MIXTURE MODEL ANALYSIS OF DNA MICROARRAY IMAGES

K. Blekas, N.P. Galatsanos, A. Likas and I.E. Lagaris

6– 2004

Preprint, no 6 – 5 / 2004

Department of Computer Science
University of Ioannina
45110 Ioannina, Greece
Mixture Model Analysis of DNA Microarray Images

K. Biekas, N. P. Galatsanos*, A. Likas and I. E. Lagaris
Department of Computer Science, University of Ioannina,
P.O. Box 1186, 45110 Ioannina, Greece
E-mail: {kblekas,galatsanos,arly,lagaris}@cs.uoi.gr

Abstract

In this paper we propose a Gaussian Mixture Model (GMM) based methodology for
the analysis of microarray images. The main advantages of the proposed methodology are
modeling flexibility and adaptability to the data, which are well known strengths of GMM.
The maximum likelihood (ML) and maximum a posteriori (MAP) approaches are used to
estimate the GMM parameters via the Expectation Maximization (EM) algorithm. The
proposed approach has the ability to detect and compensate for artifacts that might occur
in microarray images. This is accomplished by a model-based criterion that selects the
number of the mixture components. We present numerical experiments where we compare
the proposed approach with previous ones and existing software tools for microarray image
analysis and demonstrate its advantages.

Keywords: DNA microarray image analysis, Gaussian mixture models, maximum likeli-
hood, maximum a posteriori, Markov random fields, Expectation-Maximization algorithm,
cross-validated likelihood

1 Introduction

DNA microarrays [1] are used to measure the expression levels of thousands of genes simulta-
neously over different time points and different experiments. In microarray experiments, the
two mRNA samples to be compared are reverse transcribed into cDNA and then hybridized
simultaneously to a glass slide. The end product of a comparative hybridization experiment
is a scanned array image, where the measured intensities from the two fluorescent reporters
have been colored red (R) and green (G) and overlaid. This array image is structured with
intensity spots located on a grid and must be scanned to determine how much each probe

*To whom correspondence should be addressed.
is bound to the spots when stimulated by a laser. An example of such grid structure containing 24x24 spots is shown in Fig. 1. Yellow spots have roughly equal amounts of bound cDNA from each sample and so have equal intensity in the R and G channels (red + green = yellow). Gene expression data derived from arrays measure spots quantitatively and can be used further for several analyses [2, 3].

It has been shown [1] that background correction is an important task in the analysis of microarray images. This is necessary in order to remove the contribution in intensity which is not due to the hybridization of the cDNA samples to the spotted DNA. The R and G intensities of a perfect microarray image depend only on the dye of interest. However, due to system imperfections and the microarray image generation process, the resulting images, in addition to background fluorescence, contain also other types of undesired signals which are termed in the rest of this paper as artifacts. The correction of such artifacts is crucial to making accurate expression measurements, because unlike background fluorescence their spatial location is unknown and can lead to errors propagated to all subsequent stages of the analysis [4].

Processing microarray images requires two tasks. First, the individual spots and their borders are determined. This process is also known as gridding. Second, each spot is analysed to determine the corresponding gene expression level. A number of software tools have been introduced that are available either commercially or for research only purposes for the analysis of the microarray images [1, 8, 9, 10]. These tools use simple gridding methods, which are based either on a grid with uniform cells, or on manual specifications of the spot borders. For spot analysis some existing tools assume circular spots for example, the Seanalyse [9] and the GenePix [10]. Others use simplistic local thresholding based techniques, for example the TIGR-Spotfinder [8].

Histogram-based clustering methods have been also proposed for spot segmentation [5, 6, 7]. However, these methods use the well known K-means and the K-medoids algorithms that do not adapt well to irregularly based clusters and do not utilize all the available prior
knowledge about the data. Furthermore, all previous proposed methods correct only for background fluorescence and ignore the presence of artifacts.

The main contributions of this work are two; first, a new automatic gridding scheme and second, the application of Gaussian mixture models (GMM) for analyzing microarray spot images [4]. This allows to bring on bear to this problem all the known advantages and powerful features of the GMM methodology, such as adaptability to the data, modeling flexibility and robustness, that make it attractive for a wide range of applications [11, 12]. The proposed methodology consists of three main steps. First, the new scheme for determining the individual spot borders in a microarray image is presented. This method does not require any human intervention and is very simple and fast. It is hierarchical in nature since it first uses the global and then the local properties of the microarray image, thus it is also very robust.

