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ABSTRACT
Many data science applications, most notably Geographic Infor-

mation Systems, require the computation of spatial joins between

large object collections. The objective is to find pairs of objects that

intersect, i.e., share at least one common point. The intersection

test is very expensive especially for polygonal objects. Therefore,

the objects are typically approximated by their minimum bounding

rectangles (MBRs) and the join is performed in two steps. In the

filter step, all pairs of objects whose MBRs intersect are identified

as candidates; in the refinement step, each of the candidate pairs

is verified for intersection. The refinement step has been shown

notoriously expensive, especially for polygon-polygon joins, con-

stituting the bottleneck of the entire process. We propose a novel

approximation technique for polygons, which (i) rasterizes them

using a fine grid, (ii) models groups of nearby cells that intersect a

polygon as an interval, and (iii) encodes each interval by a bitstring

that captures the overlap of each cell in it with the polygon. We

also propose an efficient intermediate filter, which is applied on

the object approximations before the refinement step, to avoid it

for numerous object pairs. Via experimentation with real data, we

show that the end-to-end spatial join cost can be reduced by up to

one order of magnitude with the help of our filter and by at least

three times compared to using alternative intermediate filters.

ACM Reference Format:
Thanasis Georgiadis and Nikos Mamoulis. 2023. Raster Intervals: An Ap-

proximation Technique for Polygon Intersection Joins. In Proceedings of
ACM Conference (ACM SIGMOD 2023). ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Spatial data are ubiquitous in scientific and commercial applica-

tions, such as Geographic Information Systems (GIS), whichmanage

huge volumes of geographic data. For instance, Natural Earth (nat-

uralearthdata.com) includes public-domain global geographic data

at various scales in both vector and raster format. Numerous free

sources of GIS data can be found at freegisdata.rtwilson.com. With

the growing spatial data availability, there is an increasing need for

efficient spatial data analysis tools.
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An important query operation in spatial data management is

the spatial intersection join [13]. Given two collections 𝑅 and 𝑆 of

data objects, the objective is to find pairs (𝑟, 𝑠) of objects, 𝑟 ∈ 𝑅,
𝑠 ∈ 𝑆 , such that 𝑟 and 𝑠 intersect, i.e. they share at least one common

point. This operation (a.k.a. map overlay) is commonly used in GIS

to find the intersection of two data layers (e.g., lakes and parks).

We focus on the most complex (and most expensive) case of spatial

intersection joins, where the join inputs 𝑅 and 𝑆 contain polygons.

Besides their popularity in GIS, intersection joins between polygon

sets find application in many other domains. In computer graph-

ics (e.g., solid modeling, molecular modeling) they are used for

detecting the interference between geometric models [11]. Neuro-

scientists have used intersection joins to determine where to put

synapses between neurons in synthetically constructed (polygonal

or polyhedral) brain models [19]. Spatial intersection joins have

also been used to identify topological relations between polygons

corresponding to sources of the Semantic Web and interlink them

in the Linked Open Data cloud [22].

The spatial join is an expensive operation for several reasons.

First of all, the result could be as large as the Cartesian product of

𝑅 and 𝑆 , meaning that up to 𝑂 ( |𝑅 | × |𝑆 |) object pairs may have to

be examined. More importantly, two polygons 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 that

pass the filter step could be very complex, which means that the

cost for verifying their intersection could be very high. Specifically,

the time complexity of such a verification is 𝑂 (𝑛 log𝑛), where 𝑛 is

the sum of edges in the two polygons [7]. Third, the volume of the

data in their raw format could be too large to accommodate in the

memory of a commodity machine.

For the above reasons, spatial objects are typically approximated

by their minimum bounding rectangles (MBRs) and the spatial join

is processed in two steps [8, 23]: the filter step finds fast the pairs

(𝑟, 𝑠), where𝑀𝐵𝑅(𝑟 ) and𝑀𝐵𝑅(𝑠) intersect, with the help of spatial

indexes or spatial partitioning. For each such pair, a refinement
step accesses the geometries of 𝑟 and 𝑠 and verifies whether they

intersect. Although the filter step eliminates from consideration the

great majority of pairs, the number of pairs that pass the filter is still

significant (typically, in the order ofmin( |𝑅 |, |𝑆 |), as we expect each
object from the smallest dataset to intersect a few objects from the

largest one). As we observed in our experiments (and also coined in

previous work [24]), the refinement step of polygon-polygon joins

may take more than 99% of the overall join time.

Given this, there are several attempts in the literature to avoid as

much as possible the refinement step. Brinkhoff et al. [7] propose a

number of additional object approximations (e.g., the convex hull)

to be used as subsequent filters after MBR-intersection. Zimbrao

and de Souza [37] proposed more effective raster object approxi-
mations, where each object MBR is partitioned using a grid and
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approximated by the percentages of cell areas that the object over-

laps. This approach has several limitations. First, the raster object

representations may occupy a lot of space. Second, the approxima-

tions of two candidate objects may be based on grids of different

scales; their re-scaling and subsequent comparison can be quite

expensive. Third, the cost of comparing two rasters in order to filter

a candidate pair is linear to the number of cells in the rasters.

We propose Raster Intervals (RI); a raster approximation tech-

nique for polygonal objects, which does not share the drawbacks

of [37] and reduces the end-to-end spatial join cost up to 10 times,

when we use it as a pre-refinement, intermediate filter. Our tech-

nique uses a global fine grid to approximate all objects, hence, no

re-scaling issues arise. In addition, RI encodes each cell by a 3-bit

sequence; whether two objects overlap in a cell can be determined

by bit-wise ANDing the corresponding sequences. Finally, RI mod-

els the set of cells that approximate an object 𝑜 by a sorted list of

raster intervals, determined by the Hilbert curve order of contin-

uous cells in 𝑜’s representation. For each such interval, we unify

in a bitstring all 3-bit sequences of the included cells. Object pair

filtering is then implemented as a merge join between the corre-

sponding raster interval lists. For each pair of intersecting intervals,

the sub-bitstrings corresponding to the common cells are ANDed to

find whether there is at least one cell wherein the polygons overlap.

RI is space-economic and very efficient to use as a post-MBR

filter for spatial joins. Our experiments on 7 pairs of real geographic

datasets show that not only does it filter consistently more pairs

compared to the state-of-the-art approaches, but also it is much

more efficient compared to the rasterization approach of [37]. An-

other advantage of our RI approximations is that they occupy con-

siderably less space compared to the sizes of the exact data, render-

ing their storage in main memory feasible.

The contributions of this paper can be summarized as follows.

• We propose a novel representation of raster object approxi-

mations as sets of intervals paired with binary codes which

model the level of overlap of each object with each cell.

• We propose an efficient algorithm for joining the raster inter-

vals of two objects that pass the filter step of the spatial join.

The algorithm is an easy-to-implement merge-join paired

with bitshifting and bitwise XOR and AND operations.

