
Noname manuscript No.
TR-CS-2010-04, July 7, 2010

Building Editable B-rep Models from Unorganized Point
Clouds

V. Stamati and I. Fudos

Technical Report: Computer Science Department TR-2010-04

Abstract We present a novel integrated approach to re-
verse engineering point clouds by producing fully editable
feature-based Boundary Representation (B-rep) models.
We use point cloud morphology analysis techniques to ex-
tract features from a 3D point cloud. We then reconstruct
the boundary contours of features using a fast and effi-
cient fitting approach employing a sequence of piecewise
rational Bezier curves that are G1 continuous.

We introduce a technique for reconstructing the fea-
tures derived from the point cloud using solid model-
ing techniques, such as sweeping, skinning and covering,
providing editability and model re-design capability. The
solid modeling techniques selected for feature reconstruc-
tion depend on the morphology of the point set and the
complexity of the reconstructed contours of the feature.

We support parameter definition on each feature to
render attributes such as construction techniques, ad-
jacency and other topological characteristics. A feature
connectivity graph is derived and used for producing a
feature assembly plan that describes the reconstruction
process of the Brep model.

Inter- and intra- feature constraints are imposed to
ensure that the final reconstructed model is editable, ro-
bust and accurate. We offer examples of using our re-
engineering system to demonstrate the feasibility of this
method and its unique editing capabilities.

1 Introduction

Reverse engineering is a general concept that can refer to
various fields, such as software technology, product design
and manufacturing or archaeological site reconstruction
[9]. In solid modeling and Computer-Aided Design, re-
verse engineering aims to analyze a real object and deter-
mine its characteristics and structure mechanisms, with

V. Stamati and I. Fudos
Department of Computer Science, University of Ioannina, GR45110,
Ioannina, Greece
E-mail: {vicky,fudos}@cs.uoi.gr

focus on editability and manufacturability. The data con-
cerning the physical object are obtained by various meth-
ods. Common methods include 3D laser scanning or pho-
togrammetry methods that produce a point cloud corre-
sponding to points on the surface of the scanned object.
In the context of solid modeling and CAD, reverse engi-
neering is the process of obtaining a B-rep model from
measurements acquired by scanning an existing physical
model [23]. Reverse engineering is vital for industry be-
cause the computer models acquired help improve the
quality and efficiency of designs and also speed up the
analysis and manufacturing process.

The aim of this work is to introduce an integrated
method for reverse engineering objects of mechanical or
freeform design to obtain fully editable feature-based B-
rep models that can be reproduced or modified before pro-
duction. More specifically, our approach partitions a 3D
point cloud into components corresponding to features, so
as to create an editable and parameterized solid model de-
scribed by its various interconnected features. This type
of model provides the user-designer with the capability
of editing, redesigning and reproducing the original ob-
ject, according to his preferences and needs, by editing
the features of the model [8].

The information flow in our system is summarized
in Figure 1. We begin from a 3D point cloud which we
have preprocessed to remove duplicate points and an STL
(stereolithography) file of the point cloud. An STL file is
a file describing the model as a triangular mesh. This
file format provides the vertices of each triangle of the
mesh and the corresponding normal vectors. We perform
segmentation of the point cloud into subsets by detect-
ing features using a point-wise characteristic called point
concavity intensity and the local surface normal vector
variations that measure mesh curvature. We apply a re-
gion growing method based on variations of point concav-
ity intensity and curvature to divide the point cloud into
feature regions and regions corresponding to their bound-
aries. The boundary regions are approximated with cubic
rational Bezier curves through a fast and efficient curve



2

Fig. 1 Feature-based Reverse Engineering Platform Data Flow

approximation method that we have developed. The re-
sulting contours are used in combination with the feature
regions to reconstruct each feature using solid modeling
operations. The resulting features are then combined us-
ing a feature assembly plan based on a feature adjacency
graph to construct the final B-rep model. Parameters and
constraints are defined on the feature components to pro-
vide for editability and robustness.

This paper makes the following technical contribu-
tions:

– Describes a methodology for reconstructing the fea-
tures of the object using solid modeling techniques.

– Presents a feature assembly plan based on a connec-
tivity graph of the model’s feature elements.

– Introduces parameters and constraints to allow for ed-
itability.

– We report on the development of a prototype sys-
tem called Re-FACE (Re-Engineering with Feature
Assembly plans using Constraints for advanced Ed-
itability) and present some reconstruction examples.

