ReJCAD: A Feature-based CAD System for Reconstructing Traditional Filigree Jewelry

V. Stamati¹, G. Antonopoulos¹, Ph. Azariadis² and I. Fudos¹

Abstract

This paper presents a novel approach to reconstructing traditional filigree jewelry. Our method aims at producing an editable CAD representation that can accurately capture the original design and be capable of re-parameterization and modification prior to manufacturing (for example to insert custom designs and abide to free-form artistic alterations). To achieve this, we have developed robust and accurate representations of patterns, used in the design of such jewelry, based on spirals, circular and elliptic arcs, curve segments and braids of various types; all optimized by fairness criteria for aesthetic purposes. We have also built a library of parametric, constraint-based, manufacturable solid patterns that occur frequently in filigree jewelry. For the purposes of this work, a suite of software tools called ReJCAD has been developed, that is able to process a highly accurate point-cloud of jewelry pieces and to detect features which are fitted by the primitives of the pattern library through user interaction. The point cloud, in the current framework, guides the assembling of all patterns into one robust manufacturable solid piece. We demonstrate the unique capabilities of ReJCAD by reconstructing a filigree brooch part commonly used in late 19th century at northwestern Greece.

Keywords: filigree jewelry, parametric design, jewelry patterns, feature-based reconstruction, re-engineering

1 Introduction

Computer Aided Design (CAD) systems are widely used in most industries and are increasingly used in jewelry manufacturing [1, 2]. While manual design of jewelry is still in wide use, this approach is both cumbersome and time consuming when compared to designing using 3D CAD systems.

Editing and redesigning are feasible in a 3D CAD environment, as long as they are supported by parametric and constraint-based techniques [3, 4]. 3D rendering helps the artist to detect parts of the model that are unsatisfactory [5]. In addition, it is possible to redesign based on customer feedback after browsing the first version. Generally, current feature-based systems include various tools to assist in designing a piece of jewelry, including constraints, transformations, libraries of jewelry parts and other solid patterns such as cut stones and gems.

Despite the effectiveness of current 3D CAD systems for jewelry, there are categories of jewelry that cannot be reconstructed even with modern CAD systems. Examples of such types of jewelry are

¹ Department of Computer Science, University of Ioannina, Greece
² Department of Product and Systems Design Engineering, University of the Aegean, Greece
traditional pierced jewelry, filigree jewelry and modern jewelry of free-form design. Filigree jewelry is made using a technique of twisting, bending, wrapping and braiding plain precious metal wires (gold and silver) to create a lace-like effect of pierced jewelry (Figure 1). The metalwork is often combined with precious stones, crystals or glasses to create both jewelry and non-jewelry artifacts. Standard forms of jewelry produced in filigree are earrings, bracelets, brooches, pendants, chains, necklaces and buttons.

![Figure 1. A filigree brooch.](image)

Findings in the Valley of the Kings [8] suggest that this technique was first used by the ancient Egyptians. Wires of variable diameter were often used either to decorate precious metal surfaces or to craft an entire jewelry piece. From Egypt the filigree technique spread to ancient Greece and Europe and reached Persia and India [9]. In Tibet it was extensively used to decorate the inner parts of the traditional ga'u pendants which the Tibetans used as amulets or charms or credentials of authority [9]. Figure 2 portrays the use of the filigree technique in such jewels. The filigree technique flourished and India still remains a massive producer of filigree based jewelry.

Filigree is a technique that produces impressively elaborate artifacts, which combine elegance with the aura of tradition. It became widespread, not only due to its elaborate and yet delicate results, but also because it allows for the creation of maximum size objects by consumption of a minimal amount of

![Figure 2. Silver ga'u ornamented with (a) gold, (b) silver filigree [9], and (c) detail of a golden filigree necklace [9].](image)
precious metal. However it is very delicate, tedious and time-consuming, properties which have forced local Mediterranean craftsmen to refrain from its use. This raised the need for a procedure that would diminish the time consumed and remove the bulk of the labor of this technique.

In this paper, we present a novel approach to reconstructing, creating, and customizing jewelry of filigree craftsmanship (Figure 1). A suite of CAD tools called as ReJCAD has been developed providing the means to the end user to digitally reconstruct, personalize and manufacture filigree-type jewelry using parametric and feature-based techniques. More specifically, this paper makes the following technical contributions:

- Introduces a representation scheme for modeling filigree patterns using elliptical arcs, Bezier segments, spirals and other curve segments. Geometric constraints are imposed on the model in the underlying filigree design library to provide the necessary robustness, editability, and aesthetic conformity to traditional design patterns.
- Describes a novel approach to modeling braids using rational Bezier curve segments which yields an aesthetically improved class of braids.
- Presents a partially automated re-engineering process that aids the reconstruction of a CAD model of traditional filigree jewelry using information derived from a point cloud acquired by high precision 3D scanning.

The remainder of this paper is structured as follows. Section 2 summarizes the current state of art on the open problems that have been tackled in this work. Section 3 presents the proposed classification of parametric constraint-based patterns for creating editable 3D models of filigree jewelry. Furthermore, it presents a new approach to modeling braids of strands using rational Bezier curves. Section 4 describes the process of re-engineering and reconstructing filigree jewelry pieces, whereas Section 5 presents evaluation results: an example case, a usability evaluation and examples of actual manufactured jewelry. Finally, Section 6 offers conclusions.

2 Related Work

CAD tools are being used more and more in artistic and aesthetic applications. In these applications the aim is not only to realize certain geometries and patterns but a main concern is the overall aesthetic result. Examples serving this purpose are presented in [10, 11], where parametric sculpture generators are implemented to create and modify artifacts belonging to certain conceptual families, and to evaluate the final aesthetic result. In [12] an application concerning kinetic art, i.e., art that involves movement, is presented. A system is proposed for designing original kinetic art objects where a 3D
geometric-modeling interface and a rigid-body simulation are combined. A survey on CAD methods used in another aspect of artistic expression, garment design, is provided in [13].

Jewelry design and construction is another example of combining CAD tools and aesthetics. Various commercial software packages have been developed for designing and creating CAD jewelry models such as JewelCAD [14], Rhino3D [15], ArtCAM JewelSmith/Delcam Designer [16], Matrix 3D Jewelry Design Software [17] and 3Design CAD [18]. Most of these systems provide some form of parametric and feature-based capabilities, graphical interfaces with excellent rendering capabilities, built-in libraries focused on jewelry design that include different piece settings, cut gems and stones, and advanced feature-based design tools. Some systems provide advanced functionality, such as Matrix [17], which offers the use of builders for recording design steps and for defining parameter values for parts to be used in the process. Also, the majority of these systems have the capability of exporting models to rapid prototyping machines. All of these systems provide various tools for making jewelry design a simpler and less time-consuming process.

These software packages are convenient for designing and creating various forms of generic style jewelry. However, none of these systems is appropriate for designing and creating editable CAD models of jewelry of a particular craftsmanship, such as filigree jewelry. In particular, for constructing this type of jewelry, where the fine aesthetic result is achieved through twisting, bending and combining wire strands to create complex designs, a system is required that provides the capability to: i) create very accurate and robust solid models ready for reproduction, ii) create parametric models of filigree jewelry that can be used for custom design and redesign and iii) incorporate filigree designs into a solid model corresponding to a ring, bracelet, necklace, etc. In most commercial CAD systems for jewelry, designing is performed manually using various tools and usually the design steps cannot be programmed to be executed automatically and accurately. This means that each different piece of pierced jewelry would have to be created basically from the beginning by hand which does not conform to the requirement of redesign capability. Editing is then usually achieved through history rollback, by returning to a prior design state of the model and applying modifications to the model.