Second, after determining the spot boundaries, the probability density of each spot pixels is modeled using a GMM with K components. Two scenarios are possible. First, $K = 2$ in which case two components are used corresponding to pixels labeled as background and foreground. Second, $K = 3$ when in addition to background and foreground we have pixels which are labeled as artifacts. The identification of the appropriate value of K is accomplished using the cross-validated likelihood criterion [13]. This can be considered as artifact detection and correction mechanism, since when $K = 3$ an artifact is identified which is ignored in the subsequent analysis of this spot. Two approaches are proposed for estimating the GMM parameters. The first one is based on the Expectation-Maximization (EM) algorithm [14] for maximum likelihood (ML) estimation of the parameters, while the second on a maximum a posteriori (MAP) formulation. The latter takes also into account prior knowledge about the spatial assignment of the pixel labels using a Markov Random Field (MRF) model [15].

Finally, based on the clustering results, the means of the background and foreground Gaussian components are used to calculate the normalized log-ratio for the fluorescence intensities ($\log_2 R/G$). This task constitutes the reduction step of our approach and characterizes qualitatively each spot by finding its corresponding gene expression value.
The rest of this paper is organized as follows: In section 2 we present the proposed technique for automatic gridding. Section 3 describes the two GMM approaches for spot image segmentation and the model-based criterion for estimating the number of mixture components. In section 4 we present numerical experiments that test the proposed methodology and compare it to existing software packages for microarray image analysis, as well as to recently published methods. Finally, we conclude in section 5.

2 Automatic Microarray Gridding

The process of determining the spot boundaries is frequently referred to as gridding. A variety of microarray gridding methods have been previously suggested in the literature. They determine individual spot boundaries either with user-defined anchor points [9] and semi-automated geometric techniques [7], or with complex methods that are computationally expensive [16]. Since typical microarray images contain hundreds or thousands of spots, a practical gridding method must be fully automatic, fast and simple.

The proposed gridding method uses a scheme that combines global and local segmentation mechanisms for defining the boundaries of each microarray spot. It initially creates global boundaries, which are horizontal and vertical straight lines spanning the entire image. To define the global boundaries we add the sums of the R and G intensities along the rows and columns of the microarray image. The resulting signals have multiple peaks each corresponding to the coordinates of a spot center. We use the mid point of two successive peaks of the row and column sums to define the global horizontal and vertical boundaries, respectively. Fig. 2 (a) illustrates this process for a 5 x 5 grid.

In the next step, the global boundaries are refined. The horizontal boundary between spots \(S(i, j) \) and \(S(i + 1, j) \) is refined by locating the minimum of the sum of the rows (within the global boundary) of the R and G intensities of these spots. In the same spirit, the vertical boundary between spots \(S(i, j) \) and \(S(i, j + 1) \) is refined by locating the minimum of the columns (within the global boundary) sums of the R and G intensities of these spots.
This procedure is repeated in a row-by-row or column-by-column fashion, scanning the entire microarray image. Fig. 2 (b) illustrates an example of the global border refinement process.

3 Mixture Models for Spot Analysis

Spot analysis refers to the task of labeling each pixel of a spot as background (B), foreground (F), and artifact (A). This can be viewed as a clustering problem which is tackled using GMM. Let \(x^i = [x^i_R, x^i_G]^T \) \((i = 1, \ldots, N)\) denote the \(i \)-th pixel value in a spot area, where the R and G correspond to the red and green intensities, respectively. GMMs [11, 12] represent density functions as a convex combination of \(K \) Gaussian component densities \(\phi(x^i|\theta^j) = \mathcal{N}(x^i|\mu_j, \Sigma_j) \), where \(\mu_j \) is the mean and \(\Sigma_j \) the covariance matrix of the \(j \)-th Gaussian, according to the formula

\[
 f(x^i|\Psi_K) = \sum_{j=1}^{K} \pi_j \phi(x^i|\theta^j). \tag{1}
\]

The parameters \(0 \leq \pi_j \leq 1 \) represent the mixing weights satisfying that \(\sum_{j=1}^{K} \pi_j = 1 \), while \(\Psi_K \) is the vector of all unknown parameters of the model, i.e. \(\Psi_K = [\pi_1, \ldots, \pi_K, \theta_1, \ldots, \theta_K] \), with \(\theta_j = [\mu_j, \Sigma_j] \).

Having found the parameters of the GMM, the posterior probabilities that the \(i \)-th pixel is assigned to the \(j \)-component is given by

\[
P(j|i) = \frac{\pi_j \phi(x_i^j|\mu_j, \Sigma_j)}{\sum_{i=1}^{K} \pi_i \phi(x_i^i|\mu_i, \Sigma_i)} \tag{2}
\]

Therefore, the \(i \)-th pixel is assigned to the label \(l \) with the largest posterior probability \(P(l|i) > P(j|i) \forall j \neq l \).

