

MPI_Comm commm,

)

and

int MPI_Recv(

void *buf,

int count,

MPI_Datatype datatype,

int source,

int tag,

MPI_Comm commm,

MPI_Status *status,

)

Processes refer to each other using their ranks, passing them as arguments to the dest
and source fields informing the communicator of the message’s destination or to filter
incoming messages accepting only those originating from a specific source node. The
receiver node may specify the MPI_ANY_SOURCE constant into the source field to accept
all incoming messages, regardless of the sender node’s rank.

The message’s size is mandatory for the functions to work and is passed as an
integer number of bytes into the count field. The receiving node needs to have allocated
enough memory for its buffer before accepting a message, otherwise the method will
fail. The communicator also needs to know the type of the data being passed through
the channel. This is indicated by the datatype field’s value which can be any one of
the MPI’s supported data types, containing mainly primitive types such as char, int
or long. Complex data structures such as C++ vectors, class objects or even standard
strings must be transformed into one of the supported data types before being sent.

Messages may also contain a specific numeric tag, which can be used to further
filter or categorize incoming messages. Receivers may disregard tag filtering by speci-

14

fying the MPI_ANY_TAG constant. If a tag is specified by the receiver, then only messages
with the exact same tag will be accepted and the rest will be disregarded.

These functions are blocking, meaning that they perform an operation and do
not return until it is completed. For example, MPI_Recv() does not return until a
message matching the specified conditions is received in its entirety, otherwise the
calling process is waiting indefinitely. On the other hand, MPI_Send() does not return
until the buffer has been completely transmitted through the channel. Regardless of
the data being received by a process or not, it returns the moment that the sending
buffer can be safely reused again.

The receiving function has one extra field pointing to a special MPI_Status structure
that contains useful information about incoming messages, including their size in
bytes. This structure is needed in cases that the receiver does not know the actual
size of the incoming message beforehand. MPI provides a way to handle such cases, by
offering a function that inspects the channel for incoming messages without actually
receiving them:

int MPI_Probe(

int source,

int tag,

MPI_Comm comm,

MPI_Status *status,

)

The MPI_Probe () function observes the channel until an incoming message with the
specified source and tag is noticed. Then, instead of receiving the message, it simply
stores its status information without taking any further action and returns. After that,
the system may retrieve the message’s size with the method

int MPI_Get_count(

MPI_Status *status,

MPI_Datatype datatype,

int *count,

)

which stores into the count variable the number of bytes it contains depending on
the message’s data type. Thus, the system knows exactly how much memory it must

15

allocate for the buffer before calling the MPI_Recv() function and actually receive the
message. This useful mechanism is vital for proper memory handling during data
distribution, since the occasions where a receiver knows the size of the incoming data
packages in advance are rare.

There are multiple options for different collective communication mechanisms
provided by the MPI. A few basic methods are described below, though some of
them were used in the implemented system only as a way of synchronization and
not data distribution.

int MPI_Bcast(

void *buffer,

int count,

MPI_Datatype datatype,

int root,

MPI_Comm comm

)

broadcasts data from one member to all others in a group of processes. When a
process calls this function, its rank is compared to the value specified in the root
parameter to decide whether it is the sender of the message about to be broadcast
or one of the receivers. Only the root process transmits the message while the rest
receive and save it into their local buffer.

int MPI_Scatter(

void *sendbuf,

int sendcount,

MPI_Datatype sendtype,

void *recvbuf,

int recvcount,

MPI_Datatype recvtype,

int root,

MPI_Comm comm,

)

MPI_Scatter() scatters a collection of data by splitting it into equal segments, one
for each receiving process. The parameter sendcount specifies the number of sendtype

16

continuous elements in the sendbuf that will be sent to each process in the group. Both
sendcount and recvcount must be the same value as well as sendtype and recvtype.

2.3 Compiling & Combined Usage

2.3.1 MPI program

In order to compile and run an MPI program in multiple computers, they must be able
to connect to each other using SSH without asking for a password because by default,
when an MPI program begins, it automatically SSH’s to all other computers. This is
done when the environment is a small cluster containing up to 64 computers. In case
there are more than 64 nodes, MPI handles connection spawning automatically using
a tree spawn algorithm, in which nodes might ssh to other nodes.

To compile a program, the user must use an MPI-supporting compiler such as
mpiCC or mpicxx, depending on the installed prototype as well as the programming
language in which the source code is written.

The user may also define the exact number of nodes in the environment upon exe-
cution by adding the ‐np «number» argument after the mpirun command. Moreover, a
list of the computers and their addresses must be existent on the disk. When executing
the program with the mpirun command, the user may specify the node file in which
the required node-related information is stored by passing the ‐hostfile «file name»
argument. The file may contain the computers’ IP addresses, their specified names
-if any- in the network, their maximum available slots (processes) and how many of
these slots to be initialized as nodes of the environment. Each line must contain an
individual entry for a node, with the arguments separated with single spaces but the
file’s required format may vary depending on the installed MPI implementation.

For additional portability, the user may select the executing computer as rank 0
in an environment without needing to change the host file every time, by writing
localhost as the first line of the file. If no file is specified on execution, then all the
processes are created in the same local computer.

17

2.3.2 Hybrid program

OpenMP is supported by most standard compilers. The developer has to pass an
argument to notify the compiler that OpenMP commands are being used in the
source code. In C/C++ this argument is ‐fopenmp and it instructs the compiler to
take the #pragma commands into account.

Thus, compiling a hybrid program that uses both OpenMP and MPI in C++ can be
compiled simply by using a proper MPI compiler along with the -fopenmp argument
in the following manner: mpicxx ‐fopenmp program.cpp.

As mentioned in subsection 2.2.2, in order for the threads to be able to make MPI
calls, the environment must be initialized using MPI_Init_thread() with the argument
MPI_THREAD_MULTIPLE. However, this is not the only peculiarity in developing hybrid
programs using both these tools.

Processes in the environment’s computers may create their own threads, limited
only by that system’s specifications. Work load may be distributed to the nodes to
be handled simultaneously and each node will further parallelize it using its own
threads, improving productivity and saving valuable time. The implemented system
makes use of this hybrid ability to a full extent, trying to be as both distributed and
parallel as possible.

2.3.3 Further References

OpenMP & MPI exist since the 1990s and are being developed continuously, with
many international books and publications using and expanding them. Honorary
mention to the book ”Parallel Systems & Programming” [15] which was studied
thoroughly before and during this thesis’ research to accumulate an adequate under-
standing of the tools.

18

CHAPTER 3

SYSTEM OVERVIEW & EVALUATION
METHODOLOGY

3.1 System Overview

3.2 Development Environment

3.3 Data Sets

3.4 Queries

3.1 System Overview

The system performs query evaluation on spatial data, so it must load the records
and build the database first. It does so by reading the data from the disk, using
the computer’s available threads to parallelize the whole process. The data records
are not saved in memory. Instead, they are distributed to the cluster’s individual
computers and stored in their respective local hard drives. The computers send data
to each other by messages through their network.

The system then, can perform the query evaluation on the distributed data. During
this process, the system reads range queries from a data file on disk and uses the
distributed environment’s computers to evaluate them. All of the individual machines
possess different segments of the database and use their threads to parallelize the
evaluation even more.

19

3.2 Development Environment

During development, all experiments were conducted in the CSEcluster at the Univer-
sity of Ioannina. The cluster consists of 12 Dell PowerEdge R430 with 8 Intel Xeon
E5-2620 v4 CPUs each and 16 GB memory. Each processor has one thread, meaning
that for every parallel operation in a computer, up to 8 threads can be utilized with-
out over-exhausting the system’s resources. The computers ran Ubuntu OS version
18.04.5 LTS.

The network through which the computers communicate with each other and with
external systems is 1 Gbps Ethernet. All computers can SSH to each other without
password request and know each other’s names/addresses.

Along with a shared filesystem between them, each computer has a local SSD and
HDD disk for private storing.

3.3 Data Sets

A total of 3 different datasets were used, which represent real world geo-spatial objects
located in the United States. They are publicly available Tiger 2015 datasets which
were downloaded by the official site of the open source extension SpatialHadoop [16].

Their details are listed below:

Name Total Records Size

T1 129,179 4.2 MB

T4 70,380,191 2.3 GB

T8 19,349,214 634 MB

3.4 Queries

The queries used in each experiment are the same as those used in [9], which were
generated by the authors and apply on non-empty areas of the map (i.e., they always
return results). Their relative area is varied as a percentage of the entire data space,
inside the {0.01, 0.05, 0.1, 0.5, 1} value range (default value 0.1% of the area of the
map). The experiments run the first 100 queries of the list, instead of all 10,000.

