Test-Data Compression Based on Variable-to-Variable Huffman Encoding with Codeword Reusability

Xrysovalantis Kavousianos, Member, IEEE, Emmanouil Kalligeros, Member, IEEE, and Dimitris Nikolos, Member, IEEE

Abstract—A new statistical test-data compression method suitable for IP cores of unknown structure with multiple scan chains is proposed in this paper. Huffman, which is a well-known fixed-to-variable code, is used in this paper as a variable-to-variable code. The pre-computed test set of a core is partitioned into variable-length blocks, which are then compressed by an efficient Huffman-based encoding procedure with a limited number of codewords. For increasing the compression ratio, the same codeword can be reused for encoding compatible blocks of different sizes. Further compression improvements can be achieved by using two very simple test-set transformations. A simple and low-overhead decompression architecture is also proposed.

Index Terms—IP Cores, Embedded Testing Techniques, Test Data Compression, Huffman Encoding.

I. INTRODUCTION

The extensive use of pre-designed and pre-verified cores in contemporary Systems-on-a-Chip (SoCs) makes their testing an increasingly challenging task. The amount of test data increases rapidly, while at the same time the inner nodes of dense SoCs become less accessible from the external pins. The testing problem is further exacerbated by the limited channel capacity, memory and speed of Automatic Test Equipments (ATEs).

Embedded testing overcomes these difficulties by combining the ATE capabilities with on-chip integrated structures. Specifically, the cores’ test sets are stored compressed in the ATE and, during testing, they are downloaded and decompressed on chip. Numerous embedded testing techniques have been proposed in the literature. Most of them require structural information of the core under test (CUT), since they introduce modifications in its scan-chain structure, and/ or exploit the advantages offered by the use of Automatic Test Pattern Generation (ATPG) and fault simulation tools. The objective is to maximize the effectiveness of the compression algorithm and thus to minimize the volume of compressed test data. Some of these techniques are the following: [2], [5], [14], [16]-[19], [22], [24], [25], [30], [34], [36], [44] and [52]. Also commercial tools exist which automate the generation of embedded decompressors like OPMISR [4], SmartBIST [32] and TestKompress [46].

Very often, the structure of Intellectual Property (IP) cores is hidden from the system integrator so as the IP to be protected. In such cases, the scan chains of the cores cannot be modified, while neither ATPG nor fault simulation tools can be used. Only pre-computed test sets are provided by the core vendors, which should be applied to the cores during the testing process. Several methods have been proposed for minimizing the test-data volume of unknown structure IP cores. The approaches of [6], [26] and [40] embed the pre-computed test vectors in long, on-chip generated pseudorandom sequences, reducing in this way significantly the volume of test bits that should be stored in the ATE. However, these techniques have long test application times. For reducing both test-data volume and test application time, many methods encode directly the test sets using various compression codes like Golomb [7]-[9], [48], alternating run-length [10], FDR [11], [43], statistical codes [13], [20], [23], [27], [28], nine-coded-based [51], and combinations of codes [45]. Compression can be also performed on the difference vectors instead of the actual test vectors but expensive cyclical shift registers should be incorporated in the system, or the scan chains of other cores must be reused [21]. For that reason, methods based on difference vectors are not further considered in this paper.

The test application time can be reduced even more by exploiting the multiple scan chains of the cores. Several approaches have been proposed towards this direction, which make use of combinational continuous flow decompressors [41], linear decompressors [3], [35], [37], non-linear decompressors [1], [53], combinations of linear and non-linear decoders [33], [38], [54], the RESPIN architecture [12], adaptive encoding [42], mutation encoding [47], multilevel Huffman encoding [29], and dictionaries [31], [39], [50], [55], [56]. The methods proposed in [1], [49] reduce both the test data volume and the scan power consumption. There are also

X. Kavousianos is with the Computer Science Department, University of Ioannina, 45110 Ioannina, Greece (e-mail: kavousia@cs.uoi.gr).

E. Kalligeros is with Information & Communication Systems Engineering Department, University of the Aegean, 83200 Karlovassi, Samos, Greece, (e-mail: kalliger@aegean.gr)

D. Nikolos is with the Computer Engineering and Informatics Department, University of Patras, 26500 Patras, Greece (e-mail: nikolosd@cti.gr).
techniques that require the pre-existence of various modules in the SoC (arithmetic modules, RAMs/ROMs, embedded processors, etc.), which, due to this requirement, are not further considered.

Thanks to their high efficiency, statistical codes have received increased attention in the literature. Huffman is the most effective statistical code since it provably provides the shortest average codeword length. Its main problem is the high hardware overhead of the required decompressors. To alleviate this problem, selective Huffman coding was proposed in [23], which significantly reduces the decoder size by slightly sacrificing the compression ratio.

In this paper we propose a statistical compression method, which is based on Huffman encoding of variable-length test-set blocks. The encoding is performed in a selective manner, i.e., some blocks of the test set are left unencoded. Apart from the variable-to-variable nature of the proposed approach, the generated codewords are reusable, in the sense that they can encode compatible blocks of different sizes. Two simple transformations are also presented for improving the statistical properties of the test set before compression. The proposed decompression architecture generates the decoded variable-length blocks in parallel, exploiting in this way the test-application-time advantages offered by the existence of multiple scan chains in a core (the applicability to single-scan chain cores is straightforward). The proposed approach is properly designed so as the hardware of its decompressors to be kept low.

The remaining of the paper is organized as follows: Section II provides the motivation for the proposed approach, while Section III presents the proposed encoding and decoding methods. In Section IV we describe a low-overhead decompression architecture suitable for cores with multiple scan chains, and in Section V we calculate the test application time of the proposed approach. Experimental results and comparisons are provided in Section VI, while the paper is concluded in Section VII.

II. MOTIVATION

Let \(T \) be the test set of an IP core. \(T \), which is of size \(|T|\) (in bits), is partitioned into \(|T| / l \) blocks of size \(l \), called hereafter test set parts or simply parts. Each test set part consists of specified (0, 1) and unspecified bits (x), and is compatible with a number of fully specified blocks generated by substituting its \(x \) bits with all possible combinations of 0s and 1s. According to the Selective Huffman coding [23], the \(m \) fully specified blocks that are compatible with most of the test set parts, are Huffman encoded (\(m \) is defined by the designer and is much smaller than the volume of all fully specified blocks that are required for compressing all test set parts). We call these \(m \) fully specified blocks, distinct blocks. Each test set part is either encoded by the codeword generated for a compatible distinct block (if such a distinct block exists) or it remains unencoded. In case that a test set part is compatible with more than one of the \(m \) encoded distinct blocks, the codeword of the most frequently occurring block is used for its encoding.