3.1 Maximum Likelihood (ML) Estimation of GMM parameters

A common approach for estimating the model parameters of the GMM (Eq. 1) is based on maximization of the likelihood (ML)

\[
\mathcal{L}(X|\Psi_K) = \sum_{i=1}^{N} \log f(x^i|\Psi_K) = \sum_{i=1}^{N} \log \{ \sum_{j=1}^{K} \pi_j \phi(x^i|\theta_j) \}. \tag{3}
\]
The EM algorithm is a popular method for ML estimation since it is simple to implement and guarantees convergence to a local maximum of the likelihood function [14, 12].

Starting from an initial guesses of the model parameters \(\Psi_K \), at each iteration \(t \) the EM algorithm proceeds in two steps. The E-step, where the posterior probabilities are computed

\[
x_j^{(t)} = \frac{\pi_j^{(t)} \phi(x^j | \mu_j^{(t)}, \Sigma_j^{(t)})}{\sum_{l=1}^{K} \pi_l^{(t)} \phi(x^j | \mu_l^{(t)}, \Sigma_l^{(t)})},
\]

and the M-step, where the model parameters are updated

\[
\pi_j^{(t+1)} = \frac{1}{N} \sum_{i=1}^{N} x_j^{(t)} ,
\]

\[
\mu_j^{(t+1)} = \frac{\sum_{i=1}^{N} x_j^{(t)} x^i}{\sum_{i=1}^{N} x_j^{(t)}}, \quad \Sigma_j^{(t+1)} = \frac{\sum_{i=1}^{N} x_j^{(t)} (x^i - \mu_j^{(t+1)})(x^i - \mu_j^{(t+1)})^T}{\sum_{i=1}^{N} x_j^{(t)}}.
\]

In image segmentation the spatial adjacency of pixels with the same label is an important prior information that could be also taken into account [17, 18]. Since the ML approach does not provide this capability, an alternative method for maximum a posteriori (MAP) estimation of GMM parameters will be described next. However, before we address this problem, we will elaborate on the problem of selecting the number of the mixture components \(K \), and see how it fits in the proposed microarray image analysis methodology.

3.2 Cross-validated likelihood for Artifact Identification

The application of the EM algorithm to GMM requires knowledge of the number of the mixture components \(K \) used in the model. Since previous approaches for microarray spot analysis assume 2 labels, background (B) and foreground (F), it is reasonable to consider GMMs with \(K = 2 \). However, this assumption cannot handle the existence of artifacts which must also be taken into account, see spots in Fig. 7. In this case an additional cluster appears in the data, therefore they are better modeled by a GMM with \(K = 3 \). This effect can be
visualized by comparing the scatter plots in the Figures 5 and 6 with those in Figures 8 and 9. Thus, the artifact detection problem corresponds to a model order selection problem between a 2-component or a 3-component GMM.

Cross-validated likelihood [13] provides an efficient model order selection framework for GMMs. Following this scheme, a K-component model is evaluated by splitting the data in u disjoint partitions (folds) X_s, $s = 1, \ldots, u$ (of approximately equal size). For each fold we estimate the Ψ^s_K parameters of a GMM with K components using the dataset $X - \{X_s\}$. Then, we calculate the likelihood of this model $L(X_s|\Psi^s_K)$ using X_s as a test set. Next $L(X_s|\Psi^s_K)$ is averaged over the u folds in order to obtain the cross-validated evaluation for the K-component model

$$CV_K = \frac{1}{u} \sum_{s=1}^{u} L(X_s|\Psi^s_K).$$

(7)

The CV_K value is computed for the two candidate values $K = \{2, 3\}$ and we select the model order with the largest CV_K. It must be noted that in our experiments we have selected $u = 10$ for the number of folds. When $K = 3$ (existence of artifacts) the criterion used to determine which one of the three is the artifact cluster is the aggregate variance in all dimensions. In other words, the cluster with the largest $\text{Tr}(\Sigma_j)$ is considered as artifact.