20

CHAPTER 4

PARALLEL PARTITIONING

4.1 Partitioning

4.2 Parallelization

The main issue with distributed databases is the record loading and their indexing.
The data distribution cannot be random and must follow some patterns, in order
for the system to support efficient query evaluation. This is achieved through the
partitioning, that manages to distribute the data to the computers in a way that
enables faster query evaluation.

There are many different partitioning strategies. In this chapter we examine a
certain type of data partitioning in order to optimize the database for range query
evaluation. We focus on the parallelization of the Two-Layer Partitioning method [9]
as well as efficient memory handling and fast inter-process communications but with
overall low program complexity to favor scalability.

4.1 Partitioning

The time needed to answer a single query depends heavily on the database’s size;
namely, on the number of records the system has to iterate through and check whether
they meet the query’s specifications or not. In large quantities of data, checking every
single record in the database can be very time-consuming and counterproductive.

21

This creates a need for some kind of separation between the records or a way to
selectively ignore portions of the data, reducing execution time.

4.1.1 The Two‐Layer Partitioning

The objective of queries is to quickly and accurately gather all relevant records from
the database. This requires some pre-processing of the data, so that it can be easily
iterated through and examined based on each record’s qualities. The data is modified
and stored in a special data structure on disk called index, that improves the speed
of data retrieval operations by reducing the amount of record accessing.

Non-point spatial data objects are approximated and indexed by their MBRs (Min-
imum Bounding Rectangles). Then, the queries are processed using a filter-and-
refinement method. The first step, the filtering, uses the index to reduce the amount
of record groups that have to be checked. The refinement step minimizes the total
number of comparisons needed to be made for each group, based on their qualities.

The Two-Layer index [9] is a recently proposed partitioning approach which is
based on an N×N grid and assigns each object MBR to all tiles that are intersected by
it. However, objects’ MBRs may cross multiple cells of the grid, being assigned to more
than one partitions and thus creating duplicates of the record. The system needs to
be able to recognize which of the records contained in a cell appear also in other cells
as well, in order to disregard the replicas. This problem is called deduplication and
can be faced with the reference point technique by Dittrich and Seeger [17]. Basically,
this method defines a reference point for each object and based on that, assigns it to
only one of the partitions, instead of all the intersecting ones.

The Two-Layer Partitioning is a better approach that does not apply the reference
point technique but instead accesses only the relevant partitions to a query. By classi-
fying the objects locally in every cell, the system can instantly determine the record’s
state in the the grid and choose to ignore certain groups of records. However, since
the objects are approximated by their MBRs (Minimum Bounding Rectangles), a ref-
erence point is needed to efficiently perform positional checks and classification. Each
rectangle’s reference point (begin point) is its bottom left corner’s coordinates and
with that in mind, the method classifies the objects into the following four categories,
for a partition T that they overlap:

• Class A: Objects begin inside partition T in both dimensions.

22

Figure 4.1: Examples of objects classified as each one of the four classes in a tile T.

• Class B: Objects begin inside partition T only in dimension x.

• Class C: Objects begin inside partition T only in dimension y.

• Class D: Objects begin before partition T in both dimensions.

Figure 4.1 illustrates the four different cases of rectangles in a cell T, one for each
class.

Mathematically, the classification of an object r assigned to a tile T can be done
with algebraic checks [9]. Considering r.xl, r.xu to be the rectangle’s projection on the
x axis and r.yl, r.yu its projection on the y axis:

• r belongs to class A, if for every dimension d ∈ {x, y}, the begin value of r.dl of
r falls into projection T.d, i.e., if T.dl ≤ r.dl.

• r belongs to class B if r.x begins inside T.x and r.y begins before T.y, i.e. if
T.xl ≤ r.xu and T.yl ≥ r.yl.

• r belongs to class C if r.x begins before T.x and r.y begins inside T.y, i.e.,
T.xl ≥ r.xl and T.yl ≤ r.yl.

• r belongs to class D if both its x− and y−projections begin before T, i.e., if
T.xl > r.xl and T.yl > r.yl.

The actual query evaluation that uses the above partitioning mechanism along
with its distributed implementation is thoroughly explained in Chapter 5.2 .

23

4.1.2 Data Distribution

The system follows the Master/Slave model, meaning that one of the nodes will be
called the Master and the rest will be the Slaves. The node executing the program is
automatically assigned the Master role and is solely responsible for properly reading
and distributing the data to the slaves. The master node will neither save any of
the classified data locally nor load large chunks of it in memory. A summary of the
master node’s responsibilities regarding the partitioning:

• Data read from disk, with caution in memory handling.

• Data classification based on the records’ position in the grid.

• Classified data distribution to the slaves.

The master node needs a way to determine which records will be delivered to each
slave node. Since the data classification is based on the grid, one efficient way would
be to assign cells to nodes, meaning that the contents of a tile are sent exclusively to a
single slave. It would be wise to assign consecutive tiles to different nodes, since the
system deals with rectangles that may overlap multiple neighboring tiles. This way
the distributed environment’s benefits are preserved, engaging more of the system’s
nodes in queries that intersect more than one of the grid’s tiles. Another advantage
of this approach is that we achieve load balancing if the spatial distribution of the
objects is not uniform.

The grid’s tiles are each labeled with an integer identifier through which they can
be referenced to, during the cell-node assignment. For an N ×N grid, the identifiers
range from 0 to N2 − 1 and are produced using the following expression:

IDCell = y ×N + x

where x and y are the tile’s position in the grid’s x and y axes respectively and N is
the number of tiles in a single dimension, as show in Figure 4.2.

Each cell represents actual coordinates related to the data. The system needs to
know the minimum and maximum value for each dimension, to properly normalize
and position the rectangles to their corresponding tiles. This information can be
gathered by pre-processing the data, though this option adds overhead delays to
the program’s total execution. The system considers these values as well as the total

24

Figure 4.2: An example of a 9x9 grid and its identification

number of records in the data known, since the pre-processing can be done once
before the partitioning and later be updated through changes in the database.

The tile-to-slave allocation is performed using a basic algebraic function that as-
signs consecutive cells to different slave nodes based on both of their IDs. It has
to work for all cluster and grid sizes. In an environment with S total slave nodes,
the contents of a cell with IDCell will be sent to the node with ID produced by the
following function:

IDNode = IDCell mod S

So for example, in figure 4.2 and for an environment with 10 slave nodes, the contents
of the cell with IDCell = 13 will be sent to the node with IDNode = 13 mod 10 →
IDNode = 3.

The slaves do not have access to the raw data file. Instead, they receive messages
containing records that have been already classified by the master and save them
locally into their disk. Each message sent by the master is consisted by multiple rect-
angles. For each rectangle, the message contains information regarding the record’s
ID (which is the line number in the input data file), the cell ID which it overlaps, its
class in that cell and the rectangle’s actual coordinates.

The way in which they store the classified data is very important, since they
must be able to iterate through it and collect the answers to queries efficiently.
In order to quickly locate all records belonging to a specific tile and class, the

25

slaves create files named after both these attributes using the following name format
cell_<cellID>_<classType>. So, if for example a node is responsible for a tile T and
receives records with classes A and C, it will create two data files named cell_T_A and
cell_T_C with each one containing all records agreeing to the name’s specifications.

4.1.3 Program Flow

Upon beginning, the system sets up the directories in which the data will be stored in
all of the slave nodes’ local disks. Moreover, as mentioned in the previous subsection,
the program needs to know how many records are there in total as well as the min
and max values of the coordinates in both dimensions. This is the point in which the
program will perform the pre-processing in order to obtain that information, given
that it does not already have it.

Then, the master node begins the partitioning while the slave nodes wait for
incoming messages. The master reads chunks of data into memory, creating packets
targeted to each slave node based on the aforementioned criteria. Each packet will
contain no more than a specific quantity of records called threadChunk, specified by
the user. This value exists so that the user can have control over how much memory
the system uses while performing the partitioning. Thus, each slave receives packets
containing threadChunk records at most and writes them to its disk as they arrive.

When all of the records have been read, classified and distributed to the slaves,
the master sends a specific termination message to the nodes so that they will stop
waiting for more partitioned data and move on to the next phase. This type of
synchronization in the system is important, to avoid data loss and properly separate
the system’s functionalities. The nodes then, can move on to the query evaluation
section all together.

