
The Three-Step Refactoring Detector Pattern
Anastasios Tsimakis

Department of Computer Science and
Engineering, University of Ioannina,

Greece
atsimakis@gmail.com

Apostolos V. Zarras
Department of Computer Science and
Engineering, University of Ioannina,

Greece
zarras@cs.uoi.gr

Panos Vassiliadis
Department of Computer Science and
Engineering, University of Ioannina,

Greece
pvassil@cs.uoi.gr

ABSTRACT
The development of a tool that detects opportunities for refactoring
in source code is not an easy task. Our experience in developing
such a tool revealed the Three-Step Refactoring Detector pat-
tern. The main idea behind the pattern is to develop an extensible
hierarchy of refactoring detectors, with respect to a general three-
step refactoring detection process. The proposed pattern facilitates
the expansion of the hierarchy with new refactoring detectors and
enables the reuse of existing refactoring detectors, provided by
third party developers. Concerning maintainability, the pattern
promotes the development of simple, clean and technology inde-
pendent refactoring detectors. We have used the pattern for the
development of 11 different refactoring detectors in the context
of our tool. The pattern has not been observed in other contexts.
However, the usage of the pattern in our tool brought out specific
empirical evidence of its benefits, which we discuss in this paper.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement;

KEYWORDS
Refactoring, Refactoring Detection, Patterns
ACM Reference Format:
Anastasios Tsimakis, Apostolos V. Zarras, and Panos Vassiliadis. 2019. The
Three-Step Refactoring Detector Pattern. In 24th European Conference on
Pattern Languages of Programs (EuroPLoP ’19), July 3–7, 2019, Irsee, Germany.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/XXXXXXXX.
XXXXXXXX

1 INTRODUCTION
Back in the 90’s, Opdyke introduced refactoring as a behavior pre-
serving process that changes a software, so as to enable other
changes to be made more easily [13]. Since then, several refac-
toring approaches have been proposed in many different domains
[3, 11].

ConcerningOO software,Martin Fowler introduced awell-known
catalog of refactorings [6]. These are also known as floss refactoring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’19, July 3–7, 2019, Irsee, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN XXXXXXXX. . . $15.00
https://doi.org/10.1145/XXXXXXXX.XXXXXXXX

or micro-refactoring, referring to small, individual changes in the
source code rather than a large-scale, organised effort to restructure
the entirety - or a large part - of it [10, 12], and will be what we
will henceforth refer to as "refactoring".

In the same context, several techniques that detect refactoring op-
portunities have been proposed. Typically, these techniques detect
opportunities for refactoring, based on quality metrics or measur-
able properties that reveal certain code smells and/or bad practices.
This allows the creation of tools for automated and reliable recog-
nition of refactoring opportunities, covering a wide range of refac-
torings (e.g., moving methods [2, 4, 15, 18, 19], extracting methods
[16, 20], extracting classes [1, 5], extracting interfaces [9, 14]). Such
tools may not only notify the programmer of an opportunity to
refactor, but also automatically make the necessary alterations to
the code to facilitate the refactoring’s completion/realization. Re-
cently, Al Dallal [3] performed an extensive survey that focuses on
techniques and tools for the detection of refactoring opportunities.
This effort indicates that the interest in refactoring is constantly
growing. At the same time, the state of the art on refactoring tools
and techniques is vast, including a large variety of approaches that
study and facilitate the overall refactoring process.

However, as the refactoring field grows, the development of new
refactoring tools becomes more complex, involving more advanced
design concerns that should be addressed. In particular, an impor-
tant issue that is brought out by Kim et al. [8] is the need to combine
refactorings in more complex evolution tasks. To deal with this is-
sue, the next generation of refactoring tools should be extensible
andmaintainable. So far, these concerns are not really addressed. In
particular, many tools focus on a single refactoring. In Al Dallal’s
survey, for instance, only 25% of the refactoring detection tools con-
cern more than two refactorings. Even in these tools, extensibility,
and maintainability are not primary concerns, because typically
the tools focus on a fixed set of refactorings.