Section 2 presents an overview of our approach to de-
tecting and extracting features from a 3D point cloud
based on point concavity intensity and surface normal
variation. A fast and efficient curve approximation method
for fitting cubic rational Bezier curves to 3D points is also
presented in Section 2. Section 3 focuses on reconstruct-
ing features using solid modeling operations. Section 4
focuses on using a connectivity graph for building a con-
struction plan to create a B-rep model. In Section 5 we
present reconstruction examples that verify our re-design
paradigm. Section 6 offers a brief comparison to other re-
engineering approaches. Section 7 provides conclusions.

2 Feature Formation

Our Brep model reconstruction method is based on re-
engineering objects by exploiting their morphological fea-
ture elements. In this section we outline our method used
for detecting and extracting features from point clouds
for the purposes of reengineering. The objects that can
be reengineered by the proposed approach can be either
of mechanical or freeform design. It is also important for
feature construction and assembly to provide tools for re-
constructing the boundary contours of the detected fea-

ture components so that they can be used seamlessly in
complex solid modeling operations.

2.1 Feature Definition

“Feature”, in computer-aided design, is a term used to
describe an entire class of concepts. In general, features
are generic shapes or characteristics which can be asso-
ciated with certain attributes and knowledge[16]. These
attributes usually describe the morphology of the object,
i.e. through parameters defining its size, shape and orien-
tation, and its behavior in a CAD model, i.e. connectivity
issues, constraints and tolerances[13]. The use of features
in a model provides the user-designer with the ability to
edit and redesign the model[8], [15]. A user-designer can
even define his own feature components to use in the de-
sign phase[7]. Given this, various systems apply the con-
cept of features in a way compatible to the scope and aim
of the respective application.

In reverse engineering applications, and specifically,
in reconstructing mechanical parts, features are entities
traditionally used in engineering designs such as slots,
holes, and bosses[21]. In reverse engineering of objects of
freeform design, the term ”feature” is often used in the
sense of feature lines[4], meaning edges/boundaries of an
object that can be detected by changes of the surface cur-
vature of the object[3],[6].[22] uses an intermediate data
structure called a feature skeleton which is a network of
curves basically representing the boundaries of surface re-
gions. In Brep models features can also be surfaces that
can be grouped together based on certain characteristics
or properties. In this sense, we consider a feature as a
group of points that has morphological semantics, from a
design point of view.

We consider how feature components that consist of
feature regions and boundary curves can be used to re-
construct a complete editable B-rep model of an object.
We apply solid modeling techniques to combine and ob-
tain the entire 3D model representation. Furthermore, we
introduce parameters and constraints on these features to
enable editing and capturing of design intent.

2.2 Feature Detection and Extraction

In [18] we have presented a feature-based approach to re-
engineering freeform objects from point clouds obtained
by 3D laser scanners. This approach is based on discov-
ering features on the point cloud by detecting key local
changes in the morphology of the point cloud. We employ
region growing, detection of rapid variation of the surface
normal and the concavity intensity, i.e. the distance from
the convex hull. This results in a number of regions that
represent object features.

More specifically, morphological features in the point
cloud are detected using a characteristic called the “con-
cavity intensity” of a point which represents the smallest



3

Fig. 2 Point cloud of a cycladic idol

Fig. 3 Greyscale mapping of point cloud concavity intensity values
and feature regions

distance of a vertex from its convex hull. This charac-
teristic detects concave features in the cloud. Figure 2
presents the point cloud of a cycladic idol, whereas Fig-
ure 3 displays a greyscale mapping of the concavity inten-
sity value of each point (white color corresponds to the
maximum distance whereas black corresponds to points
located on the convex hull). Features are also detected by
rapid variations of the surface normal. These two charac-
teristics are combined in a region growing method that
results in sets of points corresponding to individual fea-
tures (Figure 3). By obtaining the features of the object
we can create an editable and parameterized B-rep model
described by its various connected components. This type
of model provides the user-designer with the capability of
editing, redesigning and reproducing the original object,
depending on his preferences and needs, by editing the
features of the model and the inter-feature constraint.
Another example of our region growing method is shown
in Figure 4, where it is applied on the point cloud of a
screwdriver[20].

A short post-processing step on the feature regions
may be performed manually after region growing. Specif-
ically, we can merge two regions together to form a single
region or we can split a region into two smaller regions.
This is accomplished interactively by specifying vertex
sequences which can form a border between the two new
regions. Also we can create user-defined hardwired point-
wise boundary contours to limit the behavior of the re-
gion growing method, when recalculating the regions on
a portion of the point cloud. Also border correction can
be carried out manually in cases where the border of a

Fig. 4 The result of our feature detection and extraction method
on the screwdriver point cloud.

feature is not continuous, by specifying additional con-
necting points to be included in the border contour.