3.3 Maximum A Posteriori (MAP) Estimation of GMM parameters

According to this approach [15], the probabilities $\pi^i_j = P(j|\text{position } i)$ of the pixel located at the ith position is assigned to the jth label are considered as additional model parameters that satisfy the constraints: $0 \leq \pi^i_j \leq 1$ and $\sum_{j=1}^{K} \pi^i_j = 1$. By denoting as $\Pi = \{\pi^1, \ldots, \pi^N\}$ the set of probability vectors and $\Theta = \{\theta_1, \ldots, \theta_K\}$ the set of Gaussian component parameters, the density function is given by

$$f(x^i|\Pi, \Theta) = \sum_{j=1}^{K} \pi^i_j \phi(x^i|\theta_j).$$

(8)

Spatial adjacency of pixel labels is taken into account by using a suitable prior density function for the parameter set Π. This is given by the Markov Random Field (MRF) model
\[p(\Pi) = \frac{1}{Z} \exp(-U(\Pi)) \text{, and } U(\Pi) = \beta \sum_{i=1}^{N} V_{\mathcal{N}_i}(\Pi) , \]

where \(Z \) is a normalizing constant, and \(\beta \) a regularization parameter. The function \(V_{\mathcal{N}_i}(\Pi) \) is the clique potential function of the pixel label vectors \(\{\pi^m\} \) within the neighborhood \(\mathcal{N}_i \) (horizontally, vertically, and diagonally adjacent pixels) to the \(i \)th pixel and is computed as follows

\[V_{\mathcal{N}_i}(\Pi) = \sum_{m \in \mathcal{N}_i} g(u_{i,m}) \text{, where } u_{i,m} = |\pi^i - \pi^m|^2 = \sum_{j=1}^{K} (\pi^i_j - \pi^m_j)^2 . \]

The function \(g(u) \) must be nonnegative and monotonically increasing [17] and we used \(g(u) = (1 + u^{-1})^{-1} \).

Given the above prior density (Eq. 9), a posteriori log-density function can be formed as follows

\[p(\Pi, \Theta | X) = \sum_{i=1}^{N} \log f(x^i | \Pi, \Theta) + \log p(\Pi) , \]

and maximized for the MAP estimation of the model parameters \(\Pi, \Theta \). The EM algorithm can also be used for this case [15]. The E-step is given by

\[z^*_j = \frac{\pi^*_j \phi(x^i | \mu^*_j, \Sigma^*_j)}{\sum_{l=1}^{K} \pi^*_l \phi(x^i | \mu^*_l, \Sigma^*_l)} , \]

while the M-step requires the maximization of the following log-likelihood [15]

\[Q_{MAP}(\Pi, \Theta | \Pi^{(t)}, \Theta^{(t)}) = \sum_{i=1}^{N} \sum_{j=1}^{K} z^*_j \left[\log(\pi^*_j) + \log(\phi(x^i | \theta^j)) \right] - \beta \sum_{i=1}^{N} \sum_{m \in \mathcal{N}_i} g(u_{i,m}) . \]

This gives update equations for the parameters of the component densities, \(\mu_j \) and \(\Sigma_j \) similar to those of Eq. (6) of the ML-approach of the GMM.

However, the maximization of the function \(Q_{MAP} \) with respect to the label parameters \(\{\pi^*_j\} \) does not lead to closed form update equations, since we must take into account the constraints: \(0 \leq \pi^*_j \leq 1 \) and \(\sum_{j=1}^{K} \pi^*_j = 1 \). Due to this difficulty, a Generalized EM scheme
was adopted in [15] based on an iterative Gradient Projection method. For this approach, the gradient of the MAP function is first projected onto the hyperplane of the constraints, and then a line search is performed along the direction of the projected gradient to find the parameters \(\{\pi_j^i\} \) that maximizes the \(Q_{MAP} \) function.

Here we use an improved M-step in order to maximize \(Q_{MAP} \) with respect to \(\pi_j^i \) by formulating the problem as a *constrained convex quadratic programming* (QP) problem. We found that this is advantageous, since it provides a better and faster update rule for estimating label parameters \(\{\pi_j^i\} \) that meets all the available constraints [19]. A more detailed description of the M-step for this method is given in Appendix A.

4 Experimental results

A variety of experiments have been performed to evaluate the proposed methodology for the analysis of DNA microarray images. The test images used were obtained from publicly available microarray databases described in [2] and [3].

At first, we tested the proposed gridding technique for partitioning grid structures into distinct spot areas. Fig. 3 illustrates the results of the application of our approach along with three other widely used microarray image analysis methods (GenePix [10], ScanAlyze [9] and Spotfinder [8]), to the microarray image in Fig. 1. We note that the proposed gridding method is completely automatic and finds the real boundaries of each spot whithout any human intervention as the other methods. We show more detailed gridding results for individual spots in the first column of Figures 4 and 7. These results demonstrate that in all cases the proposed method determines accurately the spot regions, including the gene spot and the adjacent background, even in difficult cases of noisy spots with artifacts (Fig. 7). It must be noted, that the gridding procedure is very fast and suitable for analyzing microarray images with many spots in a very short time.

After identifying the spot regions, we used the proposed GMM-based approach to analyze each spot region. More specifically, the procedure we followed consists of the following four
stages:

1. Select the number of components K of the GMM model using the cross-validated likelihood method. In other words, test for the presence (K = 3) or absence (K = 2) of artifacts in a spot.