On our side, we have faced the aforementioned concerns in the
development of the Refactoring Trip Advisor, a tool that provides
actionable recommendations regarding which refactoring(s) to use
before, after, or instead of a particular refactoring. The tool further
provides guidelines on how to apply refactorings, and enables the
detection of refactoring opportunities. The issues that we encoun-
tered in the design and implementation of the Refactoring Trip
Advisor brought out an interesting pattern that can help other tool-
makers to develop their own refactoring detection tools, regardless
of whether these will be incorporated in a specific IDE or editor, or
will be completely independent/standalone.

The Three-Step Refactoring Detector pattern facilitates the
development of refactoring detectors, via a polymorphic hierarchy of
template classes that realize a general three-step refactoring detec-
tion process. This structure allows a tool-maker to easily add new

https://doi.org/10.1145/XXXXXXXX.XXXXXXXX
https://doi.org/10.1145/XXXXXXXX.XXXXXXXX
https://doi.org/10.1145/XXXXXXXX.XXXXXXXX

EuroPLoP ’19, July 3–7, 2019, Irsee, Germany A. Tsimakis et al.

refactoring detectors to his tool, and reuse existing refactoring detec-
tors that are provided by third-party developers. From a broader
perspective, the pattern promotes the development of simple, clean
and technology independent refactoring detectors that can be easily
maintained. We consider this solution as a pattern because we have
used it for the development of 11 different refactoring detectors
in the context of Refactoring Trip Advisor. The pattern has not
(yet) been observed elsewhere. However, the usage of the pattern in
our project revealed specific empirical evidence of its advantages,
which we report in this paper.

The rest of this paper is structured as follows. In Section 2, we in-
troduce the main concepts of the Three-Step Refactoring Detec-
tor pattern and we discuss the use of the pattern in the Refactoring
Trip Advisor. In Section 3, we summarize our contribution.

2 THREE-STEP REFACTORING DETECTOR
Context
A tool-maker is building a stand-alone refactoring tool, or a refac-
toring plugin for an existing IDE or editor. As part of the tool, the
tool-maker wants to develop a set of refactoring detectors.a

Problem
IDE users’ needs change and there are advances in the field of
refactoring. Thus, the design of the refactoring tool should make
future changes easier.

Forces
• Developing in one shot a refactoring tool that supports all
the refactorings that the users may possibly need is not
pragmatic.

• To deal with the users’ evolving requirements, it should be
possible to extend the tool with new refactoring detectors.

• It is not practical to implement from scratch all the refac-
toring detectors for every refactoring that the users may
possibly need.

• To exploit the state of the art on refactoring, the tool should
not only include refactoring detectors developed by the tool-
maker (in-house detectors), but also reuse third-party refac-
toring detectors, provided by other developers.

• The addition of new refactoring detectors and/or the reuse
of pre-existing refactoring detectors shall be easier if the
overall implementation of the tool is clean, simple, and free
from code smells.

• The overall detection process of refactoring opportunities
is similar for different refactorings, as it involves tasks that
(1) limit the search space to the parts of the project the user
is interested in, (2) select the particular project elements
that may contain refactoring opportunities and (3) detect the
actual refactoring opportunities, respectively.

• Developing refactoring detectors independently from each
other may introduce unnecessary complexity and code du-
plication in the implementation of the tool, due to the re-
implementation of common refactoring detection tasks over
and over again.

Solution
The key idea of the solution is that all the refactoring detectors
implement the same general refactoring detection process that
consists of the following 3-steps:

(1) Identify the refactoring scope: When a developer is look-
ing for refactoring opportunities he may be interesting in
searching in specific parts of his/her project. Hence, in the
first step of the process the developer instructs the refactor-
ing detector on which project elements to focus on - these
elements constitute the refactoring scope.