Assuming that the number of encoded distinct blocks \(m \) remains constant, the effectiveness of Selective Huffman coding is affected by block size \(l \) in two contradictory ways: as \(l \) increases, the test set is partitioned into fewer and larger parts, and thus the total number of codewords required for encoding the original test set decreases. As a result, better compression can be achieved. At the same time however, the compression ratio is negatively affected by the fact that more test set parts remain unencoded (since, as block size \(l \) increases, fewer parts are compatible with the \(m \) encoded distinct blocks). Decreasing block sizes lead to the exactly opposite behaviors. The block size which balances these two contradictory behaviors provides the best compression ratio.

As a consequence, for maximizing the efficiency of Selective Huffman coding, the volume of the unencoded test set parts must be minimized, while at the same time the total number of codewords (and hence the total size of the encoded data) must be kept low. For achieving this goal we can take advantage of the well-known characteristic that in every test set there are regions with many defined bits (densely specified) and regions with many \(x \) bits (sparsely specified). Densely specified regions are the main sources of unencoded data, and therefore their compression is favored by the usage of small distinct blocks. On the other hand, sparsely specified regions are compressed more efficiently by using large distinct blocks, since in this way, many test set parts, despite their big size, are compatible with the encoded distinct blocks, due to the great number of \(x \) bits they contain. From the above analysis we deduce that compression can be improved if the test sets are partitioned into variable-length parts, which means that variable-length distinct blocks should be encoded.

For demonstrating this, we performed 4 series of experiments using as input the test set of s15850. In the first 3 series, we compressed the test set by encoding fixed-length test set parts of sizes \(l=8 \) (exp. series 1), \(l=16 \) (exp. series 2), and \(l=32 \) (exp. series 3), using fixed-length distinct blocks of sizes 8, 16 and 32 respectively (for each experiment series, the encoded-distinct-block volume \(m \) was set to 3, 4 and 5). In the last series of experiments, variable-length test set parts were encoded by using variable-length distinct blocks. Specifically, the test set was initially partitioned into 32-bit parts and the most frequently occurring distinct block of size 32 was selected for encoding. Then, the remaining 32-bit parts (those that are not compatible with the selected distinct block) were partitioned into 16-bit parts for selecting the second distinct block (the most frequently occurring one of size 16). Finally, the remaining 16-bit parts were partitioned into 8-bit parts for selecting the rest distinct blocks (i.e., for \(m=3 \), a 32-bit, a 16-bit and an 8-bit distinct block were encoded, for \(m=4 \), a 32-bit, a 16-bit and two 8-bit distinct blocks were encoded, etc.). Figure 1 presents the percentage of test data bits that were left unencoded at each experiment, as well as the total number of codewords used for the encoded test data bits (above each bar). It is obvious that when fixed-length distinct blocks are
used, as \(l \) decreases, the percentage of the unencoded data bits is reduced but the total number of required codewords increases rapidly. When three different block sizes are used, the percentage of unencoded test data bits remains very low, approaching that of the smallest fixed-length-block case, with less than half of the codewords. As a result, fewer data are required for encoding the test set.

III. PROPOSED ENCODING/DECODING

A. Encoding Method

In the proposed approach, as test set part we consider a whole slice or a slice portion (see Figure 2, where \(N_s \) denotes the number of scan chains, and \(W_s \) the maximum scan-chain length). Each Huffman codeword encodes a distinct block of a specific size. When a codeword is decoded, the corresponding distinct block is generated in parallel (after codeword identification), exploiting in this way the parallelism offered by the multiple scan chains of a core. Note that for selecting the \(m \) distinct blocks that will be encoded, the \(x \) values of the test set should be first replaced by constant binary values (0s and 1s). For determining the proper \(x \)-bit assignment so as the occurrence frequencies of the encoded distinct blocks to be as skewed as possible, we use an extension of the second of the algorithms (Alg2) proposed in [23]. According to the original algorithm of [23], the two most frequently occurring test set parts that are compatible are merged, forming a more specified and frequently-occurring part than its predecessors. The same procedure is repeated iteratively until no further merging is possible. If, after the parts’ merging, there are any remaining \(P \)-parts are also called primitive parts, since they are the smallest test set parts (and the \(P_{mac} \)-blocks are the smallest encoded distinct blocks). Note that each \(P \)-part has size equal to either \([N_s/2]\) or \([N_s/2]\) bits.

According to the above procedure, when a test-set’s \(P \)-part (\(i \in [0, max], i=0 \) implies a whole slice) is compatible with one of the selected \(P \)-blocks, then the codeword corresponding to that \(P \)-block is appended to the compressed test set (i.e., the \(P \)-part is encoded). If no encoding is possible, the \(P \)-part is partitioned into two \(P \)-parts, which are used for the selection of the \(P_{s1} \)-blocks (and thus they may be encoded by \(P_{s1} \)-block codewords). It is obvious that during the encoding of \(P \)-blocks by \(P \)-blocks, the most sparsely specified parts are encoded, whereas the most densely specified ones are partitioned into \(P \)-parts (since densely specified parts have small occurrence frequencies and are not selected during the parts merging procedure). In the same way, the most sparsely specified \(P \)-parts are encoded by \(P \)-blocks, whereas the most densely specified ones are partitioned into \(P \)-parts, etc. In other words, as also mentioned in Section II, large distinct blocks are used for encoding sparsely specified test-set regions, whereas small distinct blocks are used for the encoding of densely specified regions. As a result, the large blocks, which are derived by the merging of large test set parts, contain many \(x \) values. Instead of randomly replacing these values as in [23], we initially leave them unspecified and we utilize them later so as to increase the selected blocks’ encoding ability (and hence, for further skewing their occurrence frequencies). This is done by using the codewords of the already selected blocks for encoding smaller test set parts (codeword reusability). More formally, the proposed variable-to-variable Huffman encoding procedure is further improved by allowing a \(P \)-part to be encoded by the codeword of a larger \(P \)-block (\(i < j \)), provided

![Figure 1. Encoding statistics for s15850](image)