Our region growing method returns sets of points cor-
responding to the feature (feature region) and sets of
points corresponding to the boundaries of the features
(region border). The boundaries are used for curve ap-
proximation whereas the region points are used for sur-
face fitting. In the following we focus on constructing
smooth fitting curves for the region boundaries. For more
details on our feature detection and extraction approach
the reader is referred to [18] and [17].

2.3 Feature Contour Reconstruction

The feature extraction method described in the previous
section derives sets of points corresponding to borders of
feature regions and sets of points corresponding to the
feature bodies. Let CR be a contour region consisting of
n 3D points. We wish to build a set of curves that best
approximates this data set and captures the overall mor-
phology of the border. We require that the method used
for fitting is of low computational complexity and of low
degree to avoid multiple curvature reversing. Approaches
in the literature did not meet these requirements either
because of slow convergence, or usage of curves of higher
degree or no consideration of the fairness of the curve
([14], [24], [25]).

We use an approach that fits 3D cubic rational Bezier
curves to boundary point sets of features that ensures
that the curve segments obtained conform to the condi-
tions required for G1 continuity. We use an equivalent
instance of the general NURB, namely piecewise ratio-
nal cubic Bezier curves because the constraints we apply
decrease the degrees of freedom of our problem and our
requirements are well met with this low degree simpler
representation, resulting in a fast converging optimiza-
tion algorithm. Using piecewise rational Bezier curves we
basically follow an optimization approach which can in-
herently rule out noisy data without affecting the shape
of the boundary as a whole. Rational curves are flexi-
ble curves that can approximate complex geometry more
accurately than pure polynomials of similar degrees. In
general they are not preferred for reverse engineering ap-
plications in the sense that their nonlinear multivariate
format is not computationally practical. However they



4

Fig. 5 Inner control point coordinates expressed in reference to the
end control points

are not as expensive and time consuming when used to
approximate low degree patterns.

Before applying our curve approximation method on
the feature borders, we perform thinning on the border
region. The sequence of points representing the feature
border is divided into subsets of points and curve ap-
proximation is carried out on each point subset.

Curve approximation is performed with a least squares
optimization procedure. Suppose Q = Q1, Q2, . . . , Qm is
a set of ordered border points and C is an approximating
rational Bezier curve given by the equation:

C(ui) =

n∑

j=1

wjPjBj(ui))

n∑

j=1

wjBj(ui)

(1)

where n=4 for a cubic rational Bezier curve, ui is the
parameter value associated with border point Qi, Pj are
the control points, wj is the weight of each control point
and Bj is the corresponding Bernstein polynomial.

Assuming that all points of Q should be approximated
by the curve, we would like to minimize the error:

ei = Qi − C(ui) (2)

The least squares problem is then to minimize the
error:

E =
m∑

i=1

ei
2 −→ E =

m∑

i=1

((Qi − C(ui)))2 (3)

We partially differentiate this target function with re-
spect to two independent variables. This results in two
different systems of linear equations. To ensure G1 conti-
nuity between the Bezier curves produced by our fitting
approach, we import constraints into the resulting equa-
tions. We make sure the starting point of one curve coin-
cides with the end point of the previous curve and that
the inner control points are located accordingly on the
tangents of the end points (Figure 5).

The solutions of the systems of linear equations are
used iteratively in a two-step optimization procedure that
ultimately determines the values of the weight variables
and the inner control point coordinates.

This is a fast curve approximation approach that pro-
duces smooth continuous curves that interpolate or pass
close by the original data points. A good approximation
is reached within a few iterations. In some cases, the min-
imal error is obtained after a single iteration.

Fig. 6 (left) A feature extracted from the point cloud and its
border. (center) The feature boundary region. (right) The recon-
structed boundary contour

An example of feature boundary reconstruction by
means of our method is shown in figure 6. For more de-
tails on our boundary contour reconstruction approach
please refer to [19],[17].

3 Feature reconstruction using solid modeling
techniques

Features, as used from our perspective, can be recon-
structed from their regions either by surface fitting or
solid modeling operations. Surface fitting constructs a
surface model that conforms to the initial object from
both a morphological and an aesthetic point of view,
however its editing capabilities are limited to interactive
pointwise modifications. Therefore we apply solid mod-
eling techniques to our feature regions so that the re-
constructed features are more easily edited and modified.
We use a limited repertoire of solid modeling operations:
sweeping, skinning, covering and blending. Other solid
modeling and advanced CAD operations can also be uti-
lized if we support them with appropriate constraining
and assembly schemes.

Modeling operations are performed using the bound-
ary contours of the features, additional curves derived
from significant feature region points. Our main concern
is to reconstruct each feature as a solid entity, preserving
the shape morphology and semantics, without necessarily
interpolating the point cloud exactly. We apply standard
symmetry detection methods to determine what model-
ing technique is more appropriate in each case [12].