Another CAD approach to designing and producing jewelry of a particular craftsmanship is ByzantineCAD [6]. ByzantineCAD is an automated, parametric CAD system for designing and producing pierced Byzantine jewelry where the user-designer sets some parameter values and ByzantineCAD creates the jewelry model that corresponds to the specified values. This provides the designer with the capacity to rapidly create custom-designed jewelry, based on the preferences of the customers. ByzantineCAD introduces a feature-based and voxel-based approach to designing jewelry, through the definition of elementary structural elements with specific attributes that are used as building blocks to construct complex pierced designs. Modern free-form jewelry can only be partially
described through predefined primitives and feature libraries, due to its abstract and artistic nature which is often difficult to capture. It is usually created using curves (such as NURBS) and surface modeling techniques. An alternative approach to reconstructing free-form artifacts is presented in [7].

A parametric approach to creating carved jewelry is also presented in [19]. Voxel elements are constructed and combined to recreate jewelry depicting designs made from small carvings. This system provides both design and rapid prototyping capabilities. In [20] a parametric feature based jewelry modeler for designing and manufacturing Fret-worked bangles is presented. Fretwork designs are encoded as features that are recurrently removed from stock-solid bangles. Finally, Kai et al [21] developed a reverse engineering system for re-engineering rings. This method creates basic generic models of the initial ring object. To manufacture the ring, the 3D model is transformed into a 2D representation on which the engraving of the ring design will be performed. This method is appropriate for creating blank generic models of rings that a designer will then use to create his/her own ring model.

In general, editing parts of filigree designs in commercial jewelry design systems requires in depth knowledge of feature-based design and solid modeling techniques. In contrast, our system offers an easy, semi-automated procedure for creating and customizing jewelry featuring filigree designs. In our system one defines the basic parameters that refer mostly to the appearance, size and content of the final product and then the construction of the specified model is carried out by the system. By parameterizing the process of creating filigree jewelry, it is easy to modify characteristics of the jewelry such as the size and the designs represented. Furthermore, designing a piece of filigree jewelry using a traditional CAD system may lead to models with robustness problems, which are inappropriate for manufacturing, creating therefore the need for repairing tools and techniques. The technique used in our system leads to robust models that can be directly sent to rapid prototyping machines for manufacturing without any further intervention or repair.

3 Identifying and Reconstructing Filigree Features

Through studying the design of a series of filigree made jewelry, particularly those made by local craftsmen in northwest Greece, we have concluded that certain primordial patterns are being used repeatedly in various combinations. Examples of filigree patterns are shown in Figure 3. By studying the craftsmanship of filigree jewelry, a core set of patterns that are used as building blocks in a wide range of filigree designs is identified.

In this Section, we first enumerate the characteristics of wire strands which are the building elements of filigree jewelry. Then we describe common elementary features observed in filigree jewelry.
Finally, we report on the composition of more complex designs that are commonly used in this type of craftsmanship.

In our models wires are allowed to slightly overlap each other to enforce coherency. Wire overlapping is considered critical for manufacturability (during both 3D printing and casting) and does not affect the aesthetics of the final jewelry piece if it remains within reasonable bounds (i.e., just enough to make the construction manufacturable and coherent). Experienced craftsmen and artists have determined that the edges of the resulting jewelry piece are even sharper than the original piece because of the gluing material used by the craftsmen in filigree jewelry. To have better control of the design sharpness we provide a parameter that affects the thickness of all the wires involved in feature construction by a small percentage (up to \( \pm 10\% \)).

![Figure 3. Various design elements observed in filigree jewelry [9]](image)

### 3.1 Wire Strands

The basic idea behind filigree craftsmanship is to twist and bend strands of wires to build complex designs. Certain properties (parameters) stand out regarding the wires used to build and decorate a filigree jewelry piece: wire strand geometry (thickness and length), the number of wire strands and the technique of combining strands to create larger decorative and more complex strands. A simple wire strand is modeled as a solid translational sweep of a circular-disk profile of radius \( r_w \) along a defining curve trajectory of length \( l \). By altering the radius \( r_w \) of the circular face and the length \( l \) of the profile curve, we obtain different combinations of wire length and thickness. Multiple strands of wires can be combined to create more complex ornamental wires by twisting them in the same direction, braiding them, or combining them in an intersecting formation.

**Twisted Wire Strands:** It is a complex wire strand consisting of one or more twisted strands which follow helical paths of the same direction (Figure 4). The equation describing the helical spiral curve is:

\[
C(t) = \begin{bmatrix} r \cos(t + \theta) \\ r \sin(t + \theta) \\ ct \end{bmatrix}, \quad t \in [0, \infty),
\]

where \( r \) is the radius of the helix and \( c \) is the pitch of the helix. Each strand is translated and placed such that the distance between the corresponding helical paths of two adjacent strands is at least \( d = c / n \), where \( n \) is the number of wire strands. The
radius of each strand should be slightly larger than \( \frac{d}{2} \) to achieve a small overlapping between adjacent strands (Figure 4b).

The parametric surface representation of a twisting wire strand \( s \) can be derived by sweeping a circle of radius \( r_w \) on a helical path. Similarly we derive the representation of the surface of braids, teardrops and other constructs made of 3D wires.

Intersecting Pairs of Wire Strands: Intersecting pairs of wires are formed by combining two pairs of twisted strands. Each pair (Figure 5a) is constructed by a strand following a helical curve and a strand following the same helical curve with the same parameters but wound in the opposite direction. As shown in Figure 5b and c, the second pair of strands is created by mirroring the first pair along the \( Z \)-axis.

3.2 Braids Revisited

A more complex commonly used pattern is the braid. Usually it serves as a frame to the jewel or is used for decorative purposes. Braid strands are built by sweeping a circle along a path curve. Braiding can be performed on three or more strands. In filigree jewelry three strands are most often used. Each strand follows a Lissajous curve which is described by

\[
C(t) = \begin{bmatrix} r \cos(t + k) \\ r \sin(2(t + k)) \\ ct \end{bmatrix}, \quad t \in [0, \infty],
\]

where \( c \) is the pitch, \( r \) is the radius and \( k \) defines the displacement of the strand. By scaling and/or modifying the wire thickness of the strands, a different aesthetic result is obtained. An example with three braided strands is shown in Figure 6. A

Figure 5. (a) A pair of twisted wire strands of opposite direction, (b) the blue-green pair is mirrored along the \( Z \)-axis to create the red-yellow pair, (b) another view of the intersecting pairs.
useful alternative to the Lissajous curve is outlined here by using rational Bezier segments to build strands with improved fairness properties.

![Figure 6. An example of braided strands.](image)

A commonly used set of path curves is given by the sinusoidal parametric curve family described by Eq.(1) [27], where \( n \) is the number of strands. In general, we can use alternative displacements for the strand placement (besides the standard \( \frac{2\pi}{n} \)). Strand placement is important to ensure smooth intermix of strands (i.e. strand touching with minimum overlapping). To safely avoid heavy strand overlapping one may revert to approximate arc length parameterization in the expense of lower accuracy. This approach may be used to ensure stable inter-strand distances by moving all strands by equal arc length along the path curve. However, in practice it suffices to place the initial strand centers so as to achieve a small overlap. The actual parametric description of the braid surface can be derived by sweeping a circle along the curve path:

\[
C_i(t) = \begin{bmatrix} r \cos \left( \theta + i \frac{2\pi}{n} \right) \\ r \sin \left( 2(\theta + i \frac{2\pi}{n}) \right) \\ c \theta \end{bmatrix}, \quad \theta \in [0, \infty], \quad i = 0,1,\ldots,n-1 \quad \text{(Eq. 1)}
\]

The above setting results in a representation with parameters: the radius \( r \), the number \( n \) and the placement of the strands, and the pitch \( c \). However in jewelry design it is important to provide aesthetically optimal braids. To this end, we present a sweep path route for building braid strands that is more flexible as compared to the classic 3D extension of the simple Lissajous curve.