• We evaluate our approach on a wide range of real datasets of

varying sizes and complexities and demonstrate that our ap-

proach is significantlymore effective and space/time-efficient

compared to alternative filters and reduces the overall join

cost by up to one order of magnitude.

The rest of the paper is organized as follows. Section 2 provides

the necessary background. Section 3 presents our approach, which

is evaluated in Section 4. Related work on spatial intersection joins

is reviewed in Section 5. Finally, we conclude in Section 6.

2 BACKGROUND
Figure 1 illustrates the spatial intersection join pipeline. An MBR-

join algorithm takes as input the MBR approximations of objects

to identify all pairs of objects that intersect (filter step) [13, 30].
Before accessing and comparing the exact object geometries for

each such candidate pair, in an intermediate step, more detailed

object approximations (than the MBR) are used to verify (fast)

whether the pair is a sure result (true hit) or a sure non-result

(false hit), or we cannot decide based on the approximations [7, 37].

Finally, if the pair is still a candidate, it is passed to the refinement
step where the exact geometries are accessed and an (expensive)

algorithm from computational geometry [25] is run to determine

whether the pair is a result. Most previous work focused on the filter

step [8, 13, 19, 30]. However, the refinement step dominates the

overall cost, as discussed in the Introduction. The intermediate step

using additional object approximations has been proved valuable

toward reducing the overal join cost [7].Spatial Join Pipeline (3)
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Figure 1: Spatial intersection join pipeline [7]

Zimbrao and de Souza [37] introduced an effective intermediate

filter, by imposing a grid over each object’s MBR. The cells of the

grid comprise the raster approximation of the object. Each cell be-

longs to one of the following four types: full (the object completely

covers the cell), strong (the object covers more than 50% of the cell),

weak (the object covers at most 50% of the cell), or empty (the object

is disjoint with the cell). Figure 2 shows an example.

Full

Strong

Weak

Empty

Figure 2: Four types of cells in a raster approximation [37]

To create the raster approximation (RA) of a polygon, a grid of at

most 𝐾 square cells is defined. The side of each cell should be 𝜔2𝑘 ,

for some 𝑘 ≥ 0, where 𝜔 is a minimum cell side (unit). In addition,

the coordinates of each cell should be multiples of 𝜔2𝑘 .

For a pair (𝑟, 𝑠) of candidate objects, the cells in their approx-

imations 𝑅𝐴(𝑟 ) and 𝑅𝐴(𝑠) that overlap with their common MBR

are identified and the remaining ones are ignored. If the cells of

𝑅𝐴(𝑟 ) are smaller than the cells of 𝑅𝐴(𝑠), groups of neighboring
cells in 𝑅𝐴(𝑟 ) are combined to infer the type of a larger cell that

is perfectly aligned with a cell of 𝑅𝐴(𝑠). Re-scaling is expensive,

results in accuracy loss and reduces the effectiveness of RAs.

After re-scaling, the common cells in the two raster approxima-

tions are examined and, for each such cell, we use the cell’s types in

the two approximations to conclude whether the objects intersect

in the cell, according to Table 1. Specifically, if at least one of the
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two types is empty the objects definitely do not intersect in the cell.

If at least one of the two types is full and the other is not empty or

both types are strong, then the objects definitely intersect in the

cell. In all other cases, we cannot conclude whether the objects

intersect in the cell. If we find at least one cell, where the objects

intersect, the pair is directly reported as a spatial join result (true

hit). If at all common cells, the objects do not intersect, then the

pair is pruned (false hit). If we cannot conclude about the object

pair, the refinement step should be applied.

Table 1: Do two objects intersect in a cell, based on the cell’s
types in the two raster approximations? [37]

empty weak strong full
empty no no no no

weak no inconclusive inconclusive yes

strong no inconclusive yes yes

full no yes yes yes

3 RASTER INTERVALS
We propose a new framework for the intermediate step of spatial

joins, which builds upon, but is significantly more effective than

the raster approximation technique of previous work [37]. Our

approach has three important differences: (i) we use the same global

(and fine-grained) grid to rasterize all objects; (ii) we use bitstring

representations for the cell types of object approximations; and

(iii) we represent the set of all non-empty cells of each object as a

sorted list of intervals paired with binary codes. In this section, we

present in detail the steps that we follow in order to generate the

raster intervals approximation for each object.

3.1 Object rasterization and raster encoding
We superimpose over the entire data space (e.g., the map) a 2

𝑁 ×2𝑁
grid. For each data object 𝑜 , we identify set of the cells 𝐶𝑜 that the

object intersects and use this set to approximate 𝑜 . Each cell in 𝐶𝑜
may belong to three types: full, strong, or weak; as opposed to [37],

we do not include empty cells in 𝐶𝑜 . In order to compute 𝐶𝑜 for

each object, and the type of each cell, we apply the algorithm of

[37]. In a nutshell, the algorithm first identifies the grid columns

(stripes) which overlap with 𝑜 . It clips the object in each stripe, and

then runs a plane-sweep algorithm along the stripe to identify the

cells and the type of each cell.

Furthermore, we encode the three types of cells that we are using,
as shown in Table 2. Note that we use a different encoding for the

cell types depending on whether the object comes from join input

𝑅 or 𝑆 . This encoding has two important properties. First, if for two

objects 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 and for a cell 𝑐 , the bitwise AND of the

codes of 𝑟 and 𝑠 in cell 𝑐 is non-zero, then we are sure that 𝑟 and

𝑠 intersect in cell 𝑐 . Indeed, this corresponds to the case where at

least one type is full or both are strong. If the logical AND is 0, we

cannot be sure whether 𝑟 intersects 𝑠 in 𝑐 .

The second property of the encoding is that it allows us to swap

the roles of 𝑅 and 𝑆 in the join, if necessary. Specifically, the code

for a cell 𝑐 of an object in one join input (e.g., 𝑅) can be converted to

the code for 𝑐 if the object belonged to the other join input (e.g., 𝑆)

by XORing the code with the mask𝑚 = 110. For example, 011, the

𝑅-encoding of full cells, after bitwise XORing with𝑚, becomes 101,

i.e., the 𝑆-encoding of full cells. This is important for the case where

the rasterization of a dataset has been precomputed before the join,
according to the 𝑅-encoding and we want to use the dataset as the

right join input 𝑆 . XORing can be done on-the-fly when we apply

our filter, as we explain in Section 3.3, with insignificant cost.