![Figure 2. Multiple scan chains and slices](image)
that the first \(\lceil N_u/2^b \rceil\) or \(\lfloor N_u/2^b \rfloor\) bits of the \(P_\gamma\)-block are compatible with the \(P_i\)-part (i.e., the smaller parts are always compared against the upper segments of the already selected larger blocks). Thus, the upper segments of the selected \(P_\gamma\)-blocks are initially left partially unspecified and are defined later during the encoding of \(P_{\alpha_1}, P_{\alpha_2}, \ldots, P_{\alpha_{max}}\)-parts (in fact, contrary to [23], no random x-bit replacement is performed even in the lower segments of the selected \(P_\gamma\)-blocks – any remaining x bits in them after the encoding process are filled with 0s and 1s by the logic synthesis tool in such a way so as to minimize the hardware overhead of the decompressor). It is obvious that during the decoding process, only the necessary bits of the \(P_\gamma\)-block will be generated, whereas the rest will be discarded. As an example, consider that each slice is eight bits long \((N_u = 8)\), and that one of the selected \(P_\gamma\)-blocks is \(b = 00110101\). The codeword of block \(b\) can be used for encoding \(P_i\)-part \(p = 011\), since \(p\) is compatible with the first four bits of \(b\). This also leads to the replacement of the \(x\) bit of \(b\) by logic value 1.

With the above encoding strategy, the codeword of a \(P_\gamma\), \(P_\gamma\cdot \ldots, P_{\max}\)-block can be used for encoding test-set parts of various sizes. Consequently, during the decoding process, every such codeword must uniquely specify the actual encoded test set part. In order to keep the compressed-data volume low, no information is stored about the size of the part encoded by a block’s codeword. Instead, the encoding process is constrained according to the following condition:

Condition 1: "A \(P_\gamma\)-block codeword can be used for encoding a smaller \(P_i\)-part \((j > i)\), if the \(P_i\)-part is not the first of a larger test set part."

For example, the codeword of block \(b\) can be used for encoding a \(P_0\)-part (i.e., a whole slice - all of its bits will be generated during decoding). It can be also used for encoding the **second** \(P_1\)-part that has resulted from the partitioning of a \(P_0\)-part (then the first four bits of \(b\) will be decoded). Similarly, it can be used for the encoding of the **second** \(P_2\)-part of a \(P_1\)-part (the first two bits of \(b\) will be decoded). Note however that block \(b\) cannot be utilized for the encoding of the first \(P_i\)-part of a \(P_0\)-part, or of the first \(P_2\)-part of a \(P_1\)-part, even if its corresponding segments are compatible with those parts. As will be seen in the following sections, by constraining the encoding process according to Condition 1, we can easily determine, during decoding, the size of the part encoded by the received codeword, by just examining the value of a small counter (a small combinational circuit along with the counter is required in terms of hardware overhead).

As mentioned earlier, compression improves when every codeword encodes the largest possible test set part (since in this way, the test set will be eventually partitioned into fewer parts and therefore the total number of codewords in the compressed test set will be smaller). This means that, if possible, every test set part should be encoded before it is partitioned into smaller parts or, in other words, every selected distinct block should be used for the encoding of as many large test set parts as possible. This is why \(P_0\)-parts are encoded first, then \(P_1\)-parts, \(P_2\)-parts, etc. Furthermore, we do not allow the encoding of a \(P_{i+1}\)-part \((i \in [0, \text{max}-1])\) by the codeword of a larger \(P_\gamma\), \(P_\gamma\cdot \ldots, P_{\gamma}\)-block, before the beginning of the encoding process of \(P_{i+1}\)-parts. For example, the encoding of a \(P_3\)-part by a \(P_0\)-block codeword, before the selection of \(P_1\)- and \(P_2\)-blocks, is not allowed. The reason is that this encoding may prevent a possible subsequent encoding of a (larger) \(P_\gamma\) or \(P_{\max}\)-part that includes the aforementioned \(P_3\)-part.

The encoding process of \(P_i\)-parts stops and that of \(P_{i+1}\)-parts begins when the total number of bits of the \(P_i\)-parts \((\text{TestBits}_i)\) that are compatible with the next \(P_\gamma\)-block to be selected, are fewer by a factor \(F\) than the bits of the \(P_{i+1}\)-parts \((\text{TestBits}_{i+1})\) that can be encoded by: a) the codewords of the already chosen \(P_\gamma\), \(P_\gamma\cdot \ldots, P_{\gamma}\)-blocks, and b) the codeword of the first \(P_{i+1}\)-block to be selected (i.e., when \(\text{TestBits}_{i+1} \geq F \cdot \text{TestBits}_i\)). Factor \(F\) is used for achieving a balanced selection between large and small blocks. When switching from \(P_i\)-parts to \(P_{i+1}\)-parts, the block size is halved (and hence, as explained in Section II, more test data can be encoded), but the number of codewords for encoding the same test-data volumes is doubled. In other words, \(\text{TestBits}_{i+1}\) are expected to be more than \(\text{TestBits}_i\) most of the times, but this does not guarantee better compression, since the double number of codewords is required for encoding the same number of bits. Thus, assuming that all codewords have the same length, \(\text{TestBits}_{i+1}\) must be at least twice as many as \(\text{TestBits}_i\) \((F = 2)\) for switching from \(P_i\)-parts to \(P_{i+1}\)-parts. However, \(F\) values greater than 2 may be preferable, since the codewords of the larger blocks are generally smaller than those of the smaller blocks, due to their higher occurrence frequency (which is a result of their increased reusability). The \(F\) value that maximizes the compression ratio for each circuit (a small positive integer greater than 1) can be easily tracked down since the running time of the encoding method is very short, and the set of possible \(F\) values is very small. Note that without factor \(F\), the proposed encoding algorithm would have selected very few large blocks and many small blocks.

When all \(P_0\), \(P_1\cdot \ldots, P_{\max}\)-blocks have been selected (their total number \(m\) is defined by the designer according to the area overhead constraints of the design), some of the \(P_{\max}\)-blocks
parts remain unencoded. Such parts are labeled as failed and a separate Huffman codeword is assigned to all of them. In the compressed test set, these P_{max}-parts are embedded unencoded, preceded by the aforementioned codeword. The Huffman tree is constructed when all P_1-blocks for ($i=0$, 1, ..., max) have been selected, so as all occurrence frequencies to be known.

An overview of the proposed algorithm is shown in Figure 3. We illustrate the above described process with the following example:

Example 1. Consider a circuit with $N_s = 8$ scan chains. Each slice can be partitioned into at most four P_2-parts of 2 bits ($\text{max}=2$, P_2-parts are primitive parts). The 64-bit test set shown in Figure 4a is initially partitioned into P_0-parts. Since all P_0-parts appear only once in the test set (an x value is considered different from a 0 or an 1), the first two that are compatible (0x1x00xx and x01xx01x) are merged. The resulting part (001x0010) is compared against all the rest P_0-parts and since it cannot be merged with any of them, it constitutes the first P_0-block.