### 3.2.1 Revisiting Braids

We use cubic rational Bezier curves to realize braid strand path curves, a choice that offers a wider range of parameters and essentially better aesthetic results. Our braid approach is a set of four such curves, which are pair-wise symmetric. For cubic rational Bezier curves with control points \( P_{m(t),j} \) and weights \( w_{m(t),j} \) with \( m(t) \) being the curve index and \( j \) being the control point index, \( m(t) = \lfloor t \rfloor \mod 4, \quad j = 0,\ldots,3 \), the position upon the curve at any given time \( t \) is given by:
\[ CB(t) = \sum_{j=0}^{3} \left( \begin{array}{c} 3 \\ j \end{array} \right) (t-\lfloor t \rfloor)^j (1-(t-\lfloor t \rfloor))^{3-j} \beta_{m(i,j)} w_{m(i,j)} \]
\[ C_i(t) = \begin{bmatrix} CB_i(t+k_i) \\ CB_j(t+k_i) \\ c(t+k_i) \end{bmatrix}, t \in [0, \infty] \]

(Eq. 2)

where \( CB(t) \) is the \( XY \)-plane projection of the sweep path curve, and \( k_i \) is the displacement that corresponds to the \( i \)-th strand.

Figure 7 illustrates the construction of \( CB(t) \). The two pairs of symmetric curve segments that contribute to the braid are depicted in red and blue. The control points are also depicted with their indexing revealing the direction of movement along the curve.

Two main parameters that directly specify the control points \( P_{0,1}, P_{0,2}, P_{1,1}, P_{2,2} \) are the width and height of the convex hull of the braid projection. To preserve horizontal and vertical symmetry we set \( w_{i,0} = w_{i,3} = 1 \) and \( w_{i,1} = w_{i,2} \). This reduces the number of weight parameters for each braid to two.

Control points \( P_{0,3} \) and \( P_{1,1} \) are then set as follows (note that \( P_{0,3} \) and \( P_{1,0} \) are identical and \( P_{0,2}, P_{0,1}, P_{1,1}, P_{2,2} \) are collinear) based on parameters \( a \) and \( \beta : \| P_{0,3} - P_{0,2} \| = a \| P_{0,2} P_{2,2} \| \) and \( \| P_{1,1} - P_{0,2} \| = \beta \| P_{0,2} P_{2,2} \| \), where \( a, \beta \in (0, \frac{1}{2}) \). The rest of the control points are computed using the horizontal and vertical symmetry of the curve segments.

3.2.2 Strand Placement

Braid strands should be placed so as to ensure slight overlap of the swept circles. First, one should ensure that the braid strand centers do not collide. For an odd number \( n \) of strands we may just define
\( k_i = \frac{4}{n} \), then it is easy to prove that there will be collision of the strand path curves. Indeed, the only possible scenario that leads to a collision is for a strand center point to start from the opposite symmetric location. For two locations to be anti-symmetric they need to have time-distance equal to 2. So, for two strands \( i, j \) with displacement \( k_i, k_j \) with \( j > i \), the following equation must hold:
\[
2 + \frac{i}{k} = \frac{j}{k} \Leftrightarrow k + 2(i - j) = 0 \Leftrightarrow k = 2(j - i) \text{ which implies that } k \text{ is some even number.}
\]
Likewise, for an even number of strands we have to enforce non-mirror symmetry between any pair of strand centers. Figure 8 illustrates four braid strand route-paths projected on the \( XY \)-plane.

In practice an approach that works very well in determining the strand thickness is to derive the minimum pair-wise distance \( D \) for the set of points that consists of the strand center points of the left-side part and the symmetric center points of the right-side part (see Figure 9). Then we choose as thickness a quantity slightly larger than \( \frac{D}{2} \). Note that \( D \) is the maximal minimum distance between two strands since it corresponds to the tangent plane of the path curve being perpendicular to the \( XY \)-plane.

3.2.3 Deriving Aesthetically Optimal Braids

By comparing the curvature values of our rational Bezier approach with those of the sinusoidal approach we can adjust the parameters of the former to produce aesthetically different results.
The control points may be positioned so that the result will be as close to the shape of a sinusoid braid as possible. Then we compute the curvature at each point on the rational Bezier curves. We consider the mean of the curvature values within the specified ranges for both curves and examine only the first two curves along with the corresponding sinusoidal part, since the rest are symmetric.

Figure 10 shows how the curvature of the rational Bezier braid progresses as the weights of the two component curves increase. The wired plane represents the mean curvature of the sinusoid braid. Indeed, the curvature of the Bezier braid rapidly becomes lower than the sinusoid braid mean curvature, whose value is $\approx 0.9088$. Using the same positioning and weight values of $w_{0,1} = w_{0,2} = 0.8$ and $w_{1,2} = w_{1,3} = 0.7$, which are amongst the smallest, in value, weight pairs that yield curvature lower than the sinusoid braid, we acquire the curve paths shown in Figure 10. The aesthetic improvement is apparent. Figure 11a presents a 3D rendering result of a three strand braid with rational Bezier (red) and with the sinusoid function (green). Figure 11b illustrates a smoother Bezier braid strand (red) as compared to the more curvy sinusoid braid strand (green).

3.3 Shape Design Features

Filigree craftsmanship is applied to create and decorate all types of jewelry, i.e., necklaces, pendants, rings, brooches and bracelets. There are specific shape primitives that are commonly used either as solid base components or shape outlines.
**Ellipse-Circle:** An elliptic shape, an ellipsoid, a circle or a sphere can be used either as an outline of a jewelry part or as a solid base on which the filigree design will be applied.

**Polygonal shapes:** The most common polygonal shapes used in filigree designs are rectangles and regular polygons, i.e., squares, diamonds, pentagons and hexagons. Figure 12 depicts generalized sweeps of variable geometry (using progressive scaling). These shapes are commonly used as base components in jewelry design. These shapes are defined by the polygon center, the number of vertices and the shape size usually provided by the side(s) length or the diameter of the polygon.

**Lune:** Another shape frequently used in filigree jewelry is the lune. A lune can be derived from the difference of two circular disks in 2D of the same or different radii, positioned at a distance from each other as seen in Figure 12.

![Figure 12. Examples of 3D shapes used as components to build 3D constructs.](image)

**Round Teardrop:** Another commonly used shape is that of a round teardrop (Figure 13). Such a pattern can be constructed by uniting half an ellipse and a semicircle whose centers coincide. $G^1$ and $G^2$ continuity are preserved everywhere except at the joints where only $G^1$ continuity is preserved.

![Figure 13. Constructing a round teardrop.](image)

In filigree jewelry, teardrop shapes are mainly used as borders of several kinds of designs and patterns. Also multiple teardrop elements are placed side by side or nested to create more complex patterns, as it is demonstrated in Section 4.3. The constraint which is applied to guarantee $G^1$ continuity at the joints is $b = 2R$.

**Pointy teardrop:** A pointy version of the teardrop is used as a base element for constructing complex designs resembling peacock feathers (Figure 14).
The pointy teardrop is created by connecting a circular arc with two line segments originating from $T$ and being tangent to the circular arc at the endpoints $S_1$ and $S_2$, as shown in Figure 14. $S_1$ and $S_2$ are derived from the distance $d$ of the center of the circular arc from $T$, the radius and center coordinates of the circular arc. Note that $G^1$ continuity is preserved everywhere except at the tip of the teardrop. $G^2$ continuity is preserved everywhere except at the tip and at the endpoints $S_1$ and $S_2$. To create a peacock-like pattern pointy teardrops are scaled and placed adjacently with a common tip point $T$. The angles $a_i$ formed by the line segments are then equal; however different patterns can be derived by using different configurations for each peacock “feather”.

![Figure 14. Pointy teardrops placed relative to each other so as to form a peacock pattern.](image)

_free form shapes:_ Aside from the shapes described above, other free-form shapes can be used as jewelry base components. These shapes may be derived after preprocessing [22] by curve fitting on 2D or 3D points (see [23]) or by deriving 3D custom surfaces by constrained morphing [24].

_Spiral Designs:_ A commonly used design pattern is the spiral. There are numerous spiral types depending on the equation used. The polar equation of the Archimedean spiral (without rotation) is $r = a\theta$, where $\theta$ is the polar angle of a point on the spiral, and $a$ is a constant that affects the spacing between two adjacent spiral turns (see Figure 15a).