Table 2: 3-bit type codes for each input dataset

input 𝑅 input 𝑆

full 011 101

strong 101 011

weak 100 010

3.2 Intervalization
We use the Hilbert curve [12] to order the cells in the 2

𝑁 × 2
𝑁

grid. Hilbert curve is a well-known space filling curve that pre-

serves spatial proximity. Hence, each cell is mapped to a value in

[0, 22𝑁 − 1]. By this, the set of cells 𝐶𝑜 that intersect an object 𝑜

can be represented as a list of intervals 𝐿𝑜 formed by consecutive

cells in 𝐶𝑜 according to the Hilbert order. Figure 3 exemplifies the

intervalization for a polygonal object 𝑜 in a 2
3 × 23 space. The cells

are marked according to their Hilbert order and shaded based on

their type. There are in total 36 cells in 𝐶𝑜 , which are represented

by 7 intervals. To intervalize 𝐶𝑜 , we sort the cells there in Hilbert

order and scan the sorted array, merging cells of consecutive cells

into the current interval. The cost for this is 𝑂 ( |𝐶𝑜 | log |𝐶𝑜 |).
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9 10 11 12

100 101 101 101

100101101101

2413

interval

Figure 3: The Hilbert curve cell enumeration and interval
generation for a polygon in a 8 × 8 space.

For each interval in 𝐿𝑜 , during the interval construction, we

concatenate the bitwise representations of the cells in their Hilbert

order, to form a single code for the entire interval. This allows us
to replace the set 𝐶𝑜 of cells that intersect an object 𝑜 by 𝐿𝑜 . For

example, assume that the polygon of Figure 3 belongs to the left

join input 𝑅. We replace cells 9, 10, 11, and 12 in𝐶𝑜 with codes 100,

101, 101, and 101, respectively, by interval [9, 12] with binary code

100101101101, as shown in the figure. This helps us to greatly reduce

the space requirements for the rasterized objects. In addition, as we

will show next, we save many computations while verifying a pair
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of objects, because we can apply the bitwise AND for multiple cells

simultaneously. The resulting raster intervals (RI) approximation of

each object is a sequence of ⟨𝑠𝑡, 𝑒𝑛𝑑, 𝑐𝑜𝑑𝑒⟩ triples (ordered by 𝑠𝑡 ),

where [𝑠𝑡, 𝑒𝑛𝑑] is an interval in the Hilbert curve space and 𝑐𝑜𝑑𝑒 is

bitstring encoding the cell types in the interval.

Practical considerations A larger value for 𝑁 results in a finer-

grained grid and thus more accurate approximations. Moreover, a

polygon rasterized with higher granularity has an increased prob-

ability to have completely covered cells (i.e., type full), which in-

creases the chances of the intermediate spatial join filter to identify

a true hit. At the same time, a large 𝑁 requires more space for stor-

ing the endpoints of the intervals in 𝐿𝑜 . We choose 𝑁 = 16, which

results in a grid with a fine granularity; in addition, the Hilbert

order of cells (i.e., the interval endpoints) can be stored as 32-bit

unsigned integers. As each cell in an interval contributes three bits

to the interval’s concatenated binary code, for a [𝑠𝑡, 𝑒𝑛𝑑] interval,
we need ⌈(𝑒𝑛𝑑 − 𝑠𝑡 + 1) ∗ 3/8⌉ bytes to encode its cells. We may

opt to compress binary codes consisting of many bytes and the RI

approximation of an object, overall.

3.3 Intermediate filter
For a join candidate pair (𝑟, 𝑠), 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 which is produced by

the MBR-join algorithm, our objective is to use the raster intervals

approximations 𝑅𝐼 (𝑟 ) and 𝑅𝐼 (𝑠) of 𝑟 and 𝑠 to verify fast whether 𝑟

and 𝑠 definitely intersect, (ii) 𝑟 and 𝑠 definitely do not intersect, or

(iii) we cannot conclude about the intersection of 𝑟 and 𝑠 , based on

their RIs. This is done via our RI-join procedure (Algorithm 1).

Algorithm 1 RI-join algorithm

Require: 𝑅𝐼 (𝑟 ) as 𝑋 , 𝑅𝐼 (𝑠) as 𝑌
1: 𝑜𝑣𝑙 ← 𝐹𝑎𝑙𝑠𝑒 ; ⊲ no overlapping interval pair found yet

2: 𝑖 ← 0; 𝑗 ← 0

3: while 𝑖 < |𝑋 | and 𝑗 < |𝑌 | do
4: if 𝑋𝑖 overlaps with 𝑌𝑗 then
5: if AlignedAND(𝑋𝑖 .𝑐𝑜𝑑𝑒,𝑌𝑗 .𝑐𝑜𝑑𝑒) then
6: return true hit ⊲ bitwise AND is non-zero

7: end if
8: 𝑜𝑣𝑙 ← 𝑇𝑟𝑢𝑒 ; ⊲ found an overlapping interval pair

9: end if
10: if 𝑋𝑖 .𝑒𝑛𝑑 ≤ 𝑌𝑗 .𝑒𝑛𝑑 then 𝑖 ← 𝑖 + 1 else 𝑗 ← 𝑗 + 1
11: end while
12: if 𝑜𝑣𝑙 then ⊲ at least one overlapping interval pair

13: return indecisive
14: else
15: return false hit ⊲ no common cells in 𝑋 and 𝑌

16: end if

RI-join merge-joins the sorted interval lists 𝑅𝐼 (𝑟 ) and 𝑅𝐼 (𝑠), de-
noted by 𝑋 and 𝑌 in the pseudocode, respectively, and identifies

pairs (𝑋𝑖 , 𝑌𝑗 ) of intervals that overlap; i.e.,𝑋𝑖 and𝑌𝑗 include at least
one common cell. For each such pair, there is a possibility to find out

that (𝑟, 𝑠) is a true hit (i.e., a spatial join result) and avoid sending the
pair to the refinement step. Specifically, if in at least one of the com-

mon cells of 𝑋𝑖 and 𝑌𝑗 the logical AND of the cell codes is non-zero,

we have a sure true hit and we do not need to continue the RI-join.

Having the codes of the cells in𝑋𝑖 and𝑌𝑗 concatenated in two single

bitstrings 𝑋𝑖 .𝑐𝑜𝑑𝑒 and 𝑌𝑗 .𝑐𝑜𝑑𝑒 allows us to perform this check (ab-

stracted by Function AlignedAND) efficiently. We first select from

each bitstring the fragment that includes the codes of all cells in

the common subinterval [max{𝑋𝑖 .𝑠𝑡, 𝑌𝑗 .𝑠𝑡},min{𝑋𝑖 .𝑒𝑛𝑑,𝑌𝑗 .𝑒𝑛𝑑}].
Then, we bitwise AND the fragments. If the fragments have been

encoded by the same encoding (i.e., both have 𝑅 or 𝑆 encoding as

shown in Table 2), ANDing is preceded by XORing one of the two

codes. If there is at least one pair (𝑋𝑖 , 𝑌𝑗 ) of overlapping intervals
(variable 𝑜𝑣𝑙 of Algorithm 1 is True at the end of the while-loop),

but the object pair is not found to be a true hit, then the object pair

is indecisive, meaning that we will have to apply the refinement

step for it. On the other hand, if there are no overlapping intervals

in the two RIs (𝑜𝑣𝑙 remains False), there are no common cells in the

raster representations of the objects, and we can conclude that the

two objects definitely do not intersect (false hit). As an example,

Figure 4 shows two rasterized polygons and the pairs (𝑋𝑖 , 𝑌𝑗 ) of
intervals from the two raster intervals that overlap.