(2) Identify the refactoring subjects: in second step, the refac-
toring detector identifies within the elements of the refac-
toring scope the refactoring subjects, i.e., the smallest self-
contained elements that can contain refactoring opportuni-
ties.

(3) Identify the refactoring opportunities: in the third step, the
refactoring detector identifies within the refactoring subjects
the refactoring opportunities, i.e., the specific elements
that can be refactored.

Then, each individual refactoring detector customizes the steps
of the refactoring detection process appropriately, according to the
specificities of the specific refactoring that is tackles. The different
variants of the general refactoring detection process result in a
polymorphic hierarchy of template classes that is discussed in detail
in the pattern structure section that follows.

Structure
Figure 1, depicts the structure of the pattern. In particular, the key
classes of the polymorphic hierarchy are RefactoringDetector,
RefactoringDetectorForClasses, and RefactoringDetector-
ForMethods. ProjectExplorer provides information concerning
the user interaction with the refactoring tool. Project, provides in-
formation about the structure of the project that the user is working
on. We assume a typical project structure, consisting of packages
that comprise classes, and so on. Note that typically the implemen-
tation of classes like ProjectExplorer and Project is technology
dependent, varying with respect to specific IDEs, APIs, etc. Con-
sequently, in the pattern structure these classes can be thought of
as wrappers or facades that isolate the refactoring tool from the
underlying technologies and hide the complexity that emerges from
the usage of these technologies.

In more detail, RefactoringDetector is the abstract class that
realizes the general three-step refactoring detection process. The
starting point is the execute() method (Figure 2(top-left)). The
method executes the three steps of the refactoring detection process,
by calling respective methods.

• identifyScope() implements the first step of the process
(Figure 2 (top-right)). This step is common for all the refac-
toring detectors. Specifically, every refactoring detector iden-
tifies the refactoring scope.
– The refactoring scope may be the whole project, a specific
package, class, method, etc. Typically, the user of the refac-
toring tool selects the refactoring scope using the project
explorer.

The Three-Step Refactoring Detector Pattern EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

Figure 1: Pattern structure.

– In this step, the refactoring detector further checks if the
selected scope is valid, based on a list of valid scopes. Al-
though the first step of the refactoring process is common
for all the refactoring detectors, the list of valid scopes
varies, depending on the refactorings. For instance, several
refactorings concern classes. So, for these refactorings it
does not make sense to select a method as a refactoring
scope. In general, to be valid the refactoring scope can
not be more narrow than the refactoring subjects (more
details in the following).

• identifySubjects() realizes the second step of the pro-
cess. In this step, each refactoring detector looks for a list of
refactoring subjects that belong to the selected refactoring
scope.
– Tables 1 to 6, concern Fowler’s catalog of refactorings [6].
Each table corresponds to a different category of refactor-
ings, as specified in Fowler’s catalog. For each refactoring,
we specify the particular type of subjects where the refac-
toring can be applied to. In general, we can distinguish two
different types of refactorings, those that can be applied
to methods, and those that can be applied to classes.

– Consequently, in the second step of the process, the refac-
toring detectors of the first type identify as refactoring
subjects a list of methods, while the refactoring detectors
of the second type identify as refactoring subjects a list of
classes.

– Thus, in the pattern structure there are two different sub-
classes of RefactoringDetector, namely Refactoring-
DetectorForClasses and RefactoringDetectorForMe-
thods. Moreover, identifySubjects() is an abstractmethod

of the RefactoringDetector class. The subclasses of Refa-
ctoringDetector provide the respective concrete imple-
mentations of identifySubjects() (Figure 2(bottom)).

• identifyOpportunities() implements the third step of
the process. This step is different for every refactoring de-
tector. In particular, every refactoring detector identifies the
actual refactoring opportunities within the refactoring sub-
jects that fulfil all the criteria for the refactoring in question
to be applied. The type of the identified refactoring opportu-
nities depends on the particular refactoring (Tables 1 to 6).
The criteria for detecting refactoring opportunities depend
on the particular technique that is employed for the detec-
tion (e.g., a threshold for a particular complexity metric,
the parameters of a clustering algorithm, etc.). Therefore,
identifyOpportunities() is an abstract method of the
RefactoringDetector class. The concrete implementations
of the abstract method are provided by different refactor-
ing specific subclasses of RefactoringDetectorForClass
or RefactoringDetectorForMethods.

