
The RedBlue Adaptive Universal Constructions

Panagiota Fatourou
University of Ioannina

& FORTH-ICS, Crete Island

Nikolaos D. Kallimanis
Department of Computer Science

University of Ioannina

Abstract

We present the family of RedBlue algorithms, a collection of universal wait-free constructions
for linearizable shared objects in an asynchronous shared-memory distributed system with n
processes. The algorithms are adaptive and improve upon previous algorithms in terms of their
time and/or space complexity.

The first of the algorithms is of theoretical interest only; it achieves better time complexity
than all previously presented algorithms but it is impractical since it uses large LL/SC registers.
This algorithm comprises the keystone for the design of the rest RedBlue algorithms which are
of practical interest. The second algorithm significantly reduces the size of the required registers
and it is therefore practical in many cases. The last two algorithms work efficiently for large
objects improving previous universal constructions for large-objects presented by Anderson and
Moir (PODC 1995).

Since our algorithms are universal, they are obviously more general than algorithms simu-
lating specific types of shared objects (like f-arrays introduced by Jayanti in PODC 2002, closed
objects introduced by Chandra, Jayanti and Tan in PODC 1998, or any other simulation of a
restricted class of objects).

1 Introduction

In a shared memory system processes communicate by accessing shared objects, data structures
that can be accessed concurrently by several processes. In this paper, we present the collection of
RedBlue algorithms, wait-free universal constructions, i.e., algorithms that implement any shared
object in an asynchronous system; wait-free algorithms [12] guarantee that a process completes
the operation it executes in a finite number of its own steps despite the failures or the execution
speed of other processes. The algorithms use LL/SC registers; Herlihy has proved [12] that such
algorithms necessarily use strong primitives (with infinite consensus number) like LL/SC.

In shared memory systems it is often the case that the total number of processes n taking part
in a computation is much larger than the actual number of processes that concurrently access the
shared object. For this reason, a flurry of research [2, 1, 8, 9, 14] has been devoted to the design of
adaptive algorithms whose time complexity depends on k, the maximum number of processes that
concurrently access the shared object and not on n. All RedBlue algorithms are adaptive.

The algorithms use two perfect binary trees of log n+1 levels each. The first tree, called the red
tree, is employed for the estimation of any encountered contention. In each of these trees, a process
is assigned a leaf node (and therefore also a path from this leaf to the root node, or vice versa). A
process that wants to apply an operation on the simulated object, traverses first its path from the
root downwards in the red tree looking for an unoccupied node in this path. Once it manages to
occupy such a node, it starts traversing the second tree (which is called the blue tree) upwards from
the isomorphic blue node to the occupied red node, trasfering information about its operation (as
well as for other active operations) towards the tree’s root. In this way, each operation traverses
at most O(min{k, log n}) nodes in each of the two trees. Once information about the operation
reaches the root, the operation is applied on the simulated object.

The first algorithm has time complexity O(min{k, log n}) which is better than the one of any
previously presented algorithm but it uses big LL/SC registers; thus it is only of theoretical interest.
A lower bound of Ω(log n) on the time complexity of universal constructions that use LL/SC
registers is presented in [16]. It holds even if an infinite number of unbounded-size registers are
employed by the implementation. Our algorithm is therefore optimal in terms of time complexity.

The second algorithm (S-RedBlue) is a slightly modified version of RedBlue that uses smaller
registers and it is therefore, in many cases, practical. S-RedBlue uses O(n) LL/SC registers, one
for each of the trees’ nodes and n + 1 single-writer registers per process. Each register of the red
tree has size log n + 1. Each register of the blue tree stores n bits, one for each process. One
of the registers (the one corresponding to the blue root) is big. We implement this register by
single-word LL/SC using the technique in [18]. In current systems where registers of 128 bits are
available, S-RedBlue works with single-word LL/SC objects for up to 128 processes. In fact, even in
cases that n > 128 but n/128 = c, where c is any constant, our algorithm can be implemented by
single-word LL/SC registers with the same time complexity (increased by a constant factor) using
the implementation of multi-word LL/SC from single-word LL/SC [18].

Most of the universal algorithms presented in past, as well as RedBlue and S-RedBlue, copy
the entire state of the object each time an update on it should be performed by some process.
This is not practical for large objects that their states may require a large amount of storage to
mantain it. Anderson and Moir [7] presented a lock-free and a wait-free universal construction that
are practical for large objects. Their algorithm differs from Herlihy’s large object approach [13]
since it is array-based rather than pointer based; it also overcomes some of the drawbacks of
Herlihy’s algorithm. We combine some of the techniques introduced in [7] with the techniques

1

employed by the RedBlue algorithms to design two simple wait-free constructions which have the
nice properties of the constructions in [7] while achieving better time complexity. More specifically,
our algorithms are adaptive. The time complexity of the first algorithm is much better than the
wait-free construction presented in [7] but it does not assume an upper bound on the number of
processes a process may help as the wait-free construction in [7] does. Our last algorithm (BLS-
RedBlue) exhibits all the properties of the wait-free construction in [7] and still achieves better
time complexity. In particular, its time complexity is similar to the one in [7] but with k having
substituted n. The space complexity of the algorithm is the same as the one of the wait-free
algorithm in [7]. Our algorithms are much simpler than the constructions presented in [7], and
they achieve significantly improved time complexity compared to these algorithms.

Afek, Dauber and Touitou [3] have presented algorithm GroupUpdate which also uses a tree
technique to keep track of the list of active processes. They then combine this tree construction
with Herlihy’s universal algorithm [12, 13] to get a universal construction with time complexity
O(k log k+W +kD), where W is the size (in words) of the simulated object state and D is the time
required for performing a sequential operation on it. Our first algorithm is (kind of) a simplified
version of GroupUpdate thus achieving better time complexity (O(min{k, log k})). However, it is
inferior to GroupUpdate in that it uses big LL/SC registers. Our second algorithm addresses this
problem still achieving better time complexity than GroupUpdate.

Although the first of the RedBlue algorithms shares a lot of ideas with GroupUpdate, it exhibits
also several differences: (1) it employs two complete binary trees each of which has one more level
than the single tree employed by GroupUpdate; in each of these trees, each process is assigned its
own leaf node which identifies a unique path (from the root to this leaf) in the tree for the process;
(2) processes traverse the red tree first in order to occupy a node and this procedure is faster
than a corresponding procedure in GroupUpdate. More specifically, GroupUpdate performs a BFS
traversal of its employed tree in order for a process to occupy a node of the tree, while each process
in any of the RedBlue algorithms always traverses appropriate portions of its unique path. This
results in reduced time complexity for some of the RedBlue algorithms. The rest of our algorithms
additionally employ a completely different mechanism for transfering the response values to the
active processes, and they present several other differences.

Afek, Dauber and Touitou [3] present a technique that employs indirection to reduce the size of
the registers used by GroupUpdate (each tree register stores a process id and a pointer to a list of
ids of currently active processes). A similar technique can be applied to the RedBlue algorithms in
case n is large enough to have n bits stored in a constant number of LL/SC registers. The resulting
algorithms will have just a pointer stored in each of the blue nodes (thus using smaller registers than
GroupUpdate which additionally stores and a process id in each of its LL/SC register). However,
employing this technique would cause an increase to the step complexity of our algorithms by an
O(k log k) additive factor.

Afek, Dauber and Touitou present in [3] a second universal construction (IndividualUpdate)
that has time complexity O(k(W + D)). IndividualUpdate stores into registers sequence numbers
and therefore it requires unbounded size registers or registers that support the V L operation in
addition to LL and SC. The first two RedBlue algorithms achieve better time complexity than
IndividualUpdate. Some of our algorithms use single-word registers (however, they also employ
LL/V L/SC objects).

Afek, Dauber and Touitou [3] discuss a method similar to the one presented in [10] to avoid
copying the entire object’s state in IndividualUpdate. The resulting algorithm has time complexity

2

O(kD log D). The work of Anderson and Moir on universal constructions for long objects [7] follows
this work. Our last two algorithms improve in terms of time complexity upon the constructions
presented in [7]. They achieve this using single-word registers (and the last algorithm with the
same space complexity as the wait-free construction in [7]).

Jayanti presented in [17] f-arrays, a generalized version of a snapshot object which allows the
execution of any aggregation function f on the m elements of an array of m memory cells that can
be updated concurrently. As our first algorithm, f-arrays has time complexity O(min{k, log n}); the
algorithm uses a tree structure similar to the one emplyed by GroupUpdate and our algorithm. Our
algorithm is universal, thus achieving wider functionality than f-arrays. Constructions for other
restricted classes of objects with polylogarithmic complexity are presented in [11].

Afek et al. [4, 5] and Anderson and Moir [6] have presented universal algorithms for multi-object
operations that support access to multiple objects atomically. The main difficulty encountered
under this setting is to ensure good parallelism in cases where different operations perform updates
in different parts of the object’s state. We are currently working on whether appropriately modified
versions of some of the RedBlue algorithms can work efficiently for multi-object operations and we
plan to include multi-object operation RedBlue-like universal constructions in the full version.

2 Model

We consider an asynchronous shared-memory system of n processes which communicate by accessing
shared objects. A read-write register stores a value from some set and supports two operations:
read returns the value of the register leaving its content unchanged, and write(v) writes the value
v into the register and returns ack. An LL/SC register R stores a value from some set and supports
the atomic operations LL and SC; LL(R) returns the current value of R; the execution of SC(R, v)
by a process p must follow the execution of LL(R) by p, and it is successful only if no process has
performed a successful SC on R since the execution of p’s latest LL on R; if SC(R, v) is successful
the value of R changes to v and true is returned. Otherwise, the value of R does not change and
false is returned. Some LL/SC registers support the operation V L in addition to LL and SC;
V L returns true if no process has performed a successful SC on R since the execution of p’s latest
LL on R, and false otherwise. A register is multi-writer if all processes can change its content; on
the contrary, a single-writer register can be modified only by one process. A register is unbounded
if the set of values that can be stored in it is unbounded; otherwise, the register is bounded.