3.1 Sweeping

Sweeping is a solid modeling operation in which a closed
planar domain is translated (translational sweeping) along
a trajectory curve or rotated (rotational sweeping or swing-
ing) around an axis to form a solid. If an open domain
is swept accordingly then a surface model is formed [11].
Research on reverse engineering point clouds using sweep-
ing techniques has been performed by [10]. The authors
perform slicing on a point cloud using the bounding box
as a guide and reconstruct a boundary curve conforming
to the points retrieved from slicing. The boundary curve



5

is swept accordingly to reconstruct and obtain the solid
model.

Sweeping is employed for feature reconstruction when
the feature region is homogeneously distributed along an
axis and the shape of the feature is smooth. Suppose, for
example, that we would like to reconstruct the shaft of a
screwdriver. The corresponding feature region extracted
from our region growing algorithm is shown in Figure
7. Cross-sections of the upper half of the screwdriver
shaft result in round circular curves that, when compared,
match. This implies that reconstruction at that part of
the feature should be carried out with simple transla-
tional sweeping. Before carrying out reconstruction, we
examine all sequential cross-sections to define the limits
of the sweeping operation. Sweeping is performed on the
trajectory up to the point where the other end of the
OBB is reached or the cross-section contour changes. In
the example of the screwdriver shaft, this occurs up to
the point where the tip of the shaft starts to form. This
type of simple sweeping, along a linear trajectory path,
is also referred to as extruding.

Fig. 7 The feature region points of the screwdriver shaft and the
corresponding reconstructed feature

3.2 Skinning

Skinning is a solid modeling operation where a closed vol-
ume or solid is formed by creating a skin surface over pre-
specified cross-sectional planar surfaces whereas covering
is an operation that covers (that is, fits a surface onto)
closed boundary curves in solid or wireframe objects.

In the case where two cross-section curves are differ-
ent, in size or shape, reconstruction is performed through
skinning techniques. In the previous example of the shaft
reconstruction, from the point where the sweep opera-
tion terminates, up to the tip of the shaft, where we
reach a feature boundary curve, sequential cross-sections
cannot be matched, thus leading to the application of
skinning techniques to create surface patches between the
two cross-section curves. In general, if a network of dif-
ferent cross-section curves is provided, then skinning is
performed using the intermediate curves as guides for the
skinning operation.

3.3 Covering

Some feature regions can easily be reconstructed using
covering techniques. This holds for point cloud regions
that are fairly flat, spread out and/or freeform. Suppose
we have the feature region shown in Figure 8. This feature
is the top surface of the handle of a screwdriver.

Fig. 8 Bottom surface of screwdriver handle created by covering

The specific feature point cloud is very thin and spread
out, similar to an overturned plate. Its corresponding
OBB is also thin. Using the feature’s boundary curve and
a sample of points located on the top of the feature (on
and very close to the upper face of the OBB) we create
a surface that interpolates the points providing a smooth
result. In general, covering techniques can be applied to
cover points or other guide contours.

3.4 Blending/Filleting/Chamfering

For connecting surfaces located inside a feature we use op-
erations such as blending, chamfering and filleting. Blend-
ing is an operation used to modify a model so that a sharp
edge or vertex is replaced by a smooth surface whose
normal vectors are continuous with those of the surfaces
that originally meet at the edge or vertex[11]. Chamfer-
ing and filleting are special cases of blending. Blending
is used mainly for aesthetic reasons, to make the model
look smoother. We employ these operations after the ini-
tial feature assembly, to repair and beautify the B-rep
model.

3.5 Selecting a Feature Reconstruction Operation

In a nutshell, our approach to reconstructing features
through solid modeling is described by the following steps:

1. Compute the PCA of the feature region
2. Find OBB based on principal axes
3. Examine shape of OBB and distribution of points on PA

3.1. If distribution not distinctly along axis ⇒ Covering
3.2. Else ⇒ Sweeping or Skinning
3.2.1. Create slicing plane S, ‖ to OBB, ⊥ to PA
3.2.2. Until path T (length of OBB axis) is traversed
a. Move S on T
b. Find all points Pi of region located on or close to S
c. Apply curve approximation on S to construct curve c
3.2.3. Detect similarities/characteristics of curves
3.2.4. Apply operation for feature reconstruction

a. If cross sections identical → translational sweeping
b. If cross sections differ → perform skinning



6

In some cases, features can be reconstructed in more
than one way. Let us consider for example the bottom
surface of the screwdriver that is connected with screw-
driver shaft (Figure 17). This feature has 2 border curves,
the outer and the inner boundary. This feature can easily
be reconstructed using skinning between the two bound-
ary curves. However it can also be reconstructed using
rotational sweeping. By creating the OBB of the feature
region we also obtain the principal axes. The axis that
passes through the hole can be used as an axis of rotation
for sweeping. The profile curve for sweeping is obtained
by slicing the point cloud with a plane that originates
from the rotation axis and is parallel to one of the faces
of the bounding box. The points on and very near to the
slicing plane are used for the profile curve reconstruction,
which is then swept around the axis accordingly.