Examples
Refactoring Detectors forMethods. Inline Method and Replace
Temp with Query are two entirely different refactorings. However,
their common characteristic is that they are both applied tomethods
(Table 1).

More specifically, Inline Method concerns small-sized methods,
whose bodies are as clear as the methods themselves [6]. The bodies
of such methods can be put in the bodies of the methods’ callers,
without making themmuchmore complex. Then, the short methods
can be removed.

On the other hand, Replace Temp with Query concerns methods
with local variables that are assigned once, with the result of a

EuroPLoP ’19, July 3–7, 2019, Irsee, Germany A. Tsimakis et al.

Figure 2: Pattern participants.

Table 1: Composing Methods.

particular expression [6]. The idea is to extract the expression into
a method and replace all references to the variable with calls to the
extracted method.

Table 2: Moving Features Between Objects.

To implement refactoring detectors for the aforementioned refac-
torings we create respective classes that extend the Refactoring-
DetectorForMethods class (Figure 3).

InlineMethodDetector detects Inline Method opportunities
(Figure 3). To this end, the detector iterates through the list of
refactoring subjects. It checks the size of each subject method. If

The Three-Step Refactoring Detector Pattern EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

Table 3: Simplifying Conditional Expressions.

Table 4: Organizing Data.

Table 5: Making Method Calls Simpler.

Table 6: Dealing with Generalization.

the size of the subject method is less than theta statements (theta
is a given threshold) and the method is not an accessor, a mutator,
or a predicate, the detector adds the method to the list of refactoring
opportunities.

ReplaceTempWithQueryDetector identifies Replace Temp with
Query opportunities (Figure 3). In particular, the detector iterates
through the list of refactoring subjects. If a subject method contains
local variables that are assigned once, the detector includes those
variables in the list of refactoring opportunities.

Refactoring Detectors for Classes. Move Method and Extract
Class two different refactorings that concern classes (Table 2).

Move Method is applied to classes that have misplaced methods.
Specifically, if amethod is using (respectively used by)more features
of another class, then the method can be moved to that other class.

Extract Class is applied to classes that have many responsibilities.
To refactor a class that is doing too much work we have to create
new classes for the different responsibilities of the class and move
the relevant fields and methods from the class into the new classes.

To detect opportunities for these refactorings we can reuse third-
party refactoring detectors provided by the JDeodorant refactoring
framework. The JDeodorant Move Method detector relies on a
Jaccard-like metric that measures the distance between methods
and classes [19]. The distance between a method and a class is
small if the method is using many of the class entities (methods
and attributes). Based on the values of the distance metric, the
detector identifies candidate methods to be moved to other classes.
The JDeodorant Extract Class detector relies on agglomerative
clustering [5] to regroup the methods and fields of a particular
class. The algorithm decides the placement of the class entities
based on a Jaccard-like distance metric.

To reuse the aforementioned third-party detectors we extend
the RefactoringDetectorForClasses class (Figure 4). In particu-
lar, the MoveMethodDetector is a facade for the JDeodorant Move
Method detector, while the ExtractClassDetector is a facade for
the JDeodorant Extract Class detector.

Consequences
Benefits:

EuroPLoP ’19, July 3–7, 2019, Irsee, Germany A. Tsimakis et al.

Figure 3: Refactoring detectors for methods.

Figure 4: Refactoring detectors for classes.

• Extensibility: The pattern makes the addition of new refac-
toring detectors easy. Specifically, to add an new refactoring
detector the tool-maker has to add a new subclass in the poly-
morphic hierarchy that provides a concrete implementation
of the identifyOpportunities() method.