In general, the codes (bitstings) of two intersecting intervals may

occupy multiple bytes and the common subinterval may be of arbi-

trary length. Before bit-shifting, Function AlignedAND truncates

all unmatched bytes from the two bitstrings. In addition, bit-shifting

is done at the bytes of one interval only (the one that starts ear-

lier), making sure to carry over the required bits from the next

byte to avoid any loss of information. This continuous shifting and

matching (binary AND between aligned bitstrings) is performed

byte-by-byte, hence, once two ANDed bytes give a non-zero, we

immediately report the true hit. XORing, (if both join inputs have

the same encoding), is done on-demand on the shifted byte, after

any potential bit carryover. A byte-wide XOR mask𝑚𝑏𝑦𝑡𝑒 is used,

created by concatenating our mask𝑚 = 110 a few times to fill a

byte;𝑚𝑏𝑦𝑡𝑒 is shifted, if necessary. The whole process can easily

be parallelized (shifting and bitwise operations are independent for

each byte).

For each pair of intervals, the last bytes to be matched is a special

case and has to be treated cautiously, since the remaining bits that

need checking may be less than 8 and the rest of the bits in that

byte should not be included in the bitwise operations. In other

words, the XOR and AND operations applied on the last bytes

should consider bits only in the positions relevant to the compared

intervals, otherwise we may mistake a false positive as a true hit.

Hence, we apply one last bit mask with 1s at the positions of the

bits that need to partake in the operation, setting the rest to zero.

Figure 5 shows how the codes for first pair (𝑋0, 𝑌1) of intersect-
ing intervals from the example of Figure 4 are matched, where

𝑋0 = ⟨[9, 12], 100101101101⟩ and 𝑌1 = ⟨[11, 14], 100100101100⟩ (i.e.,
assume that both datasets are 𝑅-coded). Each code occupies 2 bytes.

Since the interval of 𝑌1 starts 2 cells after the interval of 𝑋0, the

code of𝑋0 is shifted by 2×3 = 6 bits in the first step. This aligns the

common cells (11 and 12) in the two codes. The common fragment

(6 bits) occupies 1 byte, so there will be one byte-by-byte match.

As both intervals are 𝑅-coded, we first XOR the 𝑋0-byte with the

(shifted) byte-wise XOR mask𝑚𝑏𝑦𝑡𝑒 . Before ANDing the two bytes,

we AND the shifted byte with a mask that clears the bits that are

outside the common fragment of the intervals, as we are at the last

byte. Finally, the bytes are ANDed with a 0 result, so the intersec-

tion of the two objects remains indecisive with respect to (𝑋0, 𝑌1).
As a result, Algorithm 1 continues to find next pair of overlapping

intervals (𝑋5, 𝑌2) and performs the corresponding code matching.
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RI-join requires a single scan of interval lists 𝑋 and 𝑌 , since no

two intervals in the same list (i.e., in the same polygon) overlap.

Assuming that bitstrings are relatively short so that their matching

(a call to Function AlignedAND) takes constant time, the time

complexity of Algorithm 1 is 𝑂 ( |𝑋 | + |𝑌 |) since the number of

overlapping interval pairs is at most |𝑋 | + |𝑌 |.

3.4 “Within” spatial joins
Although we focus on polygon-polygon intersection joins, RI can

also be used as an intermediate filter for within joins. The objective
of a spatial within join is to find pairs (𝑟, 𝑠) of objects, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 ,
such that 𝑟 is within 𝑠 , i.e. the space occupied by 𝑟 is a subset of the

space occupied by 𝑠 . For each pair (𝑟, 𝑠) of polygons that passes the
filter step of the within join (i.e., the MBR of 𝑟 is within the MBR of

𝑠), we can apply Algorithm 1 with the following changes in order to

identify whether (𝑟, 𝑠) is a true negative (false hit), a true positive
(i.e., true hit), or an indecisive pair w.r.t. the within predicate: As

soon as we find an interval 𝑋𝑖 ∈ 𝑅𝐼 (𝑟 ) which is not a subset of any

interval 𝑌𝑗 ∈ 𝑅𝐼 (𝑟 ), we can terminate with the assertion that 𝑟 is

not within 𝑠 , since there is at least one non-empty cell of 𝑟 which is

empty in 𝑠 . In addition, for an identified pair of (𝑋𝑖 , 𝑌𝑗 ), such that

𝑋𝑖 ⊆ 𝑌𝑗 , if there is a cell in 𝑋𝑖 that is (i) full in 𝑋𝑖 but not full in 𝑌𝑗
or (ii) strong in 𝑋𝑖 and weak in 𝑌𝐽 , then (𝑟, 𝑠) should a true negative
and the algorithm terminates. For (𝑥,𝑦) to be characterized as a true

hit without refinement, for all identified (𝑋𝑖 , 𝑌𝑗 ) such that 𝑋𝑖 ⊆ 𝑌𝑗 ,
all cells in the subinterval𝑋𝑖 where𝑋𝑖 and 𝑌𝑗 overlap should be full
in 𝑌𝑗 ; if at least one such cell is not full, then we cannot guarantee

a true hit and the pair (𝑥,𝑦) must be passed to the refinement step,

unless it is found to be a true negative.

4 EXPERIMENTAL ANALYSIS
We experimentally assess the effectiveness of our raster interval (RI)

approximation approach, comparing it with previously proposed

intermediate filters for spatial intersection joins. The competitors

include the 5-corner approximations comparison followed by a

comparison of convex hulls (5C-CH) (i.e., the approach of [7]) and

the raster approximation (RA) approach of [37]. The RA of each

polygon is represented in memory by the minimum coordinates of

its MBR, the number of cells (partitions) in each dimension and the

scale (𝑘) of the rasterization. We also keep in an array the types of

all cells in the RA. We do not use our bit encoding and we do not

perform intervalization in RA.We also included a baseline approach

that conducts the refinement step directly for each pair of MBRs

that passes the filter step without using any intermediate filter.

The filter step of the join was implemented using the algorithm

of Tsitsigkos et al. [30]. The refinement step was implemented

using the approach of [2], where point-in-polygon tests and line

segment intersections are avoided as much as possible. All methods

were implemented in C++ and compiled with the -O3 flag. The

experiments were run on a machine with a 3.6GHz Intel i9-10850k

and 32GB RAM.

