
Int. J. Business Process Integration and Management, Vol. 3, No. 3, 2008 147

Copyright © 2008 Inderscience Enterprises Ltd.

Modelling and analysing reliable service-oriented
processes

Apostolos V. Zarras* and Panos Vassiliadis
Department of Computer Science,
University of Ioannina,
Ioannina, Greece
E-mail: zarras@cs.uoi.gr
E-mail: pvassil@cs.uoi.gr
*Corresponding author

Valerie Issarny
INRIA - UR de Rocquencourt,
Domaine de Voluceau, Rocquencourt, France
E-mail: Valerie.Issarny@inria.fr

Abstract: This paper introduces principled methods for the reliability analysis of business
processes that rely on web services. The input to the problem is the BPEL specification of a
business process and the output is the prediction of the process’s reliability. The first step to this
end involves a method for the translation of the BPEL specification to its corresponding UML
model. The second step of the reliability analysis involves a principled way for the annotation of
the UML model with the necessary extensions for the specification of reliability properties that
characterise the behaviour of the elements that constitute the process. The third step of the
analysis comprises the systematic mapping of the extended UML model to block diagrams and
Markov models which are subsequently used to compute the reliability of the process.

Keywords: composite web services; BPEL; reliability.

Reference to this paper should be made as follows: Zarras, A.V., Vassiliadis, P. and Issarny, V.
(2008) ‘Modelling and analysing reliable service-oriented processes’, Int. J. Business Process
Integration and Management, Vol. 3, No. 3, pp.147–163.

Biographical notes: Apostolos Zarras received his PhD in Computer Science from the
University of Rennes I, in 2000. He joined the Department of Computer Science of the
University of Ioannina in 2004. His research interests include software engineering in general and
in particular model-driven architecture development, quality analysis of software systems,
middleware, service-oriented computing and pervasive computing. More information can be
found at http://www.cs.uoi.gr/~zarras.

Panos Vassiliadis obtained his PhD from the Department of Electrical and Computer Engineering
of the National Technical University of Athens (NTUA) in 2000. He has joined the Department
of Computer Science of the University of Ioannina in 2002. So far, his research has focused on
data warehousing, modelling of the architecture and evolution of databases and information
systems, and web services. More information can be found at http://www.cs.uoi.gr/~pvassil.

Valerie Issarny received her PhD in Computer Science from the University of Rennes I, in
November 1991, where she proposed an exception handling model for concurrent programming.
During her PhD, she was a member of the LSP (Langages space operating system). From 1993
until 2001, she has been an INRIA Researcher in the Solidor group, examining solutions to the
construction of robust and efficient distributed systems. Since 2002, she is a Research Director,
leading the ARLES group at INRIA Rocquencourt, which investigates solutions to
architecture-based development of ambient intelligence environments. More information can be
found at http://www-rocq.inria.fr/arles/members/issarny.html.

148 A.V. Zarras et al.

1 Introduction

‘How do we build large-scale enterprise information
systems out of pre-existing elements and elements that are
build from scratch?’

Nowadays, the web services architectural style appears
as the most suitable answer to this question. Web services
are web-enabled entities that confront the increased
heterogeneity of software composition by encapsulating
pre-existing elements and exporting them through
platform-independent, standard interfaces to the rest of the
information system. Interfaces are specified using the web
services description language (WSDL) (W3C, 2001) and
interaction is realised through XML messages that follow
the SOAP standard (W3C, 2002). The orchestration of the
business processes of systems that rely on the web service
architectural style is specified using BPEL scenarios (IBM,
2002). These scenarios are executed on top of BPEL
compliant execution engines.

‘How do we assess the quality (e.g., reliability,
availability, efficiency, etc.) of the business processes
supported by the integrated system?’ Regarding this
question, the web services architectural style does not
currently provide any particular support. This paper focuses
in the reliability aspect and the primary goal is the
provisioning of methods that enable the ‘what-if’ reliability
analysis of complex BPEL business processes, with respect
to various reliability properties (e.g., failure rate,
redundancy, etc.) that may characterise the constituents of
these processes. In other words, the refined question tackled
in this paper is the following: ‘given a BPEL scenario, how
can we assess the risk of suffering failures during its
execution?’

Consider the example of a pharmaceutical company that
collects medicines and medical accessories from
pharmaceutical factories and delivers them to pharmacies.
Currently, whenever an order is placed by a client
pharmacist, all the items of the order are assembled in a
single package. A delivery company is employed to deliver
the package to the client pharmacy. Still, some orders are
much more urgent than the others and therefore the
company wishes to extend its delivery process, by allowing
the client to specify whether the items should be shipped in
a piecemeal fashion, as soon as possible. The piecemeal
delivery incurs a possible change to the business process of
the company, which involves organising the delivery of the

products through a dedicated delivery division, instead of
resorting to the external delivery company.

The back-stage process of the pharmaceutical company
is fully automated; the integration of the various parts of the
company’s system with the external delivery company is
facilitated through web services – see Figure 1. The
pharmacists log-in, view medicines/equipment and compose
an order. Then, the order is processed and a payment is
made. The list of the ordered goods is passed to the delivery
company’s system for delivery. Once the pharmacy has
received the goods, it confirms that the order has been well
processed.