4 Reconstructing B-rep models with feature
assembly plans

In this section, we consider how feature components that
consist of feature regions and boundary curves can be
used to reconstruct the complete editable B-rep model
of an object. We apply the solid modeling techniques
presented above to combine and obtain the entire 3D
model representation. Furthermore, we introduce param-
eters and constraints on these features to allow editing
and capturing of design intent.

4.1 Generating a Feature Assembly Plan

A point cloud is reconstructed based on a feature as-
sembly plan. A feature assembly plan provides a logi-
cal structure for determining how feature parts are con-
nected. The feature assembly plan of a point cloud can
be derived based on a decomposition of an object into its
features. We consider the screwdriver point cloud to il-
lustrate this process. We construct a feature connectivity
graph G(V, E) where V is the set of nodes of the graph
and E the set of edges. Every node of the graph corre-
sponds to a feature in the point cloud, whereas an edge
between two nodes means that the two features are adja-
cent. An initial, though not necessarily final, estimation
of the feature connectivity graph is provided by our region
growing feature detection and extraction algorithm.

A feature decomposition tree (Figure 10) of the screw-
driver is derived from the feature connectivity graph. The
screwdriver’s features can be decomposed into the parts
shown in the Figure. Each leaf node of the tree corre-
sponds to a feature component meant for reconstruction.
Each leaf contains the id or ids of the corresponding fea-
ture(s).

The connectivity graph is augmented with data struc-
tures for each feature node containing information rele-
vant to their corresponding features, such as number of

Fig. 9 The feature connectivity graph of the screwdriver.

Fig. 10 Decomposition of the screwdriver model into feature ele-
ments. Each leaf node corresponds to the feature element(s) to be
reconstructed (denoted by its node id).

points, average normal vector, and average concavity in-
tensity value. The edges of the graph are also associated
with data structures maintaining information such as the
number of points in the border, the connected features
etc.

The second number (in red) in every node describes
the degree of the node. From the graph of Figure 9 we
determine that all the nodes except for node 3 have a low
degree of 1 or 2. Node 3 however has a degree 8. Also
nodes 1, 10 and 4-9 have one boundary contour each,
whereas node 2 has two boundary contours and node 3
has eight boundary contours. Node 3 has two boundary
connections with nodes 2 and 10 and 6 distinct border
regions around the slots (one for each slot).

If a node in the connectivity graph is of high degree or
has a large number of boundary contours, such as node
3 in Figure 9, then further decomposition is performed
on the feature corresponding to the node. For example,
the grip body of the screwdriver can be decomposed into
smaller regions of a reduced degree with less boundary
contours (Figure 11). This results in more feasible solid
modeling operation sequence for the reconstruction of the
point cloud.

Specifically, the grip body is divided into the base
of the grip, the six handling slots and six intermediate
connecting surfaces which surround the slots. The corre-
sponding feature connectivity graph is shown in Figure
12.

Each feature entity in this graph contains one or two
at the most continuous border contours. Specifically, nodes
1, 4-9, 10-15 and 16 have one boundary contour each,
whereas nodes 2 and 3 have 2 boundary contours each.
Also the highest degree of a node is seven, in contrast to



7

Fig. 11 Decomposition of the grip body of the handle

Fig. 12 New feature connectivity graph of the grip body of the
handle. The number inside the node is the node id and the outer
number describes its degree.

the previous graph where the highest degree was eight.
Therefore, we have accomplished to reduce the highest
degree of the nodes and the average number of boundary
contours per node. This is performed iteratively, until we
cannot perform any other graph transformation that re-
duce these quantities.

Fig. 13 New decomposition of the grip body of the handle. Each
leaf node corresponds to the feature element(s) to be reconstructed
(described by its node id).