• Reuse: Similarly, the pattern facilitates the reuse of exist-
ing refactoring detectors. To reuse an third-party refactor-
ing detector, the tool-maker has to add a new subclass of
RefactoringDetectorForClasses or RefactoringDetect-
orForMethods that serves as a facade or an adaptor of the
functionality that is provided by the third-party refactoring
detector.

• Maintainability: The polymorphic hierarchy of template
classes promotes the clear separation of responsibilities and
facilitates the avoidance of code duplication. The pattern

structure comprises specific elements that isolate the hierar-
chy from underlying technologies used for the interaction
between the user and the refactoring tool, the parsing of a
software project, the navigation through the structure of the
software project, and so on.

Liabilities:

• To add new refactoring detectors, or reuse detectors devel-
oped by third-party developers the tool-maker has to under-
stand the basic structure of the pattern. This could be an issue
if they are not familiar with the notions of polymorphism
and design patterns.

• It is not possible to use the pattern to develop a refactoring
tool, with a programming language that does not support
polymorphism.

• The functionality of refactoring detectors developed by third-
party developers is not directly used. On the contrary, the
detectors are integrated with the refactoring tool via facades
or adaptors, which may introduce an additional performance
or memory overhead.

Related Patterns
Three-Step RefactoringDetector is related toTemplateMethod
[7]. The idea behind Template Method is to have a method in a
base class that defines the skeleton of an algorithm, as a sequence of
steps. Some of the steps correspond to abstract methods. Therefore,
their definition is deferred to concrete subclasses of the base class.
Three-Step Refactoring Detector adapts Template Method
to the specificities of the refactoring detection problem, as its core
concept is the polymorphic hierarchy of template classes that define
the general three-step refactoring process.

The Three-Step Refactoring Detector Pattern EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

Table 7: Refactoring detectors in the Refactoring Trip Advi-
sor.

Three-Step Refactoring Detector is further related with
Adapter and Facade [7]. On the one hand, Adapter facilitates
the integration of incompatible classes, by converting the interface
of one class into an interface expected by the classes that use it. On
the other hand, the idea behind Facade is to provide an convenient
interface for a subsystem, to make it more easy to use. In the case
of Three-Step Refactoring Detector, both patterns can be used
to extend the polymorphic hierarchy of template classes with third-
party refactoring detectors.

Empirical Evidence
We employed the Three-Step Refactoring Detector pattern to
improve the design and implementation of the Refactoring Trip
Advisor [21].

The Refactoring Trip Advisor has two main goals:
• To provide the theoretical background of each refactoring
in order to assist the user to understand its importance and
use.

• To automatically detect code blocks that are applicable for
refactoring.

To go into more detail, the Refactoring Trip Advisor contains
a visual map of 68 refactorings, introduced in Fowler’s catalog.
The map is represented as a graph, with nodes corresponding to
refactorings and edges, depicting relations between refactorings.
There are three types of relations between refactorings: succession,
part-of, and instead-of, denoting respectively that a refactoring could
be applied after another, a refactoring is combined with others to
form a more complex, composite refactoring, and that a refactoring
is an alternative option to another refactoring.

In a typical usage scenario, a user selects a particular refactoring
(e.g., Extract Method in Figure 5(a)) that he/she wants to apply to
his/her code. Then, the tool highlights in the graph the selected
refactoring and other related refactorings, which can be used before,
after, as part of, or instead of the selected refactoring, with the
respective nodes colored in yellow, pink, cyan, purple and tan.

Each refactoring is further relatedwith slideware (e.g., Figure 5(b))
that provides guidelines on how to apply it. The slideware consists
of three parts: the first part explains the problem solved by the

Figure 6: Comparing the statistical distributions of sizes for
the refactoring detectors in the initial and the re-engineered
versions of the Refactoring Trip Advisor.

refactoring; the second part, gives a simple example on how to
apply the refactoring; the last part, allows the user to execute a
refactoring detector that identifies refactoring opportunities in the
code.