The P_0-blocks encoded by this P_0-block are highlighted in Figure 4a. Assume now that factor F has been set to such a value that the encoding of P_0-parts (selection of P_0-blocks) has to stop and the encoding of P_1-parts (selection of P_1-blocks) has to begin. Therefore, the unencoded P_0-parts are partitioned into P_1-parts. This is illustrated in Figure 4b (note that in each figure representing a step of the encoding algorithm, every already encoded part is shown in light grey).

Before selecting the first P_1-block, all P_1-parts which are compatible with the first half of the selected P_0-block and, at the same time, satisfy Condition 1 (i.e., the second P_1-parts of all P_0-parts) are encoded by using this block (these P_1-parts are boldfaced and underlined in Figure 4b). Note that by using the first half of P_0-block 001x0010 for encoding the P_1-part 0x10, the unspecified bit of the P_0-block is set to 0. Then, the first P_1-block has to be selected. Since all the remaining P_1-parts appear only once, the first two that are compatible (i.e., 1111 and x11x) are merged. The resulting part (1111) can be also merged with P_1-part 1x1x. Thus, 1111 constitutes the first selected P_1-block and the P_1-parts that are encoded using this block are highlighted in Figure 4b. Assume again that after this step, inequality $\text{TestBits}_{x+1} \geq F\text{TestBits}$, is true and as a result the encoding of P_1-parts stops and that of P_2-parts begins. After partitioning all unencoded P_1-parts into P_2-parts (Figure 4c), all P_2-parts which satisfy Condition 1 and are compatible with the first quarter of the selected P_0-block (00) as well as with the first half of the selected P_1-block (11) are encoded using the corresponding blocks (they are boldfaced and underlined in Figure 4c). Then, P_2-part 01, which appears three times, is merged first with P_2-part xx that appears twice, and next with P_2-part x1. The resulting part (01) is the first selected P_2-block and the P_2-parts encoded by this block are highlighted in Figure 4c. One P_2-part (10) is left unencoded as shown in Figure 4c and is labeled as failed. Note that when the encoding process is complete, the test set has been partitioned into totally 20 P_0-, P_1-, and P_2-parts. In Figure 4d the selected distinct blocks, their occurrence frequencies and the corresponding Huffman codewords generated by constructing the Huffman tree of Figure 4e are reported. Finally in Figure 4f the encoded test set is shown with the last bit of each codeword underlined and the unencoded test set part (10) boldfaced and italicized.

We note that for small part sizes (up to 12 bits), instead of using the heuristic proposed in [23] for merging the various test set parts, optimal part merging (in terms of occurrence-frequency skewing of the selected distinct blocks) can be achieved as follows: assuming part size of k bits, all test set parts are examined against all 2^k fully specified patterns of k bits (00...00, 00...01, ..., 11...11). The pattern that is compatible with most test set parts is found and these test set parts are merged for constructing the first selected block. Then we find the pattern that is compatible with most of the remaining parts, which are merged for forming the second selected block, and so on.
Recoding Method

In this section we describe the way that test set parts are generated from the received codewords during the decoding process. Every slice consists of 2^{max} primitive parts (P_{max} parts), and thus the size of a P_{0}-part (slice) or P_{0}-block is equal to that of 2^{max} primitive parts, the size of a P_{1}-block is equal to that of $2^{\text{max}-1}$ primitive parts, etc. The decoding of every slice begins from the first primitive part (i.e., primitive part 0) and continues with primitive parts 1, 2, ..., $2^{\text{max}-1}$. Note however that depending on the received codeword and the status of the decoding process, a test set part larger than a primitive one (with size equal to that of multiple primitive parts) can be generated every time. When a whole slice has been produced, it is loaded into the scan chains and the decoding of the next slice begins. Let s be the value of a counter, consisting of max bits, which points to the next primitive part of a slice that has not yet been decoded. The first task of the decoding process is to determine the size L of the largest possible test set part that can be decoded, irrespectively of the received codeword. This can be easily done by examining the value of s. Specifically, the largest possible test set part that can be decoded is a P_{0}-part only if s is divided exactly by 2^{max}, or equivalently if the max least significant bits of s are all equal to 0. If s is not divided exactly by 2^{max}, the largest possible test set part that can be decoded is a P_{1}-part only if s is divided exactly by $2^{\text{max}-1}$, or equivalently if the max-1 least significant bits of s are all equal to 0. Therefore, the largest possible test set part that can be decoded is a P_{1}-part if s is divided exactly by $2^{\text{max}-1}$, but not by $2^{\text{max}-1+1}$, or equivalently if the volume of consecutive least significant bits of s that are 0 is equal to max-i.

The second task is to examine the received codeword and determine the size of the distinct block it encodes. If the size of the distinct block corresponding to the received codeword is smaller or equal to the size L of the largest possible test set part that can be decoded (according to the value of s), then the actual test set part that will be decoded is identical to the whole distinct block. If the size of the distinct block is larger than L, then the upper L bits of the distinct block are decoded. Suppose for example that the largest possible test set part that can be decoded (according to the value of s) is a P_{1}-part. Then upon reception of a codeword corresponding to a P_{1}, $P_{1}+1$, ..., P_{max}-block, the decoded test set part is identical to the whole P_{0}, $P_{1}+1$, ..., P_{max}-block, respectively. On the other hand, upon reception of a codeword corresponding to a P_{0}, P_{1}, ..., P_{max}-block, the upper segment of the P_{0}, P_{1}, ..., P_{max}-block, respectively, with size equal to that of the P_{0}-part, will be decoded. In order to better clarify this process we present the following example.