4.2 Parameter definition and editability

The major advantage of feature based modeling is that
by defining parameters on the features, the user-designer
can more easily and efficiently modify the specific feature
without necessarily affecting the rest of the solid model.
While a feature is an entity that corresponds directly to

a physical part, an attribute (property) is a character-
istic or a quality of a feature [16]. The parameters (at-
tributes) defined on a feature may refer to the geometry,
the location, the relative placement in 3D or the con-
struction method of the feature element. Attributes may
even describe properties such as material or texture of
the feature. Usually parameter definition is supported by
imposing constraints to which the model must conform.
We have defined parameters and constraints that deter-
mine the main functionality and behavior of the features
in the model, i.e. dimension limitations, connectivity, so
as to provide basic editing capabilities.

4.2.1 Editability

By defining parameters on our features, we provide the
capability of editing the feature. Changing a parameter of
a feature means that the model has to be re-evaluated and
reconstructed to conform to the new parameter values.
Depending on the parameter that is changed, the new
feature model may be slightly or completely different from
its previous state. For example, if one of the intermediate
curves used in skinning a feature is made larger, then the
resulting model will be different from its previous instant.
However, if the guide curve is changed dramatically, i.e.
the shape of the curve changes, then the edited model
will be very different.

For example, suppose we have the feature presented
in Figure 14. The shape of this feature is described by
two concentric circular curves of diameters r1 and r2. If
the initial parameter values of these two attributes are
set to 2 and 1 respectively, then the instant of the feature
is shown in 15. This feature can be easily edited by mod-
ifying the parameter values of the curve diameters to 10
and 1 respectively. Then the feature is as shown in 15.

Fig. 14 A feature along with shape parameters/attributes

Fig. 15 Feature recalculated for parameter values: (r1 = 2, r2 = 1)
and (r1 = 10, r2 = 1).



8

Editing functions are closely linked to constraint defi-
nition. Most often, parameter values should be constrained
with upper and/or lower bounds, so as to make sure that
the model’s design intent and functionality is not com-
promised. Suppose we change the length parameter value
of the screwdriver shaft. If this parameter is left uncon-
strained, then a value may be provided that makes the
shaft too long to be of any practical use, thus compro-
mising its functionality. Therefore, in cases like this, the
parameter values must be bounded.

Inter-feature constraints are defined to prevent incon-
sistent neighboring components. For example, the shaft of
the screwdriver connects with the bottom surface of the
handle. If the diameter of the shaft is modified (scaled up
or down), then the boundary hole of the handle bottom
has to be modified appropriately, so that the model is ac-
curate. Also, inter-feature constraints such as parallelism
and perpendicularity aid the reconstruction process by
setting standards that may overcome noise problems or
anomalies that may exist in the point cloud.

Intra-feature constraints are used to define and change
the morphology of the feature. Constraints are defined on
parameters such as the length between cross sections (i.e.
for skinning), the dimension of the feature, the trajectory
path used for skinning and sweeping and any other prop-
erties that contribute to the resulting constructed model.
Also constraints can be applied to the points used to re-
construct contours to allow more difficult modifications,
such as skewing.

4.3 Custom Re-design Functionality Using Constraints

By using features and defining their parameters we obtain
editable B-rep models. We can achieve even higher levels
of editability and flexibility if we combine basic parame-
ter and constraint definition with more local and global
constraints. Local or global constraints are imposed on a
model to enforce complex geometric structures and ad-
vanced functionality. Such constraints may be part of a
feature or span a number of different features. By apply-
ing a system of constraints on a model and its features
we can support custom design on a higher level, provid-
ing the capability to extract individual features from a
model or a set of features and use them in the design
process of a different model or for the redesigning of the
current model. We omit the constraint definition part due
to space limitations.

We use a hybrid geometric constraint solving method
for finding the plausible geometric configurations.

5 Implementation and Examples

In this section we present examples of our re-engineering
application. Our algorithms have been implemented and
tested under the Microsoft Visual C++ programming en-
vironment using ACIS R18 solid modeling libraries by

Fig. 16 A point cloud of a screwdriver point cloud and its convex
hull

Spatial. The GUI of the application has been implemented
using HOOPS.
Example 1: Re-engineering the Screwdriver Point
Cloud. We applied our re-engineering approach to a 3D
point cloud of a screwdriver[20] containing approximately
27K data points. We use the Qhull [1] algorithm to cal-
culate the convex hull of the point cloud (Figure 16) and
compute the concavity intensity values of the points. We
then apply our region growing method to detect and ex-
tract the features present in the point cloud, as shown
in Figure 4 and perform post-processing on the resulting
features and reconstruct the boundary contours of each
feature component.

We then proceed to reconstruct each feature element
extracted by our approach. Based on the feature connec-
tivity graph of the model, we start the reconstruction
process from the node with the smallest complexity, i.e.
the shaft. According to our approach, the shaft is recon-
structed using translational sweeping for the main body,
whereas skinning is used for the remaining part (tip).
To maintain the accuracy and robustness of the feature,
the end slice of the swept element is used as the initial
slice for the skinned element, and this is considered an
intra-feature constraint for this component.The two fea-
ture elements are stitched together at the point of their
joint slice. This reconstructed feature is shown in Figure
7.