The manager of the company launches two workgroups
to study the extension problem by providing a financial and
an IT-expansion plan. The latter involves studying the risks
and benefits of extending the current information system, by
calculating development and maintenance efforts as well as
the risk incurred by the new architecture. The potential drop
of the reliability, after the extension, has a direct impact to
the maintenance effort and the risk of the new system.
Therefore, the IT team has to provide an assessment of how
vulnerable the new system is going to be. The team is
composed of experts familiarised with traditional modelling
(e.g., UML) and reliability analysis (e.g., Markov models)
techniques, but has no real experiences with novel
technologies like BPEL. To proceed, the team decides to
perform the following steps:

• map the BPEL specification of the company’s business
process to a familiar UML model

• enhance the UML model with reliability properties

• assess the reliability of the process through well-known
techniques like block diagrams or Markov models.

Although techniques exist on similar problems, none of the
above tasks is straightforward. A full technique to translate
a BPEL to a UML model is currently not available. There is
no standard method on how to annotate a BPEL-specific
UML model with reliability properties, either. Moreover,
there is no principled way to derive block diagrams or
Markov models from BPEL-specific UML models. Finally,
there is no clear winner on which reliability analysis
technique to use for the assessment of the system’s
reliability – i.e., what technique should the IT team use
given its constraints on time, resources and knowledge.

 Modelling and analysing reliable service-oriented processes 149

Figure 1 Reference example of a web service based business process

Based on the above discussion, the main contributions of
this paper are as follows:

• A UML method is proposed for the specification of
basic BPEL modelling constructs. This way, BPEL
scenarios are mapped to UML activity models.

• The introduced UML constructs are associated with
properties that serve for the reliability analysis of BPEL
processes.

• Systematic methods are proposed for using the
resulting, BPEL-specific UML models as inputs to two
well-known reliability analysis techniques that rely on
block diagrams and Markov models, respectively.

• The use of the aforementioned techniques is illustrated
based on the reference example and their
appropriateness is discussed with respect to their
precision and the resources they require for the
reliability analysis of business processes.

The work proposed in this paper extends previous work
presented in Zarras et al. (2004). Specifically, the UML
modelling method proposed in Zarras et al. (2004) is aligned
with the standard UML profile for modelling quality of
service and fault tolerance characteristics and mechanisms
(OMG, 2004). Moreover, the proposed methods are
generalised for mapping BPEL-specific UML models to
traditional reliability analysis models to account for various
kinds of faults and failures. Last but not least, care is taken
for different possible execution scenarios that may originate
from a BPEL process specification.

The remainder of this paper is structured as follows.
Section 2 details the proposed UML modelling method and
the association of BPEL-specific UML constructs with
reliability properties. Sections 3 and 4 detail the mapping of
BPEL-specific UML models to block diagrams and Markov
models. The use of these techniques is illustrated in

Section 5. Section 6 discusses the related work. Finally,
Section 7 summarises the contribution of this paper and
discusses future work.

2 Specifying business processes in UML

Mapping BPEL specifications in UML, consists of defining
a set of stereotypes that represent BPEL constructs (Section
2.1). The method is straightforward: the fundamental BPEL
constructs are exhaustively enumerated (first column of
Table 1) and mapped to the appropriate UML constructs
(second column of Table 1). In Mantell (2003), there has
been a similar attempt to achieve this goal. However, the
mappings at the level of BPEL concept categories (e.g.,
BPEL activities, BPEL variables, etc.) were discussed.
Moreover, the proposed approach goes one step further by
associating the proposed stereotypes with properties that
serve for the reliability analysis (Section 2.2). These
properties are defined in accordance with the standard UML
profile for modelling quality of service and fault tolerance
characteristics and mechanisms (OMG, 2004).

2.1 Specifying BPEL constructs

A business process in BPEL is described in terms of a
process, specified using a homonymous stereotype
(Table 1). The process consists of activities, specified using
the activity stereotype. The execution of an activity relies on
the use of an interface that is provided by a basic web
service. This interface is termed partner in BPEL and it is
modelled using the partnerLink stereotype.

150 A.V. Zarras et al.

Table 1 Stereotypes for structuring composite web services

Stereotype UML base class Parent

process Activity NA
activity ExecutableNode NA
partnerLink ObjectNode NA
variable DataStoreNode NA
catchAll, catch ExceptionHandler NA
onMessage, onAlarm AcceptEventAction activity
compensationHandler ExceptionHandler NA
basicActivity ExecutableNode activity
invoke CallAction basicActivity
receive AcceptCallAction basicActivity
reply ReplyAction basicActivity
throw RaiseExceptionAction activity
wait AcceptEventAction activity
empty Action NA
sequence, pick, flow ActivityPartition activity
switch DecisionNode activity
while LoopNode activity

The process specification further includes the description of
fault and event handlers (specified using the faultHandler
and the eventHandler stereotypes). A fault handler consists
of an activity, triggered upon the occurrence of a failure. By
definition, ‘failure means deviation from compliance with
the system specification’ (Laprie, 1985). Including, thus, a
fault handler in the specification of a process implies that
the occurrence of the respective failure does not cause
deviation from the system specification. Hence, faults that
are properly handled are not considered in the analysis.

The proposed representation allows specifying different
kinds of basic [Figure 2(a)] and structured [Figure 2(b)]
BPEL activities. The execution of a basic activity relies on a
single web service. On the other hand, a structured activity
consists of a set of (basic or structured) activities and
prescribes the order of their execution. In other words, it
defines a number of control and data flow dependencies,
specified using standard ControlFlow (i.e., arrows stating
that the target activity is triggered when the execution of the
source activity is done) and Dataflow (i.e., arrows stating
that the target activity accepts input from the source
activity) elements. The different kinds of basic activities
supported are:

• invoke activities, specifying the synchronous or
asynchronous invocation of a web service operation.