A configuration consists of a vector of n + r values, where r is the number of registers in the
system; the first n attributes of this vector describe the state of the processes, and the last r
attributes are the values of the r registers of the system. In the initial configuration each process
is in an initial state and each register contains an initial value. A process takes a step each time
it accesses one of the shared registers; a step also involves the execution of any local computation
that is required before the process accesses some shared register again (this may cause the state of
the process to change). An execution is a sequence of steps.

Registers are usually used to simulate more complex objects. A simulation of an object O
(which supports e.g., l operations) by registers uses the registers to store the data of O and provides
l algorithms for each process, to implement each of the l operations supported by the simulated
object. The time complexity of an operation is the maximum number of steps performed by any
process to execute the operation in any execution of the simulation. The time complexity of the
simulation is defined to be the maximum between the time complexities of its operations. A

3

universal object simulates all other objects.
A process is active if it has initiated but not yet finished the execution of an operation op.

When this is true, we also say that op is active. The portion of an execution that starts with the
invocation of an operation op and ends with op’s response is called the execution interval of op.
The interval contention of op is the total number of processes that take steps during the execution
interval of op. The point contention of op is the maximum number of processes that are active at any
configuration during the execution interval of op. The interval (point) contention of a simulation
is the maximum interval (point) contention of any operation performed in any execution of the
simulation. An execution is serial if for any two steps executed by the same operation, all steps
between them are executed also by the same operation.

We assume that processes may experience crash failures, i.e., they may stop running at any point
in time. A wait-free algorithm [12] guarantees that a process finishes the execution of an operation
within a finite number of its own steps independently of the speed of the other processes or the faults
they experience. (Lock-freedom is a weaker progress property that allows individual processes to
starve but guarantees system-wide progress.) We concentrate on linearizable implementations [15].
Linearizability guarantees that in any execution α of the simulation, each of the executed operations
in α appears to take effect at some point, called the linearization point, within its execution interval.

3 The F-RedBlue Algorithm

3.1 Algorithm description

F-RedBlue uses a perfect binary tree (called blue tree) of log n + 1 levels, each node of which is an
LL/SC register. Each process p owns one of the tree leaves and it is the only process capable to
modify this leaf. For each process p, there is therefore a unique path pt(p) (called blue path for p)
from the leaf node assigned to p up to the root. Each node stores an array of n operation types (and
their parameters), one for each process p to identify the operation that p is currently executing.
The root node stores additionally the state of the simulated object (and for each process, the return
value for the last operation (being) applied on the simulated object by the process).

Whenever p wants to apply an operation op on the object, it moves up its path until it reaches
the root and ensures that the type op tp(op) of op is recorded in all nodes of the path by executing
two LL/SC on each node. If any of the LL/SC that p executes on a node succeeds, op tp(op) is
successfully recorded in it; otherwise, it can be proved that op tp(op) is recorded for p in the node
by some other process before the execution of the second of the two SC instructions executed by
p. In this way, the type of op is propagated towards the root where op is applied to the object.

Process p also records in each node the operations executed by other active processes in an
effort to help them finish their executions. Successful SC instructions executed at the root node
may cause the application of several operations by different processes to the simulated object. In
this way, the algorithm guarantees wait-freedom.

Once p ensures that op has been applied, it traverses its path from its leaf up to the root once
more to eliminate any evidence of its last applied operation by overwriting the operation type of its
last operation with the special value ⊥. This allows p to execute more operations on the simulated
object; more specifically, a new operation op′ executed by p is applied on the simulated object only
if its operation type op tp(op′) reaches the root and finds the value ⊥ stored for p in it.

This relatively simple algorithm requires O(log n) steps to execute. In order to make it adaptive,

4

p r o c e s s e s 1 2 3 4 5 6 7 8

b l u e t r e e

1

2 3

4 5 6 7

8 9 1 0 1 1 1 2 1 3 1 4 1 5

1 2 3 4 5 6 7 8

l e v e l 1

l e v e l 3

l e v e l 2

l e v e l 4

r e d t r e e

1

2 3

4 5 6 7

8 9 1 0 1 1 1 2 1 3 1 4 1 5

Figure 1: Blue and red tree of F-RedBlue algorithm for n = 8.

we use one more tree (the red tree), isomorphic to the blue tree. Thus, each process p is assigned
a leaf node of the red tree which identifies a unique path from the root to this leaf (red path for
p). The red tree allows processes to obtain information about the encountered contention which
is then used to shorten the paths that processes traverse in the blue tree (i.e., the process starts
its traversal of its blue path possibly from some internal node of the tree which is at a level that
depends on the encountered contention).

Each node of the red tree stores information about only one operation, namely the operation
that is applied by the process that ”occupies” the node. More specifically, each process p first tries
to occupy a node of the red tree and then starts traversing (part of) its blue path. In order to
occupy a red node, p traverses its red path downwards, from the root to its assigned leaf, until
it finds a clean node (i.e., a currently unoccupied node with the value (⊥,−1)) and manages to
occupy it by recording its operation type and its id in it. We will later prove that each red node is
occupied by at most one process at any point in time. An occupied node identifies a process that
is currently active, so as long as p reaches occupied nodes, it encounters more contention. It is to
prove that p will eventually reach an unoccupied node and will achieve to record the appropriate
information there. (This, in the worst case, will be its leaf node). Once p occupies some red node
with id zr, it starts each of the two traversals of its blue path from the node of the blue tree that
corresponds to zr up to the root. By employing the red tree, processes traverse shorter paths in
the blue tree. This improves the time complexity of the algorithm to O(min{k, log n}), where k is
the interval contention of op.

We continue to provide a more technical description of the algorithm. Since the blue (red) tree
is a perfect binary tree and there is only one such tree with log n + 1 levels, we implement it using
an array bn (rn) of 2n−1 elements. The nodes of the tree are numbered so that node z is stored in
bn[z] (rn[z], respectively). The root node is numbered with 1, and the left and right children of any
node z are nodes 2z and 2z + 1, respectively. The two trees for n = 8 are illustrated in Figure 1.
Process p, 1 ≤ p ≤ n, is assigned the leaf node numbered n + p − 1. We remark that traversing
up the path from any node z to the root can be implemented in a straightforward manner: the
next node of z in the path is node numbered bz/2c. However, the downward traversal of the path
requires some more calculations which are accomplished by the lines 5− 10 of the pseudocode.

When a process p wants to execute an operation op of type op tp(op) it first traverses its red
path (lines 1− 10). For each node z of this path, it checks if the node is unoccupied (line 3) and if
this is so, it applies an SC instruction on it in an effort to occupy it (line 4). If the SC is successful,
the traversal of the red path ends (line 4). Otherwise, the next node in the path is calculated (lines

5

Algorithm 1 Pseudocode of F-RedBlue.
type PINDEX {1, . . . , n};
struct rnode{

operation type op tp;
PINDEX pid;

}

struct bnode{
state st; // field used only at the root node

ret vals vals[n]; // field used only at the root node

operation type ops tp[n];
}

shared struct rnode rn[1..2n− 1] = {< ⊥,−1 >, ..., < ⊥,−1 >};
shared struct bnode bn[1..2n− 1] = {< ⊥, < 0, ..., 0 >, < ⊥, ...,⊥ >>, ..., < ⊥, < 0, ..., 0 >, < ⊥, ...,⊥ >>};
ret val apply op(operation type op tp, PINDEX p){

int direction = n/2, z = 1, levels = lg(n) + 1, l;

ret vals rv;

1. for(l=levels;l ≥ 1;l--){ // traversal of red path

2. LL(rn[z]);
3. if(rn[z] == < ⊥,−1 >)

4. if(SC(rn[z], <op tp, id>)) break;

5. if(id ≤ direction){ // find the next node in the path

6. direction = direction - 2l−3;

7. z = 2 ∗ z; // move to the left child of z
}

8. else{
9. direction = direction + 2l−3;

10. z = 2 ∗ z + 1; // move to the right child of z
}

}
11. propagate(z, p); // first traversal of blue path: propagating the operation

12. rv = bn[1].vals[id];
13. LL(rn[z]);
14. SC(rn[z], <⊥, p>); // indicate that the operation occupying rn[z] starts its deletion phase

15. propagate(z, p); // second traversal of blue path: propagating ⊥
16. LL(rn[z]);
17. SC(rn[z], < ⊥,−1 >); // re-initiate the occupied red node to ⊥
18. return rv; // return the appropriate value

}
void propagate(int z, PINDEX p){
19. while(z!=0){ // traversal of the blue path

20. for(int i=1 to 2)do { // two efforts to store appropriate information into each node

21. LL(bn[z]);
22. bt=calculate(z, p);
23. SC(z, bt);

}
24. z =bz/2c;

}
}
struct bnode calculate(int z) {

struct bnode tmp=< ⊥, < 0, . . . , 0 >, < ⊥, . . . ,⊥ >>, blue=bn[z], lc, rc;

struct rnode red = rn[z];

25. if (2 ∗ z + 1 < 2n) { lc = bn[2 ∗ z]; rc = bn[2 ∗ z + 1]; } // actions if z is an internal node

26. if (z == 1) { tmp.ret val[1..n] = blue.ret val[1..n]; tmp.st = blue.st; } // actions if z is the root node

27. for q = 1 to n do{
28. if (red.pid == q) tmp.ops tp[q] = red.op pt; // check if process q occupies node red

29. else if (is predecessor(z,q,2 ∗ z)) tmp.ops tp[q]=lc.op tp[q];
30. else if (is predecessor(z,q,2 ∗ z + 1)) tmp.ops tp[q]=rc.op tp[q];
31. if (tmp.ops tp[q] 6= ⊥ AND tmp.ops tp[q] 6= blue.ops tp[q])
32. apply tmp.ops tp[q] to tmp.st and store into tmp.ret vals[q] the return value;

}
33. return tmp;

}
boolean is predecessor(int z, int p, int pred){
34. int levels = log n + 1, total nodes = 2levels − 1, leaf node = btotal nodes/2c+ p;
35. int pred height=levels− blg(2 ∗ z)c, real pred=bleaf node/2pred heigth−1c;
36. if (pred < 2 ∗ n AND real pred == pred) return true;
37. else return false;
}

6

5− 10) and one more iteration of the loop is performed.
Once a red node zr has been occupied, op performs two traversals of (a part of) its blue path

starting from the corresponding to zr node of the blue tree up to the root (lines 11 − 15). This
is accomplished by the two calls to propagate. Each of these traversals propagates the operation
type written into zr to the root node. Notice that p records ⊥, as its operation type, into zr (lines
13−14) before it starts its second traversal (notice that this occurs by performing one more LL/SC,
although a write instruction would be enough, since we assume that an LL/SC register supports
only the operations read, LL, and SC and not write).