The neighboring component to the shaft, the bottom
surface of the handle is the next feature to be recon-
structed. This feature shares a boundary contour with
the shaft and with the rest of the handle. The OBB of
this feature is flat and plate-like, however since we have
two boundary contours, we use skinning for reconstruc-
tion. The result is shown in Figure 17.

Fig. 17 Bottom surface of screwdriver handle created by covering

Next we reconstruct the base of the handle. Using the
joint boundary contour as the first slice of the component,



9

we perform slicing along the main axis of the feature and
use skinning (Figure 18).

Fig. 18 Bottom half of screwdriver handle

The base of the handle is connected to the connecting
surfaces of the grips, as presented in the updated con-
nectivity graph (Figure 11) . Each connecting surface is
reconstructed using covering, as is each grip component.
Each connecting surface is attached to two grip compo-
nents. Blending is employed to ensure that the connect-
ing surfaces are smoothly joined with their correspond-
ing grips. This complex component, once reconstructed,
is stitched together with the base of the handle.

Finally, the top of the screwdriver is reconstructed
using covering (figure 8) and blending is used to smoothly
connect it with the rest of the handle.

The result of this implementation is shown in Figure
19.

Fig. 19 Reconstructed B-rep model of the screwdriver.

Suppose we would like to edit the base of the handle of
the screwdriver by widening the base contour (by scaling
up the bottom boundary curve) and by dimensioning it
to be longer. The bottom half of the handle is described
by four cross-section contours, as shown in Figure 18. The
bottom boundary contour is shared by the bottom surface
of the screwdriver whereas the top boundary contour is
connected to the upper half of the handle. We scale the
lower boundary contour (that is shared with the bottom
surface of the handle) by a factor of 1.5 along the x and
y axes and translate the top boundary contour along the
z axis. The translation is propagated to the upper half
of the screwdriver handle to ensure the connectivity of

the components. The resulting edited feature is shown in
Figure 20.

Fig. 20 Modified screwdriver handle base.

Example 2: Re-engineering and Editing a Cycladic
Idol. We applied re-FACE to a point cloud of a cycladic
idol consisting of 8400 points. The features detected by
region growing are presented in Figure 3. We use skin-
ning and sweeping to reconstruct the model features and
the final reconstructed B-rep model is shown in Figure
21(left). We redimension the contours that describe the
neck and the result is shown in Figure 21(left). Subse-
quently, by editing the feature that describe the top of
the head we obtain the model shown in Figure 21(right).

6 Related Work

Other parametric, feature-based and constraint-based meth-
ods for reverse engineering have been proposed. Research
such as [21],[5] have concentrated on creating high ac-
curacy models of manufactured mechanical parts. The
REFAB project [21] uses a feature-based and constraint-
based method to reverse engineer mechanical parts. RE-
FAB is a powerful interactive system where the 3D point
cloud is presented to the user, and the user selects from
a list features that exist in the cloud, specifies with the
mouse the approximate location of the features in the
point cloud, and the system then fits the specified fea-
tures on the actual point cloud data using least square
optimization. This feature-fitting process is made more
accurate by using constraints that are detected by the sys-
tem, verified by the user and then exploited to achieve a
better fitting of the features according to the data. Work
such as [12], [2] concentrate on how constraints can be
detected and efficiently applied in the reverse engineer-
ing process to create more accurate and aesthetically im-
proved models. The authors analyze the types of sym-
metries and shape regularities that can be observed and
detected in a Brep model and how they can be grouped
into constraints that can be applied on the model. [22]
presents a reverse engineering framework where a mesh
is segmented based on techniques derived from morse the-
ory. The mesh created from the point cloud is divided into
separator sets which are combined with feature skeleton
to detect primary regions of the object which are finally
fitted with surface patches.



10

Fig. 21 Original cycladic idol and reproduced idol after editing the neck and top head feature.

A major contribution of our approach as compared
to previous approaches is that it supports reverse engi-
neering of objects of freeform design, which is not feasi-
ble with traditional reverse engineering systems. Also our
approach, in comparison to the above, minimizes user in-
tervention and offers an integrated approach to the overall
problem of re-engineering solid models: from feature and
contour detection and reconstruction to feature assembly
and parameterization. Finally, our approach is targeted
to providing editability of the final B-rep model, which
is accomplished by heavy use of inter-feature and intra-
feature geometric constraints.