• receive activities, describing the reception of SOAP
messages. A receive activity may be an initial activity
of the process. In this case, any other activities that
precede it or execute simultaneously must also be
initiating receive activities.

• reply activities, delineating responses to SOAP
messages that were previously received during the
execution of receive activities.

Figure 2 Different kinds of (a) basic activities and (b) structured
activities

(a)

(b)

The different kinds of structured activities supported by the
proposed representation are:

• sequence activities, consisting of activities that execute
sequentially.

• switch activities, consisting of ordered activities
associated with conditions. During a switch activity,
only the first activity whose condition evaluates to true
actually executes.

• while activities, comprising a single activity that
executes for a number of times.

• pick activities, consisting of one or more event
handlers.

• flow activities, comprising one or more activities, which
by default execute concurrently. However, there may
exist control and data flow dependencies between them,
imposing a certain execution order.

 Modelling and analysing reliable service-oriented processes 151

As already mentioned, the method for mapping BPEL to
UML modelling elements is straightforward: the
fundamental BPEL constructs (first column of Table 1) are
exhaustively enumerated and mapped to the appropriate
UML constructs (second column of Table 1). Despite the
simplicity of the method, there are a couple of issues to be
highlighted. A first comment concerns the recursive
application of the method: the proposed mapping method
can be recursively applied in the case of BPEL invoke
activities that correspond to nested BPEL scripts, resolving
each BPEL workflow one at a time. A second remark to be
made is that the formal underpinnings of the BPEL-to-UML
mapping are well beyond the scope of the paper, which
focuses on reliability analysis. Despite the significance of
the topic, providing the formal semantics to prove the
correctness of the mapping process is not dealt with in this
paper. Nevertheless, this issue is an interesting point for
future research.

Figure 1 illustrates the use of the stereotypes defined in
this section for the specification of the reference example.
Specifically, observe the use of a switch activity for the
specification of the two alternative ways
of delivery (i.e., the PiecemealDelivery while activity
that executes using the LocalDelivery partner and the
PrepareTotalDelivery invoke activity that executes
using the DeliveryCompany partner).

2.2 Specifying reliability properties

The basic properties that characterise the stereotypes
defined in Section 2.1 are given in Table 2. As imposed by
the standard UML profile for modelling quality of service
and fault tolerance characteristics and mechanisms (OMG,
2004), they are specified as QoS characteristics, consisting
of different QoS dimensions.

Specifically, the process stereotype is associated with
the reliability characteristic that has a single dimension,
prob, defined as the probability that the process executes
correctly for a given time duration. Time is also a reliability
characteristic of the process stereotype.

The impairments to reliability considered in the analysis
are the faults and the failures of the partners, used by the
activities of the process. Therefore, the partnerLink
stereotype is associated with fault and failure
characteristics. Faults appear with a certain rate, specified
using the failure-rate dimension (Table 2). Faults and
failures are characterised by further dimensions (e.g., the
nature of faults, the persistence of faults, etc.), allowing to
distinguish between different kinds of them (Table 3). For
instance, physical faults are permanent faults that relate to
physical phenomena and not to the partner’s internal or
external condition. On the other hand, transient faults are
temporary external faults, resulting from the interaction of
the partner with the environment. Transient faults disappear

with a certain rate (specified using the disappearance-rate
dimension, given in Table 2). Intermittent faults are
temporary internal faults, resulting from the interference
between the different parts of the partner. Intermittent faults
may be either active or benign. In the former case, the failed
partner provides incorrect operations, while in the latter, the
previous does not hold. Intermittent faults repeatedly go
from active to benign and back to active with certain
rates (specified using the active-to-benign-rate and the
benign-to-active-rate dimensions, defined in Table 2)
(Butler, 1992). More detailed definitions of the various fault
and failure dimensions of Table 2 can be found in Laprie
(1985).

According to the standard UML profile for modelling
quality of service and fault tolerance characteristics and
mechanisms (OMG, 2004), more than one partners may be
associated with the same fault and failure characteristics.
Hence, it is possible to specify fault and failure
dependencies between different partners. Such dependencies
may result from several reasons such as a common
development process that was followed for the partners or a
common platform (Eckhardt and Lee, 1985; Knight and
Leveson, 1986). It should be further noted that the faults and
the failures of the underlying BPEL execution engine that
executes business processes may also be considered as
impairments to the reliability of these processes (Issarny
et al., 2002). Dealing with the aforementioned issue is out of
the scope of this paper. However, it would imply associating
the stereotypes defined for basic and structured activities
with reliability characteristics that are similar with the ones
defined for the partnerLink stereotype.

The partnerLink stereotype is further associated with the
fault tolerance characteristic, which consists of different
dimensions, prescribing the fault tolerance technique that
may be used for a partner (Laprie et al., 1990). A partner
may represent a redundancy schema, i.e., a configuration of
redundant partners, which behave as a single fault tolerant
unit. The schema is characterised by the error detection
mechanism used, the number of partners ()partnersno that
constitute it, the number of partner failures that can be
tolerated ()failuresno , etc. At this point, it should be noted
that it is the responsibility of the designer to specify the
aforementioned properties in a way that reflects the
potential existence of dependent failures (Eckhardt and Lee,
1985; Knight and Leveson, 1986). If, for instance, a schema
comprises five partners and two of them fail in a dependent
manner, then the actual value of the partnersno property
should be four. In general, if a partner represents a
redundancy schema (i.e., it is associated with the fault
tolerance characteristic), then it can be associated with

partnersno fault and failure characteristics, one for every
constituent of the schema.