Example 2. Consider a circuit with $N_{sc}=64$ scan chains. Each slice of the test set is 64 bits long and includes $2^{1}=8$ primitive parts. Hence $\text{max}=3$ and each primitive part consists of 8 bits. The test set of the circuit is encoded using P_{0}, P_{1}, P_{2}, and P_{3}-blocks, of size equal to that of 8, 4, 2 and 1 primitive part, respectively. In Figure 5 we present a slice partitioned into 8 P_{max}-parts (0-7), as well as the values of s, which indicate the next primitive part of the slice that will be decoded (note that when $s=000$, no P_{max}-part has been decoded yet). Suppose that during the decoding process, a codeword encoding a P_{1}-block is received ($i=1$). If $s=0$ (000) or $s=4$ (100), then s is divided exactly by $2^{\text{max}-i}+2^{i}$, and therefore the whole P_{1}-block is loaded in the positions of the next 2^2 primitive parts (0-3 when $s=000$, or 4-7 when $s=100$). If $s=2$ (010) or 6 (110), then s is not divided exactly by $2^{\text{max}-i}$, but by $2^{\text{max}-i}+2^{i}=2^{\text{max}}$, and therefore the first half of the P_{1}-block is loaded in the positions of the next 2^2 primitive parts (2-3 when $s=010$, or 6-7 when $s=110$). Finally, if $s=001$, 011, 101 or 111, s is divided exactly only by $2^{\text{max}-i}2^{i}$, and thus the first quarter of the P_{1}-block is loaded in the position of the next 2^2 primitive part (1, 3, 5 or 7, when $s=001$, 011, 101 or 111, respectively). As we have mentioned earlier, the portion of the P_{1}-block that will be decoded can be straightforwardly determined by examining the volume of consecutive least significant bits of s that are 0 (if 2 LS bits are 0 then $2^{2}P_{\text{max}}$-parts will be decoded, if 1 LS bit is 0 then $2^{1}P_{\text{max}}$-parts will be decoded, etc.). In Figure 5, for every possible combination of s, i, we show the number and the positions of the P_{max}-parts that will be decoded. This table can be easily constructed in the same systematic way for every value of N_{sc} and max.

C. Statistical Improvement of Test Data

In this section, we propose two simple test-set transformations, which can be optionally applied before compressing the test data, for improving their statistical properties (no structural information of the core is required). Both transformations increase the difference between the volumes of 0s and 1s in the test set in order to skew the probability of occurrence of one of them (either 0 or 1). In this way the probability of occurrence of every P_{i}-block is skewed, and therefore the compression ratio increases even more. The following two transformations are proposed:

T_{1}: Inversion of all test data bits of selected scan chains.

T_{2}: Inversion of the test data bits of selected scan cells.

Both transformations are applied to the test set before it is encoded. The transformed test set is then compressed and during decompression the original test set is restored by removing on the fly the transformations.

At first, for each scan cell $c \in \{0, W_{i}-1\}$ of every scan chain $s \in \{0, N_{sc}-1\}$, we calculate the volume of 0s and 1s ($V_{0,c}$ and $V_{1,c}$).
The 0- and 1-bit volumes for each scan chain are equal to $V^0 = \sum_{s=0}^{Nsc-1} V^0_{sc}$ and $V^1 = \sum_{s=0}^{Nsc-1} V^1_{sc}$, while the total number of 0s and 1s in the test set is calculated as $V = \sum_{s=0}^{Nsc-1} V^s_{sc}$ and $V' = \sum_{s=0}^{Nsc-1} V'^s_{sc}$. Assume, without loss of generality, that for a test set, the 0-bit volume is higher than the 1-bit volume ($V^0 > V^1$). According to T_1, the scan chains with more 1s than 0s (considering all test vectors) can be inverted, for favoring the 0s count. This transformation is very simple and for reversing it, only one inverter is required for each scan chain with inverted values. Similarly, T_2 can be used for inverting the values of a predefined number of scan cells with the highest difference of 0-bits from 1-bits ($V^1_{sc} - V^0_{sc}$) for all test vectors. Both transformations improve, in most cases, the compression ratio, while they impose very small hardware overhead.

IV. PROPOSED ARCHITECTURE

The proposed decompression architecture is presented in Figure 6. It consists of the following units:

Input Buffer: This unit synchronizes the communication between the ATE and the decompressor. It receives the encoded data from the ATE channels in parallel with the frequency of the ATE clock (ATE_CLK), and shifts them serially into the Huffman FSM with the frequency of the system clock. When encoded data have been received from the ATE, Input Buffer notifies the Huffman FSM (Ready = 1), which controls their shift with signal Send. When Input Buffer empties, signal Ready is reset (Ready = 0) until new data are received from the ATE. The flow control between the Buffer and the ATE is performed via signal ATE_Sync.

Huffman FSM: It is a finite state machine which receives serially the data from the Input Buffer. When the Huffman FSM recognizes a codeword, and assuming that the implemented code consists of N codewords, it places on the bus CodecIndex a binary index (value) between 0 and $N-1$. This index indicates which codeword has been received (Valid Code is also set to 1). When the received codeword corresponds to an unencoded (failed) data block, the Huffman FSM sets signal Failed = 1 as well.

Register: The Register unit consists of a number of flip-flops, equal to the number of scan chains N_{sc}, which are partitioned into groups. Each flip-flop group corresponds to a primitive (P_{max}) part and is controlled by an enable signal (one of the signals of bus EN) activated by the Part Size/Enable unit. According to the proposed encoding scheme, the number of P_{max}-parts per slice is 2^{max}. Every P_{0}-, P_{1}-, P_{2}-, ..., P_{max}-part has length equal to that of 2^{max}, 2^{max-1}, 2^{max-2}, ..., 2^{0} P_{max}-parts respectively. Therefore, during the decoding of a P_{2}-part, 2^{max-1} successive groups of the Register are concurrently loaded.

Example 3. Let N_{sc} = 60 and thus the size of the various test set parts is: P_{0}-parts = 60 bits, P_{1}-parts = 30 bits, P_{2}-parts = 15 bits and P_{3}-parts = P_{max}-parts = 8 and 7 bits. The corresponding Register is shown in Figure 7. It comprises 4 groups of 8 flip-flops (G_0, G_1, G_2, and G_3) and 4 groups of 7 flip-flops (G_4, G_5, G_6, and G_7). During the generation of a P_{0}-part (60 bits), all enable signals EN_{0},...,EN_{7} are concurrently activated and the Distinct Block unit provides the 60 bits of the decoded P_{0}-block at the inputs $R_{in}(0...59)$. When a P_{1}-part (30 bits) has to be loaded, then, according to the partitioning of each slice, either signals EN_{0},...,EN_{2} or EN_{3},...,EN_{7} are activated, while the required 30-bit block is duplicated by the Distinct Block unit (as we will see shortly) so as to be present...
at the \(R_{\text{in}}(0...29) \) as well as at the \(R_{\text{in}}(30...59) \) Register inputs. Similarly, during the generation of a \(P_2 \)-part, the proper from the four copies of a 15-bit block is selected by activating signals \(EN_{\text{in}}, EN_1, EN_2, \) or \(EN_3, EN_4 \). For the same 15-bit block is available at the inputs \(R_{\text{in}}(0...14), R_{\text{in}}(15...29), R_{\text{in}}(30...44) \) and \(R_{\text{in}}(45...59) \). Finally, for a \(P_2 \)-part (8 or 7 bits), one of the signals \(EN_{\text{in}}, ..., EN_7 \) is activated and the Distinct Block unit provides the same 8-bit data block at the inputs. We have to mention here that Register unit can be omitted if the test data entering a scan chain. Then signals \(EN_{\text{in}} \) are directly connected to the scan chains.