On each node z of the traversed path, propagate performs twice the following: (1) an LL
instruction on z (line 21); (2) calculates the appropriate information to write into z by calling
function calculate (line 22); (3) an SC to store the result of calculate into z (line 23). Finally,
it moves up to the next node of the blue path (line 24). Process p re-initiates its occupied red node
by writing in it the value (⊥,−1) (lines 16− 17) just before it returns.

Function calculate computes a (potentially new) operation type for each process q (lines
27 − 32) as described below. If q occupies the isomorphic to z red node (line 28) then q’s new
operation type is the one which is recorded into the red node. Otherwise, the operation type for q
is found in the previous node of z in q’s blue path. In case z is the root node and the calculated
operation type for q is not already written in z and it is different than ⊥ (line 31), then the operation
of q is a new one and should be applied to the simulated object (line 32). This is simulated by
calling function apply.

3.2 Correctness proof

In this section we prove the correctness of F-RedBlue and analyze its complexity.
We start by studying the properties of the execution portion of an operation op (i.e., an instance

of apply op) that traverses the red tree. Intuitively, we prove that op manages to occupy a red
node (Lemma 3.2), and as long as op is executed, no other operation succeeds in updating this red
node (Lemmas 3.5 and 3.6). Once op finishes its execution, it stores into its red node its initial
value in order to allow its re-occupation by some other operation.

Call the SC instructions of line 4, SC of type 1, the SC instructions of line 14, SC of type 2,
and the SC instructions of line 17, SC of type 3. Let p be any process. By the pseudocode, only
process p executes SC instructions on register rn[n − 1 + p], the red leaf associated to p. Thus,
all these instructions succeed. Therefore, the condition of line 3 of the pseudocode is evaluated
to TRUE when executed on rn[n − 1 + p] and, by the pseudocode, the sequence of SC executed on
rn[n− 1 + p] alternates between SC of type 1, SC of type 2, and SC of type 3.

Observation 3.1 Let p be any process. Then,

1. only process p executes SC instructions on register rn[n− 1 + p];

2. the condition of line 3, when executed on rn[n− 1 + p], is evaluated to TRUE;

3. all SC on rn[n− 1 + p] succeed;

4. the sequence of SC executed on rn[n − 1 + p] alternates between SC of type 1, SC of type 2,
and SC of type 3.

7

Based on Observation 3.1, it is easy to prove that any operation op, executed by some process
p, performs a successful SC of type 1 at some node of the red tree, since, in the worst case, this
will occur at p’s red leaf, the last node of p’s red path.

Lemma 3.2 Any instance op of apply op executes a successful SC instruction of type 1 at some
node of the red tree.

Proof: Let p be the process that executes op. Assume, by the way of contradiction, that op does
not execute a successful SC of type 1 on any node of the red tree. Then, by the pseudocode (lines
1-10), op executes an SC instruction of type 1 on any node of the red path of p. Since the last node
in this path is rn[n− 1 + p], it follows that the SC executed by p on rn[n− 1 + p] is not successful,
which contradicts Observation 3.1 (claim 3).

Let z, 1 ≤ z ≤ 2n − 1, be the id of a node of the red tree. For any j ≥ 1, denote by SCj
1(z)

the j-th successful SC of type 1 executed on z (i.e., on the node with id z), and let opj(z) be the
operation that executes SCj

1(z). We often abuse notation and omit z, whenever it is clear from the
context. Notice that, by definition, there are no successful SC instructions of type 1 between SCj

1

and SCj+1
1 .

We say that a red node with id z is occupied by a process p at some configuration C, if it holds
that rn[z].pid = p at C. If p is executing operation op at C, we also say that z is occupied by op
at C. We continue to prove that each red node, occupied by some operation op, should first be
released by op before it can be occupied again by some other operation.

Lemma 3.3 For each j ≥ 1, opj executes a successful SC instruction of type 3, which we denote
by SCj

3, on rn[z] between SCj
1 and SCj+1

1 .

Proof: First, we prove that at least one successful SC of type 3 is executed on rn[z] between
SCj

1 and SCj+1
1 . We let SCj

3 be the first of these successful SC instructions. Then, we prove, by
induction on j, that SCj

3 is executed by opj (i.e., the same operation that executes SCj
1).

1. Assume, by the way of contradiction, that no successful SC of type 3 is executed on rn[z]
between SCj

1 and SCj+1
1 . Recall that opj is the operation that executes SCj

1 and opj+1 is
the operation that executes SCj+1

1 .

First, we prove that the read of rn[z] (line 3) by opj+1 follows SCj
1 . Assume, by the way of

contradiction, that this read occurs before SCj
1 . The execution of the LL of line 2 by opj+1

precedes this read, so the execution of this LL occurs before SCj
1 . Since the corresponding

SC to this LL is SCj+1
1 , and occurs after the successful SCj

1 instruction, SCj+1
1 cannot

be successful, which is a contradiction. Therefore, the read at line 3 by opj+1 follows the
execution of SCj

1 .

Since opj+1 executes SCj+1
1 , by the pseudocode (lines 3−4), it follows that opj+1 has read the

value −1 in variable rn[z].pid (line 3). Let SCl be the last successful SC on rn[z] preceding
SCj+1

1 . Recall that we have assumed that no successful SC of type 3 is executed on rn[z]
between SCj

1 and SCj+1
1 . Moreover, by definition of SCj

1 and SCj+1
1 , no successful SC of

type 1 occurs between SCj
1 and SCj+1

1 . Thus, SCl must be either SCj
1 or some successful

SC of type 2. In either case, it follows by the pseudocode (lines 4, 14), that SCl writes a

8

value different than −1 into rn[z].pid, which is a contradiction. Thus, there is at least one
successful SC of type 3 executed on rn[z] between SCj

1 and SCj+1
1 .

Let SCj
3 be the first successful SC of type 3 executed on rn[z] between SCj

1 and SCj+1
1 .

2. We prove, by induction on j, that SCj
3 is executed by opj . Fix any j ≥ 1 and assume that

the claim holds for any j′, 1 ≤ j′ < j.

We prove that the claim holds for j. Assume, by the way of contradiction, that SCj
3 is

executed by some operation op 6= opj . By the pseudocode and by Lemma 3.2, op executes
a successful SC instruction of type 1 on some node of the red tree before SCj

3 ; let SC1 be
this SC instruction. By the pseudocode (lines 4, 18), SC1 and SCj

3 are executed on the same
node, namely on node z.

By the definitions of SCj
1 and SCj+1

1 , no other successful SC of type 1 is executed on z

between SCj
1 and SCj+1

1 . Moreover, SCj
1 6= SC1 since SCj

1 is executed by opj 6= op. Thus,
SC1 is executed before SCj

1 .

If j = 1, this is a contradiction, since, by definition, SCj
1 is the first successful SC of type

1 on rn[z]. If j > 1, let SC ′
1 be the first successful SC of type 1 on rn[z] following SC1.

Notice that SC ′
1 is either SCj

1 or some earlier successful SC of type 1 on z. As proved above
(item 1), there is at least one successful SC of type 3 executed on rn[z] between SC1 and
SC ′

1. Let SC3 be the first such SC; obviously, SC3 precedes SCj
3 . Then, by the induction

hypothesis, SC3 is executed by op. By the pseudocode, op executes only one SC of type 3,
which contradicts the fact that op executes both SC3 and SCj

3 .

We continue to prove that the SC instructions executed on rn[z] by any operation op 6= opj

between SCj
1 and SCj+1

1 fail.

Lemma 3.4 Let op 6= opj be any operation. Then, no successful SC is executed by op on rn[z]
between SCj

1 and SCj+1
1 .

Proof: By definition, no successful SC of type 1 is executed between SCj
1 and SCj+1

1 . Assume,
by the way of contradiction, that op executes a successful SC of type 2 or 3 on rn[z] between SCj

1

and SCj+1
1 . Let SC ′ be the first of these successful SC instructions.

Lemma 3.2 implies that op executes a successful SC of type 1 on some node of the red tree before
SC ′; let SC1 be this instruction. By the pseudocode (lines 4, 17), SC1 is executed on the same
node as SC ′, namely on node rn[z]. Since op 6= opj and SCj

1 is executed by opj , SC1 6= SCj
1 . Since

no successful SC of type 1 is executed between SCj
1 and SCj+1

1 , it follows that SC1 is executed
before SCj

1 .
If j = 1, this is a contradiction since, by definition, SCj

1 is the first successful SC of type 1 on
rn[z]. If j > 1, let SC ′

1 be the first successful SC of type 1 on rn[z] following SC1. Then, SC ′
1 is

either SCj
1 or some earlier successful SC of type 1 on rn[z]. Lemma 3.3 implies that op executes a

successful SC of type 3 on rn[z] between SC1 and SC ′
1; denote by SC3 this SC instruction. Then,

SC3 precedes SC ′, so SC3 6= SC ′. By the pseudocode, SC3 is the only SC of type 3 executed by
op. Moreover, by the pseudocode, op executes only one SC of type 2 and it does so between SC1

9

and SC3; let SC2 be this SC instruction. Then, SC2 6= SC ′. It follows that SC ′ can be neither
the type 2 nor the type 3 SC instruction executed by op, which contradicts our assumption.

Recall that, by the pseudocode, op executes exactly one SC of type 3. Thus, Lemmas 3.3
and 3.4 immediately imply the following observation.

Observation 3.5 For each j ≥ 1, SCj
3, executed by opj, is the only successful SC of type 3 executed

on rn[z] between SCj
1 and SCj+1

1 .

It is now easy to prove that between any successful SC of type 1 and the following successful
SC of type 3 on rn[z], there is exactly one successful SC of type 2 on rn[z] executed by the same
process.

Lemma 3.6 For each j ≥ 1, there is exactly one successful SC of type 2, namely SCj
2, on the red

node with id z between SCj
1 and SCj+1

1 , and SCj
2 is executed by opj between SCj

1 and SCj
3.