152 A.V. Zarras et al.

Table 2 Properties of the UML stereotypes

Stereotype QoS dependability characteristics

reliability
QoS dimensions

process

prob 0..1

fault failure fault-tolerance
Qos dimensions QoS dimensions QoS dimensions

nature {accidental,
intentional}

domain {time, value} error-detection {vote, comp,
acceptance}

cause {physical,
human}

perception {consistent,
inconsistent}

execution {parallel,
sequential}

phase {design,
operational}

 confidence {absolute,
relative}

persistence {permanent,
temporary}

 service-delivery {continuous,
suspended}

failure-rate Real partnersno Integer

disappearance-rate Real failuresno Integer

active-to-benign-rate Real
benign-to-active-rate Real

partnerLink

Service-delivery {continuous,
suspended}

completion
QoS dimensions

completion-rate Real
mean-completion-time Real

basicActivity

compl-dev Real

iterations
QoS dimensions

while

no-iter Integer

Branches
QoS dimensions

switch, pick

branch_prob Real

In the reliability analysis, the mean-completion-time and
deviation (or the completion-rate) of basic activities is
further taken into account. The completion time of
structured activities is a function of the completion times
of the basic activities that constitute them. While activities
are associated with a characteristic that represents the
(possibly approximate) number of iterations performed by
these activities. Switch and pick activities are associated
with arrays of real values, ranging from zero to one (i.e.,

the branch-prob property). Each value represents the
probability of executing one of the constituents of these
activities.

An example of specifying reliability properties is
given in Figure 3. Specifically, the dimensions of the fault
and the failure characteristics are specified for the
DeliveryCompany partner.

 Modelling and analysing reliable service-oriented processes 153

Table 3 Different classes of faults

Nature Cause Boundary

Accidental Intentional Physical Human Internal External
Class of faults

x x x
x x x

Physical faults

x x x Transient faults
x x x
x x x

Intermittent faults

x x x Design faults
x x x Interaction faults
 x x x
 x x x

Malicious logic

 x x x
 x x x

Intrusions

Phase Persistence

Design Operational Permanent Temporary
Class of faults

 x x
 x x

Physical faults

 x x Transient faults
 x x
x x

Intermittent faults

x x Design faults
 x x Interaction faults
x x
x x

Malicious logic

 x x
 x x

Intrusions

Source: Defined in Laprie (1985)

Figure 3 Reliability properties for the DeliveryCompany partner

3 Block diagrams for business processes

In principle, a block diagram is used to represent a
constraint for correctly executing a process. The block
diagram consists of blocks (i.e., boxes), representing the
partners that provide the basic web services, used in the
process. Those blocks are connected using serial
connections. More specifically, for every structured activity

A of the process, consisting of the 1 2, ,K Nα α α constituent
activities, we have:

1 If A is a sequence, a flow or a while activity, all of the
constituent activities are needed to successfully
complete A (for while activities 1=N).

2 If A is a switch or a pick activity with N branches,
any constituent activity may execute, depending on the
switch condition or the particular events that occur at
runtime. Hence, A implies the existence of N possible
execution paths. Some of these paths may involve the
use of different sets of partners leading into different
block diagrams. At this point, the purpose of the
reliability analysis may differ depending on the
preferences of the designer. In the case that the designer
performs a what-if analysis, each path should be
analysed as a different solution, independently from the
others. In the case that the designer is interested on the
impact of each choice on the reliability of the overall
process, different probabilities for the choice of each
path must be assigned. In the absence of any extra
information (or input by the designer), the former is
considered as the default choice. Based on the previous,

154 A.V. Zarras et al.

in the systematic block diagram construction, two
possible alternatives may be followed:
• Either we generate all the different block diagrams

that result from A .
• Or we assume a certain probability

, 1,− = Kαi
branch prob i N for every branch of A

and construct a single block diagram that models
all the paths. The branch probabilities may be
identified based on experimental results derived
from monitoring the process execution.

Taking the reference example, we get three different
block diagrams. Figures 4(a) and 4(b) give,
respectively, the block diagrams that result from the
different alternative delivery options offered by the
process, while Figure 4(c) gives the overall weighted
block diagram.

Figure 4 Block diagrams for the reference example, (a) block
diagram for local delivery (b) block diagram for
external delivery (c) block diagram for both delivery
alternatives

(a)

(b)

(c)

3 Based on 1–2, the block diagram is constructed as
follows:
a For the basic activities 1 2, ,Kα α αL of () :<A L N

• Select the 1 2, ,K Kp p p non-fault-tolerant
partners (i.e., the partners that do not represent
redundancy schemas), used by 1 2, ,K Lα α α .
Create a new block for every such partner. The
blocks are connected with serial connections.

• Select the 1 2, ,+ + KK K Mp p p fault tolerant
partners, used by 1 2, ,Kα α αL . For every such
partner, create a (-out-of-)partnersi no parallel
connection that connects partnersno blocks,
representing the schema constituents. To
correctly execute the process,
= −partners failuresi no no of the schema

constituents must be operational.
b For the composite activities 1 2, ,+ + Kα α αL L N of

A recursively follow 1–3.

To calculate, the reliability value from the block diagram
specification, the reliability values that characterise the
individual blocks and parallel connections are multiplied.
The reliability value for a block is calculated in terms of the
failure-rate characteristic of the partner that is represented
by the block (e.g., Figure 4).