In the initial version of the tool we implemented seven in-house
refactoring detectors (Table 7(top)) specifically for the tool, and we
reused three third-party detectors (Table 7(bottom)), provided by
the JDeodorant1 refactoring framework. However, the detectors had
several design and implementation issues. In particular, the initial
version of the tool did not provide any backbone infrastructure
for the development of refactoring detectors. Hence, to add new
refactoring detectors or existing third-party refactoring detectors
we had to re-implement the overall refactoring detection process.
When it comes to maintainability and code quality, the refactoring
detectors had a significant amount of duplicate code, due to the
repeated implementation of common refactoring detection steps
(scope and subject identification).

To deal with the aforementioned issues we re-engineered the
Refactoring Trip Advisor, with respect to the Three-Step Refac-
toring Detector pattern. The pattern structure facilitates the
systematic addition of new in-house refactoring detectors and the
reuse of existing third-party refactoring detectors, because the com-
mon steps of the refactoring detection process are now encapsulated
in the core classes of the pattern structure. Consequently, the classes
that implement the refactoring detectors are simpler, smaller and
more clean. To incorporate the core functionalities of the JDeodor-
ant refactoring detectors in the pattern structure we developed
respective facades, as discussed in the examples (Figure 4).

Indicatively, Table 8 compares the sizes of the refactoring de-
tectors in the initial and the re-engineered versions of the tool, in
terms of physical lines of code; as reported by Sjøberg et al. [17],
this metric is a good indicator of the effort that is required for code
maintenance. Figure 6, further compares the statistical distributions
of the sizes in the initial and the re-engineered versions of the tool.
Specifically, the figure provides a box-and-whisker plot that depicts
the distribution of sizes for the refactoring detectors of each ver-
sion, in terms of the following statistical values: min, 1st quartile,
median, 3rd quartile, max, and average. Clearly, all the statistical

1http://users.encs.concordia.ca/˜nikolaos/jdeodorant/

EuroPLoP ’19, July 3–7, 2019, Irsee, Germany A. Tsimakis et al.

Figure 5: the Refactoring Trip Advisor overview: (a) Refactoring recommendations on the graph, (b) refactoring slides and
opportunity detection.

Table 8: Comparing the sizes of the refactoring detectors in the initial and the re-engineered versions of the Refactoring Trip
Advisor.

values in the re-engineered version are smaller than the respective
values in the initial version of the Refactoring Trip Advisor.

3 CONCLUSION
In this paper, we discussed the key concepts of the Three-Step
Refactoring Detector pattern that facilitates the development of
extensible and maintainable tools for the detection of refactoring

opportunities. The backbone of the pattern is a polymorphic hierar-
chy of template classes that realize a general three-step refactoring
detection process. This structure makes the addition of new refac-
toring detectors to a tool easy. Moreover, it facilitates the reuse of
existing refactoring detectors, provided by third-party developers.

We have used the Three-Step Refactoring Detector pattern
to improve the design and implementation of our tool, the Refactor-
ing Trip Advisor. Based on the pattern, we developed a new version
of the tool that comprises an extensible set of smaller and cleaner

The Three-Step Refactoring Detector Pattern EuroPLoP ’19, July 3–7, 2019, Irsee, Germany

refactoring detectors that are free from duplicate code. An open
issue for further research concerns the assessment of the pattern
in a user study that involves third-party developers.

ACKNOWLEDGMENTS
We would like to thank our shepherd, Veli-Pekka Eloranta, for his
constructive comments and suggestions during the preparation of
this paper.

REFERENCES
[1] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto. 2014a. Automating Extract

Class Refactoring: An Improved Method and its Evaluation. Empirical Software
Engineering 19, 6 (2014), 1617–1664.

[2] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. 2014b. Method-
book: Recommending Move Method Refactorings via Relational Topic Models.
IEEE Transactions on Software Engineering 40, 7 (2014), 671–694.