![Figure 15. (a) Archimedean spiral with radius $r$ and spacing $d = 2\pi a$. (b) Logarithmic spiral with $a = 2$ and $b = 0.2$.](image)

The affecting parameters of the shape of the spiral are the number of spiral turns $k$, the distance $d$ between two adjacent spiral turns, the radius $r$ of the spiral, the total length $s$ of the spiral curve and the total length of a spiral with $k$ complete spiral turns. Combinations of the above parameters can be
used to uniquely define a spiral with $k$ complete spiral turns. Since a wire strand is modeled as a translational sweep of a circular-disk profile of radius $r_w$ along a curve trajectory, the following constraint is applied on the parameters of the spiral curve: the distance between adjacent spiral turns should not be smaller than the diameter of the wire-cylinder, i.e., $d = 2\pi a < r_w$.

Another type of spiral design that is often found in filigree jewelry is the logarithmic (or equiangular /golden) spiral. The logarithmic spiral is described by $C(t) = \left[ ae^{bt} \cos(t) \quad ae^{bt} \sin(t) \right]^T$, where $a$ and $b$ are positive real numbers and $r = ae^{bt}$. An example of the logarithmic spiral is shown in Figure 15b.

### 3.4 Complex Design Features

By building on the fundamental properties of the wire strands and the basic shapes and designs that are frequently used in filigree jewelry we define a library of complex design features that are created by combining the basic elements presented in Sections 3.1, 3.2 and 3.3. The features included in our filigree design library are: spiral designs, teardrops, teardrop shapes containing spiral designs, nested teardrop shapes, flower, leaf and peacock patterns, and free-form shapes built using rational Bezier curves.

**Teardrop shapes containing spiral designs:** A teardrop filled with spirals is a common pattern combination in filigree jewelry. To comply with the limitations imposed by the shape of the teardrop, the radius of the spiral is constrained to fit inside the teardrop and join the teardrop boundary in two or more points to ensure manufacturability. Teardrop-spiral combinations include either independent spirals or pairs of spirals connected with a curve so as $G^1$ continuity is preserved for the entire construct. Figure 16 presents two examples of teardrops containing spirals and connected spiral pairs.

![Figure 16. (a) Teardrop with four spirals. (b) Teardrop with three pairs of connected spirals.](image)

Each spiral should be positioned with respect to the teardrop and to the rest of the spirals. This is accomplished by defining consecutive, non-overlapping disks fitted in the teardrop. Every new spiral is drawn in one of these regions and is initially set to have the same center and a radius equal to the radius of its containing region. Each circle is tangent to the elliptic portion of the teardrop at exactly two points that are symmetrical with respect to the $X$-axis, except from the first circle that coincides with the teardrop semicircle (see Figure 17). Formally, each time we seek the maximal inscribed circle of the rest of the available area.
This process that is summarized by the following principle: start from the center of the ellipse (Figure 18) and seek the next circle \( C_n(P_n, R_n) \) that is tangent to the ellipse at some point \( P_n(x, y) \):

\[
F(P_n) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0, \quad (P_n + \lambda \nabla F(P_n)) = P_n, \quad \text{and is also tangent to the previous circle } C_p(x_p, R_p):
\]

\[
R_n = \|P_n - P_p\| = x_n - x_s, \quad \text{where } x_s = x_p + R_p.
\]

A similar technique is used in the case where a spiral pair is placed in a pointy teardrop-shape primitive. The first circle defined coincides with the teardrop semicircle and the next circle is tangent to the triangular portion of the pointy teardrop at exactly two points. The corresponding equations for this case are: \( P_n(t) = tS_1 + (1-t)S \), \( (S_1 - S)(P_n(t) - P_n) = 0 \), \( R_n = \|P_n(t) - P_n\| = x_n - x_s \). Consequently, the formula that computes the next \( x_n \) and \( R_n \) in the algorithm becomes:

\[
x_n = \frac{d(r + x_s)}{r + d}, \quad R_n = x_n - x_s.
\]

The radius of the spiral is the distance between its center and its last point, meaning that the rest of the spiral points lie in a distance from its center that is less than the radius. As a result the spiral can only touch one point on the teardrop (i.e., being tangent to the ellipse or the semicircle of the teardrop) which is insufficient since at least two adjacency points are needed for reasons of manufacturability.

We inscribe a spiral inside a circle of radius \( R_c \) by extending the spiral angle \( \theta \) until the spiral touches the circle, i.e., \( \theta = \frac{R_c}{a} = 2k\pi + \gamma \), where \( k \) is the largest integer such that \( 2k\pi \leq \frac{R_c}{a} \). The position of each spiral endpoint is important to our construction method and therefore a rotation of the spiral is
performed by the angle needed for the end point to be drawn at angle $\varphi$ with the y-axis as shown in Figure 19. The right spiral of the pair is rotated by angle $\frac{\pi}{2}-(\gamma+\varphi)$ around its center and the left spiral by angle $\frac{3\pi}{2}-(\gamma+\varphi)$ around its center (Figure 19). The choice of $\varphi$ affects the aesthetic result of the connection and is a design parameter.

![Figure 19](image)

(Figure 19. (a) An inscribed spiral at its initial position $(\theta = \frac{\pi}{2} = 2\pi \gamma + \gamma)$, (b) rotated by angle $\frac{\pi}{2}-(\gamma+\varphi)$ to derive the right part of a spiral pair, and (c) rotated by $\frac{3\pi}{2}-(\gamma+\varphi)$ to derive the left part of a spiral pair)

The first common tangency point between the spiral and the teardrop is either of the two circle/ellipse tangency points (top or bottom). This is enforced by translating the spiral along the vector from the center of the spiral towards the circle-ellipse tangency point. The translation is carried out so that the closest point of the spiral coincides with the circle-teardrop tangency point. From the properties of the spiral we derive that this will be a tangency point among the spiral, the circle, and the teardrop ellipse.

The second adjacency point is created by smoothly connecting the end-point of the spiral with the other adjacency point using a rational quadratic Bezier curve in an attempt to acquire a curve that approximates a spiral extension and at the same time is tangent to the circle/teardrop touch point. The first control point of the Bezier is the end-point of the spiral while the last is the other circle/ellipse touch point (Figure 20).

To further enhance the approximation quality, $w_i$ is adjusted to obtain a curve segment with curvature value at control point $P_0$ equal to the curvature value of the spiral at the end-point (note that we use the standard form of the rational quadratic Bezier curve by setting $w_0 = w_1 = 1$). Note that the curvature of
a parametric curve \( C(t) = [x(t) \ y(t)]^T \) with parameter \( t \) (for an arbitrary non-arc length parameterization) is given by:

\[
k_i(t) = \frac{x'(t)y''(t) - x''(t)y'(t)}{(x'(t)^2 + y'(t)^2)^{3/2}}
\]

(Eq. 3)

Weight \( w_i \) can also be used to yield better aesthetic results. Alternatively, we can also use a cubic Bezier curve for more degrees of freedom. Figure 20 illustrates how such an extension occurs along with the corresponding control polygon of the rational Bezier curve.

In the case of single spiral construction, each spiral is constructed independently. However, for spiral pairs a connector curve segment between the spirals must be established. We use the corresponding arcs of inscribing circle for connecting the two spirals. This approach maintains \( G^1 \) continuity and provides nice aesthetic results for most configurations. Figure 20 shows a pair of non-connected spirals and the two connecting circular arcs.

![Figure 20. (a) A non-connected pair of spirals and (b) a connected pair of spirals.](image)

**Nested Teardrops:** Another complex pattern often observed in filigree jewelry is the nested teardrop (Figure. 21a). This pattern is created by defining \( n \) concentric circular arcs of radius \( r_i \), such that \( r_1 > r_2 > \ldots > r_n \) and \( n \) rational cubic Bezier curves with start and end points coinciding with the start and end points of the respective circular arcs. The \((n+1)\) th curve is defined to be a circle.