4 Markov models for business processes

The systematic construction of Markov models for BPEL
processes is more complicated compared to the case of
block diagrams. In this section, the issue of modelling
BPEL processes with Markov models is discussed first.
Then, the systematic specification of such models is
detailed. The proposed approach is built upon a generic
framework for the generation of Markov models, which has
been proposed in Johnson (1988). Specifically, this work is
adapted to the specificities introduced by BPEL processes.

4.1 Markov models for BPEL processes

A Markov model for a BPEL process consists of a set of
transitions between states of the process. A state describes a
situation where either the process executes correctly or not.
In the latter case, the process is in a death-state. The state of
the process depends on the situation of its basic activities
(which may be encapsulated in structured activities or not)
and the situation of the partners, used for executing these
activities. The structured activities that encapsulate basic
activities do not directly affect the situation of a process as
they are not involved in performing any serious
computation. Switch and pick activities are treated similarly
to the case of block diagrams, i.e., either we specify
different Markov models for different process execution
paths or we specify an overall Markov model, using the
branching probabilities associated to these kinds of
activities. Flow and sequence activities serve as a
structuring mechanism, which determines the execution
order of their encapsulated activities. Accounting for
failures of the middleware mechanisms that coordinate the

 Modelling and analysing reliable service-oriented processes 155

aforementioned execution order further complicates the
reliability analysis and is out of the scope of this paper.
Previous work presented in Issarny et al. (2002) tackles this
particular problem in the case of conventional composite
systems and may also serve in the case of systems that rely
on the web services architectural style.

Hence, the state of a process is modelled as a
composition of sub-states, representing the partners and the
basic activities of the process. A basic activity may be in
four different states: inactive, active, complete or failed.
Later, the special case of activities encapsulated in while
activities is further discussed. The range of the different
state situations for a partner depends on the partner’s faults.
A partner with a physical or a transient fault may be:
operational or failed. Similarly, a partner with an
intermittent fault may be: operational, failed-active or
failed-benign. The range of state situations for a partner that
represents a redundancy schema further depends on the
number of schema constituents, the number of failures that
can be tolerated and the possible existence of dependent
failures. For instance, for a redundancy schema of five
partners and two failures, we have four possible situations in
the absence of dependent failures: all partners are
operational, one partner is failed, two partners are failed
and three partners are failed (death-state).

In the reference example, suppose that the
DeliveryCompany partner fails because of a physical
fault. Then, part of the Markov model that describes the
execution path that involves the DeliveryCompany
partner is given in Table 4 [the format used to present the
Markov model is the one assumed by the SURE reliability
analysis tool (Butler, 1992), which is used for solving
Markov models]. The state of the process is modelled by a
tuple of 11 integer values representing the sub-states that
correspond to the three partners and the eight basic activities
of the process. The first value of the tuples is zero in states
where the UserControl partner is operational and one in
states where it is failed. For the activities (the last eight
values of each tuple in Table 4), the values of the tuples are
0, 1, 2 or 3, in states where the activities are inactive, active,
complete or failed, respectively.

The Markov model comprises the following different
kinds of transitions:

• Transitions for partner failures, which model partner’s
failures that do not affect the activities which use these
partners because the failures take place before the
beginning of their execution. These transitions are
characterised by the failure-rate or the
benign-to-active-rate of the partners (Table 2).

• Transitions for partner recovery, which model the
recovery of partners that previously failed. These
transitions are characterised by the disappearance-rate
or the active-to-benign-rate of the partners (Table 2).

• Transitions for activity activation, which take the
process from a state where an activity α is inactive, to
a state where the activity executes (e.g., transition 3 in
Table 4). These transitions take place only if the
activities upon which α depends are complete and the
partner used by α is not failed. These transitions are
characterised by a default mean-time for triggering
activities.

• Transitions for activity completion, taking the process
from a state where an activity α is active, to a state
where α is complete (e.g., transition 4 in Table 4).
These transitions are characterised by the
mean-completion-time of the activity (Table 2).

• Transitions for activity failure, modelling the failure of
activities that already execute or the failure of activities
that are ready to execute (an activity α is ready to
execute when all the activities upon which it depends
are complete; at this time, α is going to be triggered).
The activities fail due to the failure of the partners used
by these activities. Therefore, the transitions are
characterised by the failure-rate or the
benign-to-active-rate of the failed partners (Table 2).

The overall reliability of a process is calculated with respect
to the probability of reaching a death-state of the Markov
model within a given time duration .t The calculation of
this value involves solving a system of first-order
differential equations (Butler, 1992).

156 A.V. Zarras et al.

Table 4 Markov model for the reference example

Transition Source Target Rate

1 3 (* 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 *) 4 (* 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 *) <mean-trig-time, trig-dev>
2 4 (* 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 *) 5 (* 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 *) <mean-completion-time,

compl-dev>
3 5 (* 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 *) 6 (* 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0 *) <mean-trig-time, trig-dev>
4 6 (* 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0 *) 7 (* 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0 *) <mean-completion-time,

compl-dev>
5 6 (* 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0 *) 1 (* 1, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0 DEATH *) failure-rate
6 7 (* 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0 *) 8 (* 0, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0 *) <mean-trig-time, trig-dev>
7 8 (* 0, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0 *) 9 (* 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0 *) <mean-completion-time,

compl-dev>
8 8 (* 0, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0 *) 1 (* 0, 1, 0, 2, 2, 3, 3, 0, 0, 0, 0 DEATH *) failure-rate
9 9 (* 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0 *) 10 (* 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0 *) <mean-trig-time, trig-dev>
10 10 (* 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0 *) 11 (* 0, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0 *) <mean-completion-time,