Proof: By Observation 3.5, SCj
3 is executed by opj . By the pseudocode, opj executes exactly one

SC of type 2, namely SCj
2 , and this happens between SCj

1 and SCj
3 . Moreover, the only SC of type

3 executed by opj is SCj
3 . Let LLj

2 be the matching LL instruction to SCj
2 . By the pseudocode

(lines 4, 13, 14), it follows that LLj
2 is executed after SCj

1 . Lemma 3.4 implies that no successful
SC is executed on rn[z] by any operation op 6= opj between SCj

1 and SCj+1
1 . It follows that SCj

2

succeeds and it is the only successful SC of type 2 executed on rn[z] between SCj
1 and SCj+1

1 .
Since in addition SCj

2 is executed by opj between SCj
1 and SCj

3 , the claim follows.

Lemmas 3.5 and 3.6 and the pseudocode (line 4) imply that each operation op occupies exactly
one red node during its execution. We denote by zr(op) the id of this red node; whenever op is
clear from the context, we abuse notation and use zr instead of zr(op).

Observation 3.7 (1) Assume that C is some configuration at which a process p, performing some
operation op, has executed the type 1 SC instruction of op but it has not yet executed its type 3 SC.
Then, there exists exactly one integer zr, 1 ≤ zr ≤ 2 ∗ n− 1, such that p occupies the red node with
id zr at C. (2) Assume that C is some configuration at which a process p does not execute any
operation. Then, for each integer z, 1 ≤ z ≤ 2 ∗ n− 1, p does not occupy the red node with id z at
C.

We continue to study the properties of the execution portion of an operation that it traverses
the blue tree. Intuitively, we prove that for each operation op that occupies a red node with id zr,
op tp(op), the operation type of op will be recorded into all nodes of the path starting from the
blue node with id zr up to the blue root (Lemma 3.9). Therefore, op tp(op) is eventually recorded
into the root node of the blue tree.

Consider any integer z, 1 ≤ z ≤ 2n−1, and let level(z) = lg(n)−blg(z)c+1, i.e., level(z) is the
level of the node with id z in any of the trees. For the rest of this section, let op be any instance
of apply op executed by some process p. Assume that the operation type of op is op tp(op). By
Lemma 3.2, op executes a successful SC of type 1 on some node with id zr(op) of the red tree. By
the pseudocode (line 4), this is the only SC of type 1 executed by op. Let pt(op) be the path of the
blue tree from the node with id zr to the root. For each h, level(zr) ≤ h ≤ lg(n) + 1, denote by
zh the id of the node of pt(op) at level h; notice that when h = level(zr), zh = zr. The following
observation is an immediate consequence of the pseudocode (lines 20, 23).

10

Observation 3.8 Let π be the execution of any instance of propagate by op. Then, π executes
two SC instructions on every node of pt(op).

Let π1(op) and π2(op) be the two instances of propagate, executed by op, in order. By Observa-
tion 3.8, for each i ∈ {1, 2}, πi(op) executes two SC instructions on each node of pt(op). For each h,
level(zr) ≤ h ≤ log n+1, denote by C ′

i,h(op) the configuration immediately following the execution
of the second of these SC instructions (line 23) on node bn[zh] by πi(op). Let opt[1] = op tp(op)
and opt[2] = ⊥. Denote by C1(op) the configuration just after the successful SC by op that writes
the pair (op tp(op), p) into rn[zr], and let C2(op) be the configuration just after the successful
SC by op that writes the pair (⊥, p) into rn[zr]. Similarly, let C3(op) be the configuration just
after the successful SC by op that writes the pair (⊥,−1) into rn[zr]. In case h = level(zr), let
C1,h−1(op) = C1(op) and C2,h−1(op) = C2(op). For simplicity of presentation, we sometimes omit
op from the above notation if it is clear from the context.

Obviously, for two distinct operations op, op′, it might hold that op tp(op) = op tp(op′). How-
ever, whenever we mention op tp(op) below, we refer to the specific instance of op tp that consists
the parameter of the particular instance op of apply op.

Lemma 3.9 For each i ∈ {1, 2}, and for each h, level(zr) ≤ h ≤ log n+1, there is a configuration
Ci,h(op) such that:

1. Ci,h(op) follows Ci,h−1(op) and comes before or at C ′
i,h(op);

2. C1,h(op) is the first configuration at which op tp(op) is contained in bn[zh].ops tp[p], and at
each configuration between C1,h(op) and C2,h(op), bn[zh].ops tp[p] contains op tp(op);

3. the value ⊥ is contained in bn[zh].ops tp[p] at C2,h(op), as well as at each configuration between
C2,h(op) and C3(op).

Proof: The proof is by induction on h. Fix any h, level(zr) ≤ h ≤ log n + 1 and assume that the
claim holds for each h′, level(zr) ≤ h′ < h. We prove that the claim holds for h.

Fix any i ∈ {1, 2}. Recall that p is the process executing op. By Observation 3.8, πi executes
two SC instructions on the blue node with id zh. Let SCi,1, SCi,2 be these two SC instructions
and let LLi,1, LLi,2 be the matching LL instructions, respectively. By the pseudocode, πi reads
rn[zh] and bn[zh−1] during the execution of any of the instances of its calculate. We prove that
op calculates the value opt[i] as the new value of bn[zh].ops tp[p].

Assume first that h = level(zr). By definitions of zr and Ci,h−1 (when h = level(zr)), and by
the pseudocode (lines 4, 14), the pair (opt[i], p) was written into rn[zr] at Ci,h−1, and therefore
before the execution of LLi,1 and LLi,2. By the pseudocode, and by Lemmas 3.5 and 3.6, it follows
that rn[zr] contains the pair (opt[i], p) until the execution by op of the SC of type (i + 1) which
comes after the final configuration of πi. Therefore, each of the reads of rn[zr] by πi following LLi,1

and LLi,2 returns opt[i] for process p and, by the pseudocode (lines 27 − 28), calculate writes
opt[i] for p in the new set of operation types it calculates.

Assume now that h > level(zr), so zh 6= zr. Then, Observation 3.7 (claim 1) implies that
rn[zh].pid 6= p. By the pseudocode (lines 29− 30), it follows that calculate will consider, as the
new operation type for p, the value read for p in bn[zh−1]. By the induction hypothesis, there is
a configuration Ci,h−1(op) in which opt[i] is written in bn[zh−1].ops tp[p], and Ci,h−1(op) precedes
C ′

i,h−1. We argue that opt[i] is contained into bn[zh−1].ops tp[p] from Ci,h−1(op) until the execution

11

by op of the SC instruction of type (i + 1) (which occurs after the final configuration of πi). If
i = 1, this is implied by the induction hypothesis (claim 2) and because C2,h−1(op) = C2(op) when
h = level(zr). If i = 2 this is immediate from the induction hypothesis (claim 3). By the definition
of C ′

i,h−1, and by the pseudocode, it follows that LLi,1 and LLi,2 occur between C ′
i,h−1 and the

final configuration of πi. Thus, when bn[zh−1] is read between LLi,1 and SCi,1 (or LLi,2 and SCi,2),
opt[i] is found in bn[zh−1].ops tp[p].

If any of the SCi,1 or SCi,2 is successful, then opt[i] is recorded into bn[zh].ops tp[p] by this
successful SC.

Assume now that both SCi,1 and SCi,2 fail. Since SCi,2 fails, it must be that, between LLi,2

and SCi,2 there is at least one successful SC instruction on bn[zh]. Let SC ′
i,2 be the first of these

instructions, and let op′i 6= op be the operation that executes SC ′
i,2. Let LL′i,2 be the matching LL

instruction to SC ′
i,2. Since SCi,1 fails, it must be that between LLi,1 and SCi,1, there is at least one

successful SC instruction on bn[zh]; let SC ′
i,1 be any of them. LL′i,2 follows LLi,1, since otherwise

SC ′
i,1, which follows LLi,1, would cause SC ′

i,2 to fail.
By the pseudocode, op′i reads rn[zh] and bn[zh−1] during the execution of its calculate between

LL′i,2 and SC ′
i,2. Recall that op occupies zr. We prove that op′i calculates the value opt[i] as the

new value of bn[zh].ops tp[p].
Assume first that h = level(zr), so zh = zr. Recall that the pair (opt[i], p) was written into

rn[zr] before the execution of LLi,1 and LLi,2; moreover, rn[zr] contains the pair (opt[i], p) until
the execution of the SC instruction of type (i + 1) by op which comes after the final configuration
of πi. By the pseudocode (line 20), op′i reads rn[zr] after LL′i,2 (which follows LLi,1) and before
SC ′

i,2 (which precedes SCi,2 and the final configuration of πi) . Thus, op′i reads the pair (opt[i], p)
in rn[zr]. So, by the pseudocode (lines 27−28), the instance of calculate executed by op′i between
LL′i,2 and SC ′

i,2, stores opt[i] for p in the new set of operation types it calculates and op′i writes
opt[i] into bn[zh].ops tp[p] when it executes SC ′

i,2.
Assume now that h > level(zr), so zh 6= zr. Then, Observation 3.7 (claim 1) implies that

rn[zh].pid 6= p. By the pseudocode (lines 28 − 30), it follows that the instance of calculate
executed by op′i between LL′i,2 and SC ′

i,2, will consider as the new operation type of p the value read
in bn[zh−1].ops tp[p]. By the induction hypothesis, there is a configuration Ci,h−1 in which opt[i] is
written into bn[zh−1].ops tp[p], and Ci,h−1 precedes C ′

i,h−1; moreover, opt[1] is contained in bn[zh−1]
from C1,h−1 until C2,h−1 (which follows the final configuration of π1), and opt[2] is contained in
bn[zh−1] from C2,h−1 until the execution of the SC instruction of type (i + 1) by op (which follows
the final configuration of π2). Thus, in either case opt[i] is contained in bn[zh−1].ops tp[p] from
Ci,h−1 until the final configuration of πi. By the definition of C ′

i,h−1, and by the pseudocode, it
follows that LLi,1 and SCi,2 occur between C ′

i,h−1 and the final configuration of πi. Thus, when
bn[zh−1] is read between LL′i,2 (which follows LLi,1) and SC ′

i,2 (which precedes SCi,2), opt[i] is
found in bn[zh−1].ops tp[p]. So, by the pseudocode (lines 27− 28), opt[i] i stored for p in the new
set of operation types calculated by op′i and is written into bn[zh].ops tp[p] by SC ′

i,2.
In both cases, we conclude that there is at least one configuration between SCi,1 and SCi,2 at

which the value opt[i] is written into bn[zh].ops tp[p].
Let SCi,h(op) be the first successful SC that writes opt[i] into bn[zh].ops tp[p] and follows