![Figure. 21 The nested teardrop pattern.](image)

This pattern is frequently embedded in a pointy teardrop shape primitive (Figure. 21). For this to be feasible, each nested teardrop is created in such a way that all the circular arcs have the same angular extension, as determined by the distance of the tip of the pointy teardrop, the radius of each circular arc.
and the coordinates of the center of the circular arcs. Cubic rational Bezier curves are used to connect the end points of the circular arcs with points on the line connecting the tip of the pointy teardrop with the center C. The inner control points of each cubic Bezier curve are located on the tangents of the curve end points. We use rational curves and symmetrically modify the weights of the inner control curves to control the “sharpness” and placement of the tip of the curve. We enforce tangency constraints at the curve ends to ensure that $G^1$ continuity is preserved at the points where the arcs connect with the Bezier curves. We may build only the outermost nested $G^1$ pattern and then scale it appropriately to produce the innermost patterns.

Affecting parameters for the shape of this feature are: the wire strand style (simple, braided, intersecting pairs etc.) and thickness, the number of nested teardrops $n$, the center $C(x, y, z)$ of the $n$ concentric arcs and the distance $d_0$ between the circle $(C, r_{n+1})$ and the tip of largest rational Bezier curve, (for example in Figure. 21 the tip is $P_1$), which affects the inner gap and is aesthetically important.

To ensure the robustness and accuracy of the pattern, we impose constraints on some of the parameters of the design. Given a constant thickness $t$ of the wire(s) strand(s) used, the number of nested teardrop strands that fit in the pattern is constrained by the distance (see Figure. 21). The maximum number of teardrops $n$ of wire strand thickness $t$ that can be nested is $n = d_0 / t$.

Other design constraints are:

- The nested teardrop points $P_i$ are evenly spaced along $d_0$: $d(P_i, P_{i+1}) = d(P_{i+1}, P_{i+2})$, $i = 1, \ldots, n - 2$.
- The nested teardrop arc end points $r_i$ are also evenly spaced along $d_1$: $r_{i+1} = r_i + v_j$, $i = 1, \ldots, n - 1$.

Given a specific teardrop size and number of nested teardrops, the total thickness of the wire strands that can be supported and used in the design can be respectively computed.

**Flower Design:** Flower designs are commonly used in filigree jewelry. Flower designs in general are created by combining arch-shaped wires and solid spherical beads that represent the flower petals and center respectively, thus creating a daisy-like pattern.

Figure 22 presents a 2D sketch of such a flower design. We consider concentric circles $C_i(M, R_i)$ that contain the flower design, and $C_1(M, R_2)$ corresponding to the center of the flower. Given the number of flower petals $n$ to be used in the flower design, circles $C_i$ and $C_1$ are divided into $n$ equal segments, whose borders are defined by lines $L_i$ ($i = 1, \ldots, n$). The flower petal corresponding to each segment is represented by a curve $F_i$ ($i = 1, \ldots, n$) that interpolates points $P_{ij}$, where $i = 1, \ldots, n$ and $j = 1, \ldots, k$, with $k$ referring to the number of points used for interpolation. The start and end points
used for interpolation, i.e., \( P_{11} \) and \( P_{15} \), are located on curve \( C_3 \) and are common for adjacent flower petals, whereas the point corresponding to the tip of each petal, for example \( P_{13} \), represents the position where \( C_1 \) is tangent to the petal.

To ensure model robustness and efficiency, we require that adjacent petals not only have common start and end points, but also have overlapping/intersecting segments. This is accomplished by considering a circular guide curve \( C_1(M, R_1) \) where \( R_2 = R_1 + s \) and \( s \) corresponding essentially to the length of the overlapping petal curve segment. The points where lines \( L_j \), that divide the circles into segments, intersect with circle \( C_2 \) are used as data input for the interpolating petal curve.

![Figure 22. (a) A 2D sketch of a flower design, (b) variations of the flower pattern](image)

Affecting parameters for the flower design: the flower center bead size, which is defined by the radius of the sphere constructed in the middle of the flower, the flower petal length, which is defined as the length \( m = R_2 - R_3 \), and the number of flower petals \( n \).

Suppose the flower design is to be constructed so that it is not flat on a surface, but at an angle. The end user specifies an angle \( \alpha \) at which the petals are to be located and the circular pattern described above is mapped onto a conic surface so as to achieve the desired result. The final result is depicted in Figure 23.

To create the final 3D flower pattern, wire strands are created and transformed based on the profile curves of the petals. The sphere corresponding to the center of the flower is translated along the perpendicular axis to obtain a more aesthetically pleasing effect (Figure 23).
Leaf Patterns: Another common pattern used in filigree jewelry is the leaf. Leaves are created by combining curves forming the shape border of the leaf with golden spirals (Figure 24). We present two different approaches to creating leaf patterns depending on the spiral placement scheme used. The placement of the spirals in the leaf shapes is carried out by exploiting an interesting characteristic of the golden spiral. Golden spirals are logarithmic spirals where the variable $b$ is related to the golden ratio $\phi$ (Figure 25). The golden rectangle of the spiral is used to implement the placement schemes for the spirals in the leaves. Placement is performed from the bottom to the top of the leaf.

In the first placement scheme, lanceolate shaped leaf patterns are constructed. Lanceolate shapes are long and wide in the middle. The shape of the leaf is formed using two symmetric parabolas. These parabolas are expressed by the equation: $C(t) = \begin{bmatrix} at^2 & 2at \end{bmatrix}^T$.

A line segment coinciding with the mirroring axis for the two parabolas is used to represent the spine of the leaf. The starting points of the decorative golden spirals used are located on this line. Spirals are placed so that each one intersects the leaf border at one point.
Initially, a golden spiral is placed such that its starting point is located on the spine of the leaf and the golden rectangle is located inside the leaf. Scaling is performed on the spiral so that it intersects the parabola at one point. The next spiral with its golden rectangle is placed on top of this spiral so they are adjacent and then this too is scaled until it intersects the parabola at one point. This process is carried out recursively either for a defined number of spirals or until no other spirals fit inside the leaf. Since the leaf is symmetric, the created spirals are mirrored into the other half of the leaf.

Cordate shaped leaf patterns (i.e., heart-shaped leaves with the stem in the cleft) are constructed using the second placement scheme. Suppose that the bottom left corner of this golden rectangle is positioned at \( P_t(0,0) \) and its height is \( h_p \). We seek the height of the next golden spiral that is to be placed adjacent on top such that the two spirals are tangent to each other at point \( T(x_T,y) \) (Figure 25b). Based on the properties of the golden rectangle the height of each newly placed golden spiral depends on the height of the previously placed golden spiral and the golden ratio. This process is performed recursively for the desired number of spirals. After placement, the border shape of the leaf is created using interpolation. It is interesting to note that the top right corners of the golden rectangles are collinear, due to the fact that the golden rectangles are similar (with a constant ratio). The start and end points that are chosen for the interpolation, control how pointy and how heart-shaped the tip and end are, respectively.

Our leaf pattern creation scheme can be generalized to apply not only to other types of spiral curves but also to more general and/or freeform curves (Figure 25c). The constraint that these curves must follow is that they intersect with their corresponding bounding box at one point on the top and one point on the bottom of the bounding box and that these intersecting points are not symmetric.

**Peacock Pattern:** A peacock, fan-like pattern is often constructed by combining adjacent pointy teardrop shapes. In this work, the peacock design consists of \( m \) pointy teardrop which are sequentially...
placed within a center angle $a$ of a virtual circle $C_1$. Given the center angle $a$, each pointy teardrop shape $s_j$ is placed within a contained angle $\varphi = a/m$. To create each pointy teardrop shape, we use lines $l_i$ and $l_j$ dividing $C_1$ into the corresponding segment as edges for the teardrop and an arc created from the intersection points of $C_1$, $l_i$ and $l_j$ (Figure 26). To create teardrops of different lengths we assume more virtual circles $C_k$ of radius $r_k$ and use their intersecting points with the respective line segments.