compl-dev>
11 10 (* 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0 *) 1 (* 0, 1, 0, 2, 2, 2, 2, 3, 0, 0, 0 DEATH *) failure-rate
12 11 (* 0, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0 *) 12 (* 0, 0, 0, 2, 2, 2, 2, 2, 1, 0, 0 *) <mean-trig-time, trig-dev>
13 12 (* 0, 0, 0, 2, 2, 2, 2, 2, 1, 0, 0 *) 13 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0 *) <mean-completion-time,

compl-dev>
14 12 (* 0, 0, 0, 2, 2, 2, 2, 2, 1, 0, 0 *) 1 (* 0, 1, 0, 2, 2, 2, 2, 2, 3, 0, 0 DEATH *) failure-rate
15 13 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0 *) 14 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 0 *) <mean-trig-time, trig-dev>
16 14 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 0 *) 15 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0 *) <mean-completion-time,

compl-dev>
17 14 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 0 *) 1 (* 0, 0, 1, 2, 2, 2, 2, 2, 2, 3, 0 DEATH *) failure-rate
18 15 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0 *) 16 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1 *) <mean-trig-time, trig-dev>
19 16 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1 *) 2 (* 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2 *) <mean-completion-time,

compl-dev>

Notes: failure-rate = 10–3; Mean-trig-time = 0.005; Trig-dev = 0; Mean-completion-time = 4; and Compl-dev = 0

4.2 The general framework for the specification of
Markov models

Generally, it is recognised that the specification of Markov
models is a complex and error-prone task (Johnson, 1988).
To deal with this problem, Johnson (1988) proposed an
algorithm that relies on the concepts discussed in the
previous subsection. In particular, states are modelled as
shown in the example of Table 4. The algorithm generates a
Markov model, given the following input:

• The definition of the range of states for the Markov
model. The range definition is given as a tuple of
integer variables. Each variable represents the range of
all possible state situations for a modelled element (e.g.,
a partner, an activity, etc.).

• The definition of a death-state constraint for the
Markov model, i.e., a conditional statement, defined on
the values of the range variables. This statement
evaluates the true for tuples that represent the
death-states of the Markov model.

• The definition of an initial state for the Markov model.

The algorithm further accepts as input transition rules
between sets of Markov states. A transition rule consists of
a conditional statement and a transition statement. The
conditional statement is defined on the values of the range
variables and identifies a set of source states that have
common features (e.g., states where a particular partner p is
operational). From all these source states, there should be
transitions to target states, which also share common
features (e.g., p is failed in all target states). Moreover, the
transitions to the target states are characterised by a
common rate (e.g., the failure-rate that characterises p).
The transition statement of the rule specifies this common
rate and the common features shared amongst the set of the
target states.

Given the above, the algorithm starts from the initial
Markov state and recursively applies the transition rules, as
long as, their conditional statements hold. During a
recursive step (for a particular transition rule), the algorithm
produces a transition to a state derived from the initial one.
If the death-state constraint holds for the resulting target
state, the recursion stops. That way, the algorithm
automatically produces all the possible state transitions for
the Markov model.

 Modelling and analysing reliable service-oriented processes 157

Taking the particular execution of the reference example
that involves the DeliveryCompany, the state range
definition is as follows:

space = (

UserControl 0..1,

Products 0..1,

DeliveryCompany 0..1,

UserLogin 0..3,

VerifyUserLoginInfo 0..3,

SearchMedicalEquipment 0..3,

SearchMedicines 0..3,

BuildCustomerOrder 0..3,

StorePaymentInfo 0..3,

PrepareTotalDelivery 0..3,

UserLogout 0..3

);

Moreover, the death-state constraint for the same process is:

deathif (3
 3 3

3 3
3)

= ∨
= ∨ = ∨

= ∨ = ∨
=

VerifyUserLoginInfo

SearchMedicalEquipment SearchMedicines

 BuildCustomerOrder StorePaymentInfo

 PrepareTotalDelivery

This constraint states that every tuple with
3=VerifyUserLoginInfo represents a death-state

(w.r.t., the modelling of activity failures in the
previous subsection). Similarly, every tuple with

3=SearchMedicines also represents a death-state. An
example of a simple transition rule for the reference
example is the following:

conditional statement

common features for the target states

if 0 1 then

 tranto (
 1, 2

= ∧ =

+ +

144444444424444444443

K K14444444444244444 3

DeliveryCompany PrepareTotalOrder

DeliveryCompany PrepareTotalOrder

) by 0.01;
endif;

44444

The above rule refers to source states that share the
following features:

• the DeliveryCompany partner is operational
(0)=DeliveryCompany

• the PrepareTotalOrder activity is active
(1).=PrepareTotalOrder

According to the transition statement of the rule, for every
source state, there exists a transition to a target state and the
common features of all target states are:

• the DeliveryCompany partner is failed
(1)=DeliveryCompany

• the PrepareTotalOrder activity is failed because
of the customer failure (3).=PrepareTotalOrder

The rate that characterises all of the transitions prescribed
by the above rule is 0.01; that is the failure-rate of the
DeliveryCompany partner.

Still, the specification of transition rules is a
complicated task. To alleviate this problem, this paper
proposes a systematic method for specifying input models
for Johnson’s (1988) algorithm, from BPEL-specific UML
models. The generated models serve as input to the ASSIST
tool (Johnson and Boerschlein, 2000) that implements
Johnson’s algorithm and generates complete Markov
models. Finally, the Markov models can be given as input to
the SURE analysis tool (Butler, 1992), which calculates
corresponding reliability values.