Ci,h−1(op); let Ci,h(op) be the configuration immediately following the execution of SCi,h(op).
Then, it follows that SCi,h(op) precedes SCi,2. (We remark that SCi,h(op) may also precede SCi,1.)
Since, by definition, C ′

i,h follows SCi,2, SCi,h(op) precedes C ′
i,h. Thus, Ci,h(op) comes before or at

C ′
i,h. By definition, SCi,h(op) follows Ci,h−1(op), so Ci,h(op) follows Ci,h−1(op). This concludes the

12

proof of claim 1.
We continue to prove claim 2. We argue that the first time that opt[1] appears in bn[zh−1].ops tp[p]

is at Ci,h−1. If h = lever(zr), this is implied by the pseudocode and by the fact that C1,h−1(op) =
C1(op) in this case. If h > level(zr), this is implied by the induction hypothesis (claim 2); moreover,
in this case, Observation 3.7 implies that rn[zh].pid 6= p at all configurations starting from C1(op)
until C3(op) (which comes after Ci,h−1(op)). Thus, by the pseudocode, it follows that no SC can
write opt[1] into bn[zh].ops tp[p] before Ci,h−1(op). Since (by definition) SC1,h(op) is the first suc-
cessful SC that writes opt[1] into bn[zh].ops tp[p] after Ci,h−1(op), C1,h(op) is the first configuration
at which opt[1] is contained in bn[zh].ops tp[p].

By claim 1 proved above, C1,h precedes the final configuration of π1; moreover, C2,h follows
C2(op) which comes after the final configuration of π1. Thus, C2,h follows C1,h.

Assume, by the way of contradiction, that there is a configuration Cl between C1,h and C2,h,
such that bn[zh].ops tp[p] contains a value x 6= opt[1] at Cl. By definition of Cl, there is at least
a successful SC instruction that writes x into bn[zh].ops tp[p] and occurs between C1,h and the
configuration that precedes C2,h. Let SC ′

1 be the first of these instructions, let it be executed by
operation op′′1 6= op and let LL′1 be its matching LL instruction. Recall that SC1,h is the successful
SC instruction executed just before C1,h. Since SC ′

1 is a successful SC instruction, LL′1 must follow
SC1,h. By the pseudocode, op′′1 reads rn[zh] and bn[zh−1] during the instance of calculate executed
between LL′1 and SC ′

1. Recall that p occupies zr.
Assume first that h = level(zr). Then, the pseudocode (lines 4 or 14), and Lemmas 3.5 and 3.6

imply that op′′1 reads either the pair (opt[1], p) or the pair (opt[2], p) into rn[zr] (depending on
whether the read happens between C1,h and C2,h−1 or between C2,h−1 and the configuration that
precedes C2,h, respectively) when executing calculate between LL′1 and SC ′

1. Assume now that
h > level(zr), so zh 6= zr. Then, Observation 3.7 (claim 1) implies that rn[zh].pid 6= p. By
the pseudocode (lines 28 − 30), it follows that op′′1 will consider as the new operation type for p,
the value read in bn[zh−1].ops tp[p] when executing calculate between LL′1 and SC ′

1. By the
induction hypothesis (claim 3), op tp(op) is contained in bn[zh−1].ops tp[p] at all configurations
between C1,h−1(op) and C2,h−1(op). Thus, op′′1 reads either the pair (opt[1], p) or the pair (opt[2], p)
(depending on whether the read happens between C1,h and C2,h−1 or between C2,h−1 and the
configuration that precedes C2,h, respectively) in bn[zh] when executing calculate between LL′1
and SC ′

1. We conclude that this is so in either case.
If op′′1 reads the pair (opt[1], p), by the pseudocode, it follows that op′ writes the value opt[1]

into bn[zh].ops tp[p] when it executes SC ′
1. This is a contradiction to our assumption that SC ′

1

writes x 6= opt[1] into bn[zh].ops tp[p]. Thus, assume that op′′1 reads the pair (⊥, p). Then, by the
pseudocode, it follows that op′′1 writes ⊥ into bn[zh].ops tp[p] when it executes SC ′

1. Recall that,
in this case, the read by op′′1 that occurs between LL′1 and SC ′

1 must take place after C2,h−1(op).
Therefore, SC ′

1 occurs after C2,h−1(op) and before SC2,h(op). Then, it is SC ′
1 (and not SC2,h(op))

the first SC after C2,h−1(op) that writes ⊥ into bn[zh].ops tp[p], which contradicts the definition of
SC2,h(op).

We continue to prove claim 3. By definition of C2,h, ⊥ is contained in bn[zh].ops tp[p] at C2,h.
So, we continue to prove that ⊥ is contained in bn[zh].ops tp[p] at each configuration between C2,h

and C3(op).
By the definitions of C ′

2,h and C3(op), and by claim 1 proved above, C3(op) follows C2,h. Assume,
by the way of contradiction, that there is a configuration Cl between C2,h and C3(op), such that
bn[zh].ops tp[p] contains a value x 6= ⊥ at Cl.

13

By definition of Cl, there is at least a successful SC that writes x into bn[zh].ops tp[p] and occurs
between C2,h and the configuration that precedes C3(op). Let SC ′

2 be the first of these instructions,
let it be executed by operation op′′2 6= op and let LL′2 be its matching LL instruction. Recall that
SC2,h is the successful SC instruction executed just before C2,h. Since SC ′

2 is a successful SC
instruction, LL′2 follows SC2,h.

If h = level(zr), Lemmas 3.5 and 3.6 imply that the read of rn[zh] by op′′1, which occurs between
LL′2 and SC ′

2 (at the beginning of the execution of its calculate) returns (⊥, p). Thus, by the
pseudocode, op′′2 writes ⊥ 6= x into bn[zh].ops tp[p] by executing SC ′

2, which is a contradiction.
Assume now that h > level(zr). Then, Observation 3.7 (claim 1) implies that rn[zh].pid 6= p. By

the pseudocode (lines 28− 30), it follows that the instance of calculate executed by op′′2 between
LL′2 and SC ′

2, will consider as the new operation type of p the value read in bn[zh−1].ops tp[p]. By
the induction hypothesis, there is a configuration C2,h−1 at which⊥ is written into bn[zh−1].ops tp[p],
and C2,h−1 precedes C ′

2,h−1; moreover, ⊥ is contained in bn[zh−1].ops tp[p] from C2,h−1(op) until
C3(op). Thus, the read of bn[zh] by op′′2, which occurs between LL′2 and SC ′

2 returns the value ⊥
for p. Thus, by the pseudocode, op′′2 writes ⊥ 6= x into bn[zh].ops tp[p] by executing SC ′

2, which is
a contradiction.

We remark that information about op (namely, op tp(op) and the id p of the process that
executes it) is recorded for the first time into one of the registers when op occupies its red node
zr. Lemma 3.9 implies that it is then transferred to the blue node with id zr (by op or some other
operation); moreover, only when it is written there, it can be forwarded to the next node of the
blue path of op. This transfer continues up to each node of op’s blue path until the operation type
of op eventually reaches the root. Recall that for each h, level(zr) ≤ h ≤ log n + 1, op tp(op) is
written into the node zh at level h of pt(op) by SC1,h(op) just before C1,h(op), and ⊥ is written
into bn[zh] by SC2,h(op) just before C2,h(op).

The following claim is an immediate consequence of Lemma 3.9 when h = log n + 1.

Corollary 3.10 The operation type of any operation op is successfully recorded in the blue root by
SC1,log n+1(op).

We continue to prove that the value ⊥ is contained for some process p in a blue node z from the
time that an operation by p writes ⊥ into z until the time that the subsequent operation by p (for
which z is contained in its path) writes its operation type into z (or until the final configuration if
such an operation does not exist).

Lemma 3.11 Consider any operation op executed by some process p. For each zh ∈ pt(p), let
Ch = C1,h(opmh

) if p executes a subsequent operation opmh
such that zh ∈ pt(opmh

); let Ch be
the final configuration if such an operation does not exist. Then, bn[zh].ops tp[p] = ⊥ at each
configuration between C3(op) and Ch.

Proof: Assume, by the way of contradiction, that the claim does not hold and let C be the first
configuration at which the claim is violated. Let op be the operation (let it be executed by some
process p) and zh ∈ pt(p) be the node that causes this violation. More specifically, if opmh

is the first
operation executed by p after op for which zh ∈ pt(opmh

), then C is between C3(op) and C1,h(opmh
)

and bn[zh].ops tp[p] = x 6= ⊥ at C (if such an operation does not exist, then C is between C3(op)
and the final configuration). Assume that SC ′ is the SC instruction executed just before C which

14

writes the value x in bn[zh].ops tp[p] and let op′ be the operation that executes SC ′. Denote by
LL′ the corresponding LL instruction to SC ′.

Assume first that op′ reads x in rn[zh].op tp. Notice that op′ performs this read (let it be r′)
at some configuration C ′ that precedes C. By the pseudocode, it follows that rn[zh].pid = p and
rn[zh].op tp = x at C ′. Thus, p is active executing some operation op′′ at C ′ such that zh is the
first node in pt(op′′).

If zh ∈ pt(op), let opbh
= op; otherwise, let opbh

be the last operation by p preceding op such that
zh ∈ pt(opbh

). (Since zh ∈ pt(op′′), opbh
is well-defined.) By the pseudocode, LL′ happens before

r′. If C ′ precedes C2,h(opbh
), then LL′ precedes C2,h(opbh

). Since, by Lemma 3.9, SC2,h(opbh
)

happens just before C2,h(opbh
) and it is a successful SC on bn[zh], SC ′ cannot be successful. This

is a contradiction. Thus, C ′ follows C2,h(opbh
). Lemmas 3.3 and 3.6 imply that rn[zh] = (⊥, p) at

C2,h(opbh
). By definition of opbh

, no other operation following opbh
and containing zh in its path

is executed by p before opmh
. It follows that, at each configuration between C2,h(opbh

) and C ′,
rn[zh] 6= (x, p). This is a contradiction (since we have assumed that op′ reads (x, p) in rn[zh] at
C ′).