2. Estimate the parameters of the K-component GMM model using the ML or MAP technique and label each spot pixel with one of the K labels.

3. If K = 3, the artifact component (A) of the GMM is identified by using the maximum variance criterion. Then, the remaining two clusters are labeled as F and B using the criterion ||μ^F|| > ||μ^B||.

4. Calculate the expression value of the corresponding gene according to the normalizing logarithmic ratio:

 \[r = \log_2 \left(\frac{\mu^F - \mu^B}{\mu^F - \mu^B} \right) \]

 For comparison purposes we have also implemented two other methods proposed in [5, 6] for spot clustering, namely the K-means algorithm and the partitioning around medoids (PAM) method. These two methods do not provide model selection capabilities, and thus only two clusters (K = 2) were considered, B and F.

 Figures 4 and 7 illustrate the results obtained for several spot examples. In each case we present the image segmentation results after labeling the pixels using each of the compared approaches. The spot segmentation map is constructed by setting the intensity value of each pixel equal to the mean value of the cluster that is assigned to. In the case of the proposed MAP approach, three different segmentation maps are presented that correspond to three values (0.01, 0.1, 1.0) for the regularization parameter β of the Gibbs prior (Eq. 9). In total, for each spot we provide six segmentation maps along with the corresponding fluorescent ratios.
More specifically, Fig. 4 represents comparative results from ten spot examples where no artifacts were detected according to the cross-validated likelihood criterion, i.e. $K = 2$. In cases where the shape of spots is not regular and their contour is not round (mostly due to retrieval of the microarrayer's spotting pin), both GMM-based methods generate more regular foreground regions in comparison with the K-means and PAM clustering approaches. To better comprehend the behaviour of the different clustering methods, we present in Figures 5 and 6 four scatter plots of the R and G pixel intensities for spots S_4 and S_7 after labeling using GMM with the MAP (MAP-GMM), the ML (ML-GMM), the K-means and the PAM methods, respectively.

The main disadvantage of the K-means and PAM methods is that they are restricted to use as error metric the L_2 distance from the mean or median of the cluster. Thus, they generate clusters which are separable by simple borders as shown in Figures 5, 6 (c) and (d). In contrast, GMM-based methods generate ellipsoidal clusters with complex boundaries as shown in Figures 5, 6 (a) and (b). As a result, the K-means and PAM methods in this example tend to overestimate the background clusters and provide spots with background "wholes", while the GMM-based methods provide more "uniform" spots.

Fig. 7 illustrates comparative results with another eight spot examples that correspond to cases where an artifact was detected, i.e. $K = 3$. After labeling, the artifact pixels are excluded from the calculation of the fluorescent ratios. In the absence of an artifact correction methodology, the K-means and the PAM methods erroneously classify these pixels as foreground since the contribution of the artifact pixels is significant. The differences in the fluorescent ratios r, among these methods is noticeable. For example, in the case of spots S_3 and S_5 of Fig. 7, the K-means and PAM methods produce a ratio close to zero ($r = 0$), since they consider as foreground the (yellow) artifact pixels. On the other hand, the proposed MAP-GMM and ML-GMM approaches, detect the presence of the artifact and generate more realistic foreground regions. Thus, the produced fluorescent ratios of about $r = 0.45$ and $r = -0.2$ seem to be more realistic for the spots S_3 and S_5, respectively. We also present in
Figures 8, 9 four plots of the R and G pixel intensity values for these two spot areas after labeling pixels with the four approaches being compared. Again, the enhanced data fitting capabilities of the GMM-based approaches are obvious.

Another point to make in our experimental study concerns the comparison between the MAP-GMM and ML-GMM estimators. The results in Figures 4, 7 show that both approaches yield similar results in terms of the fluorescent ratios. However, they do not produce the same segmentation maps. For low values of the regularization parameter β ($\beta \leq 0.01$) both methods generate identical segmentation maps. As the value of β grows in MAP-GMM, the contribution of the prior term increases and generates smoother foreground and background regions. Thus, it eliminates isolated foreground pixels located in background regions. While the value of the parameter β must be tuned, in our experiments we observed that a β value in the range $[0.1, 1.0]$ gives satisfactory results. From this point of view, the MAP-GMM approach can be viewed as a method for noise reduction in the sense that it eliminates the effects of the microarray manufacturing imperfections.