4.2 Parallelization

This section examines the many ways in which the partitioning can be parallelized
and analyzes the pros and cons of each case. The main principle followed during this
process is the identification of individually parallelizable sections and the evaluation
of their contribution in the attempted time saving.

26

4.2.1 Parallel Read

As mentioned before, the master node is solely responsible for the data handling.
For each record, the master must read it from the disk, format it properly so that it
can be classified, actually classify it, put it into a message package and store it before
sending it through the channel to the corresponding slave. This is too much work to
be done serially for each record and can be very time-consuming for large data sets.

Moreover, actions that are applied directly on the hard disk are usually slow
and must be handled with caution, especially when multiple processes attempt to
perform them. However, at this moment, the master performs exclusively reading
actions, which can be done by the threads simultaneously with safety. So this is the
perfect case to utilize the master node’s threads to parallely read the data from the
disk, allegedly saving time.

During development, the following two methods for parallel data reading stood
out as the most efficient and were thoroughly examined and compared with each
other before one being included in the system.

Thread Indices Method

This method uses threads that read different sections directly from the input data
file. The main process creates a group of threads before opening the file and uses
pointers to guide each thread to its assigned data segment.

More specifically, each thread owns a private copy of the file reader and iterates the
data file independently from start to finish. It only actually loads into memory the data
that is pointed to by its local indices, ignoring the rest of the records. These segments
will be from now on referred to as chunks, with each one containing threadChunk

records.
An example of the data iteration by the threads is shown in Figure 4.3. In this

instance, thread 0 will load into memory the first four lines of the data file (the first
chunk) and then read through lines 5-20 without loading any data, until it reaches
line 21 where its next chunk begins. The thread recognizes its chunks by their integer
IDs, using a pointer which is at first initialized to match the thread’s ID and is later
increased by the total number N of threads in the group, each time the thread finishes
loading a chunk.

Obviously, there is a huge drawback in this method. In a group containing N

27

Figure 4.3: An example of the chunk segmentation process for the first 38 lines of a
data file, with threadChunk=4 and N=5 active threads.

threads, each one will iterate through N− 1 chunks useless to it, every time it loads
a single chunk in memory. This is due to the fact that the threads iterate through
every line, instead of ’jumping’ right to the beginning of their next chunk.

This can fixed by using the C++ routine

seekg(streamoff off, ios_base::seekdir way)

which sets the position of the next character to be extracted from an input stream,
based on the off parameter. This offset may specify a position counting from the
beginning or the ending of the stream as well as its current position. By specifying
only the offset value, it automatically assumes the user means the absolute position
from the beginning of the stream.

The main issue here is that the offset parameter needs to be in characters and
not lines, meaning that the system cannot use it to jump a specific number of lines
without knowing their total size in characters (bytes). This information cannot be
obtained during runtime efficiently, so some kind of pre-processing is needed.

28

Since a possible pre-processing of the data file has been already discussed in
Section 4.1.2, it can be further enhanced to store character-related information about
each line or even better, about each chunk. The idea is that if a thread knows exactly
how many characters exist between its current and next chunk, it can use seekg()

to move right to it, without having to iterate through useless data. So, during pre-
processing, the system counts how many characters constitute each chunk and writes
the result into a binary file on the disk referred to as navigation file. Then, when
a thread needs to make a ’jump’, it simply reads through the navigation file to find
out how many bytes it needs to skip in order to reach its next chunk. Binary files are
ideal for this kind of work, since they are quick to iterate through and small in size.

However, now the pre-processing is not optional for the system, since the binary
file is mandatory for the seekg() routine. The most costly functionality during the
pre-processing is the determination of the minimum and maximum record values
in both axes. The system must format each string line into numerical values before
performing the comparisons, adding too much overhead on the whole process. At
this point, it is reasonable to wonder whether the benefits outweigh the costs, since
the pre-processing can be quite time-consuming.

2500 5000 10000 20000

215

220

225

230

235

215.41

226.98

219.39

213.15

221.16

236.4

231.51

218.73

threadChunk(lines)

tim
e(
se
c)

Version A
Version B

Figure 4.4: Comparison between the two versions for a few different threadChunk
sizes.

This can be easily tested by performing a comparison of two different program
versions: One that pre-processes the data, creating the binary file which is later used
by the threads in combination with the seekg() method to perform the partitioning

29

(Version A) and one that does not use the method, forcing each thread to read the
data file in its entirety but avoiding any form of pre-processing (Version B). For the
experiment, the T4 dataset was used in the cluster utilizing all of the twelve nodes
(one master, 11 slaves) as well as 8 threads in the master node. The results are shown
in Figure 4.4.

Despite Version A’s small but steady lead against Version B in execution time, it is
important to consider the pre-processing costs. Figure 4.5 shows the total time elapsed
during the pre-processing in Version A and how it is divided between the navigation
file creation and the min/max values acquisition. It is obvious that formatting the
data to properly determine the min/max values creates a very large overhead whilst
the navigation file creation process adds a rather small delay.

2500 5000 10000 20000

0

100

200

3.29 3.41 3.51 3.4

262.55 263.44 262.44 264.6

threadChunk(lines)

tim
e(
se
c)

Navigation file creation
Min/Max acquisition

Figure 4.5: Pre-processing time analysis for various threadChunk values. The
Min/Max value acquisition includes the time needed to format the strings as well
as the actual comparisons.

Considering all this along with the fact that the pre-processing can be done once
per database, Version A seems to work adequately so far. This is the final version of
the Thread Indices Method and will be later compared to the Part Files Method to
determine which one will be used in the system.

Part Files Method

This method uses a different kind of pre-processing. It requires the input data file to
be split into multiple part files before running the program, so that each thread can

30

take over groups of data without having to iterate the entire file or use pointers to
be guided through it. The part files are similar to the chunks in the Thread Indices
Method with the difference that they exist separately on the hard disk.

Part files are created beforehand using a separate program and they are sorted
properly, to keep the actual order of the records intact. Each part file has a name
with unique identifier so that they can be easily identified position-wise. The part-
file-to-thread assignment is handled during runtime. The threads request part files
from the system one at a time and when a part file is assigned to a thread, it cannot
be given to another one as well. Each time a thread finishes partitioning a part file,
it requests the next available until all of the files and their contents have been read
through.

The system must be built in a way that handles the part file assignment to threads
carefully. This can be implemented easily using basic mutual exclusions techniques
such as the aforementioned critical area. Basically, the code responsible for the part
file requests and assignments is enclosed in a critical area, ensuring that it will be
executed one thread at a time, avoiding confusion.

This method does not use navigation files or complicated pointers, managing to
lower overall program complexity by encumbering a little more the pre-processing of
the data.

2500 5000 10000 20000

200

210

220

230

196.16
199.26 199.12 199.53

215.41

226.98

219.39

213.15

threadChunk(lines)

tim
e(
se
c)

Part Files Method
Thread Indices Method

Figure 4.6: Comparison between the two parallel partitioning methods for various
threadChunk sizes.

31

Final Comparison

Figure 4.6 shows the comparison between the Thread Indices Method and the Part
Files Method, executed in the cluster. It is obvious that the Part Files Method works
faster and along with its low complexity, makes a fine solution for the Parallel Read
problem. At this point we accept the pre-processing cost during the build-up of the
database, since it allows the usage of the part files mechanism along with the needed
total line count and min/max evaluation.

4.2.2 Distribution Mechanism

The way in which the data is actually distributed to the slaves is of major importance
and must be done with respect to efficient memory handling. The threadChunk size is
a key parameter to this operation, since it limits the amount of records each thread
can load into memory simultaneously. However, inter-process communications can
be costly if handled poorly, since the records are being distributed in packs that may
overload the channel.

On top of that, each thread may send packets to multiple slave nodes, so it needs
to keep the loaded records stored separately, creating different message packets for
each node. This is solved by allowing the threads to keep private lists that contain
this data. For S slave nodes in an environment, each thread stores a list with size S
in which it saves the message packets directed at each node. It also keeps a list with
each pack’s record counters, which are used to properly contain the amount of data
it loads into memory. When a list reaches threadChunk records, the thread sends its
contents to the respective slave node and then empties it before continuing the data
file iteration.

In this way, the user/developer has control over how big message packets are and
by extension how often information is being sent through the channel. In an attempt
to determine the actual memory used by the master node and its threads, we must
consider the parameters affecting memory usage:

• Number of threads N

• Number of slave nodes S

• threadChunk size

32

Using the above, we can safely assume that the master node will never store more
than

R = N× S× (threadChunk− 1)

records in memory at the same time, since each list is emptied when filled with
threadChunk records. Moreover, it is possible to make a crude approximation regarding
the expected memory usage in bytes by assuming an average record size in bytes B
and multiplying it by R.