Assume now that op′ reads x in bn[zh−1].ops tp[p] (where zh−1 is the node preceding zh in
pt(p)); let r′′ be this read. Notice that r′′ results in some configuration C ′′ which precedes C.
Let opmh−1

be the first operation executed by p after op such that zh−1 ∈ pt(opmh−1
). If zh−1 ∈

pt(op), let opbh−1
= op; otherwise, let opbh−1

be the last operation by p preceding op such that
zh−1 ∈ pt(opbh−1

). In case opbh−1
does not exist, denote by C2,h−1(opbh−1

) the initial configuration.
Similarly, in case opbh

does not exist, let C2,h(opbh
) be the initial configuration. If opmh−1

does not
exist, denote by C1,h−1(opmh−1

) the final configuration. Similarly, in case opmh
does not exist, let

C1,h(opmh
) be the final configuration.

Since zh is an ancestor of zh−1 in the blue tree, it follows that zh ∈ pt(opmh−1
) and zh ∈

pt(opbh−1
). Thus, either opbh−1

= opbh
or opbh−1

precedes opbh
. Similarly, either opmh−1

= opmh
or

opmh−1
follows opmh

.
Assume first that opmh−1

follows opmh
, so that C precedes C1,h−1(opmh−1

). By the pseudocode,
LL′ happens before r′′. Obviously, C ′′ follows the initial configuration. If C ′′ precedes C2,h(opbh

),
then LL′ precedes C2,h(opbh

). Since, by Lemma 3.9, SC2,h(opbh
) happens just before C2,h(opbh

)
and it is a successful SC on bn[zh], SC ′ cannot be successful. This is a contradiction. Thus, C ′′

follows C2,h(opbh
).

We prove that, at each configuration between C2,h(opbh
) and C1,h−1(opmh

), bn[zh−1].ops tp[p] =
⊥. In case opbh−1

= opbh
, Lemma 3.9 imply that C2,h−1(opbh

) precedes C2,h(opbh
), and at each

configuration between C2,h−1(opbh
) and C3(opbh

), bn[zh−1].ops tp[p] = ⊥. Otherwise, recall that
opbh−1

precedes opbh
and they are both executed by p, so C3(opbh−1

) precedes C2,h(opbh
). Since

C is the first configuration at which the claim of the lemma is violated, it must be that, at each
configuration between C3(opbh−1

) and C1,h−1(opmh−1
), bn[zh−1].ops tp[p] = ⊥.

Assume that C precedes C1,h−1(opmh−1
). Then, at each configuration between C3(opbh−1

) and
C, bn[zh−1].ops tp[p] = ⊥. It follows that r′′ reads ⊥ 6= x in bn[zh−1].ops tp[p] and writes ⊥ 6= x in
bn[zh].ops tp[p], which is a contradiction.

Assume now that C follows C1,h−1(opmh−1
). If opmh−1

follows opmh
, then C precedes C1,h−1(opmh−1

),
so it must be that opmh−1

= opmh
. Since (1) at each configuration between C2,h(opbh

) and
C1,h−1(opmh−1

) = C1,h−1(opmh
), bn[zh−1].ops tp[p] = ⊥, (2) r′′ occurs after C2,h(opbh

), and (3) r′′

returns x 6= ⊥, it must be that r′′ occurs after C1,h−1(opmh
). Thus, r′′ occurs between C1,h−1(opmh

)
and C1,h(opmh

). Lemma 3.9 implies that, at all configuration between C1,h−1(opmh
) and C1,h(opmh

),

15

bn[zh−1].ops tp[p] = op tp(opmh
). Thus, r′′ reads op tp(opmh

) in bn[zh−1].ops tp[p] and writes this
value in bn[zh].ops tp[p] by executing SC ′. However, Lemma 3.9 implies that the first configuration
after C1,h−1(opmh

) at which op tp(opmh
) is written into bn[zh].ops tp[p] is C1,h(opmh

). Since we
have assumed that C precedes C1,h(opmh

), this is a contradiction.

Linearizability. Linearizability imposes a total order, called linearization order, to all opera-
tions performed in an execution α. If α is linearizable, each of its operations should have the same
response as the corresponding operation in the serial execution derived by the linearization order.
When this holds for some operation, we say that the response of the operation is consistent. When
this holds for all operations of α, we say that α is consistent.

We are now ready to assign linearization points to the operations of F-RedBlue. By Observa-
tion 3.10, there is at least one successful SC that records the operation type of op in the blue root
node. Recall that SC1,log n+1(op) is the first of these SC instructions. We place the linearization
point of op just before SC1,log n+1(op); ties are broken by the order that process identifiers impose.

Lemma 3.12 For each operation op, the linearization point of op is placed in its execution interval.

Proof: By Lemma 3.9, the operation type of op is recorded in the root node by some SC instruc-
tion and this occurs before the execution of the type 2 SC instruction by op (line 14). Thus, the
linearization point of op precedes the end of its execution interval.

Let SC(op) be the first successful SC that records the operation type of op in the blue root
node. Notice that op is invisible to all processes until it performs its first store operation, writing
its information into the red node that it occupies. Thus, SC(op) must follow the beginning of the
execution interval of op.

We say that an operation op is applied on the simulated object if (1) procedure calculate,
executed by some operation op′ (that might be op or another operation), reads in the appropriate
child node of the blue root op tp(op) (i.e., the operation type written there for op) and records it
as the new operation type for p, (2) calculate by op′ calls apply with this operation type in its
parameters, and (2) the execution of the SC of line 23 (let it be SCr) on bn[1] by op′ succeeds (thus
writing there for p the value op tp(op)). When these conditions are satisfied, we sometimes also
say that op′ applies op on the simulated object or that SCr applies op on the simulated object. We
next prove that each operation op is applied on the simulated object exactly once.

Lemma 3.13 Each operation op is applied on the simulated shared object exactly once by SC1,log n+1(op).

Proof: Assume that op is executed by process p. We first prove that op is applied on the simulated
object at least once. Lemma 3.9 implies that op tp(op), the operation type of op, is successfully
recorded in the root node of the blue tree at least once and that SC1,log n+1 is the first SC instruction
that stores op tp(op) into bn[1].ops tp[p]. Let op′ be the operation that executes SC1,log n+1.

In case p executes an operation before op, let Cbh
= C2,log n+1(opbh

), where opbh
is the last

preceding to op operation executed by p; otherwise, let Cbh
be the initial configuration of the

algorithm. If op′ performs the read of bn[1] that precedes SC1,log n+1 before Cbh
, then SC1,log n+1

fails. This is so because, by the pseudocode, the corresponding LL to SC1,log n+1 precedes this read,
and, by the definition of Cbh

and Lemma 3.9, a successful SC on bn[1] (namely SC2,log n+1(opbh
))

occurs at Cbh
, thus causing the failure of SC1,log n+1. This is a contradiction.

16

Thus, op′ performs its read after Cbh
. Lemmas 3.9 and 3.11, imply that, at each configuration

between Cbh
and C1,log n+1(op), bn[1].ops tp[p] = ⊥. It follows that op′ reads ⊥ into bn[1].ops tp[p]

during the execution of calculate that precedes SC1,log n+1(op). Since op tp(op) 6= ⊥, op′ evaluates
the condition of the if statement of line 31 to true. We conclude that op′ applies op.

We now prove that op is applied at most once on the simulated object. Assume, by the way
of contradiction, that op is applied at least twice, and let SC ′ be the first SC after SC1,log n+1(op)
that applies op. Let op′′ be the operation that executes SC ′ and let r′ be the last read of bn[1]
executed by op′′ before SC ′.

If r′ occurs before SC1,log n+1(op), then the corresponding LL to SC ′, which precedes r′, precedes
also SC1,log n+1(op). Thus, SC1,log n+1(op) causes SC ′ to fail, which is a contradiction. Thus, r′

follows SC1,log n+1(op).
If r′ occurs between C1,log n+1(op) and C2,log n+1(op), then Lemmas 3.9 and 3.11 imply that r′

reads the value op tp(op) in bn[1]. Since op′′ apply op, it must be that tmp.ops tp[p] = op tp(op)
when op′′ executes line 31 of the instance of calculate that precedes SC ′. Thus, by the pseudocode
(line 31), it follows that the condition of the if statement of line 31 is evaluated to FALSE. Thus,
op′ does not call apply, which contradicts the fact that op′ applies op.

Assume finally that r′ follows C2,log n+1(op). Lemma 3.6 and Observation 3.7 imply that rn[1] 6=
op pt(op) at all configurations after the configuration at which op executes its type 2 SC instruction.
Moreover, if any of the root children belongs to pt(op), then Lemma 3.9 imply that C2,log n(op)
precedes C2,log n+1(op), and bn[log n].ops pt[p] 6= op tp(op) after C2,log n(op). By the pseudocode,
it therefore follows that procedure calculate, executed by op′′ before SC ′, calculates as the new
value of bn[1].ops tp[p] a value other than op tp(op) and therefore it does not apply op, which is a
contradiction.

Denote by SCi the i-th successful SC instruction on the root node of the blue tree. Obviously,
between SCi and SCi+1, the state field of the root node is not modified.

We are now ready to prove consistency. Let a be any execution of RedBlue. Denote by ai, the
prefix of a which ends at SCi. Let a0 be the empty execution, and let li be the linearization order
of ai.

Lemma 3.14 For each i ≥ 0, ai is consistent.

Proof: We prove the claim by induction on i.
Base case (i=0): Execution a0 is empty, so the claim holds trivially.
Induction hypothesis: Fix any i > 0 and assume that the claim holds for i− 1.
Induction step: We prove that the claim holds for i. From the induction hypothesis, it holds
that ai−i is consistent with linearization order li−1. Let op be the operation that executes SCi and
assume that op applies j ≤ 0 operations on the simulated object. Denote by op1, ..., opj , for some
j ≥ 0, the sequence of these operations ordered with respect to the ids of the processes that initiate
them.