Finally, in Fig. 10 we show some comparisons for spot quantification between the proposed method and two existing image analysis tools, more specifically GenePix [10] and TIGR-Spotfinder [8]. Comparisons with ScanAlyze [9] were not included since GenePix uses the same principle for spot segmentation. From Fig. 10 it is clear that the circle used in GenePix is not representative on many occasions, when the spot is irregularly shaped or when artifact islets are present, of the spot area. In other words, the analysis provided by GenePix is based only on the spatial properties of the spot and does not take into consideration the intensity of the pixels. For example, in spot S_{13} shown in Figures 4 and 10 the circle used by Genepix misses completely the crescent shaped spot which the proposed method captures quite accurately. This is also reflected in the large difference of the fluorescent ratios provided by these methods. Also in spots S_4 and S_7 in Figures 7 and 10 it is clear that the region selected by Genepix segmentation as foreground includes pixels that our algorithm labels as artifact and this is also reflected in the computed fluorescent ratios. Similarly, the thresholding
based algorithm used in TIGR-Spotfinder in certain instances of irregular spots and spots with artifacts produces faulty segmentation, see for example spots S_i in Figures 4 and 7, respectively. In these spots also the fluorescent ratios provided by TIGR-Spotfinder and our method are significantly different.

5 Conclusions

In this paper we have proposed a new fully automated approach for the analysis of microarray images. The main novelty is the GMM-based methodology for spot image segmentation. Two methods for estimating the GMM parameters are presented: the ML and a MAP. Both approaches are based on the EM algorithm. A cross-validated likelihood criterion is also used to select the number of components of the GMM. This provides the capability to detect and correct artifacts in the spot area. As our experiments demonstrate, the proposed scheme produces better and more accurate results in terms of segmentation maps and fluorescence ratios as compared with existing software tools and other clustering methods proposed in previous works.

6 Appendix A: An M-step for estimating the parameters π_j^i

To maximize Q_{MAP} (Eq. 13) with respect π_j^i we set its derivative equal to zero and obtain the following quadratic expression

$$4\beta \left[\sum_{m \in N_i} \hat{g}(u_{m,i}) \right] (\pi_j^i)^2 - 4\beta \left[\sum_{m \in N_i} \hat{g}(u_{m,i}) \pi_j^m \right] (\pi_j^i) - \tau_j^i = 0, \quad (14)$$

where $\hat{g}(u)$ indicates the derivative. Let us denote with a_j the positive root of the above equation. The problem can be formulated as follows:

"Given a vector $a \in \mathbb{R}^K$ with elements $a_j \geq 0$ and the hyperplane $\sum_{j=1}^{K} y_j = 1$, find the point y on the hyperplane with $y_j \geq 0$ that is closest to a".
This defines the following constrained convex quadratic programming (QP) problem:

\[
\min_y \frac{1}{2} \sum_{j=1}^{K} (y_j - a_j)^2
\]

subject to \(\sum_{j=1}^{K} y_j = 1\) and \(y_j \geq 0\), \(\forall j = 1, \ldots, K\).

(15)

In order to solve this QP problem several approaches can be employed such as active-set methods and penalty-barrier methods [20]. For this purpose, we have implemented an active-set type of method [19] where we exploit the fact that the Hessian is the identity matrix which in turn leads to closed form expressions for the Lagrange multipliers. The detailed steps for solving this QP problem are given in the next Algorithm 1.

Algorithm 1 : A sequential convex QP algorithm

Input: \(a \in \mathbb{R}^K\)

Output: \(y \in \mathbb{R}^K : \min_{y} \frac{1}{2} \sum_{j=1}^{K} (y_j - a_j)^2\) s.t. \(\sum_{j=1}^{K} y_j = 1\) and \(y_j \geq 0\) \(\forall j\)

Set \(D = K\) and \(v_j = 1, \forall j = 1, \ldots, K\)

1. Calculate \(y_j\) \(\forall j = 1, \ldots, K\) as:
 - if \(v_j = 1\) then
 \[
y_j = a_j + \frac{1 - \sum_{i=1}^{K} v_i a_i}{D}
\]
 - else \(v_j = 0\)
 \[
y_j = 0
\]
 end if

2. Check for termination
 - if \(y_j \geq 0\) \(\forall j = 1, \ldots, K\) then
 STOP
 end if

3. Update \(v_j\) \(\forall j = 1, \ldots, K\) and \(D\) as:
 - if \(y_j < 0\) then
 \(v_j = 0\) and \(D = D - 1\)
 end if

4. Go to step 1.

References

Figure 1: A grid of a microarray image containing 24×24 spot areas.