Part Size/Enable Unit: It is a small combinational circuit which determines the size of the test set part that is encoded by the received codeword (in primitive-parts multiples), and enables the groups of the Register that will be loaded by activating the respective \(EN_{\text{in}} \) signals. According to the proposed approach, even if a codeword corresponds to a \(P_7 \)-block, it may be utilized for encoding \(P_{\text{in}1}, P_{\text{in}2}, ..., P_{\text{in}7} \)-parts (with sizes equal to that of \(2^{\text{max}_1-1}, 2^{\text{max}_2-1}, ..., 2^{\text{max}_7} \) primitive parts). The portion of the block that will be decoded is determined by the value \((s) \) of a binary counter embedded in this unit, as well as by the received codeword (see Example 2). The counter is increased by 2 when the \(s \) ranges from 0 to \(2^{\text{max}_1}-1 \), pointing to the next primitive part of a slice that has not been decoded yet. Specifically, assuming that a codeword corresponds to a \(P_2 \)-block, if \(s \) is divided exactly by \(2^{\text{max}_1} \) then the whole \(P_2 \)-block is decoded. Consequently, the next \(2^{\text{max}_2} \) groups are loaded in parallel (enable signals \(EN_{\text{in}}, EN_{\text{in}1}, ..., EN_{\text{in}2^{\text{max}_2}}, ..., EN_{\text{in}2^{\text{max}_7}-1} \) are activated), and the value of the counter is increased by \(2^{\text{max}_2} \). If \(s \) is not divided exactly by \(2^{\text{max}_2} \) but by \(2^{\text{max}_1} \) then the upper half of the \(P_2 \)-block is decoded (with size equal to that of a \(P_{\text{in}1} \)-part). Therefore, the next \(2^{\text{max}_2} \) groups are loaded in parallel (signals \(EN_{\text{in}}, EN_{\text{in}1}, ..., EN_{\text{in}2^{\text{max}_2}+1}, ..., EN_{\text{in}2^{\text{max}_7}-1} \) are activated), the value of the counter is increased by \(2^{\text{max}_2} \), and so on. The maximum power of 2 that divides \(s \) exactly is provided by a simple combinational circuit, which determines the number of consecutive least significant bits of the counter that are \(0 \) (\(s \) is divided exactly by \(2^q \) when the \(q \) least significant bits of \(s \) are all equal to 0). Concurrently with the activation of signals \(EN_{\text{in}} \), the Distinct Block unit, which receives the size of the part that will be decoded (bus \(\text{Size} \)), generates the appropriate block portion at the inputs of the Register groups. After the last group of the Register has been loaded, the counter is reset to 0.

Distinct Block Unit: It is a combinational circuit which receives the \(\text{CodeIndex} \) value indicating the current codeword, as well as the size of the part that will be decoded (bus \(\text{Size} \)) and returns the proper portion of the distinct block encoded by this codeword. Specifically, if the part that will be decoded has size equal to that of \(2^q \) primitive parts (this size is provided by the Part Size/Enable unit), then at the outputs of the Distinct Block unit, \(2^{\text{max}_q} \) copies of the first \(2^q \cdot [P_{\text{max}}] \) bits of the encoded distinct block are generated (\([P_{\text{max}}] \) indicates the size of the primitive parts in bits). In this way, the same data are repeated for every \(2^q \)-tuplet of Register groups, while the activated enable signals \((EN) \) ensure that only the proper \(2^q \)-tuplet will be loaded (see Example 3).

Similarly, in the case of a failed \(P_{\text{max}} \)-part, data received directly from the ATE (through the Input Buffer unit) are repeated for every group of the Register.

Invert Unit: This unit is optional and is inserted only when transformations \(T_1 \) and/or \(T_2 \) are applied to the test set. It consists of at most \(N_{\text{c}} \) gates, one for each scan chain, and of a decoding logic, only when \(T_2 \) is applied. When transformation \(T_1 \) is employed, the required gate is an inverter that inverts all test data entering a scan chain. If transformation \(T_2 \) is applied to one or more scan cells of a scan chain, an exclusive-OR or an exclusive-NOR gate is needed for selectively inverting the corresponding test bits. If we consider both transformations there are totally four cases:

1. Neither a scan chain, nor any of its cells are inverted (\(T_1 \) and \(T_2 \) are not applied for this scan chain). Then no logic is required for this scan chain.
2. A scan chain is inverted (\(T_1 \) is applied to this scan chain), but none of its cells is re-inverted (\(T_2 \) is not applied to any cell of this scan chain). Then an inverter is used for inverting all data entering the scan chain.
3. A scan chain is not inverted (\(T_1 \) is not applied to this scan chain), but at least one of its cells is inverted (\(T_2 \) is applied for this scan chain). Then an exclusive-OR gate is used for inverting only the bits of the selected scan cells.
4. A scan chain is inverted (\(T_1 \) is applied to this scan chain), and at least one of its cells is inverted again (\(T_2 \) is also applied). Then an exclusive-NOR gate is used for inverting all data entering the scan chain except for those corresponding to the cells that are inverted twice. In cases 3 and 4, the second input of the exclusive OR/ NOR gates is driven by the decoding logic, which selects the scan cells to be inverted, according to the value of the Slice Counter (it is in the range \([0, W_n-1]\)).