![Diagram](image)

**Figure 26. Examples of peacock-like patterns.**

Affecting parameters: the number of teardrop segments $m$, the center angle $a$, the pattern reference point $P(x, y, z)$ which is the center of the virtual circle $C_1$ and the radius $r_i$ of $C_1$, which defines the actual size of the peacock and the teardrop segments. For this pattern to be robust, the following constraints must hold: Point $P$ is common for all pointy teardrops and $\sum_{i=1}^{m} \varphi = a$.

*Free-Form Shapes and Designs:* Free-form wire shapes were not very popular in traditional filigree design. Indeed free-form design occurred usually as connectors between other patterns. Modern filigree jewelry use higher degree curves that can be derived by interactive CAGD tools (see e.g., [25] and [26]).

### 3.5 Decorative Elements

The final aesthetic effect of the designed jewelry is given by elements that are used for decorative purposes. *Solid beads* of different sizes are frequently used to decorate the jewelry. These beads are placed on the model and Boolean union is performed on them and their respective model component. A plane corresponding to the local surface on which the model component lies at the point where the bead is imported is used to cut the solid bead to create a flat surface. *Jewels and stones* can be embedded in/on jewelry piece. Finally, *decorative borders* are used which are bolder, thicker, decorative strands of wires, usually in the form of braids or intersecting pairs.
4 Filigree Jewelry Re-engineering and Reconstruction

An overview of our filigree jewelry re-engineering, design and reconstruction tool suite is presented in Figure 27. A reverse engineering option is provided that allows the user to load a point cloud and extract information regarding feature regions and border sets that can be used as guides during the reconstruction process. For experienced users, a straightforward feature-based computer-aided design option is also available. Feature design and placement in the jewelry model is supported by inter-feature constraint definition to allow re-design capabilities. This tool suite has been implemented using the Microsoft Visual C++ programming environment and the ACIS R18 solid modeling library provided by Spatial [28].

4.1 Jewelry Re-engineering

The issue of re-engineering jewelry, and especially filigree jewelry, presents many difficulties, mainly due to the small size and fineness of detail. Re-engineering requires that the produced CAD models are accurate and robust and fully parameterized to support custom design. To this end, one needs to exploit the features of the original jewelry model and the relationships and constraints that hold among them. By applying constraints and fitting features to the point cloud we enhance the semantics and achieve better accuracy and parameterization. It is still difficult to develop fully automated reverse engineering systems where there is no human intervention. It is more appropriate to design systems where the user interacts with the system and provides information that can be used to acquire a more accurate and complete CAD representation of the object. In our approach we aim to achieve some level of automation without sacrificing real-time response and high accuracy. This approach has been adopted successfully by general purpose reverse engineering systems [29].

Reverse engineering techniques have been integrated with our parametric feature-based representation to achieve some level of automation and to provide reconstruction capabilities. In solid modeling and computer-aided design, reverse engineering aims to analyze a real object and determine its characteristics and structure mechanisms, with focus on editability and manufacturability. A piece of filigree jewelry is usually scanned using a 3D laser scanner producing a point cloud. Due to the generally small size of jewelry and the delicacy and fineness of their decorative details, scanning techniques can adequately capture only major design features and their relative placement on the object that is being scanned. Aesthetic detail cannot be captured in a way that is useful for reconstruction. An example of a 3D point cloud of a filigree brooch, acquired using a handheld Handyscan EXASCAN laser scanner (accuracy 40µm), is illustrated in Figure 28. It is clear that the filigree details of the brooch cannot be inferred from the scanned data. However, we use the point
cloud to extract the overall topology that will guide the identification and placement of the primitives and the overall shape of the jewelry piece.

Figure 27. An overview of our filigree jewelry reconstruction tool suite.

Figure 28. (a),(b) The point cloud derived by using a 3D laser scanner on the brooch. (c) Feature component detection and extraction performed on the point cloud.

4.1.1 Data segmentation

There are various methods that can be used for the segmentation of the initial object, such as [30] and [31]. An thorough survey of 3D mesh segmentation methodologies examining their suitability for CAD models is presented in [32]. To detect feature regions we have adapted a method developed earlier in [33] for reverse engineering based on discovering features on the point cloud by detecting local changes in the morphology of the underlying geometry. We applied this method on meshes, where vertex adjacency information is provided a priori. By detecting rapid variations of the surface
normal and measuring the concavity intensity we are able to apply a region-growing technique to extract a number of regions that represent object features (Figure 28).

More specifically, the concavity intensity of a vertex \( v_i \) of a mesh, denoted by \( I(v_i) \), is the distance of \( v_i \) from the convex hull of the mesh. This characteristic is used to detect concave features on the mesh. Then a region growing is used in order to detect sets of vertices that belong to individual features. Such an example is illustrated in Figure 28c. The feature regions that are detected correspond to the basic brooch components: four decorative ensembles, the flower centerpiece and a number of decorative beads.

By segmenting the point cloud into feature regions and boundary sets, we are able to reconstruct the boundary contours for each area using curve approximation methods, such as [23]. Reconstructed boundaries are used in conjunction with a symmetry detection technique [24] for adapting and placing design elements.

From each detected feature the following data are retrieved:

a) the size of the area covered by the feature by computing the corresponding bounding box,

b) the orientation of the bounding box, based on the principal axes,

c) the feature boundary, by reconstructing the boundary contour from the border sets extracted during mesh segmentation,

d) the morphology of the feature area, by deriving an initial surface representation using approximation and fitting. Tensor product surfaces are used to approximate curved areas and data concerning the curvature of the area is derived, to be used later on in the design process for operations such as feature component bending.

4.1.2 Symmetry Detection

We use the principal axes of the point cloud to “divide” it into components in which we search for symmetric feature areas. We create a proximity graph that captures local morphology information as illustrated in Figure 29, for each part of the object. For each edge, we calculate the geodesic distances between the centroids of the corresponding feature regions. The graphs are then simplified by reducing the edges that correspond to large geodesic distances to facilitate region matching. In addition, small regions that are insignificant are merged.

Elimination of large distance edges is performed motivated by the observation that usually meshes do not exhibit a general structural similarity but rather a local feature one. In simple cases, where meshes have an almost identical structure, matching of the corresponding graphs is trivial. For more complex cases, meshes exhibit only local structural feature similarity. Therefore, by eliminating the edges with
large geodesic distances we match only local neighborhoods in the graph. These local neighborhoods still capture high-level information about the structure of the features, for example detect pattern similarities between slightly different models. The reduced morphology graphs are used to perform a 3D alignment of the two sides of the model and establish a correspondence between the regions. This is achieved by first matching the two highest degree nodes in the two graphs and then performing a 3D alignment of the two components. The remaining regions are paired according to their degree and the distance between them. Furthermore, we also take into consideration the area covered by each region by favoring the matching of regions that have similar areas. We have used the following heuristic similarity measure for matching:

$$s_{ij} = \frac{\max_{k \in \{i,j\}} a_k \max_{m \in \{i,j\}} d_m}{\min_{k \in \{i,j\}} a_k \min_{m \in \{i,j\}} d_m}$$

(Eq. 4)

where \(c_i\) and \(c_j\) are the centroids of regions \(i\) and \(j\), \(a_i\) and \(a_j\) are the corresponding areas and \(d_i\) and \(d_j\) are the degrees of the nodes in the reduced morphology graphs.

For the example shown in Figure 28c, feature detection derives clusters corresponding to spherical bead elements in the brooch. Using our symmetry detection method, these beads are matched in pairs and constructed to fit the respective feature areas, therefore automating significantly the process of constructing and placing the beads on the brooch. Furthermore, the detected decorative ensemble components provide data that is used for placement of the ensembles during reconstruction, i.e., ensemble orientation and exact location in reference to the base component. Additional approximate measures are acquired from the detected features in reference to component size and bending angles by exploiting the oriented bounding box of each feature component data point set. By constructing and placing one of the ensembles and using transformations to modify and place the remaining, we ensure robustness and fairness in the model. Also, point sets are extracted that correspond to feature region boundaries from which free form contours are reconstructed to approximate the border, providing guide contours for aligning and fitting the design component elements. Finally, the base component of the brooch is an area on which surface approximation can be performed to derive a basic shape to be used in the feature-based design process.