We prove the following claim: For each l, 0 ≤ l ≤ j, operation opl returns a consistent response.
The claim is proved by induction on l.

Base case (l=0): The claim holds vacuously.
Induction hypothesis: Fix any l > 0 and assume that the claim holds for l − 1.
Induction step: We prove that the claim holds for l. By the induction hypotheses (inner and

outer inductions), it follows that all operations in li−1op1, . . . , opl−1 return a consistent response. By

17

Lemma 3.13, opl is applied exactly once by SC1,log n+1(opl). By the way function apply operates,
it applies opl on the simulated object just after it has applied op1, . . . , opl−1 on it. Therefore, the
response calculated for opl by op is consistent, as needed.

By the pseudocode and by Observation 3.7, it follows that when the SC of type 1 of op fails
on some red node, this node is occupied by some other active operation. Thus, if an operation op
occupies a red node at depth k, its interval contention is at least k. Since the height of the red-tree
is log n, it follows that the time complexity of F-RedBlue is O(min{k, log n}), where k is the interval
contention.

4 Modified Version of F-RedBlue that Uses Small Registers

We present S-RedBlue, a modified version of F-RedBlue that uses small registers. Each red node
now stores log n+1 bits, and a blue node, other than the root, stores n bits. The blue root stores n
bits, a process id and the state of the object. This LL/SC register is implemented by single-word
LL/SC registers using the implementation in [18].

In S-RedBlue, a process p uses a single-writer register to record its currently active operation
(line 1). Like in RedBlue, the process starts the execution of any of its operations by traversing the
red tree. However, to occupy a red node, the process just records its id and sets the bit of the node
to true. Similarly, each process, moving up the path to the root of the blue true, just sets a bit in
each node of the path to identify that it is currently executing an operation. Thus, the bit array
of the root identifies all processes that are currently active.

To avoid storing the return values in the root node, each process p keeps an array of n single-
writer registers, one for each process. When p reaches the root node (during the application of one
of its operations), it first records in its appropriate single-writer registers the responses for those
processes that are currently active (lines 25−26). Then, it tries to store the new state of the object
in the root of the blue tree together with its id, and the set (bit vector) of active processes. A
process finds the response for its current operation in the appropriate single-writer register of the
process with id the one recorded in the root node.

The state is updated only at the root node and only when the bit value for a process changes from
false (F) to true (T) in the blue root’s bit array (line 23). This guarantees that the operation of
each process is applied only once to the simulated object. However, all processes reaching the root,
record responses for each currently active process p in their single-writer registers, independently of
whether they also apply p’s operation to the simulated object. This is necessary, since the operation
of p may be applied to the object by some process q and later on (and before p reads the root node
for finding its response) another process q′ may overwrite the root contents. Process q′ will include
p in its calculated active set but it will not re-apply p’s operation to the object, since it will see
that p’s bit in the active set of the root node is already set. Still q′ should record a response for p
in its single-writer registers since p may read q′ and not q in bn[1].pid when seeking for its response.

The proof that S-RedBlue is correct closely follows the correctness proof of F-RedBlue. The
main difference of the two algorithms is on the way that response values are calculated. If q is the
process that applies some operation op, the response for op is originally stored in rvals[q][p] and
the id of q is written into the root node. The next process to update the root node will find the id
of q in the root node and (as long as op has not yet read its response by executing line 8), it will
see that tmp.ops[p] = T . Therefore, it will copy the response for op from rvals[q][p] (line 26) to its

18

Algorithm 2 Pseudocode of S-RedBlue: functions that are different from those of F-RedBlue.

struct rnode{
boolean op;
PINDEX pid;

}

struct bnode{
state st; // used only at the root node

PINDEX pid; // used only at the root node

boolean ops[n];
}

shared struct rnode rn[1..2n− 1] = {< F,−1 >, ..., < F,−1 >}; // F stands for False and T for True
shared struct bnode bn[1..2n− 1] = {< ⊥,−1, < F, ..., F >>, ..., < ⊥,−1, < F, ..., F >>};
shared ret val rvals[1..n][1..n] = {{⊥, ..., ⊥}, ..., {⊥, ..., ⊥}};
shared operation type ops[1..n] = {⊥, ..., ⊥};
ret val apply op(operation type op tp, PINDEX p){

int direction = n/2, z = 1;
int levels = lg(n) + 1, l;
ret vals rv;

1. ops[p] = op tp;
2. for(l=levels;l ≥ 1;l--){
3. LL(rn[z]);
4. if(rn[z] == < F,−1 >)

5. if(SC(rn[z], <op tp, id>)) break;

//find the next node

6. lines 5-10 of algorithm 1;
}

7. propagate(z,p);
8. rv = rvals[bn[1].pid][p];
9. LL(rn[z]);
10. SC(rn[z], <F, p>);
11. propagate(z,p);
12. LL(rn[z]);
13. SC(rn[z], < F,−1 >);

14. return rv;
}

struct bnode calculate(int z, PINDEX p) {
struct bnode blue = bn[z], lc, rc;
struct bnode tmp = < ⊥,−1, < F, . . . , F >>;

struct rnode red = rn[z];

15. if (2 ∗ z + 1 < 2n) { lc=bn[2 ∗ z]; rc=bn[2 ∗ z + 1]; }
16. if (z == 1) { tmp.st = blue.st; tmp.pid = p; }
17. for(int q = 1 to n do){
18. if (red.pid == q) tmp.ops[q] = red.op;
19. else if (is predecessor(z,q,2 ∗ z))
20. tmp.ops[q] = lc.ops[q];
21. else if (is predecessor(z,q,2 ∗ z + 1))
22. tmp.ops[q] = rc.ops[q];
23. if (z==1 AND tmp.ops[q]==T AND blue.ops[q]==F)

24. apply ops[q] to tmp.st
and store into rvals[p][q] the return value;

25. else if(z==1 AND tmp.ops[q]==T)
26. rvals[p][q] = rvals[b.pid][q];

}
27. return tmp;
}

appropriate single-writer register. So, when p seeks for the response of op it will find the correct
answer in the single-writer register of the process recorded at the root node.

S-RedBlue uses O(n) multi-writer LL/SC registers and O(n2) single-writer read − write reg-
isters. One of the multi-writer registers is large and it is implemented using the implementation
of a W -word LL/SC object from single-word LL/V L/SC objects presented in [18]. This imple-
mentation achieves time complexity O(W) for both LL and SC and has space complexity O(nW).
Thus, the number of registers used by S-RedBlue is O(n2 + nW). In common cases where n bits
fit in a constant number of single-word registers, the time complexity of S-RedBlue is O(k + W)
since calculate pays O(k) to record k response values in the single-writer registers of the process
executing it, and O(W) for reading and modifying the root node.

5 Adaptive Universal Constructions for Large Objects

In the universal constructions for long objects presented by Anderson and Moir in [7] the object is
treated like if it were stored in a contiguous array, and the user is supposed to provide sequential
implementations of the object’s operations which call appropriate read and write procedures
(described in [7]) to perform read or write operations in the contiguous array (see [7, Section
4] for more information on how the user code should look like and an example). The universal
constructions partition the contiguous array into B blocks of size S each, and during the application
of an operation to the object, only the block(s) that should be modified are copied locally (and not

19

the entire object’s state). The authors assume that each operation modifies at most T blocks.
S-RedBlue can easily employ the simple technique of the lock-free construction in [7] to provide

a simple, adaptive, wait-free algorithm (called LS-RedBlue) for large objects. As illustrated in
Algorithm 5, only routine propagate requires some modifications. Also, similar data structures as
those in [7] are needed for storing the array blocks, and having processes making ”local” copies of
them and storing back the changed versions of these blocks. More specifically, array BLK stores
the B blocks of the object’s state, as well as a set of copy blocks used by the processes for performing
their updates without any interference by other processes. Since each operation modifies at most
T blocks, a process reaching the blue root, requires at most kT copy blocks in order to make copies
of the kT state blocks that it should possibly modify. So, BLK contains nkT + B blocks; initially,
the object’s state is stored in BLK[nkT + 1], . . . , BLK[nkT + B] (the blocks storing the state of
the object are called active). The blue root node now stores an array named BANK of B indices;
the ith entry of this array is the pointer (i.e., the index in BLK) of the ith active block. Each
process has a private variable ptrs which uses to make a local copy of the BANK array (line 9).

The application of an active operation to the object is now done by calling (in calculate) the
appropriate sequential code provided by the user. The codes of the read and write routines used
by the user code are also presented in Algorithm 5 (although they are the same as those presented
in [7]). These routines take an index addr in the contiguous array as a parameter. From this index,
the block number blkidx that should be accessed is calculated as blkidx = addr div S, and the
offset in this block as addr mod S. The actual index in BLK of the blkidx-th block can be found
through the BANK array. However, the process uses its local copy ptrs of BANK for doing so.
Thus, line 15 simply access the appropriate word of BLK. If the execution of the V L instruction of
line 16 by some process p does not succeed, the SC instruction of line 11 by p will also not succeed.
So, we use the goto to terminate the execution of its calculate.

The first time that p executes a write to the blkidx-th block, it copies it to one of its copy
blocks (line 21). Array dirty is used to identify whether a block is written for the first time by p.
In this case, the appropriate block is copied into the appropriate copy block of p (line 21). Indices
to the kT copy blocks of p are stored in p’s private array copy. The dirty bit for this block is set
to true (line 22). Counter dcnt counts the number of different blocks written by p thus far in the
execution of its current operation (line 25). The appropriate entry of ptrs changes to identify that
the blkidx-th block is now one of the copy blocks of p (line 23). The write is performed in the copy
block at line 27. A process p uses its copy blocks to make copies of the blocks that it will modify.
If later p’s SC at line 11 is successful, some of p’s copy blocks become active blocks (substituting
those that have been modified by p). These old active blocks (that have been substituted) consist
the new copy blocks of p which it will use to perform its next operation. This is accomplished with
the code of line 12.