Figure 4.7: A visualization of each thread’s memory usage in the master node.

Each thread owns a private memory list and keeps record of the saved rectangles,
before sending the filled packets. Figure 4.7 shows how the threads place the records
in the appropriate message packets, depending on the destination slave node.

Parallel distribution can be handled efficiently by the way MPI is structured. Slave
nodes will ignore packets that are not directed at them and simultaneous MPI_Send()
operations by the threads are performed without interfering with each other.

Moreover for each rectangle, the receiving node needs to possess the record’s ID,
the cell ID which it overlaps with, the rectangle’s class in that cell and the actual
coordinates from the data file. So, each message contains the above information sepa-
rated with a special delimiter called messageDelimiter for easy deconstruction. Different
records inside the message packet are separated by the newline character \n. Each
message is first formatted in this way before being placed in the message packet.

33

If a rectangle overlaps with more than one cell, multiple messages are sent to
probably different slave nodes creating duplicates. This will be further discussed and
resolved in Chapter 5, during the range query evaluation.

4.2.3 Data Receipt

The slave nodes await for message packets containing the records assigned to them.
They need to retrieve the message from the channel by saving into a temporary buffer
and then deconstruct it to determine the records’ save location on the disk.

For each received packet, the slave nodes iterate through the records and use the
message delimiter to collect the needed information about each record. Then, they
determine the save file name for each rectangle based on the cell’s ID and record’s
class as mentioned in 4.1.2 and write the rectangle’s coordinates and ID into that file
on their local disk.

This process needs to be performed for each record contained in the message
packets and since write operations on the hard disk are slow, it can be very costly time-
wise. However, this can be parallelized by utilizing the slave nodes’ threads which
were unneeded until now. The main idea is to use the node’s threads for parallel
writing, by making them write different parts of the message pack simultaneously.
But, due to the way writing to the disk works, when two or more threads attempt to
write to the same file at the same time then it is probable that some data will be lost.

The optimal way to efficiently parallelize this operation, would be to assign dif-
ferent save files to threads, making sure that each thread writes to a file exclusively.
However, the number of save files in which the records contained in a message pack
will be saved to, is unknown without first iterating through the pack in its entirety.
So, the slave node’s threads read through the pack’s records and keep in shared
memory the different save file names that will be used for this message pack. They
also store each record group destined to a save file in a different location in memory,
separating them without writing them. Then, the thread group is destroyed, having
fulfilled its purpose.

Now, the slave node has two lists in memory containing the save files that are going
to be used for this message pack and their respective new contents. At this point it is
possible to utilize the node’s threads once again, to actually write the records safely.
Each thread handles exclusively different save files, effectively parallelizing the whole

34

process.

Figure 4.8: The two shared lists in a slave node, containing the save file names and
their contents before being written to the disk.

Figure 4.8 shows an example of the two lists in a slave node. They are shared
by the threads and are being reset for each received message pack. These lists are
formed by the first group of threads during the message pack iteration, using mutual
exclusion since they are shared memory.

After being formed, a second group of threads handles the writing. Each thread
writes to different save files, represented in the example by the lists’ cells. As it is
shown, the contents of the memory block in position 0 of the Save File Contents list or
fileLines belong to the save file in position 0 of the Save File Names list or fileNames
named cell_X_A.csv, where X is the cell ID and A the rectangles’ class in that cell.

The number of threads to be created for the second group is based on the number
of save files that need to be accessed for that message package. For example, if the
fileNames list’s elements are less than the available or defined by the user number of
threads in the system called NUMBER_OF_THREADS, then the slave node creates
an amount of threads equal to the list’s size. On the other hand, if the data files are

35

more, then NUMBER_OF_THREADS threads are created and they are being assigned
data files to write into repetitively and exclusively.

Finally, after the partitioning is over and all data has been properly saved to
the appropriate locations on the disk, the slave nodes receive a special termination
message by the master and halt the receiving process.

36

CHAPTER 5

QUERY EVALUATION

5.1 Query Evaluation Overview

5.2 Two‐Layer Query Evaluation

5.3 Parallel Query Evaluation

This chapter focuses on the query evaluation part of the system and the ways it
can be parallelized to maximize efficiency. It uses the partitioned data stored in the
slave nodes to quickly answer range queries by making the most of the distributed
environment’s benefits as well as the nodes’ threads.

5.1 Query Evaluation Overview

Processing queries and efficiently evaluating them is probably one of the most im-
portant features any type of database must provide. It fills the gap between database
programming languages and file systems [1] or in other words between the user and
the actual data.

Range queries are extremely useful, since spatial data can represent many types of
information. Being able to determine and retrieve the objects contained in a specific
range quickly is a feature that can be used almost in any data-management system
for a lot of purposes.

37

The system answers rectangular range queries called window queries W. Any
object’s MBR intersecting W is considered an answer to the query and must be
returned in the result list. There are many ways to evaluate range queries such as the
R-tree algorithm and its variants, with all of them having better efficiency than the
basic serial checking of the records in the database. This thesis attempts to parallelize
the Two-Layer Query Evaluation [9] and implement it in a distributed environment,
potentially optimizing its runtime.

5.2 Two‐Layer Query Evaluation

First, as the method suggests, we have to consider the way we can determine which
rectangles intersect W. It can be found in O(1) time with algebraic operations. More
specifically, for the tile Ti,j that is positioned at the i-th row and j-th column in the
grid, the tiles that intersect W are all those for which ⌊W.xl/N⌋ ≤ i ≤ ⌊W.xu/N⌋ and
⌊W.yl/N⌋ ≤ j ≤ ⌊W.yu/N⌋.

Now, we must consider which of the rectangles contained in the above tiles must
be actually checked during the evaluation. Since the system has classified the records
based on their position in the grid, we can use this information to minimize the
number of accesses the system makes, effectively reducing the total cost.

Figure 5.1 shows the object classes needed to be checked based on a window query
W. It is obvious that by avoiding accessing objects of classes not included in a tile’s
required checks, the system reduces its total workload and by extension, its execution
time. Moreover, the actual amount of comparisons for the rectangles’ coordinates is
also minimized. For example, in a tile where classes A and B are the only ones that
must be checked, the system can completely ignore the x axis comparisons, since the
tile is completely covered by the window in that dimension. With similar logic, the
system performs only the necessary checks in the rest of the tiles, optimizing the
required computation cost.

5.2.1 Distributed Implementation

Before attempting to parallelize the query evaluation process, we must consider the
master’s and slaves’ roles in this part of the program. Since the master node does
not own any classified records, it will act as coordinator between the user and the

38

Figure 5.1: Examples of object classes and comparisons in a window query.

system’s back end.
At this point, the system assumes that the user’s queries exist in a text file on the

master node’s local disk. Each query is written on a different line, so the master reads
one line at a time, loading it into its memory. The master has to consider which nodes
are needed to answer each query, based on which tiles it overlaps. For example, if a
window query intersects just one tile, then the system will utilize only the slave node
responsible for that tile, since all the records contained in the rest of the nodes will
be definitely outside the query’s borders.

Figure 5.2 shows an example of how the master node determines which slave
nodes will be utilized to answer a window query, using the grid’s tile-to-slave as-
signment as mentioned in section 4.1.2. The window W intersects cells 16, 17, 22 and
23 of the 6x6 grid and based on the assignment expression, the slaves that possess
the rectangles to be checked are nodes 4, 5, 10 and 11.

This process takes advantage of the distributed environment’s benefits by not only
reducing the execution time because of the irrelevant records’ fast disregarding, but
also by effectively parallelizing the whole process using the slave nodes to perform
the comparisons simultaneously on their respective data.

The master node sends the query’s information to the slave nodes and then waits

39

Figure 5.2: Example of a query window W on a 6x6 grid and 12 slave nodes.

for the results before moving on to the next query. For each one, it sends both its
coordinates and the corner tiles it intersects in the grid, assisting the slave nodes in
locating the rest of the overlapping tiles. It saves the incoming results to its local disk
for later use to avoid memory overflow.

On the other side of the communication channel, the slave nodes iterate through
their locally stored records using the Two-Layer Query Evaluation method. They all
execute the same piece of code that performs the aforementioned comparisons and
send the results back to the master.

Since a single query may have too many records as an answer, the slave nodes
must be careful with their memory handling. For this reason, while iterating through
their database performing the comparisons, they store only up to threadChunk results
in a private temporary buffer.