7 Conclusions

We presented a novel approach to reconstructing the fea-
tures derived from a point cloud using solid modeling
techniques, such as sweeping, skinning and covering, pro-
viding editability and model re-design capability. A fea-
ture connectivity graph is used for deriving a feature
assembly plan that determines the reconstruction pro-
cess of the whole B-rep model. We impose inter- and
intra- feature constraints to ensure that the final recon-
structed model is editable, robust and accurate. Our sys-
tem has been powered by a geometric constraint solving
system that provides advanced editing capabilities, and
high-level custom design and redesign.

References

1. C. Barber, D. Dobkin, and H. Huhdanpaa. The quickhull al-
gorithm for convex hulls. ACM Transactions on Mathematical
Software, Vol. 22(4):469–483, 1996.

2. P. Benko, G. Kos, T. Varady, L. Andor, and R. Martin. Con-
strained fitting in reverse engineering. Computer-Aided Geo-
metric Design, 19:173–205, 2002.

3. J. Daniels, L. Ha, T. Ochotta, and C. Silva. Robust smooth
feature extraction from point clouds. In IEEE International
Conference on Shape Modeling and Applications (SMI ’07),
2007.

4. K. Demarsin, D. Vanderstraeten, T. Volodine, and D. Roose.

Detection of closed sharp edges in point clouds using normal
estimation and graph theory. Computer Aided Design, 39:276–
283, 2007.

5. H. D. S. Germain, S. Stark, W. Thompson, and T. Henderson.
Constraint optimization and feature-based model construction
for reverse engineering. In Proceedings of the ARPA Image
Understanding Workshop, 1996.

6. S. Gumhold, X. Wang, and R. Macleod. Feature extraction
from point clouds. In Proceedings of the 10th International
Meshing Round Table, pages 293–305, 2001.

7. C. Hoffmann and R. Joan-Arinyo. On user-defined features.
Computer Aided Design, 30(5):321–332, 1998.

8. C. Hoffmann and R. Juan-Arinyo. Erep - an Editable, High-
Level Representation for Geometric Design and Analysis. Geo-

metric modeling for product realization, north holland edition,
1993.

9. K. Ingle. Reverse Engineering. McGraw-Hill, 1994.
10. J. Kantz. Application of sweeping techniques to reverse engi-

neering. Master’s thesis, Department of Computer and Infor-
mation Science, University of Michigan - Dearborn, 2003.

11. K. Lee. Principles of CAD/CAM/CAE Systems. Addison-
Wesley, 1999.

12. B. Mills, F. Langbein, A. Marshall, and R. Martin. Ap-
proximate symmetry detection for reverse engineering. In
ACM Symposium on Solid and Physical Modeling, Ann Arbor,
Michigan, United States, pages 241–248, 2001.

13. P. Nyirenda and W. Bronsvoort. Numeric and curve parameters
for freeform surface feature models. Computer Aided Design,
40:839–851, 2008.

14. H. Pottmann, S. Leopoldselder, and M. Hofer. Approximation
with active bspline curves and surfaces. In Proceedings of the
Pacific Graphics IEEE, pages 8–25, 2002.

15. J. Rossignac. Issues on feature-based editing and interrogation
of solid models. Computers and Graphics, 14(2):149–172, 1990.

16. J. Shah and M. Mantyla. Parametric and Feature-Based
CAD/CAM. John Wiley & Sons Inc, 1995.

17. Omitted for the purposes of double blind review.
18. Omitted for the purposes of double blind review.
19. Omitted for the purposes of double blind review.
20. Cyberware. Cyberware Rapid 3D Scanners.

http://www.cyberware.com/products/scanners/desktopSam-
ples.html.

21. W. Thompson, J. Owen, H. D. S. Germain, S. Stark, and
T. Henderson. Feature-based reverse engineering of mechan-
ical parts. IEEE Transactions on Robotics and Automation,
15(1):57–66, 1999.

22. T. Varady, M. Facello, and Z. Terek. Automatic extraction of
surface structures in digital shape reconstruction. Computer
Aided Design, 39:379–388, 2007.

23. T. Varady, R. Martin, and J. Cox. Reverse engineering of ge-
ometric models - an introduction. Computer-Aided Design,
29(4):255–268, 1997.

24. W. Wang, H. Pottmann, and Y. Liu. Fitting b-spline curves to
point clouds by curvature-based squared distance minimization.
ACM Transactions on Graphics, 25(2):214–238, 2006.

25. H.-T. Yau and J.-S. Chen. Reverse engineering of complex ge-
ometry using rational b-splines. International Journal of Ad-
vances Manufacturing Technology, Vol.13:548–555, 1997.