LS-RedBlue is wait-free; it has space overhead Θ(n2 +n(B +kTS)) and time complexity Θ(B +
k(D + TS)). The wait-free universal construction presented in [7] assumes that each process has
enough copy blocks to perform at most M/T other operations in addition to its own, where M ≥ 2T
is any fixed integer. The algorithm uses a quite complicated helping mechanism with return values
written into return blocks which should then be recycled in order to keep the memory requirements
low. The construction has time complexity O((n/min{n,M/T})(B + nD + MS)). LS-RedBlue
achieves much better time complexity (Θ(B + k(D + TS))) and is adaptive. However, it assumes
that processes have enough copy blocks to help any number of other active processes.

LS-RedBlue can be slightly modified to disallow processes to help more than M/T other pro-

20

Algorithm 3 Pseudocode of LS-RedBlue.
type INDEX {1, . . . , nkT + B};
struct bnode{

INDEX BANK[B];
PINDEX pid;
boolean ops[n];

}
void propagate(int z, PINDEX p){

bnode b;

1. while(z!=0){
2. for(int i = 1 to 2) do {
3. if(z==1){
4. for(int j = 1 to B) do

5. dirty[j]=F;

6. dcnt = 0;
7. }
8. b=LL(bn[z]);
9. if (z == 1) ptrs = b.BANK;

10. bt=calculate(z,p);
11. if(SC(bn[z], bt) AND z==1)
12. for(int l = 1 to dcnt) do

13. copy[i] = oldlst[i];
}

14. z =bz/2c;
}

}

shared word BLK[1..B + kN ∗ T][1..S];
private INDEX copy[1..kT], oldlst[1..kT];
private pointer ptrs[1..B];
private boolean dirty[1..B];
private INDEX dcnt, blkidx;
private word v;

wordtype read(int addr){
15. v=BLK[ptrs[addrdivS]][addrmodS];
16. if(V L(BANK)==F)

17. goto line 27 of calculate (Algorithm 2);

18. else return v;
}
void write(int addr, wordtype val){
19. blkidx=addr div S;
20. if(dirty[blkidx]==F){;
21. memcpy(BLK[copy[dcnt]], BLK[ptrs[blkidx]], sizeof(blktype));
22. dirty[blkidx]=T;

23. oldlsl[dcnt]=ptrs[blkidx];
24. ptrs[blkidx]=copy[dcnt];
25. dcnt=dcnt + 1;
26. }
27. BLK[ptrs[blkidx]][addrmodS]=val;
}

cesses. The resulting algorithm (BLS-RedBlue) is much simpler than the wait-free construction
of [7] since it does not require the complicated mechanisms presenting in [7] for returning values
and verifying the application of an operation. These tasks are performed in BLS-RedBlue in the
same way as in S-RedBlue.

The BLS-RedBlue algorithm is presented in Algorithm 4. Procedure propagate executes the
same code as S-RedBlue for all nodes other than the root. The code executed by some process p
when it reaches the blue root is presented in lines 27−36 and it is similar to the one of LS-RedBlue.
However, the execution of lines 32− 36 may have to occur more times in order to ensure that p’s
operation has been applied to the object. Only when this has occurred, p’s propagate returns. To
speed up this process, we store one more field in the blue root node, named help. Each process,
applying a successful SC on the root node, writes there the index of the last active process it
has helped, and next time processes start their helping effort from the next to this process. This
has as a result, the body of the while loop of line 31 to execute at most min{k, 2M/T} times.
Each time that the loop is executed twice, M/T more active processes are helped. Therefore, after
2k/(min{k,M/T}) iterations, the operation of p will have been applied to the object.

Each iteration of the loop requires O(B) time to execute lines 27 − 28, 32, 36 and 34. Each
execution of calculate applies at most min{k, M/T} operations. The cost of applying these
operations is O(MS + min{k,M/T}D). Finally, the cost of calculating the return values at each
execution of calculate is O(k). So, the cost of executing the while loop is O(k/(min{k, M/T})(B+
MS +k +min{k, M/T}D)). Given that each process requires only O(log k) steps to reach the root
node and it holds that log k ∈ O((k/ min{k, M/T})(B +MS +k+min{k, M/T}D)), it follows that
the time complexity of BLS-RedBlue is O((k/ min{k, M/T})(B + MS + k + min{k, M/T}D)).

Obviously, BLS-RedBlue achieves better time complexity than the wait-free construction of [7]
and it is adaptive. This is achieved without any increase to the required space overhead which is

21

O(n2 + n(MS + B)) for both algorithms.
In case each return value has size larger than a single word, i.e., it is at most R words, our

algorithms can still work with single-word registers by substituting the array of single-writer reg-
isters held by each process with a bidimensional array of nR words. Then, the time complex-
ity of BLS-RedBlue becomes O((k/ min{k, M/T})(B + MS + kR + min{k,M/T}D)). This as-
sumption is done at the wait-free universal construction in [7] which then has time complexity
O(n/min{n, M/T}(B + nR + nD + MS)) (still worse than BLS-RedBlue in this case).

If n is very large, a technique like the one used by GroupUpdate [3] can be employed to store a
single pointer instead of the bit vector in each blue node. Then, the time complexity of BLS-RedBlue
becomes O(k log k + (k/ min{k, M/T})(B + MS + kR + min{k, M/T}D)). Given that we focus on
large objects, we expect that k log k ∈ O((k/ min{k, M/T})(B + MS + kR + min{k, M/T}D)) in
most of the cases.

References

[1] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming made adaptive.
In Proc. of the 18th ACM Symposium on Principles of Distributed Computing, pages 91–103,
1990.

[2] Y. Afek, P. Boxer, and D. Touitou. Bounds on the shared memory requirements for long-
lived & adaptive objects. In Proc. of the 19th ACM Symposium on Principles of Distributed
Computing, pages 81–89, 2000.

[3] Y. Afek, D. Dauber, and D. Touitou. Wait-free made fast. In Proc. of the 27th ACM Symposium
on Theory of Computing, pages 538–547, 1995.

[4] Y. Afek, M. Merritt, and G. Taubenfeld. The power of multi-objects. Information and Com-
putation, 153:213–222, 1999.

[5] Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou. Disentangling multi-object operations.
In Proc. of the 16th ACM Symposium on Principles of Distributed Computing, pages 262–272,
1997.

[6] J. H. Anderson and M. Moir. Universal constructions for multi-object operations. In Proc. of
the 14th ACM Symposium on Principles of Distributed Computing, pages 184–193, 1995.

[7] J. H. Anderson and M. Moir. Universal constructions for large objects. IEEE Transactions on
Parallel and Distributed Systems, 10(12):1317–1332, Dec. 1999.

[8] H. Attiya and A. Fouren. Adaptive and efficient wait-free algorithms for lattice agreement and
renaming. SIAM Journal on Computing, 31(2):642–664, 2001.

[9] H. Attiya and A. Fouren. Algorithms adapting to point contention. Journal of the ACM
(JACM), 50:444–468, July 2003.

[10] G. Barnes. A method for implementing lock-free shared data structures. In Proc. of the 5th
ACM Symposium on Parallel Algorithms and Architectures, pages 261–270, 1993.

22

Algorithm 4 Algorithm BLS-RedBlue.
struct bnode{

INDEX BANK[B]; // used only at the root node

PINDEX pid; // used only at the root node

PINDEX help; // used only at the root node

boolean ops[n];
}

void propagate(int z, int p){
bnode b;

1. while(z!=1){
2. for (int i = 1 to 2) do {
3. b=LL(bn[z]);
4. bt=calculate(z, p);
5. SC(bn[z], bt);

}
6. z =bz/2c;

}

// operations to be performed at the root node

7. b=LL(bn[1]);
8. while (b.ops[p] == F) {
9. for (int j=1 to B) do

10. dirty[j]=F;

11. dcnt = 0;
12. b=LL(bn[1]);
13. ptrs = b.BANK;

14. bt=calculate(1, p);
15. if (SC(bn[1], bt))
16. for (l = 1 to dcnt) do copy[i] = oldlst[i];

}
}

struct bnode calculate(int z, int p) {
struct bnode tmp =< ⊥,−1, < F, . . . , F >>, blue = bn[z], lc, rc;
struct rnode red = rn[z];
int help=0,q;

17. if (2 ∗ z + 1 < 2n) { // check if z is an internal node

18. lc=bn[2 ∗ z];
19. rc=bn[2 ∗ z + 1];

}

20. if (z==1) {q = blue.help; tmp.pid = p; }
21. else q = 1;
22. for (int i = 1 to n) do{
23. if (red.pid == q) // check if process q occupies node red

24. tmp.ops[q] = red.op;
25. else if (is predecessor(z,q,2 ∗ z))
26. tmp.ops[q] = lc.ops[q];
27. else if (is predecessor(z,q,2 ∗ z + 1))
28. tmp.ops[q] = rc.ops[q];
29. if (z == 1 AND tmp.ops[q]==T AND blue.ops[q]==F) {
30. if (help < M/T) {
31. apply ops[q] and store into rvals[p][q] the return value;

32. help = help + 1;
33. }
34. else tmp.ops[q] = F;

35. }
36. else if(z == 1 AND tmp.ops[q]==T) rvals[p][q] = rvals[b.pid][q];
37. q = (q + 1) MOD n

}
38. return tmp;
}

23

[11] T. D. Chandra, P. Jayanti, and K. Tan. A polylog time wait-free construction for closed
objects. In Proc. of the 17th ACM Symposium on Principles of Distributed Computing, pages
287–296, 1998.

[12] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and
Systems (TOPLAS), 13:124–149, Jan. 1991.

[13] M. Herlihy. A methodology for implementing highly concurrent data objects. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 15(5):745–770, Nov. 1993.

[14] M. Herlihy, V. Luchangco, and M. Moir. Space and time adaptive non-blocking algorithms.
Electronic Notes in Theoretical Computer Science, 78, 2003.

[15] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems (TOPLAS), 12:463–492, 1990.

[16] P. Jayanti. A time complexity lower bound for randomized implementations of some shared
objects. In Proc. of the 17th ACM Symposium on Principles of Distributed Computing, pages
201–210, 1998.

[17] P. Jayanti. f-arrays: implementation and applications. In Proc. of the 21th ACM Symposium
on Principles of Distributed Computing, pages 270–279, 2002.

[18] P. Jayanti and S. Petrovic. Efficient wait-free implementation of multiword ll/sc variables. In
Proc. of the 25th IEEE International Conference on Distributed Computing Systems, pages
59–68, 2005.

24