[3] J. Al Dallal. 2015. Identifying Refactoring Opportunities in Object-Oriented Code:
A Systematic Literature Review. Information and Software Technology 58, 0 (2015),
231 – 249.

[4] B. Du Bois, S. Demeyer, and J. Verelst. 2004. Refactoring: Improving Coupling and
Cohesion of Existing Code. In Proceedings of the 11th IEEE Working Conference
on Reverse Engineering (WCRE). 144–151.

[5] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou. 2012. Identification
andApplication of Extract Class Refactorings in Object-Oriented Systems. Journal
of Systems and Software 85, 10 (2012), 2241–2260.

[6] M. Fowler. 2000. Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley.

[8] M. Kim, T. Zimmermann, and N. Nagappan. 2014. An Empirical Study of Refac-
toring Challenges and Benefits at Microsoft. IEEE Transactions on Software
Engineering 40, 7 (2014), 633–649.

[9] S. Kranas, A. V. Zarras, and P. Vassiliadis. 2015. Fitness Workout for Fat Inter-
faces: Be Slim, Clean, and Flexible. In Proceedings of the 31st IEEE International
Conference on Software Maintenance and Evolution (ICSME). 526–530.

[10] M. Leppänen, S. Mäkinen, S. Lahtinen, O. Sievi-Korte, A. Tuovinen, and T. Män-
nistö. 2015. Refactoring-a Shot in the Dark? IEEE Software 32, 6 (2015), 62–70.

[11] T. Mens and T. Tourwé. 2004. A Survey of Software Refactoring. IEEE Transactions
on Software Engineering 30, 2 (2004), 126–139.

[12] E. R. Murphy-Hill and A. P. Black. 2008. Refactoring Tools: Fitness for Purpose.
IEEE Software 25, 5 (2008), 38–44.

[13] William F. Opdyke. 1992. Refactoring Object-Oriented Frameworks. Ph.D. Disser-
tation. Univ. of Illinois - Urbana Champaign.

[14] D. Romano, S. Raemaekers, and M. Pinzger. 2014. Refactoring Fat Interfaces Using
a Genetic Algorithm. In Proceedings of the 30th IEEE International Conference on
Software Maintenance and Evolution (ICSME). 351–360.

[15] V. Sales, R. Terra, L. Fernando Miranda, and M. Tulio Valente. 2013. Recommend-
ing Move Method Refactorings Using Dependency Sets. In Proceedigns of the 20th
IEEE Working Conference on Reverse Engineering (WCRE). 232–241.

[16] D. Silva, R. Terra, and M. Tulio Valente. 2014. Recommending Automated Extract
Method Refactorings. In Proceedings of the 22nd International Conference on
Program Comprehension (ICPC). 146–156.

[17] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dybå. 2013.
Quantifying the Effect of Code Smells on Maintenance Effort. IEEE Transactions
on Software Engineering 39, 8 (2013), 1144–1156.

[18] T. Tourwé and T. Mens. 2003. Identifying Refactoring Opportunities Using Logic
Meta Programming. In Proceedings of the 7th European Conference on Software
Maintenance and Reengineering (CSMR). 91–100.

[19] N. Tsantalis and A. Chatzigeorgiou. 2009. Identification of Move Method Refac-
toring Opportunities. IEEE Transactions on Software Engineering 99, 3 (2009),
347–367.

[20] N. Tsantalis and A. Chatzigeorgiou. 2011. Identification of Extract Method
Refactoring Opportunities for the Decomposition of Methods. Journal of Systems
and Software 84, 10 (2011), 1757–1782.

[21] A. V. Zarras, T. Vartziotis, and P. Vassiliadis. 2015. Navigating through the
Archipelago of Refactorings. In Proceedings of the the Joint 23rd ACM SIGSOFT
Symposium on the Foundations of Software Engineering and 15th European Software
Engineering Conference (FSE/ESEC). 922–925.

	Abstract
	1 Introduction
	2 Three-Step Refactoring Detector
	3 Conclusion
	Acknowledgments
	References