At this point, we must examine the optimal way to return the results to the user.
The slaves could send message packets with the results back to the master node or
they could simply dump them on their local disk or a shared filesystem. Whilst the
second option saves time by removing any communication overhead, the results still
have to be joined into a single file, which is a costly operation.

Due to time limitations we didn’t perform thorough investigation on which option

40

is ultimately the best. By sending the results back to the master, the system runs fast
and since the simple join operations on disk performed poorly, we decided to go
with the first option. At this point, when the slave node’s buffer is full, it sends
the its contents to the master as a single message pack, empty it and then continue
looking for results from where they had stopped. Once again, the threadChunk value
comes into play to control the system’s memory usage and protect the channel from
congestion.

When finished, each participating slave sends a special termination message to
notify the master that they are done checking every record needed to answer that
specific query. When all termination messages are received by the master, it finishes
and moves on to the next query, if any.

5.3 Parallel Query Evaluation

The query evaluation process is performed by all the slave nodes in the same way, but
on their respective partitioned data sets. They initially receive the query’s information
from the master node and then determine the window query’s situation in the grid,
before accessing any records.

The grid’s tiles which intersect the window query determine the actual file accesses
each slave node will perform. The participating tiles for a query may be positioned
in a horizontal or vertical line in the grid, in a rectangle form or be just a single tile
containing the window W in its entirety. Figure 5.3 illustrates these four cases. The
slave nodes receive from the master the top left, top right, bottom left and bottom
right tiles that are being intersected by the window query, so that they can easily
determine which case is present and iterate through the tiles.

5.3.1 Possible Parallelization

The process is already parallelized since it utilizes the distributed environment’s nodes
to perform the evaluation on parts of the data simultaneously. However, each node
has threads available that may expedite the process even better. There are more than
a few ways this can be done, so research must be thorough. At this point we must
consider the optimal way to effectively parallelize the evaluation process since it can
be applied in various parts of the code.

41

Figure 5.3: Example of all possible query cases in the grid.

Each slave node iterates firstly through the tiles indicated by the query and for
each one that it is responsible for, it accesses the corresponding file on its local disk. It
then iterates through the file’s contents, performing comparisons to finally determine
which records constitute the query’s results. In the case that the tiles needed to be
checked form a rectangle, the program iterates each row by beginning from the top
left corner and moving upwards.

Essentially, we must determine if the parallelization of the tile iteration works
faster than the parallelization of the records’ comparisons. Moreover, in the case the
system needs to iterate through a rectangle of the grid’s tiles, we must decide if it
is preferable to parallelize the row or column iteration (inner or outer loops). So, it
comes down to the following 3 cases of different parallelizations:

• Record Iteration Parallelization

• Inner Loop Parallelization

• Outer Loop Parallelization

Record Iteration Parallelization

The slave nodes iterate the grid’s intersected-by-the-window tiles serially, but when
opening a data file on the disk to check the records, it creates a group of threads to
parallely read the records and perform the comparisons.

It follows the exact same logic as the master node’s parallel data file iteration
Thread Indices Method discussed in subsection 4.2.1. Each thread uses local pointers

42

to read exclusively different parts of the data file. It stores in its local buffer the records
that satisfy the query’s conditions and when the buffer is filled, it sends a message
packet containing the results back to the master node. To preserve the safe memory
handling, each thread is assigned a buffer with size threadChunk/N records, where
N is the total number of threads created by the slave node.

This method utilizes the parallel and distributed environment’s benefits to a max-
imum, since the slaves’ threads make MPI calls and send messages to the master,
the opposite of what was happening during the partitioning. This logic resembles
the broadcast and gather functionalities which offer scalability and flexibility to later
modifications.

Inner & Outer Loop Parallelization

Before accessing the records saved on disk, the slaves determine the tiles in which
they belong to. This action begins from the bottom left tile of the tiles-rectangle and
reads rows moving upwards. In the example of Figure 5.4, the slaves know the
bottom left, bottom right, top left and top right cell IDs that intersect the window
query W. The iteration begins from cell 9 moving in the x axis until cell 11 is checked,
then the iteration resumes from cell 15 and so on.

The cell iteration process is implemented using two for-loops, one for the rows
and one for the columns. This method parallelizes the inner or outer loop, assigning
all the tiles in a row to a group of threads to be read simultaneously. By extension,
each thread then opens a different data file containing records and performs all the
comparisons needed to determine the query’s results.

The main problem with this method is that it depends heavily on the number of
tiles intersected by the window query. For example, if the number of tiles needed to be
checked are fewer than the available threads, then we have an under-utilization of the
system’s resources. Moreover, each thread iterates through all records contained in a
tile assigned to it, regardless of class. This is a costly action and since it is performed
by a single thread every time, it is probably not the optimal time-saving solution.

Method Comparison

By comparing the above methods, we can determine which one is the best to be
used in the final version of the system. Figure 5.5 shows the average time it took

43

Figure 5.4: Example of the cell iteration in the slave nodes, for a window query W
in a 6x6 grid.

the program to answer the same 100 window queries, using all the aforementioned
methods as well as a serial query evaluation implementation that does not parallelize
any loop nor the file iteration.

The experiments were executed in the cluster, using 12 nodes (1 master, 11 slaves)
and 8 threads per node. The partitioning and pre-processing times were not taken
into account in the shown values. The T4 dataset was used.

As expected, the method that parallelizes the file iteration and the actual record
coordinates’ comparisons is the fastest one. The inner and outer loop parallelizations
do not even surpass the serial implementation in efficiency, even though they are
situational and strongly depend on the type of the queries.

Thus, the current version of the system uses the slaves’ threads to parallely read
their respective data to answer each query, utilizing the system’s resources to a great
extend and taking advantage of the distributed environment’s benefits.

44

serial outer inner records

2

2.5

3

3.5

3.63 3.69 3.66

2.01

serial
outer
inner
records

Figure 5.5: Average query evaluation time per method.

45

CHAPTER 6

SYSTEM USAGE & EXPERIMENTAL ANALYSIS

6.1 Setup

6.2 Runtime

6.3 Experimental Analysis

This chapter describes the ways in which the user can use the system to its full
potential and how they can customize it to fit their needs.

6.1 Setup

During the partitioning, the system sets up a modified database on the disk which
originates from the raw input data. It is specifically formed to utilize the distributed
and parallel Two-Layer Query Evaluation.

The system’s final version is able to work for any number of nodes in a distributed
environment, though it was tested for a maximum of 11 computers due to resource
limitations. For the parallel actions, the system by default utilizes the maximum
number of threads offered by each node. It works both serially (1 thread) and parallely
for any number of threads but was tested for a maximum of 8 per computer.

The distributed environment’s computers must be connected with each other
through a local Ethernet network and know each other’s names. They must be

46

able to connect to each other using SSH without password requests and to have RSA
encryption public and private keys properly set up beforehand.

The data file must be present on the master node’s hard disk, since it is the only
node reading through it. Any one of the nodes can be the master, by compiling and
executing the program in that computer, given that they possess the input data file.
However, the data file containing the nodes through which MPI creates the distributed
environment, must be in the correct format:

• When compiled with MPICH, the node file passed as an argument in the exe-
cution mpirun command must contain all the computer nodes IP addresses as
shown in Figure 6.1.

Figure 6.1: Node file containing the distributed environment’s computer IP addresses
when compiled using MPICH.

• When compiled with OpenMPI, the node file must be in the format shown in
Figure 6.2, because OpenMPI needs to know exactly how many processes to
create in each node.

In both cases, the file’s first line defines the computer that will be the master node,
so it is crucial to be the same computer which the program is being compiled and
executed in. This is because node rank is assigned to the computers in the same order
they appear inside the node file. The system always regards the master node to be
rank 0, so its IP address must be located in the first line of the node file. In case the
master node is not assigned rank 0, then the system’s behavior can not be predicted
but will most likely be incorrect.

Moreover, the system assumes that MPI creates a single process in each node.
The environment’s size X in nodes, as defined by the -np X argument in the mpirun

47

Figure 6.2: Node file containing the distributed environment’s computer IP addresses
when compiled using OpenMPI. Argument slots=X indicates the number of processes
to be created in each node and max_slots=X the total number of available processes
in that computer.

command, must not surpass the number of nodes contained in the node file. If so,
then any leftover processes remaining by the defined number will be created in a node
that has been already activated. In this way, the program is guaranteed to fail since
multiple processes will battle for the same computer’s resources and will perform
disk actions simultaneously without caution.