The user interface for reverse engineering in ReJCAD is displayed in Figure 30. The user imports the point cloud that she/he wants to process and performs feature detection to produce an initial list of all the feature regions and borders. The user can process each feature region detected and either merge it with others or split it into more components. Symmetry detection is carried out to produce a suggested list of symmetries which the user can either confirm or reject. Symmetries are suggested to the end
user in pairs of features, while an option is always provided to the user to add his own symmetries between pairs of features.

![ReJCAD user interface](image)

**Figure 30.** A snapshot of the ReJCAD user interface.

4.2 The reconstruction process

The feature-based design process is carried out for each feature area that is detected and extracted from the reverse engineering phase or for each feature component that the user plans on creating based on her/his design concept.
Initially the user creates a new feature by picking a pattern/design and defining the parameter values for the corresponding attributes (Figure 31). If re-engineering has been performed prior to the design process, then the user can choose a feature region from the feature region list as a guide for initial parameter values and placement. Intra-feature constraints of designs and patterns are enforced during parameter definition. For example, the peacock-like aesthetic result of the filigree brooch is secured by defining the size of the base component pointy teardrops relative to each other. Three teardrop sizes are used: $s$ for the largest, $0.85s$ for the middle and $0.75s$ for the smallest. After construction the feature is uploaded into a feature list that contains all the feature components (every instance of a feature) that are part of the final jewelry model. A feature component is redesigned by editing its parameters, reconstructing it and updating the feature list. The user can also create profile curves by curve approximation on border point sets obtained through reverse engineering. These profile curves are used either as guides for placement of a feature or for bending other components along these curves.

After a feature component is constructed and added to the feature list, placement in the jewelry model is carried out either manually by the user with free interactive placement or guided by the application, if re-engineering has been previously performed (Figure 32). In re-engineering guided placement, the user selects a feature region from the feature region list or a profile curve from the profile list by which the component is initially aligned and scaled.

![Feature-based design in ReJCAD.](image)

Figure 31. Feature-based design in ReJCAD.

Then the user has the ability to transform the component by translation, rotation or scaling, as desired. Bending of a feature component can be performed prior to placement by specifying the bending parameters, which include the bending axis/axes and the bending angle. Bending can also be performed along a curve, by mapping the initial feature component on a profile curve and bending accordingly, to create more freeform shapes. This option is used in cases where a complex wire strand
(e.g. braid) is used as a decorative border along a base. Bending of compound features is executed after a Boolean union of the separate features has been performed and the bending axes and angles have been defined.

Feature placement is combined with inter-feature constraint definition. Constraints are derived and enforced on the reconstructed jewelry representation to achieve model robustness, conformity to filigree craftsmanship and to support editability. Constraints related to symmetry are derived through re-engineering, whereas other constraints are set during the design of each component. The inter-feature constraints that are supported in ReJCAD mainly refer to component size, bending and placement. Specifically, size constraints are set either as equalities or symbolic relations. This also holds for bending angles of feature components. Placement constraints refer to coincidence, tangency and distance characteristics. More specifically we support the following categories of inter-feature constraints (intra-feature constraints and parameters are explained in Section 3):

- Determining distances, angles and other geometric characteristics such as radius, area and volume. Certain distances such as parallel distance between two lines, two planes, or a line and a plane are translated into two or more primitive distance and angle constraints.
- Fixing geometric elements (thus reducing significantly the degrees of freedom). Over-usage of fixing may yield inconsistently over-constrained configurations.
- Supporting symbolic relations of angles, distances and other geometric characteristics such as radius, area, and volume. Symmetry is enforced through relations.
- Imposing “on” constraints. Usually these translate to distances except certain cases that consume more degrees of freedom such as point on point (consumes three degrees of freedom, one per coordinate).
- Tangency is supported only for a limited repertoire of geometric primitives.
- Finally, inequalities should be used with caution, since they can be enforced only during the second step of nonlinear optimization. Otherwise, inequalities are checked through the list of different solutions derived during the first step of the geometric solving (graph-constructive solving). This process may take time exponential on the number of constraints.

We use a hybrid geometric constraint solving system. First building on the principles of [34], [35], [36] we detect minimal concurrent non-linear systems and eliminate symbolic relations. Then we employ interior point optimization to solve each linear system of geometric constraints [40]. Interior point optimization is a fast local optimization technique that can be combined with overconstraining to find efficiently unique solutions for the minimal system of geometric constraints. Root multiplicity is
enabled by combining the subsystems to derive a solution for the entire system of geometric constraints using the algorithms described in [34].

![Figure 32. Placement and constraint definition in ReJCAD.](image)

After the end user is done placing and editing the new component, a test can be performed on the feature to determine if the final placement is satisfactory for a Boolean union to be performed to integrate the feature in the final model. The actual union can be performed at a later phase, when the user has finished with the entire model and its re-design. The final model is checked for robustness and plausible problems that cannot be handled automatically are reported to the user for editing. The robust model is exported as an STL file that can be submitted directly for reproduction.

5 ReJCAD Evaluation

In this section we provide a case study where we design and create a filigree brooch according to the one shown in Figure 1. Also we present a usability study that has been performed to evaluate our application and discuss the robustness and manufacturability of our constructed CAD models.

5.1 A case study

We present an example of designing and creating a filigree brooch similar to the one illustrated in Figure 1. This piece of jewelry is made up of essentially two levels of components, the base or main component and the decorative and complementary elements/subcomponents placed on top.
Initially, the base component of the brooch is created. From the reverse engineering process we cannot obtain sufficient data about the patterns used for this component, however the general shape, morphology and size of the area are derived. This component is a complex pattern made up of pointy teardrops placed in a peacock pattern. The peacock design covers an angle of 360° and consists of 14 pointy teardrop segments. Three circle guide curves are defined to create three different sizes of teardrops (Figure 33). A simple wire strand type is chosen to create the pattern outline. The origin/center $O$ of the brooch is placed at the center of the peacock.

Next, the design to be featured in each segment is chosen. The same design pattern is chosen for each segment, the nested teardrop design. The user specifies style and thickness of the wire strands and the number of strands (Figure 33). The base component is decorated with solid beads and a decorative braided border. The decorative border is placed by sampling points on the outline of the base component or using the shape boundary reconstructed from re-engineering, performing curve fitting to derive the profile curve and then bending a straight braided complex wire of appropriate length to follow this profile curve (Figure 33). In this case study, the border contour on which the decorative braid (Figure 38) is fitted on is created using a segment of the boundary contour of each pointy teardrop and connecting these segments with quadratic rational Bezier curves with $G^1$ continuity. A parameter $k$ is defined which expresses the percentage of the boundary contour of the pointy teardrop that is used as part of the braid contour. A larger $k$ means that a larger segment of the available pointy teardrop boundary is used as part of the braid profile contour; therefore the braid covers more of the surface of the pointy teardrop (see Figure 34b). Quadratic rational Bezier curves are used to connect adjacent curve segments. By modifying the weight of the middle control point, we adjust the depth of the braid contour, which aesthetically affects how closely the braid contour follows the base component (Figure 34).
We create additional model components that will be integrated into the base component to improve its aesthetics. The basic shape that is chosen is the pointy teardrop that is combined into three-piece ensembles. The user-designer specifies the size and the location of the subcomponent in reference to the base component. The subcomponents are placed parallel on top of the base component with the tips of the 3-piece subcomponents coinciding with the positions specified by the user. Bending is performed on each 3-piece ensemble around the bending axis (Figure 35) and towards the bending direction specified (concave or convex result). The bending angle is specified by the end-user or is extracted from re-engineering based on the curvature of the corresponding feature region. After bending, each component is translated so that each end of the bent component intersects with the base component.