Figure 2: (a) These signals are obtained by summing up the rows and columns of both R and G channels for a 5×5 grid structure. Mid points of successive peaks define the horizontal vertical global borders, respectively. (b) The global borders (dotted lines) are refined (solid lines) based on the local sums. The signals on the left and above the microarray image are the local row and column sums, respectively.
Figure 3: Comparative gridding results of our method (a) with three widely existing microarray image analysis tools: (b) the GenePix, (c) the ScanAlyze and (d) the TIGR-Spotfinder.
<table>
<thead>
<tr>
<th>Original image</th>
<th></th>
<th>MAP-GMM</th>
<th></th>
<th>ML-GMM</th>
<th>K-means</th>
<th>PAM</th>
<th>Existing tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>$r = 0.203$</td>
<td>$r = 0.204$</td>
<td>$r = 0.206$</td>
<td>$r = 0.203$</td>
<td>$r = 0.212$</td>
<td>$r = 0.323$</td>
<td>$r = 0.333$ GenPix: 0.333 TIGR: -0.213</td>
</tr>
<tr>
<td>S_1</td>
<td>$r = 0.722$</td>
<td>$r = 0.737$</td>
<td>$r = 0.738$</td>
<td>$r = 0.720$</td>
<td>$r = 0.803$</td>
<td>$r = 1.008$</td>
<td>$r = 0.864$ GenPix: 0.864 TIGR: 0.725</td>
</tr>
<tr>
<td>S_2</td>
<td>$r = -0.037$</td>
<td>$r = -0.052$</td>
<td>$r = -0.056$</td>
<td>$r = -0.068$</td>
<td>$r = -0.053$</td>
<td>$r = -0.065$</td>
<td>$r = -0.050$ GenPix: -0.050 TIGR: 0.142</td>
</tr>
<tr>
<td>S_3</td>
<td>$r = -0.023$</td>
<td>$r = -0.090$</td>
<td>$r = -0.088$</td>
<td>$r = -0.092$</td>
<td>$r = -1.120$</td>
<td>$r = -1.183$</td>
<td>$r = -0.673$ GenPix: -0.673 TIGR: -0.871</td>
</tr>
<tr>
<td>S_4</td>
<td>$r = 0.231$</td>
<td>$r = 0.235$</td>
<td>$r = 0.237$</td>
<td>$r = 0.241$</td>
<td>$r = 0.240$</td>
<td>$r = 0.293$</td>
<td>$r = 0.251$ GenPix: 0.251 TIGR: 0.234</td>
</tr>
<tr>
<td>S_5</td>
<td>$r = 0.808$</td>
<td>$r = 0.807$</td>
<td>$r = 0.801$</td>
<td>$r = 0.808$</td>
<td>$r = 0.839$</td>
<td>$r = 0.889$</td>
<td>$r = 0.875$ GenPix: 0.875 TIGR: 0.775</td>
</tr>
<tr>
<td>S_6</td>
<td>$r = 0.783$</td>
<td>$r = 0.791$</td>
<td>$r = 0.789$</td>
<td>$r = 0.811$</td>
<td>$r = 0.970$</td>
<td>$r = 0.880$</td>
<td>$r = 0.707$ GenPix: 0.707 TIGR: 0.804</td>
</tr>
<tr>
<td>S_7</td>
<td>$r = 1.980$</td>
<td>$r = 2.010$</td>
<td>$r = 2.010$</td>
<td>$r = 1.979$</td>
<td>$r = 1.963$</td>
<td>$r = 2.000$</td>
<td>$r = 1.904$ GenPix: 1.904 TIGR: 1.314</td>
</tr>
<tr>
<td>S_8</td>
<td>$r = -0.316$</td>
<td>$r = -0.318$</td>
<td>$r = -0.266$</td>
<td>$r = -0.318$</td>
<td>$r = -0.289$</td>
<td>$r = -0.053$</td>
<td>$r = -0.360$ GenPix: -0.360 TIGR: -0.136</td>
</tr>
<tr>
<td>S_9</td>
<td>$r = 1.907$</td>
<td>$r = 2.058$</td>
<td>$r = 1.533$</td>
<td>$r = 1.527$</td>
<td>$r = 1.495$</td>
<td>$r = 1.619$</td>
<td>$r = 2.795$ GenPix: 2.795 TIGR: 1.474</td>
</tr>
</tbody>
</table>