4.1 Datasets
We used datasets from SpatialHadoop’s [27] collection. The first two

datasets (T1 and T2) contain landmark and water areas, respectively,

from the United States (conterminous states only). We also used

two OpenStreetMap (OSM) datasets (O5 and O6), containing lakes

and parks, respectively, from all over the world. We grouped the

polygons of each of the two OSM datasets by continent and created

6 pairs of OSM datasets: North America (O5NA and O6NA), South

America (O5SA and O6SA), Oceania (O5OC and O6OC), Europe

(O5EU and O6EU), Asia (O5AS and O6AS), and Africa (O5AF and

O6AF). Spatial joins were conducted only between datasets that

refer to the same geographic regions (i.e., T1 Z T2, O5NA Z O6NA,

O5SA Z O6SA, etc.). Table 3 summarizes the statistics of all 14

datasets used in the joins. Pairs of joined datasets vary in size,

relative size between inputs 𝑅 and 𝑆 , and average MBR area ratio of

objects to the MBR of all data in both inputs (third row of Table 3).

4.2 The effect of 𝑁 in RI
Recall that our RI approach superimposes a 2

𝑁 × 2𝑁 grid over the

data space and approximates each object 𝑜 with the set 𝐶𝑜 of cells

that overlap with 𝑜 . 𝐶𝑜 is then modeled by a set of intervals and

a bitstring for each interval, which encodes the types of the cells

that it contains. As discussed in Section 3.2, we set the value of 𝑁

to 16, in order to have a fine granularity and be able to store the

interval endpoints in 4-byte unsigned integers. In the first experi-

ment, we confirm the appropriateness of this choice, by evaluating

the effectiveness of RI in spatial joins for various values of 𝑁 .
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Table 3: Statistics of the datasets and space requirements of the data and the approximations

T1 T2 O5NA O6NA O5SA O6SA O5OC O6OC O5EU O6EU O5AS O6AS O5AF O6AF
# of Polygons 125K 2.25M 4.02M 1M 124K 228K 195K 315K 1.97M 7.18M 448K 623K 72K 192K
Avg # of vertices 32.17 31.92 37.73 47.68 48.90 41.81 52.15 40.85 35.14 32.24 46.14 42.75 59.99 36.53
Avg obj MBR/ world MBR 2.5E-07 2.8E-08 3.4E-08 1.3E-07 3.9E-07 6.7E-07 5.4E-08 6.1E-08 6.2E-08 5.9E-08 1.6E-07 1.3E-07 4.1E-07 2.5E-07

Geometries size (MB) 65.67 1.17K 2.5K 771.50 163.90 208.30 97.80 154.50 1.1K 3.8K 334.30 431.30 70.20 113.60
MBR size (MB) 4.52 81.08 144.84 36.03 4.46 8.22 7.01 11.34 70.90 258.48 16.13 22.44 2.61 6.90
RI size (MB) 33.20 128.29 231.73 220.64 32.01 143.67 16.32 32.97 173.82 920.28 63.01 122.71 18.51 55.43
RA size (MB) 1.2K 19.9K 6.2K* 1.5K* 1.1K 2.1K 1.6K 2.9K 3.1K* 11.4K* 3.7K 5.6K 621.80 1.7K
5C-CH size (MB) 20.70 705.40 1.17K 257.70 50.40 80.50 30.40 52.90 515.40 1.7K 117.80 159.40 18.50 46.60

Table 4: Computational costs (in sec) of intermediate filter approximations

T1 T2 O5NA O6NA O5SA O6SA O5OC O6OC O5EU O6EU O5AS O6AS O5AF O6AF
RI preprocessing (s) 42.109 93.161 243.30 230.630 43.472 201.617 18.920 37.420 164.22 761.78 73.96 168.83 29.56 70.27
RA preprocessing (s) 38.211 623.256 269.25* 67.455* 38.552 68.257 55.840 95.966 116.66* 408.76* 127.21 195.99 21.71 55.55
5C-CH preprocessing (s) 1.228 30.780 52.69 11.799 1.619 2.226 2.652 3.507 22.08 65.12 5.54 7.25 1.04 1.89

Table 5 analyzes the performance of RI for different values of 𝑁

in spatial join T1 Z T2. The number of candidate join pairs (whose

MBRs intersect) is 94813 and the number of join results is 35365 (i.e.,

about 38% of the pairs that pass the filter step indeed intersect). The

first three columns of the table show the percentage of candidate

pairs identified by RI as true hits, false hits, or inconclusive (i.e.,

should be sent to the refinement step). The last four columns show

the cost of the filter step of the spatial join (MBR-join), the total

cost of applying our RI-filter to all candidate pairs, the total cost of

the refinement step, and the overall join cost. The MBR-join cost

is 𝑁 -invariant, as this operation is independent of the subsequent

steps (intermediate filter, refinement). Observe that the number

of inconclusive pairs shrinks as 𝑁 increases; the refinement cost

decreases proportionally. On the other hand, the cost of RI-filter

increases with 𝑁 as the intervals become more and longer. Eventu-

ally, for the largest value of 𝑁 , the overall join cost converges to

about 1 second.

In Table 6, we show the total time required to compute the RI

object approximations of all objects in T1 and T2 and the corre-

sponding storage requirements for them, as a function of 𝑁 . For

small values of 𝑁 , where RI is not very effective, the computation

cost and the space requirements are low because, for each object,

only a small number of intervals, each approximating a small num-

ber of cells are constructed. On the other hand, for large values of 𝑁 ,

where our RI-filter is effective, the approximations are very fine and

require more time for computation and more space. We performed

the same analysis for all other pairs of joined datasets (results are

not shown, due to space constraints) and drew the same conclu-

sions. Overall, due to the high effectiveness of RI for 𝑁 = 16, which

brings the best possible performance to the overall spatial join, we

choose this value of 𝑁 in the rest of the experiments. Although we

use a fixed grid for all objects (independently of their sizes), the

intervalization and compression of the raster representations does

not incur an unbearable space overhead and at the same time we

achieve a very good filtering performance even for small objects,

while avoiding re-scaling at runtime (as opposed to [37]).