6.1.1 Parameters

There are multiple parameters that can be set accordingly to adjust the program
based on the available resources. In different systems and use cases, the user may
need less or more memory to be used at any given time, depending on the available
RAM, communication channel bandwidth or other limitations.

Number of Threads

Arguably, one of the parameters with the greatest impact is the number of threads
in each node. For the master, utilizing more threads means faster data iteration and
distribution during the partitioning whilst for the slaves, means faster data saving on
the disk and query evaluation.

The parameter controlling the number of threads per parallel group created in
all of the nodes is named NUMBER_OF_THREADS and it is global. This way, the user
can manually set the number of threads they want their nodes to utilize for every
parallel action. However, unless all of the environment’s nodes offer the same amount
of threads, this can lead to errors. If they want to utilize the system’s resources to
its maximum they can set the variable to its highest possible per computer, using
OpenMP’s method omp_get_max_threads().

48

2 4 6 8

100

150

200

250

272.32

156.38

108.36
92.92 87.87

of threads

tim
e(
se
c)

Partitioning

Figure 6.3: Effect of the total amount
of threads used on the partitioning
time.

2 4 6 8
9 · 10−2

0.1

0.11

0.12

0.13

0.14

0.14

0.12

9.8 · 10−2

9.4 · 10−29.4 · 10−2

of threads

Avg Query Evaluation

Figure 6.4: Effect of the total amount
of threads used on the average query
evaluation time.

The threads play one of the most important roles in the system’s implementation
and directly affect its performance. Clusters and computers with increased number
of threads per processor can efficiently use the program for extremely fast query
evaluations. However, hyper-threading is not the same as a distributed environment,
since it simply enables each processor to reach its full processing potential and not
necessarily double its performance.

Figures 6.3 and 6.4 illustrate the threads’ importance. The experiment was per-
formed on a 12-node environment with the T4 dataset and as it is shown, the parti-
tioning greatly was greatly improved by a higher thread count. This is highly logical,
since the master node uses threads to parallely read the input data. Moreover, the
slaves use threads to both parallely save the data on their local disk as they receive the
packets and evaluate the queries by performing the comparisons. Both functionalities’
execution time is improved by increasing the amount of threads but it is probable
that there is a bottleneck value on the thread count since multi-threading usually
benefits less complex operations. The experiments did not exceed the 8 threads per
computer due to resource limitations.

A better way to understand the system’s performance on the query evaluation, is
to measure it in queries-per-minute instead of real time, since we deal with fragments
of the second. Figure 6.5 shows the effect that the number of threads have on the

49

query evaluation, measured in queries per minute. The user has the option to run
batches of queries in a single run, so having an estimation of how many queries
would run by the minute would help them expect the total runtime.

2 4 6 8
400

450

500

550

600

650

419

522

609

638 638

of threads

qu
er
ie
s
pe
r
m
in
ut
e

Query Evaluation

Figure 6.5: Effect of the total amount of threads used on the query evaluation time,
measured in queries per minute.

Number of Nodes

Additionally, the total number of nodes in the distributed environment affects the
system’s performance greatly, since the parallel query evaluation is depended on the
environment’s size. More nodes means less individual computer load and disk space,
since the data gets separated even more with larger environment size. Figures 6.6
and 6.7 illustrates the effect that the total number of nodes has on the partitioning
and average query evaluation times.

As expected, the parallel partitioning is not particularly affected by the distributed
environment’s size since the nodes mainly await message packets by the master node
and save them as they come. Besides the case of 1-master and 1-slave, the partitioning
remains mainly unaffected by the node counts.

On the other hand, the query evaluation is directly affected, since more nodes
means greater parallelism. For example, having 2 nodes in total (one master and a
slave) is obviously slower than having 2 or more slaves to divide the workload into. It
is important for the system to offer scalability, meaning that the user has to have the
option to add more computers to the environment to further enhance the system’s

50

performance.

0 2 4 6 8 10 12

90

100

110

120

130 127.3

89.58 89.84
87.53 87.68

of slaves

tim
e(
se
c)

Partitioning

Figure 6.6: Effect of the total number
of slave nodes on the partitioning time.

0 2 4 6 8 10 12

0.1

0.15

0.2

0.25

0.3

0.32

0.22

0.14

0.11
9.5 · 10−2

of slaves

Avg Query Evaluation

Figure 6.7: Effect of the total number
of slave nodes on the average query
evaluation time.

Once again, we see the query evaluation’s performance in queries per minute in
Figure 6.8 for better understanding. It seems that the system scales pretty well, but
due to resource limitations we were unable to run it in a cluster containing more than
12 computers.

0 2 4 6 8 10 12

200

300

400

500

600

188

269

415

532

633

of slaves

qu
er
ie
s
pe
r
m
in
ut
e

Query Evaluation

Figure 6.8: Effect of the total amount of nodes in the cluster on the query evaluation
time, measured in queries per minute.

51

Grid Size

The actual size of the grid in which the objects are placed in and are being classified
in accordance with, directly affects the program’s performance.

Smaller grid size means bigger tiles and thus more records inside each one. In
contrast, larger grid size means smaller tiles containing less records each, but with
increased computational cost, since more tiles need to be checked for each query.
Moreover, having queries that refer to a small section -intersecting the same few
tiles- of the grid, means that most workload will probably fall on just a few of the
environment’s nodes, under-utilizing the distributed parallelism that was aimed at
by the partitioning.

The grid is created based on the objects’ minimum and maximum values in both
axes, so the user may have control over how many tiles there will be in each grid’s
dimension without affecting the borders.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

0

10

20

30

40

50

60

70

80

90

100 97.06

32.40

8.91
4.30
2.530.70 0.17

0.14 0.41
7.70

grid (tiles per dimension)

tim
e(
se
c)

Avg Query Evaluation Time

Figure 6.9: Effect of the grid’s size on the average query evaluation time.

52

The parallel partitioning remains unaffected by the various tested grid sizes, but
the query evaluation process is greatly influenced by the total number of tiles in the
grid. Figure 6.9 displays the average query evaluation time for different grid sizes,
in a 8-node environment with each one having 8 threads. The same data file and
queries were used as the rest of this thesis’ experiments so far.

It is obvious that with a larger grid size, the query evaluation time is significantly
reduced. This is due to the fact that more tiles mean wider segmentation of the
classified objects into data files and thus, faster evaluation by disregarding groups
of records based on their corresponding intersecting tile. However, more data files
on disk means higher I/O cost, since writing multiple files on a disk simultaneously
using the computer’s threads can be very heavy on the system.

Moreover, in the 5x5 grid case, the distributed environment was hugely under-
utilized, since only 2 of the 7 slave nodes were used to evaluate the queries. As
mentioned before, this is due to the fact that most of the objects were contained in 1
or 2 tiles, so the comparison workload fell on to at most two nodes for every query
tested, significantly increasing the program’s time.

Finally, as expected, there is a bottleneck to the amount of time improvement
the grid size provides. From around 200 to 1000 tiles per dimension, the system’s
performance is very high, having an average query evaluation time of under 1 second.
For grids bigger than 1000x1000, the performance begins to deteriorate due to the
fact that there are too many hard disk operations being performed simultaneously at
each slave node as well as higher free disk space requirement. The optimal grid size
depends largely on the data set and may vary a lot, depending on the partitioned
database.

6.1.2 Pre‐Processing

In this subsection we analyze the pre-processing needed in setting up the partitioned
database in depth. This operation along with its various features needs to be per-
formed once before running any queries. After that, any changes to the database can
happen without repeating the whole process all over again.

53

Data Part Files

As mentioned before, the master node needs to have the input data file separated into
individual part files on its local disk. This must be performed before initiating the
system and is done so through a separate C++ program called file splitter. It splits
the data file into equal sized part files with each containing the same amount of lines
(records) with the last one probably containing less. The initial order of the records
is preserved throughout the data separation.

We examine the alleged effect that the number of part files may have on the
system’s performance. Each thread takes on part files in their entirety, so it is possible
that for certain part file amounts the master may under-utilize its resources. This is
because some threads may finish iterating their data files early and then have nothing
to do but wait for the rest of the group to finish.

101.5 102 102.5
0

50

100

150

200

87.888.16 87.9 87.8 87.74 87.54

of part files

tim
e(
se
c)

Partitioning

Figure 6.10: The effect of the amount of part files created by the pre-processing in
the parallel partitioning.

Figure 6.10 illustrates the effect that the amount of part files created beforehand
has on the parallel partitioning time. It is obvious that it does not affect the process
at all, since the amount of records read by the threads remains unchanged. In fact, if
there are at least that many part files as the available number of threads to be used
in the parallel partitioning, then the program will work efficiently. However if there
are less, then some threads will wait idle and thus the resources will be considered
under-utilized.