4.3 Generating state-range definitions

The generation of a state range definition from the
BPEL-specific UML model of a business process relies on
the following steps:

• First, we select all the partners of the process that do
not represent a redundancy schema. For each one of
them, a corresponding variable is created in the
state-range definition. The range of the integer values
for this variable depends on the fault and the failure
properties that are associated with the partner. More
specifically, we have:
• For a partner p with physical, transient, design,

interaction, permanent intrusion or permanent
malicious logic faults (Table 3), the value of the
variable is zero in states where p is operational
and one in states where p is failed.

• For a partner p with intermittent, temporary
intrusion or temporary malicious logic faults
(Table 3), the value of the variable is zero in states
where p is operational, one in states where p is
failed-active and two in states where p is
failed-benign.

• Then, we select all the partners that represent a
redundancy schema. Each one of them, p , consists of

partnerno redundant partners and may tolerate failureno
failures.
• If p is a schema with physical, transient, design,

interaction, permanent intrusion or permanent
malicious logic faults, we create an integer variable
that ranges from zero, in states where all partners
are operational, to 1+failureno , in states where the
number of failed partners exceeds the number of
failures that can be tolerated.

158 A.V. Zarras et al.

• If p is a schema with intermittent, intrusion or
temporary malicious logic faults, we create two
integer variables. The first one ranges from zero to

1+failureno and represents the number of failed
partners in the schema. The second variable ranges
from zero to failureno and represents the number of
failed-benign partners in the schema.

• Following, we select all the basic activities that are
specified in the process (some of them may be
encapsulated into structured activities). For each
activity ,α we create a variable in the state-range
definition. More specifically, if α is encapsulated in a
while activity that performs -no iter iterations, the
variable takes values from zero to - 1+no iter .
Otherwise, the variable takes values from zero to three.
The semantics of these values are summarised in
Table 5.

Table 5 Range of state-range variables for activities

Embedded in while Not embedded in while

Value Semantics Value Semantics

0 α is inactive 0 α is inactive

:1, ,
- 1−
Ki

no iter

α is executed
for the thi
time

 1 α is active

-no iter α is complete 2 α is complete

- 1+no iter α is failed
due to the
failure of the
partner used
by this activity

 3 α is failed due
to the failure of
the partner
used by this
activity

Based on the previous steps, the state-range definition for
the execution path of the reference example that involves
the LocalDelivery partner is:

space = (

UserControl 0..1,

Products 0..1,

LocalDelivery 0..1,

UserLogin 0..3,

VerifyUserLoginInfo 0..3,

SearchMedicalEquipment 0..3,

SearchMedicines 0..3,

BuildCustomerOrder 0..3,

StorePaymentInfo 0..3,

PreparePiecemealDelivery 0..6,

UserLogout 0..3

);

In the previous definition, it is assumed that the customer
ordered five different products. Therefore, the
PreparePiecemealDelivery ranges from zero to six.
The latter is the only difference between this state-range
definition and the one that was given in Section 4.2 for the
execution path that involves the DeliveryCompany
partner.

4.4 Generating death-state constraints

A process is considered as failed in states where any of its
basic activities is failed (more precisely, failures of initial
receive activities are not considered because in such cases,
the overall process is not even initiated). Hence, to generate
a death-state constraint, all the basic activities are selected.
Then, the death-state constraint is built as the disjunction of
a number of Boolean expressions. Each expression involves
a state-range variable that represents one of the activities,
say α . If α is encapsulated in a while activity that
performs -no iter iterations, the expression evaluates to true
if the variable equals to - 1+no iter (Table 5). In all other
cases, the expression evaluates to true if the variable equals
to three (Table 5).

In the execution path of the reference example that
involves the LocalDelivery partner, the death-state
constraint is:

deathif (3
 3 3

3 3
6)

= ∨
= ∨ = ∨

= ∨ = ∨
=

VerifyUserLoginInfo

SearchMedicalEquipment SearchMedicines

 BuildCustomerOrder StorePaymentInfo

 PrepareTotalDelivery

4.5 Generating transition rules

In Section 4.1, four different categories of transitions were
identified. Consequently, here, four different categories of
transition rules are discussed.

• Transition rules for partner failures: Transition rules
for partner failures are specified for all partners,
independently from the classes of faults that
characterise them. For every partner that does not
represent a redundancy schema, a rule is specified
whose conditional statement holds for all source states
where the partner is operational and the activities that
use the partner are inactive. The rule prescribes that for
these source states, there should be transitions to target
states, whose common feature is that the partner is
failed. The rate for these transitions is the failure-rate or
the benign-to-active-rate of the partner. If the partner
represents a redundancy schema, the conditional
statement holds for all source states where the number
of failures that occurred is less or equal to the number
of failures, failureno , that can be tolerated. For all these
source states, there should be transitions to target states,
whose common feature is that the number of failures is
increased by one.