4.3 Data preprocessing
The approximations used by intermediate filters (i.e., RI, RA, 5C-

CH) need not be computed on-the-fly, but can be generated in a

data preprocessing phase. Like object MBRs, these approximations

Table 5: Effect of 𝑁 on the performance of RI in T1ZT2

True hits False hits Indecisive MBR-join (s) RI-filter (s) Refinement (s) Total time(s)
𝑁 = 10 7.93% 23.71% 68.36% 0.044 0.040 3.649 3.733
𝑁 = 13 17.54% 45.07% 37.40% 0.044 0.046 1.526 1.616
𝑁 = 14 22.46% 49.65% 27.89% 0.044 0.147 1.142 1.333
𝑁 = 15 27.40% 53.23% 19.37% 0.044 0.263 0.784 1.091
𝑁 = 16 30.87% 55.87% 13.26% 0.044 0.501 0.531 1.076

Table 6: Effect of 𝑁 on the cost and space of RI for T1 and T2

T1 RI constr. cost (s) Intervals/Polygon Cells/Interval Size (MB)
𝑁 = 10 2.75 1.11 1.24 2.30
𝑁 = 13 3.08 2.55 4.25 3.50
𝑁 = 14 5.33 2.90 13.56 5.70
𝑁 = 15 13.09 4.92 29.36 12.10
𝑁 = 16 41.42 9.04 61.20 33.20
T2 RI constr. cost (s) Intervals/Polygon Cells/Interval Size (MB)
𝑁 = 10 44.21 1.04 1.05 39.19
𝑁 = 13 35.98 1.39 1.56 46.19
𝑁 = 14 39.56 1.74 2.39 55.19
𝑁 = 15 51.12 2.52 4.17 76.09
𝑁 = 16 93.88 4.13 7.88 128.29

can be useful in other operations besides joins (e.g., range queries

[8]), so it is reasonable to pre-compute them and store them in

dedicated data structures (or together with the object geometries).

This way, we can generate the approximations once per dataset

and then use them indefinitely.

Table 4 shows the costs for precomputing the three intermediate

filter approximations for all real datasets. The corresponding space

requirements are shown in Table 3 together with the space require-

ments of all geometries and their MBRs. As discussed, for our RI

approach, we set 𝑁 = 16. For the RA approach, we set 𝐾 = 750, as

suggested in [37], in all cases, except for the OSM North America

and Europe datasets, where we set 𝐾 = 100 (for 𝐾 = 750 the RAs

occupy too much space and they cannot be loaded in memory and

used for the join). Experimental results for RA with 𝐾 = 100 are

marked with an asterisc (*). As expected, the 5C-CH approximations

have the lowest computation cost, because they do not involve a

rasterization process. RI has similar precomputation cost compared

to RA. The difference between RI and 5C-CH pays off as we will

see later. When comparing the space requirements of all methods

in Table 3, we observe that RI approximations are space-economic,

being of similar scale as 5C-CH approximations, sometimes much

cheaper, especially in cases of complex polygons with small areas

(e.g., T2 and O5NA), where the space requirements of RI are close
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to the (minimal) space requirements of the object MBRs. On the

other hand, RA is very space-consuming, typically occupying 1-2

orders of magnitude more space than RI and 5C-CH.

For the RI approximations, Table 7 shows the average number

of intervals per polygon and the average number of cells per in-

terval for each OSM dataset. Observe that the number of intervals

per object is quite small, but the number of cells per interval is

much larger, signifying that RI can achieve a quite good compres-

sion of the object approximations and explaining the low space

requirements of RI compared to RA, as shown in Table 3.

Table 7: Statistics of RI approximations for OSM data

Intervals/Polygon Cells/Interval
O5NA 4.37 9.53
O6NA 10.28 41.40
O5SA 14.69 31.84
O6SA 12.48 159.81
O5OC 6.23 12.33
O6OC 5.19 37.07
O5EU 6.30 15.60
O5EU 8.81 18.16
O5AS 9.38 18.74
O6AS 7.15 66.99
O5AF 13.81 31.34
O6AF 8.46 101.32

To justify the use of Hilbert curves for intervalization, we mea-

sured, for 𝑁 = 16, the average number of intervals per intervalized

polygon, the average number of cells per interval, and the space

requirements if we replace Hilbert order by the popular Z-order

[18]. Indicatively, Table 9 shows these statistics for some of our

datasets (see Tables 6, 7, and 3, for the corresponding numbers for

RI). Intervalization based on Z-order curves results in more and

shorter intervals and, as a result in larger space requirements for RI.

We also observed that replacing Hibert-order by Z-order increases

the runtime cost of using the RI filter by up to 50%, as more intervals

need to be accessed and joined.

4.4 Performance in end-to-end spatial joins
We evaluate RI, RA, and 5C-CH on all join pairs, in terms of filtering

effectiveness and spatial join cost that we can achieve using them.

Table 8 compares the performances of all three methods in an end-

to-end spatial join pipeline on the 7 join pairs of real datasets. As

a point of reference, we also included None, the baseline method

that does not apply an intermediate filter, but directly passes the

candidate pairs to the refinement step. The first three columns of

the table show the percentage of MBR-join results (i.e., candidate

pairs) which are identified by each intermediate filter as true hits, as

false hits, or as indecisive (these are passed to the refinement step).

The next two columns show the average number of vertices in the

candidates from each input dataset (𝑅 or 𝑆) which are indecisive.

The last four columns show the total cost of the filter step (MBR-join

[30]), intermediate filter step (RI, RA, or 5C-CH), and refinement

step [2] in the end-to-end join process. For RI, we preprocessed all

datasets using 𝑁 = 16 and 𝑅-encoding (hence, the RI-join involves

XORing besides ANDing). For RA, we used 𝐾 = 750 for all datasets,

except for OSM North America and Europe datasets, as explained

in Section 4.3.

Filter effectiveness Observe that RI has consistently the best

filtering performance among the three intermediate filters, since

it results in the smallest percentage of indecisive pairs. The only

exception is in O5OC Z O6OC, where RI comes second to RA, by

just 1%. In all joins, the true hit and false hit ratio of RI is higher

compared to the corresponding ratios of the other filters (except

for the true hits in O5OC Z O6OC). This shows that the global grid

used by RI is more effective in finding true and false hits compared

to the local grid used by RA for each object. 5C-CH can only identify

false hits; still, it finds fewer false hits than RI (in all cases) and RA

(in most cases).

Intermediate filter cost 5C-CH operates on simpler approxima-

tions to rasters and applies fast computational geometry techniques

for convex polygons; hence, it is faster than RI and RA in all cases.

RI is consistently better than RA because it uses our fast RI-join

algorithm and bitwise operations to conduct its checks. In addition,

RI avoids the re-scaling cost that RA bears for the spatial alignment

of the raster approximations of the two objects. Especially when the

candidate pair includes objects of very different sizes, the re-scaling

cost is high and at the same time the approximation quality of RA

decreases a lot. The cost of re-scaling in RA is between 25.2% (in

T1 Z T2) to 59.4% (in O5OC Z O6OC) of the total RA filter cost.

Refinement cost The refinement cost of the indecisive pairs that

pass the RI-filter is much lower compared to the corresponding

refinement costs for the pairs that pass the other filters. The relative

cost difference is much higher compared to the corresponding

difference in the percentages of indecisive pairs. For example, in

T1 Z T2, the refinement cost of RI is about 7 times lower compared

to that of RA, although the difference in the number of indecisive

pairs is less than 3. In order to understand the reason behind this

difference, we measured the average number of vertices in the

polygon pairs that pass the intermediate filters from both inputs

(shown in the 4th and 5th columns of Table 8). A first observation

is that the number of vertices of the polygons that pass the MBR-

join is very large compared to the average number of vertices

of the polygons in the corresponding datasets (see Table 3). By

looking into the results, we found out that the join pairs mainly

include large polygons withmultiple edges, whereas small polygons

rarely participate in join results. The second and most important

observation is that the polygons that survive our RI-filter have

much lower complexity compared to the ones that survive the

other filters. This happens because our global fine grid, which is the

same for all objects, is more appropriate for finding intersections

between large polygons compared to the object-size parametric

grid of RA. These measurements unveil an additional and not that

obvious advantage of our approach.