54

Record Count & Border Values

These operations have been previously discussed and are a vital part of the system.
Both the record count and the min/max values of the contained objects’ coordinates
are needed to properly perform the parallel partitioning. Specifically, the system needs
the total number of records in the input data file and the xmin, xmax, ymin, ymax values
of the entire database.

Acquiring this information is time-expensive for the system since it repeatedly
formats the string data and splits its contents to perform the comparisons, however
if performed once then it is easily updated through changes in the database. If the
user possesses this information, it is possible to have them provide it to the system
without it having to performing these costly operations.

6.2 Runtime

Now that the partitioned database is properly set up in the distributed environment,
the user may run any number of queries they wish. The master node reads each
query from a text file saved on its local disk and initiates the parallel evaluation.

The user has the option to request the query results to be put into a data file on
the master’s disk or to be sent elsewhere for projection. The user must be careful
though to not run queries that exceed the grid’s borders (min/max coordinate values).
A safeguarding mechanism can be implemented to prevent the user from going out
of borders.

If the user wishes to add more nodes to the distributed environment, then the
partitioning operation has to be run again from the beginning. On the other hand,
adding, updating or deleting records can be done almost instantly through the master
and then the corresponding slave nodes.

Chapter 7 discusses possible extensions for the system and future features.

55

6.3 Experimental Analysis

For each dataset, the experiments use different cluster sizes and the time values are
the average of 4 executions per case. 8 threads were used in each computer and the
partitioning was performed in a 1000x1000 grid.

The following experiments confirm the system’s scalability and good performance
for different types of datasets regarding the query evaluation. We have come to the
conclusion that the partitioning remains mainly unaffected by the number of nodes
in the distributed environment and is an unavoidable cost.

56

6.3.1 Dataset T1

3 5 7 9 11
0

0.5

1

1.5

2

0.39
0.23

0.38

of slaves

tim
e(
se
c)

Partitioning

Figure 6.11: Effect of the total number
of slave nodes on the partitioning time.

3 5 7 9 11
0

0.1

0.2

0.3

0.4

0.5

3.6 · 10−2

1.5 · 10−2 1 · 10−2

of slaves

Avg Query Evaluation

Figure 6.12: Effect of the total number
of slave nodes on the average query
evaluation time.

3 5 7 9 11

2,000

3,000

4,000

5,000

6,000

1,709

3,986

6,052

of slaves

qu
er
ie
s
pe
r
m
in
ut
e

Query Evaluation

Figure 6.13: Effect of the total amount of nodes in the cluster on the query evaluation
time, measured in queries per minute.

57

6.3.2 Dataset T4

3 5 7 9 11

60

80

100

120

140

87.81 88.34 87.81

of slaves

tim
e(
se
c)

Partitioning

Figure 6.14: Effect of the total number
of slave nodes on the partitioning time.

3 5 7 9 11
0

0.1

0.2

0.3

0.4

0.5

0.17

0.11 9.4 · 10−2

of slaves

Avg Query Evaluation

Figure 6.15: Effect of the total number
of slave nodes on the average query
evaluation time.

3 5 7 9 11

350

400

450

500

550

600

650

357

556

635

of slaves

qu
er
ie
s
pe
r
m
in
ut
e

Query Evaluation

Figure 6.16: Effect of the total amount of nodes in the cluster on the query evaluation
time, measured in queries per minute.

58

6.3.3 Dataset T8

3 5 7 9 11
0

20

40

60

80

100

24.35 24.21 24.13

of slaves

tim
e(
se
c)

Partitioning

Figure 6.17: Effect of the total number
of slave nodes on the partitioning time.

3 5 7 9 11
0

0.1

0.2

0.3

0.4

0.5

0.1
5.6 · 10−2

4.3 · 10−2

of slaves

Avg Query Evaluation

Figure 6.18: Effect of the total number
of slave nodes on the average query
evaluation time.

3 5 7 9 11

600

800

1,000

1,200

1,400

594

1,062

1,368

of slaves

qu
er
ie
s
pe
r
m
in
ut
e

Query Evaluation

Figure 6.19: Effect of the total amount of nodes in the cluster on the query evaluation
time, measured in queries per minute.

59

6.3.4 Cost Breakdown

The partitioning and the query evaluation are each constituted by individual opera-
tions that affect their total execution time. Coding techniques, data structures and I/O
operations may have a direct effect on how fast the program is executed.

A cost breakdown of both phases’ individual operations would help detect pos-
sible improvements to the system. We describe the steps of both phases and give an
approximation of how much time they take, as a percentage of the total phase’s time.

Both experiments were executed in the cluster with the T4 datafile. All 12 nodes
were used as well as 8 threads per computer.

Partitioning Cost Breakdown

The partitioning process in the master node consists of the following individual func-
tionalities:

• Part file assignment to threads

• I/O operations + string formatting per record

• Object classification

• Distribution related communications

As described in Chapter 4, each thread takes over different part files. The part
file assignment is protected with mutual exclusion to guarantee exclusivity, so it is
possible to cost time. After that, each record is loaded and formatted so that it can
be classified based on the grid. Then, it is actually classified and placed on a message
packet along with other records directed to the same node, before being sent to the
appropriate slave node. The last 3 phases are repeated for each object in the dataset,
so we must make sure that they do not cost much or they will hurt the system’s
scalability.

Due to the fact that threads are being used to parallelize each of these phases,
every thread was timed separately and an average of their time was calculated for
the experiment. Thus, the percentages are an approximation of these phases’ times
per thread, but they depict a fairly accurate image of the whole process since every
thread performs the same tasks simultaneously.

60

Figure 6.20 shows how much each of the above operations costs as a percentage
of the partitioning’s total execution time. It is obvious that most time is spent on
I/O operations and string formatting, to properly set up the data for classification.
This task is performed for every object in the dataset and if we manage to reduce
its cost, the partitioning would greatly benefit from it. However, I/O operations are a
necessary cost in data management and sometimes not much can be done, since it
comes down to the programming language’s peculiarities.

One possible way of reducing the I/O cost would be to have the input data in a
different format. Some data formats such as binary data, are loaded and handled faster
than other. Exploring new data formats and ways to handle them could improve the
system’s performance even more.

The positive thing is that the data distribution (communications) and the objects’
classification do not slow the whole operation too much and seem to scale well.

0.004%
88.693%

1.440%

9.863%

Next part file
Input Output and Format
Classification
Communications

Figure 6.20: A cost breakdown of the partitioning process and its individual phases,
as a percentage of the partitioning total time.

Query Evaluation Cost Breakdown

The query evaluation process in each slave node consists of the following individual
functionalities:

• Query receipt + deconstruction

• Evaluation

• Communications

61

Slave nodes receive only those window queries that intersect tiles assigned to them,
as described in Chapter 4. For every query, they must format it to extract the needed
information such as query ID, the window’s coordinates and the corner tiles that it
intersects in the grid. Then, they can move on to actually evaluating the query using
their threads. Each thread sends messages back to the master containing the results
it found regarding that query.

Since workload is divided in the environment’s computers, timing the individual
operations is tricky. The experiment timed each slave node separately and averaged
their execution time for each operation. The results shown in Figure 6.21 are an
approximation of the operations’ effect on the whole process.

0.02%

99.729%

0.25%

Query Receipt and Deconstruction
Evaluation
Communications

Figure 6.21: A cost breakdown of the partitioning process and its individual phases,
as a percentage of the partitioning total time.

Most of the query evaluation’s total time belongs to the actual query evaluation.
It means that not much time is spent in string formatting or communications, but on
the actual comparisons that perform the evaluation. By extension, this means that by
adding more computers to the distributed environment, the cost due to their inter-
process communication will probably not increase that much and thus, preserving
the system’s scalability.

However, since the evaluation method is optimized, it means that the overall query
evaluation process may not be improved much more, since there is virtually no way to
enhance it. We could examine the load balancing as well as the processor utilization,
in an attempt to improve it by better distributing the workload. This could be done
by timing the average idle time of each node and possibly creating a new way of data
assignment to nodes, based on their distribution type in the axes.

62

Workload Distribution

To examine the amount of resource utilization in the system during the query eval-
uation, we have to find out how much of its resources are used per query. In both
experiments we use the T4 dataset in the cluster using all of the 12 nodes (11 slaves).
Only the first 100 queries from the query file were used. The grid size is 1000x1000.