Figure 4: Comparative results for 10 microarray spots without artifacts. For each method we give the segmentation map and the estimated fluorescence ratio.
Figure 5: Plot of all pixel values of spot S_4 of Fig. 4 after labeling them with MAP-GMM (a), ML-GMM (b), K-means (c) and PAM methods (d), respectively. The ellipsoidal clusters resulting from the GMM approaches and the linear boundary between the two clusters in the K-means case are also shown.
Figure 6: Plot of all pixel values of spot S_7 of Fig. 4 after labeling them with MAP-GMM (a), ML-GMM (b), K-means (c) and PAM methods (d), respectively. The ellipsoidal clusters resulting from the GMM approaches and the linear boundary between the two clusters in the K-means case are also shown.
<table>
<thead>
<tr>
<th>Original image</th>
<th>MAP-CMM</th>
<th>ML-CMM</th>
<th>K-means</th>
<th>PAM</th>
<th>Existing tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>$r = 0.173$</td>
<td>$r = 0.207$</td>
<td>$r = 0.175$</td>
<td>$r = 0.874$</td>
<td>GenPix: 0.488 TIGR: 0.992</td>
</tr>
<tr>
<td>S_2</td>
<td>$r = -0.633$</td>
<td>$r = -0.619$</td>
<td>$r = -0.699$</td>
<td>$r = 0.435$</td>
<td>GenPix: -0.702 TIGR: -0.598</td>
</tr>
<tr>
<td>S_3</td>
<td>$r = 0.567$</td>
<td>$r = 0.464$</td>
<td>$r = 0.431$</td>
<td>$r = 0.025$</td>
<td>GenPix: 0.500 TIGR: 0.423</td>
</tr>
<tr>
<td>S_4</td>
<td>$r = 0.648$</td>
<td>$r = 0.650$</td>
<td>$r = 0.690$</td>
<td>$r = 0.573$</td>
<td>GenPix: 0.834 TIGR: 0.588</td>
</tr>
<tr>
<td>S_5</td>
<td>$r = -0.260$</td>
<td>$r = -0.187$</td>
<td>$r = -0.202$</td>
<td>$r = -0.097$</td>
<td>GenPix: 0.600 TIGR: -1.423</td>
</tr>
<tr>
<td>S_6</td>
<td>$r = 0.750$</td>
<td>$r = 0.751$</td>
<td>$r = 0.720$</td>
<td>$r = 0.753$</td>
<td>GenPix: 0.614 TIGR: 0.691</td>
</tr>
<tr>
<td>S_7</td>
<td>$r = 0.802$</td>
<td>$r = 0.853$</td>
<td>$r = 0.742$</td>
<td>$r = 0.362$</td>
<td>GenPix: 0.466 TIGR: 0.648</td>
</tr>
<tr>
<td>S_8</td>
<td>$r = -0.621$</td>
<td>$r = -0.673$</td>
<td>$r = -0.689$</td>
<td>$r = 0.536$</td>
<td>GenPix: -0.541 TIGR: -0.380</td>
</tr>
</tbody>
</table>

Figure 7: Comparative results for 8 microarray spots with artifacts. For each method we give the segmentation map and the estimated fluorescence ratio.
Figure 8: Plot of pixel values in spot S_3 of Fig. 7 after labeling with MAP-GMM (a), ML-GMM (b), K-means (c) and PAM methods (d), respectively. The ellipsoidal clusters resulting from the GMM approaches and the linear boundary between the two clusters in the K-means case are also shown.
Figure 9: Plot of pixel values in spot S_5 of Fig. 7 after labeling with MAP-GMM (a), ML-GMM (b), K-means (c) and PAM methods (d), respectively. The ellipsoidal clusters resulting from the GMM approaches and the linear boundary between the two clusters in the K-means case are also shown.
<table>
<thead>
<tr>
<th>Original image</th>
<th>GenePix Spot finder</th>
<th>TIGR Spot finder</th>
<th>Original image</th>
<th>GenePix Spot finder</th>
<th>TIGR Spot finder</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1 (Fig. 4)</td>
<td>$r = 0.333$</td>
<td></td>
<td>S_6 (Fig. 4)</td>
<td>$r = 0.875$</td>
<td>$t = 0.775$</td>
</tr>
<tr>
<td>S_{10} (Fig. 4)</td>
<td>$r = 2.785$</td>
<td>$r = 0.474$</td>
<td>S_1 (Fig. 7)</td>
<td>$r = 0.992$</td>
<td></td>
</tr>
<tr>
<td>S_2 (Fig. 7)</td>
<td>$r = -0.732$</td>
<td>$r = -0.698$</td>
<td>S_4 (Fig. 7)</td>
<td>$r = 0.588$</td>
<td></td>
</tr>
<tr>
<td>S_5 (Fig. 7)</td>
<td>$r = 0.000$</td>
<td>$r = -1.423$</td>
<td>S_7 (Fig. 7)</td>
<td>$r = 0.466$</td>
<td>$r = 0.648$</td>
</tr>
</tbody>
</table>

Figure 10: Calculated fluorescent ratios for 8 spot examples using the GenePix and TIGR-Sprotfinder microarray image tools.