Overall cost The total cost of RI-based end-to-end spatial join is

consistently lower compared to end-to-end joins that use alternative

intermediate filters. The relative speedup compared to the runner

up (5C-CH) is 2.73x-5.77x. The improvement over the baseline

approach (None) that does not apply any intermediate filter is

between 6 and 10.7 times. The fact that the space requirements of

RI approximations are much smaller than the space required for

the object geometries (see Table 3) makes them a very attractive

approximation approach.

Spatial within joins Table 10 shows the performance of all inter-

mediate filters for spatial within joins. Section 3.4 explains how the
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Table 8: Performance of intermediate filters in spatial intersection joins

True hits False hits Indecisive Avg # vertices 𝑅 Avg # vertices 𝑆 MBR-join (s) Int. Filter (s) Refinement (s) Total time (s)
T1 Z T2 (Tiger landmark and water areas)

RI 30.87% 55.87% 13.26% 630.70 300.34 0.04 0.50 0.53 1.07
RA (𝐾 = 750) 22.72% 46.13% 31.15% 1568.91 367.30 0.04 1.70 3.58 5.32
5C-CH 0.00% 39.86% 60.14% 1450.08 279.29 0.04 0.07 4.34 4.45
None 0.00% 0.00% 100.00% 1337.64 375.68 0.04 - 7.15 7.19

O5NA Z O6NA (OSM lakes and parks in North America)
RI 47.15% 34.30% 18.55% 533.64 358.49 0.69 9.57 20.14 30.40
RA (𝐾 = 100) 24.51% 20.27% 55.22% 1993.36 831.70 0.69 11.29 254.72 266.70
5C-CH 0.00% 27.28% 72.72% 1180.19 814.88 0.69 2.16 172.52 175.38
None 0.00% 0.00% 100.00% 395.01 789.53 0.69 - 325.34 326.03

O5SA Z O6SA (OSM lakes and parks in South America)
RI 13.75% 62.29% 23.97% 827.93 160.34 0.05 0.58 1.26 1.88
RA (𝐾 = 750) 11.89% 51.56% 36.55% 3691.81 384.24 0.05 2.37 9.63 12.04
5C-CH 0.00% 46.97% 53.03% 3112.23 611.08 0.05 0.09 9.77 9.91
None 0.00% 0.00% 100.00% 2534.90 480.83 0.05 - 15.27 15.32

O5OC Z O6OC (OSM lakes and parks in Oceania)
RI 14.87% 51.01% 34.12% 515.50 602.59 0.06 0.34 2.55 2.95
RA (𝐾 = 750) 17.71% 49.21% 33.08% 1245.15 2438.91 0.06 2.80 10.11 12.97
5C-CH 0.00% 42.18% 57.82% 1028.98 2187.97 0.06 0.14 11.60 11.80
None 0.00% 0.00% 100.00% 1335.92 1686.58 0.06 - 19.09 19.15

O5EU Z O6EU (OSM lakes and parks in Europe)
RI 12.64% 54.99% 32.37% 174.48 107.20 1.50 14.71 27.08 43.29
RA (𝐾 = 100) 6.81% 36.85% 56.33% 712.82 491.03 1.50 26.97 216.62 245.09
5C-CH 0.00% 50.13% 49.87% 688.37 552.29 1.50 3.89 146.02 151.42
None 0.00% 0.00% 100.00% 838.13 440.23 1.50 - 303.97 305.48

O5AS Z O6AS (OSM lakes and parks in Asia)
RI 8.73% 62.95% 28.32% 381.42 2013.75 0.12 1.25 10.37 11.74
RA (𝐾 = 750) 8.59% 55.18% 36.23% 2009.54 5621.89 0.12 7.92 58.07 66.12
5C-CH 0.00% 53.84% 46.16% 1293.49 4354.51 0.12 0.30 37.52 37.95
None 0.00% 0.00% 100.00% 1618.71 3620.09 0.12 - 76.61 76.73

O5AF Z O6AF (OSM lakes and parks in Africa)
RI 16.13% 58.41% 25.46% 439.73 214.42 0.02 0.19 0.44 0.65
RA (𝐾 = 750) 14.48% 49.06% 36.47% 1298.53 300.31 0.02 1.07 1.76 2.85
5C-CH 0.00% 44.90% 55.10% 941.46 329.29 0.02 0.05 1.70 1.77
None 0.00% 0.00% 100.00% 1310.28 273.77 0.02 - 3.86 3.88

Table 9: Statistics using Z-order curve

Intervals/Polygon Cells/Interval Size (MB)
T1 16.60 36.06 43.2
T2 6.18 5.23 172.6
O5NA 6.06 6.67 297.5
O6NA 15.91 26.52 268.8
O5AF 19.74 21.69 22.4
O6AF 12.19 68.59 62.1

RI-join is adapted for within joins. Similar changes are applied to

RA, where the types of common cells of 𝑅𝐴(𝑥) and 𝑅𝐴(𝑦) are used
to identify true positives and true negatives. Regarding 5C-CH, a

pair is a false hit, if the 5C approximation of 𝑥 does not intersect

the 5C of 𝑦 or if the CH of 𝑥 is not within the CH or 𝑦. In all pairs of

datasets, we used water areas as the left join input, since land areas

are rarely contained in water areas. Due to space limitation, we

only show the results of O5NA Z⊆ O6NA from the OSM datasets;

the results for other pairs are similar. As the table shows, RI is sig-

nificantly better compared to RA and 5C-CH also for within joins.

Note that the refinement step for 𝑥 within 𝑦 is more expensive than

the refinement step for 𝑥 intersects 𝑦, as the former performs a

point-in-polygon test for every vertex of 𝑥 ; all 𝑥-vertices should

be included in 𝑦 if 𝑥 is within 𝑦. Hence, although the number of

candidate pairs for within are fewer compared to the corresponding

candidates for intersection, the join cost may be increased in some

cases (e.g., T2 Z⊆ T1 is more expensive than T2 Z T1).