V. TEST APPLICATION TIME CALCULATION

Let us now calculate the test application time of the proposed method. Suppose that \(|E| \) is the size in bits of the compressed test set, \(f_{\text{ATE}} \) and \(f_{\text{SYS}} \) are the ATE and system clock frequencies respectively (with \(f_{\text{SYS}} = r \cdot f_{\text{ATE}} \)). \(N_{\text{ch}} \) is the number of ATE channels that are used for transferring the compressed data, and \(NC, UD \) are the number of codewords in the compressed test set and the number of data bits that remain unencoded, respectively. The test application time (TAT) of the proposed approach consists of: a) the time for downloading the data stream from the ATE to the core, which is \(t_1 = \frac{|E|}{N_{\text{ch}} \cdot f_{\text{ATE}}} \), b) the time required for shifting and decoding the test data (one bit per system cycle) from the Input
Buffer to the outputs of the Huffman FSM unit, that is:

\[t_2 = \frac{|E| - UD}{f_{sys}} \]

and c) the time required for loading the Register unit with the decoded blocks (one system clock per codeword), which is:

\[t_3 = \frac{NC}{f_{sys}}. \]

Therefore, the total time is:

\[
TAT = t_1 + t_2 + t_3 = \frac{|E|}{N_{ch} \cdot f_{ATE}} + \frac{1}{r \cdot f_{ATE}} (|E| - UD + NC) \tag{1}
\]

Note that since the loading of the Register unit requires only a single cycle for each distinct block, it can be overlapped with the decoding of the next codeword and thus \(t_3 \) can be eliminated. However here, we do not consider this improvement in order to study the worst-case scenario.

VI. EVALUATION AND COMPARISONS

The proposed compression method was implemented in C programming language, and experiments were performed using the dynamically compacted Mintest test sets [15] for stuck-at faults. The same test sets were also used in [7], [8], [10], [11], [13], [23], [27]-[29], [31], [39], [41], [43], [45], [47], [48], [50], [51], [55] and [56]. The run time of our method is a few seconds for each experiment. The compression ratio is calculated by using the formula:

\[
\text{Compression Ratio} \times 100 \% = \frac{\text{Mintest bits} \cdot \text{Compressed bits}}{\text{Mintest bits}}
\]

At first we examine how the various parameters affect the efficiency of the proposed approach. Due to the high volume of the conducted experiments, we present results only for circuits s9234 and s13207 but the results for the rest benchmarks are similar. In the first set of experiments we examine the effect of the volume of the selected variable-length distinct blocks \((m)\), as well as of statistical transformations \(T_1\) and \(T_2\) on the compression ratio. Figure 8 presents the compression ratios of the proposed method assuming 64 scan chains for s9234 and s13207, 8, 16 and 24 variable-length distinct blocks (blocks of sizes 64, 32, 16 and 8 bits were selected in all experiments), and various values of factor \(F\) (the best ones in terms of compression ratio were used). Three different compression cases are presented for each distinct-block volume: a) compression without any transformations (“No Transf.”), b) compression with transformations \(T_1\) and \(T_2\) for 50 selected cells (“\(T_1 + 50 \cdot T_2\)”), and c) compression with transformations \(T_1\) and \(T_2\) for 100 selected cells (“\(T_1 + 100 \cdot T_2\)”). It can be seen that compression improves as the volume of distinct blocks \((m)\) increases from 8 to 16, whereas the improvement is smaller as \(m\) increases further from 16 to 24. In fact, distinct-block volumes greater than 24 yield a very small performance boost, and for that reason, in our experiments, we utilized \(m\) values up to 24. On the other hand, the application of transformations \(T_1\) and \(T_2\) has a noticeable impact on the compression ratio, irrespectively of the volume of the selected distinct blocks. However, when the volume of the cells inverted by transformation \(T_2\) increases from 50 to 100, the compression does not improve significantly (in some cases, it even decreases slightly). This is due to the fact that there is a saturation point, after which any further increase in the number of cells inverted by \(T_2\) does not practically affect the compression ratio. Our experiments showed that compression-ratio saturation is generally reached with a small number of inverted cells (50 - 100). In other words, a small number of inverted cells is sufficient for improving the statistical properties of the test set. Note that, as we will see later, the volumes of both the selected distinct blocks and the cells inverted by transformation \(T_2\) affect the hardware overhead of the decompressor as well. We therefore conclude that the selection of a small number of distinct variable-length blocks, in conjunction with the application of both transformations \(T_1\) and \(T_2\) (for a small number of selected cells, i.e., 50 - 100), provides very good compression results with small area overhead (the overhead imposed by \(T_1\) is negligible).

In the second set of experiments we study the effect of factor \(F\) on the compression ratio. We remind that \(F\) is used for balancing the distribution of the sizes of the selected variable-length distinct blocks. We ran the proposed method for \(F = 1, 2, \ldots, 7\) and 8, assuming 64 scan chains and 8 selected distinct blocks of lengths 64, 32, 16 and 8 bits. The compression ratios of these experiments for the test sets of s9234 and s13207 are presented in Figure 9. As expected, the compression ratio initially improves as \(F\) becomes greater than 1, it reaches a peak value and then it drops. The peak value corresponds to the distinct-block-sizes distribution with the highest efficiency. Taking into account that the run-time of the proposed method is very short, the designer can quickly track
Another factor that affects the efficiency of the proposed approach is the slice size, i.e., the number of scan chains (Nsc) of the CUT. Figure 10 presents results for Nsc = 16, 32, 64 and 128, assuming 24 selected distinct blocks of variable lengths. The size of the primitive parts was set to 8. No test-set transformations were applied, in order to focus solely on the compression method. Various values of factor F were examined and the best one was selected for each core. We can see that as the number of scan chains (and thus the slice size) increases, the compression ratio improves. This is an expected behavior, if we consider how the test set is partitioned into primitive parts; when the number of scan chains is doubled, the number of available part/block-sizes increases (note that the size of the primitive parts remains the same). As a result, the encoding ability of the proposed method improves (due to the greater block-size granularity).

In Table I we present the test-data compression results (# bits) of the proposed method for 16, 64 and 128 scan chains and 24 selected distinct variable-length blocks (the bit volumes of the original Mintest test sets can be found in Table II). The size of the primitive (Pout) parts was equal to 8 bits in all experiments (since Pout parts are the smallest encoded test set parts, their size should be similar to the block size of simple Selective Huffman coding [23], [28]). In almost all cases compression improves as the number of scan chain increases. Also, compared to the "No Transformations" case, almost always we get better compression when T1 + 50 T2 are applied, whereas, most of the times, a further increase in the number of cells inverted by T2 does not provide significant improvements. Also, as explained earlier, there are a few cases, where no increase or even a marginal drop on the compression ratio is observed when the number of inverted cells increases from 50 to 100 (e.g., s3578 for 64 scan chains).