First, we show how many nodes are used to evaluate each query. Figure 6.22
shows the actual number of nodes participating in each query. No more than 6
nodes, which is slightly more than half of the slave computers, are being used per
query with the lowest being 4 computers. This amount depends largely on the grid
size and even though we used a fairly large grid, half the system was sitting idle in
each query.

This means that the system is under-utilized or that the queries never intersect
more than a few of the grids tiles. Either way, workload distribution optimization will
not be studied in the rest of this thesis, though possible workarounds are suggested
for future work in Chapter 7.

63

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

11

query ID

#
of
no
de
s

Figure 6.22: The total number of slave nodes used to evaluate each query.

64

CHAPTER 7

CONCLUSION

7.1 Summary

7.2 Future Work & Extensions

7.1 Summary

In this project, I have implemented an end-to-end distributed spatial data manage-
ment system, which is based on a grid-based partitioning. As explained in this thesis,
the implemented system consists of two individual functionalities: the partitioning
and the query evaluation. Each one was examined thoroughly in an attempt to de-
termine the optimal way in which they can be realized.

The parallel partitioning remains the most expensive operation of the two, since
it heavily depends on the actual number of records inside the input data file. Even
though it utilizes the master node’s threads to parallelize the process, there is some
serious workload regarding I/O operations and the benefits of hyper-threading for
more than 8 threads remain untested. However, running the partitioning just once,
will properly setup the partitioned database permanently on disk, allowing the user
to run any number of range queries they wish at that moment or in the future.

Moreover, the user has control over the total memory usage by the system in
both the master and slave nodes. Depending on the computers’ specifications in the
distributed environment, they may control how much RAM is being used and the
maximum allowed size of each message packet being communicated through the

65

network as well.
The system in its latest version, using the optimal parameters and setup as dis-

cussed in Section 6.1.1, manages to evaluate range queries very fast. The user has
the option to run multiple range queries in a single execution by placing them on
the appropriate text file on the master node’s local disk. The system evaluates each
query consecutively and either prints the results or stores them in a user-specified
location on disk.

7.2 Future Work & Extensions

There are numerous possible expansions and improvements for future work that this
system can benefit from, due to its unique and innovative nature. Enhancements and
upgrades can be applied in most of the system’s individual functionalities, improving
its overall performance.

The partitioning is definitely capable of improvement, by utilizing binary files
instead of text. Formatting and handling strings as well as converting them into
numerical values when comparisons are needed can be very time-expensive and it
is the main reason that the parallel partitioning is so slow. Moreover, the messages
exchanged during the inter-process communication can be much smaller in size, thus
transported more quickly, if their contents represent binary values and not characters.
Avoiding the use of string structures and their replacement with binary values when
possible, will certainly improve the system’s overall performance and memory usage.

The query evaluation can be optimized to either send the results back to the
master node or to dump them on disk and join them in a single file. Which method
is best has yet to be determined and possible future work may improve even better
the overall query evaluation performance. Moreover, the tile-to-node assignment can
be implemented in a way that favors the dataset’s distribution for optimal node
utilization.

The system currently works for rectangle objects (MBRs) whilst the theory that
it is based on regards non-point spatial data in general. Thus, a possible future
extension may include linestring and polygon data types. On top of that, the system
currently performs window queries exclusively. More query types such as kNN (k-
nearest neighbors) and spatial join may be included in future versions.

66

Additionally, functions that can alter the database such as update, insert or delete,
can be implemented to reduce the need for re-partitioning of the data. In this way
and since the partitioning is largely correlated with the number of records being
partitioned, the huge cost that comes with this operation will not appear that often,
unless huge chunks of data are being inserted to the database frequently.

The query evaluation operation can be additionally parallelized by performing
the evaluations simultaneously and asynchronously. The idea is that each slave node
will move on the next query after sending the results for a previous one. The master
makes sure to distribute all the relevant queries to the slave nodes, so that each node
will continuously work without interruptions to evaluate all the queries that it has
received. The master node is responsible for properly organizing and separating the
query results it receives. This type of asynchronous query evaluation is expected to
improve the system’s performance for large batches of window queries.

Finally, we were unable to compare the system’s performance with similar dis-
tributed spatial data management implementations such as GeoSpark (Sedona) [4],
due to installation difficulties and restricted access to the cluster. An experimental
comparison between the two would expose possible strengths and weaknesses in the
system and assist in its future development.

67

BIBLIOGRAPHY

[1] G. Graefe, Query Evaluation Techniques for Large Databases. ACM Computing
Surveys, June 1993.

[2] Apache Spark: a unified analytics engine for large-scale data processing., Apache
Software Foundation. [Online]. Available: https://spark.apache.org/

[3] Apache Hadoop, Apache Software Foundation. [Online]. Available: https:
//hadoop.apache.org/

[4] Apache Sedona, Apache Software Foundation. [Online]. Available: http:
//sedona.apache.org/

[5] Magellan: Geospatial Analytics Using Spark. [Online]. Available: https://github.
com/harsha2010/magellan

[6] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient in-memory
spatial analytics,” in 2016 International Conference on Management of Data (SIG-
MOD Conference 2016), San Francrisco, CA, USA, July 2016, pp. 1071–1085.

[7] V. Pandey, A. Kipf, T. Neumann, and A. Kem, “How good are modern spatial
analytics systems?” in Proceedings of the VLDB Endowment, Volume 11, Issue 11,
July 2018, pp. 1661–1673.

[8] S. T. Leutenegger, J. Edgington, and M. A. Lopez, “Str: A simple and efficient
algorithm for r-tree packing,” in 13th International Conference on Data Engineering
(ICDE), May 1997.

[9] D. Tsitsigkos, K. Lampropoulos, P. Bouros, N. Mamoulis, and M. Terrovitis, “A
two-layer partitioning for non-point spatial data,” in 37th International Conference
on Data Engineering (ICDE), Chania, Greece, April 2021.

68

https://spark.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
http://sedona.apache.org/
http://sedona.apache.org/
https://github.com/harsha2010/magellan
https://github.com/harsha2010/magellan

[10] OpenMP application program interface version 4.5, OpenMP Architecture Review
Board, November 2015.

[11] M. J. Quin, Parallel Programming in C with MPI and OpenMP, international ed.
Boston, USA: McGraw-Hill, 2003, pp. 406–407.

[12] MPI: A Message Passing Interface Standard, MPI Forum. [Online]. Available:
https://www.mpi-forum.org/

[13] Open MPI, Open MPI Development Team. [Online]. Available: https:
//www.open-mpi.org/

[14] MPICH Version 3.3, MPICH, January 2019. [Online]. Available: https:
//www.mpich.org/

[15] V. V. Dimakopoulos, Parallel Systems and Programming. Athens, Greece: Hellenic
Academic Libraries Link, 2015.

[16] Spatial Hadoop. [Online]. Available: http://spatialhadoop.cs.umn.edu/datasets.
html

[17] J.-P. Dittrich and B. Seeger, “Data redundancy and duplicate detection in spatial
join processing,” in 16th International Conference on Data Engineering (ICDE),
2000, pp. 535–546.

69

https://www.mpi-forum.org/
https://www.open-mpi.org/
https://www.open-mpi.org/
https://www.mpich.org/
https://www.mpich.org/
http://spatialhadoop.cs.umn.edu/datasets.html
http://spatialhadoop.cs.umn.edu/datasets.html

	Table of Contents
	Abstract
	Περίληψη
	Introduction
	Parallelism on Big Data
	Distributed Environments & Parallel Programming
	Spatial Range Queries

	Related Work
	Objectives
	Structure

	OpenMP & MPI
	OpenMP
	OpenMP Overview
	Sharing Attributes
	Useful Commands

	MPI
	MPI Overview
	MPI Setup
	Utility Commands
	Inter-Process Communication

	Compiling & Combined Usage
	MPI program
	Hybrid program
	Further References

	System Overview & Evaluation Methodology
	System Overview
	Development Environment
	Data Sets
	Queries

	Parallel Partitioning
	Partitioning
	The Two-Layer Partitioning
	Data Distribution
	Program Flow

	Parallelization
	Parallel Read
	Distribution Mechanism
	Data Receipt

	Query Evaluation
	Query Evaluation Overview
	Two-Layer Query Evaluation
	Distributed Implementation

	Parallel Query Evaluation
	Possible Parallelization

	System Usage & Experimental Analysis
	Setup
	Parameters
	Pre-Processing

	Runtime
	Experimental Analysis
	Dataset T1
	Dataset T4
	Dataset T8
	Cost Breakdown

	Conclusion
	Summary
	Future Work & Extensions

	Bibliography