Table 10: Filter performance in spatial within joins

True hits False hits Indecisive Total time (s)
T2 Z⊆ T1 (Tiger water and landmark areas)

RI 27.72% 59.74% 12.54% 1.67
RA (𝐾 = 750) 20.88% 46.67% 32.45% 7.09
5C-CH 0.00% 42.10% 57.90% 9.62
None 0.00% 0.00% 100.00% 11.43

O5NA Z⊆ O6NA (OSM lakes and parks in North America)
RI 50.52% 30.23% 19.24% 21.19
RA (𝐾 = 100) 25.00% 13.25% 61.75% 91.23
5C-CH 0.00% 20.48% 79.52% 124.41
None 0.00% 0.00% 100.00% 134.07

5 RELATEDWORK
Filter step of spatial joins The majority of previous work on

spatial joins focuses on the filter step [13]. Divide-and-conquer join

evaluation techniques partition the data space explicitly [19, 23, 30]

or implicitly [8, 17] with the help of pre-existing spatial indexes

[6], and assign the object MBRs to the partitions. For each pair of

(explicit or index) partitions that spatially overlap, the intersecting

MBR-pairs in the partitions are found using plane-sweep [4].

Intermediate filters To further reduce the candidate pairs that

reach the refinement step, conservative and/or progressive object

approximations can be used for identifying false hits and/or true

hits, respectively. Brinkhoff et al. [7] suggested the use of the convex

hull and the minimum bounding 5-corner convex polygon (5C) as

conservative approximations and the maximum enclosing rectangle

(MER) as a progressive approximation. MER is hard to compute and
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of questionable effectiveness [37], hence, we did not include it in

our comparison. In follow-up work [37], the object geometries are

rasterized and modeled as grids, where each cell is colored based on

its percentage of its coverage by the object. By re-scaling and align-

ing the grids of two candidate join objects, we can infer, in most

cases, whether the objects are a join pair or a false hit. Indecisive

pairs are forwarded to the refinement step. Hierarchical (quad-tree

based) raster approximations based on a hierarchical grid have been

used in the past [10] for window and distance queries. In addition,

Teng et al. [29] propose a hybrid vector-raster polygonal approxi-

mation, targeting point-in-polygon queries and point-to-polygon

distance queries. This approach has significant storage overhead

as it keeps both the raster representations and the intersections

of each polygon with its raster cells. Neither [10] or [29] use the

full-strong-weak cell classification [37], which is very effective for

polygon-polygon tests, or our intervalization combined with bit-

string compression that replaces expensive geometric intersection

tests by cheap bitwise operations.

Speeding up the refinement step Identifying whether two poly-

gons overlap requires point-in-polygon tests and finding an inter-

section in the union of line segments that form both polygons [7]. A

point-in-polygon test bears a 𝑂 (𝑛) cost, while the second problem

can be solved in 𝑂 (𝑛 log𝑛) time [25], where 𝑛 is the total number

of edges in both polygons. Given a pair of candidate objects, Agha-

jarian et al. [2] prune all line segments from the object geometries

that do not intersect their common MBR (CMBR) (i.e., the inter-

section area of their MBRs), before applying the refinement step.

This reduces the complexity of refinement, as a smaller number of

segments need to be checked for intersection. In addition, if one

object MBR is contained in the other, then the point-in-polygon

test is applied before the segment intersection test. Polysketch [16]

decomposes each object to a set of tiles, i.e., small MBRs which

include consecutive line segments of the object’s geometry. Given

two candidate objects, the refinement step is then applied only for

the tile-pairs that overlap. A similar idea (trapezoidal decomposi-

tion) was suggested by Brinkhoff et al. [7] and alternative polygon

decomposition approaches where suggested in [5]. PSCMBR [15]

combines Polysketch with the CMBR approach. Specifically, for

the two candidate objects, the overlapping pairs of Polysketch tiles

are found; for each such pair, the segments in the two tiles that

do not overlap with the CMBR of the tiles are pruned before re-

fining the contents of the tiles. Polysketch and PSCMBR focus on

finding the intersection points of two objects, hence, unlike our

approach, they do not identify true hits. The CMBR approach [2]

is fully integrated in our implementation; still the refinement cost

remains high. Finally, the Clipped Bounding Box (CBB) [26] is an

enriched representation of the MBR that captures the dead (unused)

space at MBR corners with a few auxiliary points, providing the

opportunity of refinement step avoidance in the case where object

CBBs intersect only at their common dead-space areas. CBBs can

also be used by R-tree nodes to avoid their traversal if the query

range overlaps only with their dead space.

Approximate spatial joins Fast evaluation of spatial joins and

other operations based on raster (and other) approximations has

been explored recently as an alternative to exact, but expensive

spatial query evaluation [14, 35]. Still, there is no previous work

that applies our idea of cell encoding and intervalization even for

approximate query evaluation. The approximation of spatial objects

using space-filling curves (and approximate evaluation of spatial

queries) was first suggested by Orenstein [20], however, we are the

first to suggest the binary encoding of cells and merging the codes

to bitstrings for identifying true hits in spatial joins.

Scalability With the advent of cloud computing, there have been

many efforts in scaling out spatial data management. SJMP [36]

is an adaptation of the PBSM spatial join algorithm [23], which

evaluates the join using the mapreduce framework. Using a virtual

grid, each object is mapped to one or more partitions, based on the

cells it intersects; for each partition, a reducer evaluates the join.

Hadoop-GIS [3] employs a similar idea. Spatialhadoop [9] inves-

tigates the optimal repartitioning of already partitioned datasets

in order for the join partitions to be perfectly aligned. Spatial data

management systems that extend Apache Spark and handle (among

other operations) spatial joins include Magellan [28], SpatialSpark

[32], Simba [31], and Apache Sedona (formerly, GeoSpark) [33]. An

experimental comparison between big spatial data systems was

conducted by Pandey et al. [21]. Regarding spatial joins, all the

aforementioned systems focus on the filter step only. Recently,

there is a trend in implementing spatial joins for GPUs [1, 2, 15, 16],

with a focus on the refinement step. Polygon decomposition and

rasterization techniques for point-polygon joins using GPUs and

CPUs have been explored in [14, 34].

6 CONCLUSIONS
In this paper, we proposed raster intervals (RI), a technique that

encodes and compresses the raster approximations of polygons

as sets of intervals, offering a fast and effective intermediate step

between the filter and the refinement steps of polygon intersection

joins. RI achieves a speedup of at least 3x compared to previous

intermediate filters (raster approximations [37], 5C-CH [7]). At the

same time, the space complexity of RI is relatively low and the

approximations can easily be accommodated in main memory.

In the future, we will investigate more efficient rasterization

techniques (e.g., using GPUs for both rasterization and parallel

evaluation), compression schemes for the lists of intervals (e.g.,

run-length encoding), and the application of hierarchical raster

approximations based on Hilbert code prefixes, for polygons of

varying sizes. We will also study joins that involve other data types

besides polygons (e.g., linestrings) as well as joins between object

rasterizations of different granularity. In addition, we will explore

the effectiveness of approximate join evaluation according with the

recent trend [35]. Finally, we will investigate the application of RI

filters to other spatial queries (e.g., non-rectangular range queries).
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