We next compare the proposed approach against methods that also exploit the multiple scan chains of a core for reducing the test application time. Note that no comparisons are provided against approaches that need structural information of the CUT or require ATPG and/or fault simulation synergy. Such methods target cores of known structure and thus employ fault simulation, and, most of the times, specially constrained ATPG processes, which reduce significantly and tailor to the encoding method the data that need to be compressed. We mention that for cores of unknown structure neither ATPG nor fault simulation can be performed. Also, we do not compare against: a) the approach of [12], since several conditions have to be satisfied by a core nearby the CUT, so as the former to be used as decompressor, and b) methods that provide results for different test sets from those used in our experiments. The compressed data volumes are significantly affected by the utilized test sets and therefore no conclusions can be drawn by such comparisons. In Table II, comparisons against Mintest, selective Huffman [23] (re-implemented here for multiple – i.e., 64 – scan chains), [29], [41] and [47] are presented. In column 2, we provide the sizes.
of the original Minitest test sets. For the selective Huffman approach, the number of selected fixed-length distinct blocks was set to 24 and three different block sizes equal to 8, 16 and 32 bits were examined. The best result for every circuit is reported in column 3 of Table II. Columns 4, 5 and 6 present the best results of [29], [41] and [47] respectively. Note that for the approach of [47], apart from the test data reported in column 5, an additional significant amount of control data should be stored in the ATE and then transferred to the CUT. Although these additional data increase the volume of the stored bits, they cannot be taken into account in Table II, since they have not been reported by the authors of [47]. In columns 7 and 8 we provide the best results of the proposed method when transformations \(T_1 \) and \(T_2 \): a) are not applied (column 7), and b) are both applied (\(T_2 \) for 100 selected cells – column 8). Finally, columns 9-13 report the reduction percentages of the proposed method (considering the best-boldfaced results of columns 7 and 8) over the rest methods. As we can see, in all but one case (s38417 of [47], for which no control data have been reported) the proposed technique performs better than the others.

In Table III we provide the compression ratios achieved by dictionary-based methods suitable for cores with multiple scan chains (columns 2-7), as well as those achieved by the proposed approach (column 8). In some cases our method performs better than the rest, whereas in others it does not. However, as we will show later, the hardware overhead of dictionary-based methods is prohibitively large.

In Table IV we present the compressed-data reduction percentages of the proposed method against techniques applicable to cores with a single scan chain. The compression achieved by the proposed approach is higher than that of the rest methods, except for the s38584 case of [27] and the s38417 case of [28] which are marginally higher. Note that all these methods require long test application times due to their inability to exploit the parallelism of multiple scan chains.

For assessing the hardware overhead of the proposed method, we synthesized three different decompressors for the test set of s9234, applying: a) no transformations, b) \(T_1 \) and \(T_2 \) for 50 selected cells, and c) \(T_1 \) and \(T_2 \) for 100 selected cells. We also synthesized the decompressor of the implemented parallel selective Huffman approach, with (fixed) block size (BS) equal to 8, 16 and 32. In all experiments, the number of scan chains was set to 64, and the number of selected distinct blocks to 24 (note that the decompressor size does not depend on the compressed test set, but on architectural parameters like the number of scan chains, the number of selected distinct blocks, the number of selected cells in transformation \(T_2 \), etc.). The results are shown in Figure 11 in gate equivalents (a gate equivalent corresponds to a 2-input NAND gate). Observe that the transformations marginally increase the hardware overhead of the proposed method. Compared to the well-known selective Huffman approach, the proposed one imposes slightly higher hardware overhead. The hardware overhead of [29] for 24 selected cells is 582 gate equivalents and thus it is very close to the hardware overhead of the proposed method. As far as the approaches of [41] and [47] are concerned, their hardware overhead is low, but, as shown earlier, their compression ratios are much smaller than those of the proposed method.

Compared to the dictionary-based methods, the hardware overhead of the proposed approach is very small. The size of the required dictionary in [51] is in the range of 1,187 to 9,152 bits, which is comparable to that of [39] and smaller than those of [31] and [55]. The size of the dictionary in [56] is between 6,264 and 43,712 bits, while that of [50] is equal to 25,600 bits. Apart from the dictionaries, extra area will be also occupied by the decompressors of the above techniques. Therefore, we conclude that dictionary-based methods impose prohibitively large hardware overhead.

The hardware overhead of the single-scan-chain methods, in gate equivalents, is: 125-307 for [7] (as reported in [13]), 320 for [10], 136-296 for [13], 203-432 for [27], 551-769 for the main part of the decompressor in [45] and 416 for [51]. The hardware overhead of [23] is greater than that of [13]. Although cheaper in hardware, these techniques require much longer test application times and much more data to be stored in the ATE, compared to the proposed approach.

As far as the test application time (TAT) is concerned, the reduction percentages of the proposed method, assuming 5 ATE channels, are shown in Figure 12 (we considered the best cases of Table I). We present results for \(r = 2 \) and \(r = 10 \), where \(r = \frac{f_{ATE}}{f_{SYS}} \). For demonstrating the TAT benefits that stem from the application of the proposed compression.
method, we compared the proposed technique against the parallel-loading case of the original, uncompressed test sets (with 5 ATE channels). Columns labeled "Mintest_MSC" illustrate the obtained reduction percentages. It can be seen that the TAT gain is high and it becomes even greater as \(r \) increases. This is explained by the fact that increasing \(r \) values lead to faster decoding of the encoded data by the on-chip decompressor [factors \(t_2 \) and \(t_3 \) in relation (1) decrease]. Furthermore, in order to illustrate the advantage of exploiting the multiple scan chains of a core, we also compare against: a) the single-scan-chain version of the proposed method (columns labeled "Prop_SSC"), and b) the original version of the approach of [23], which is applicable to cores with a single scan chain (columns labeled "[23]_SSC"). In both cases the TAT gain is significant. However, although the gain attributed to the parallel loading of multiple scan chains is constant, the serialization of the decoded data in both Prop_SSC and [23]_SSC is carried out faster as \(r \) increases and thus the test-time reduction drops.

VII. CONCLUSIONS

In this paper we proposed an efficient compression method, suitable for multiple-scan-chain IP cores of unknown structure. Huffman is used as a variable-to-variable code for compressing variable-length blocks. For increasing the compression ratio, codeword reusability as well as two transformations that improve the statistical properties of the original test set, were introduced. A simple and low-overhead architecture was finally proposed for performing the decompression.

REFERENCES

Figure 12. Reduction percentages of test application time (TAT)

L. Lin et al., “Efficient space/time compression to reduce test data volume and testing time for IP cores”, in Proc. 18th Int. Conf. on VLSI Des., 2005, pp. 53-58.