To make the 3-piece peacock ensembles placed on the ends of the brooch more robust from a manufacturing point of view, and aesthetically pleasing, we place solid beads at the tips. The brooch is decorated with a flower pattern placed at its center (Figure 36). The center of the flower is also used as the decorative solid bead end of the middle peacock ensembles.

The final step in the brooch reconstruction process is bending the brooch model in two directions as shown in Figure 37. Bending is performed symmetrically along each axis. In general, during feature
reconstruction and placement, the constraints that are imposed on the model of the filigree brooch can be summarized as follows:

- All decorative beads $s_i$ on pointy teardrops are equal in size, meaning same radius $r_i$.
- The peacock ensembles are all equal in size.
- Beads $A$ and $B$ (with centers $C_A$ and $C_B$) are placed on the horizontal axis $A_2$ so that they are equally distanced from the center $O$ of the brooch:
  \[ \overline{C_AO} = \overline{C_BO} = d \]  
  (Eq. 5)
- The decorative flower is placed at the center of the brooch.
- The peacock ensembles are pair-wise symmetric.
- Peacock ensembles $E_1$ and $E_2$ are placed so that their tips coincide with the two ends of the brooch along bending axis $A_2$ (Figure 36 and Figure 38).
- Peacock ensembles $E_3$ and $E_4$ are placed so that their tips coincide with the center of the brooch and the decorative flower.
- The bending angles for all peacock ensembles are equal.
- The bending angle of the middle peacock ensembles $E_3$ and $E_4$ must be smaller than the angle formed by the petals of the flower.

![Figure 36](image1)

Figure 36. (a) A 3D model of a filigree brooch prior to bending. (b),(c) side views of the model before and after bending in one direction.

![Figure 37](image2)

Figure 37. (a) The 3D CAD model of the brooch after bending is performed in two directions, (b),(c) side views of the brooch model after bending in the second direction.
Custom design and redesign is realized by selecting feature components and modifying their parameter values. For example, the filigree brooch created above can be modified to achieve the result shown in Figure 39. The decorative flower center has been removed and the two symmetric peacock ensembles on the ends of the brooch have been translated to the brooch center, such that their tips touch. Also all the peacock ensembles are slightly scaled up, to a point where the tips of the top and bottom ensembles touch the decorative beads of the base component.

**Figure 38. Elements of the brooch on which constraints are enforced.**

**Figure 39. A modified version of the filigree brooch.**

### 5.2 Usability Evaluation

We have evaluated our application by conducting a training process. Twelve experienced CAD users (three engineers with experience on Rhino, four graduate students, two jewelry designers and three postdocs all not involved in the project research and development) underwent a training session on how to use the application, created a filigree jewelry model under the guidance of the developers and then were asked to repeat the procedure by themselves by creating a simplified filigree brooch. Following this, they were asked to fill in a questionnaire evaluating the application by grading specific aspects of it on a scale of 0 (weak) to 7 (strong). The questions regarding the application concerned questions that evaluated two of the major principles of usability: Learnability (Predictability,
Familiarity, Generalizability, Consistency) and Robustness (Observability, Recoverability, Task Conformance) and the three major parameters of usability: Satisfaction, Efficiency and Effectiveness.

The results derived an overall average of: 5.2 out of 7 for efficiency, 5.8 out of 7 for effectiveness and 4.4 out of 7 for subjective satisfaction. The evaluation revealed that users were able to create and redesign a 3D CAD model of filigree jewelry with satisfactory precision. The general notion among the users was that the tools provided by the application were sufficient for the task at hand and a precise model can be constructed for reproduction, however an advanced level of knowledge and experience in CAD systems is required to be able to use the application effectively and efficiently.

5.3 Robustness and Manufacturability

The CAD model of ReJCAD is exported in STL format and is robust and ready for manufacturing. Robustness is ensured by performing a number of validity tests on the resulting STL model that results in removing dangling faces, filling holes and correcting various inconsistencies. Important for the manufacturability is the concept of feature element overlapping which guarantees stability and direct casting manufacturability. To this end, besides the per feature wire thickness parameter we provide a global wire thickness parameter that globally alters wire diameter by \( \pm 10\% \) in all features. When decreasing this parameter the object becomes sharper and when increasing this parameter the object becomes more coherent. Subsequently, a number of manufacturing methods can be used to produce jewelry or ornamental pieces.

For reconstructing jewelry pieces of high quality from a robust STL, direct investment casting of precious metals is the process that yields fine jewelry pieces: First we use rapid prototyping with high precision machines (with accuracy in the area of 10\( \mu \)m to 70\( \mu \)m voxels) to produce a high quality resin (or other material) prototype by using 3D printing usually by high resolution photopolymerism technology per layer. Then an investment is created (usually made of gypsum) from the resin that is subsequently used for precious metal casting. Note that the resin is such that is vanished completely without leaving residue and without interacting with the investment usually at moderate burn out temperatures.

For an overview of such technologies the reader is referred to [37]. Several state of the art machines supporting these production processes can be found in [38, 39].

For creating more inexpensive faux bijous pieces, current techniques use ceramic or other highly resistant synthetic material for 3D printing and then a nickel, chrome of copper based mixture of metal coating is applied. The result is solid and wearable and it may become colorful by using color agents in the coating material or subsequent silver or gold plating to improve appearance and wearability. Metal
coating results in deterioration of resolution but it is much more affordable for producing a small number of pieces.

A prototype of the CAD model is shown in Figure 40a, which was produced using a Z450 (Zcorp® 3D Printer) and made out of zp130 plaster powder containing crystalline silica and vinyl polymer. Figure 40b shows a final reconstructed jewelry piece after being processed with medium strength infiltrant and metal coated. The size of both pieces is approximately 2 in by 1.2 in which is slightly larger than the original brooch size (0.9 in by 1.1 in). Note that some detail has vanished as a result of the metal coating process.

![Image](image_url)

Figure 40. (a) An initial synthetic prototype manufactured by a 3D printer and (b) the corresponding unfinished reconstructed jewelry piece after being processed with strengthening infiltration and metal coating.

6 Conclusions

Filigree jewelry require highly detailed and complex craftsmanship. Until now, there has been no technique to reconstruct and manufacture such piece through CAD/CAM models. ReJCAD provides the means for performing filigree jewelry reconstruction through an effective partially automated process that takes a point cloud of the object as input and extracts boundary curves and other information referring to placement and symmetry. This data is then used to guide reconstruction supported by an extensive filigree feature library. We have proposed schemes for representing and modeling design features that are commonly used in filigree craftsmanship. More complex features can be composed by the designer by using our core library.

The final result has been reviewed by jewelry artists and local craftsmen. They have all found the result of very fine detail especially the part of engraving which usually suffers through reconstruction. The robust final outcome can be manufactured through accurate resin prototyping after making a highly detailed gypsum investment. The resin evaporates without leaving residue at moderate burn out
temperatures. Some experimentation should be performed based on the complexity of the investment and the metal mixture used for achieving best results for castings using precious metals. A more affordable solution for manufacturing is to use ceramic or highly resistant synthetic material 3D printing followed by metal coating.

The feature library can be easily imported and used by other jewelry CAD software such as Rhino or Matrix by exporting the models through ReJCAD to SAT, 3DM or other appropriate file format. The same applies for the overall CAD model which can be imported to any jewelry CAD system for adding precious stones or performing other artistic alterations and corrections in the expense of losing part of the constraint-based editing capabilities.

7 Acknowledgments

This work was partially supported by Eureka Project #3506, REJCAD under a subcontract for the Hellenic Center of Gold Silversmiths Trade.

8 References

18. 3Design. 3Design CAD. Available from: http://www.3design.com/.
31. Stamati V., Reconstructing feature-based CAD models based on point cloud morphology, in Dept. of Computer Science. 2008, University of Ioannina: Ioannina.
34. Fudos I., Hoffmann C.M. A graph-constructive approach to solving systems of geometric constraints. ACM Transactions on Graph(EnvisionTec)ics, 1997; 16(2):179-216.