 Modelling and analysing reliable service-oriented processes 159

Following, an example of a rule is given for the
UserControl partner of the reference example:

if 0 0 then
 tranto (1) by failure-rate;
endif;

= ∧ =
=

UserControl VerifyUserLoginInfo

UserControl

• Transition rules for partner recovery: These rules are
specified for partners with temporary faults.
Specifically, for every partner that does not represent a
redundancy schema, a transition rule is specified. If the
partner is characterised by a (temporary) external fault
(i.e., transient, interaction or intrusion fault), then the
conditional statement of the generated rule holds for
states where the partner is failed. The transition
statement specifies transitions to target states, whose
common feature is that the partner is operational again.
The rate for these transitions is the disappearance-rate,
associated with the partner. Similarly, if the partner is
characterised by a (temporary) internal fault (i.e.,
intermittent or temporary malicious logic fault), then
the conditional statement of the rule holds for source
states where the partner is failed and the fault is active.
The transition statement prescribes transitions to target
states, whose common feature is that the partner is still
failed, but the fault is benign. The rate for these
transitions is the active-to-benign-rate, associated with
the partner. For partners that represent redundancy
schemas, similar rules are specified.

Below, an example of a rule is given, for the
UserControl partner, if we suppose that it fails
because of a transient fault:

if 1 then
 tranto (0) by disappearance-rate;
endif;

=
=

UserControl

UserContol

• Transition rules for activity activation: For every basic
activity α of the process, a transition rule is generated,
whose conditional statement holds for states where:
1 the activity is inactive
2 the activities upon which α depends are complete
3 the partner, used by α is operational.

Hence, the conditional statement is built based on the
dataflow and control dependencies, specified for α .
The transition statement of the rule states that for all
source states, there should be transitions to target states,
whose common feature is that α is active.

If α is embedded in a pick or a switch activity and we
generate an overall Markov model for the process, then
the generated transitions are characterised by the
branch-prob of the corresponding branch. If α is
encapsulated in a flow activity together with activities,

, , ,Kβ γ then the conditional and the transition
statements of the rule involve all these activities, which
are concurrently activated.

Below, an example of a rule is given for the activation
of the activities that are included in the
DisplayProducts flow of the reference example.

if 0
 0
 2 0 then

 tranto (1
 1) by
 <mean-trig-time, trig-dev>;

endif;

= ∧
= ∧

= ∧ =
= ∧

=

SearchMedicines

SearchMedicalEquipment

VerifyUserLoginInfo Products

SearchMedicines

SearchMedicalEquipment

• Transition rules for activity completion: For every basic
activity α , a transition rule is further generated, whose
conditional statement holds for states where:
1 α is active
2 the partner that is used by α is operational.

Regarding the transition statement of the rule, we have:
• If α is encapsulated in a while activity, then the

transition statement prescribes transitions to target
states whose common feature is that α is
reactivated. These transitions actually model that in
the source states, α executes during the thi
iteration of the while activity, whilst in the target
states, α executes during the thi + 1 iteration of
the while activity.

• Otherwise, the transition statement specifies
transitions to target states, whose common feature
is that α is complete.

The transitions described by the aforementioned rule
are characterised by the mean-completion-time (and the
completion time deviation) of α .

Following, an example of a rule is given for the
completion of the BuildCustomerOrder activity.

if 1 0 then
 tranto (2) by
 <mean-completeion-time, compl-dev>;
endif;

= ∧ =
=

BuildCustomerOrder Products

BuildCustomerOrder

• Transition rules for activity failure: For every basic
activity α , two transition rules are specified. The first
one is for the generation of transitions that model the
failure of activities that already execute, while the
second rule is used for the generation of transitions that
model the failure of activities that are ready to execute.
For the first rule, the conditional statement holds for
states where:
1 α is active
2 the partner that is used by α is operational.

The transition statement of the rule states that there
should be transitions from the aforementioned states to
target states, whose common feature is that the partner
is failed. In the target states, α is also considered as

160 A.V. Zarras et al.

failed if the partner does not represent a redundancy
schema. Otherwise, α remains active until the number
of schema failures exceeds the value of the failureno
property. The rate for these transitions is the
failure-rate or the benign-to-active-rate of the partner.
An example of such a transition rule was given earlier
in Section 4.1.

For the second rule, the conditional statement holds for
states where:
1 α is inactive
2 the activities upon which α depends are complete
3 the partner that is going to be used by α is failed.

The transition statement of the rule states that there
should be transitions to target states where α is failed.

5 Illustrations

The use and appropriateness of the two reliability analysis
techniques proposed in Sections 3 and 4 is illustrated based
on the reference example. As discussed in Section 1, the
main objective of the pharmaceutical company is to reduce
the product delivery time by setting up a local piecemeal
delivery service as an alternative to the delivery company
that was used until now. Recall that the IT team that took
over the reliability assessment of this expansion plan is
going to perform a what-if analysis. Briefly, this means to
inspect how changes into certain independent parameters
impact on certain dependent variables (Golfarelli et al.,
2006). Typically, performing what-if analysis involves
making some assumptions (scenarios in other terms), based
on a brainstorming approach among the IT experts, who rely
on historical data mined from the company’s organisational
memory [the interested reader may further refer to Golfarelli
et al. (2006) for a detailed methodology on what-if
analysis]. In the particular reference example, the IT team
decides to proceed with respect to the following
assumptions:

• an early release of the LocalDelivery service fails
twice as much as the DeliveryCompany service that
was used until now:

- 2 -= ∗LocalDelivery DeliveryCompanyfailure rate failure rate

• a mature release of the LocalDelivery service fails
as much as the DeliveryCompany service:

- -=LocalDelivery DeliveryCompanyfailure rate failure rate

• the execution time of the company’s process may be
reduced from 0% to 80%, due to the use of the
LocalDelivery service, depending on how efficient
would be the implementation of this service.

More specifically:

• Based on the proposed methodology, the block
diagrams and the Markov models were constructed for
the company’s process execution path which uses the
early release of the LocalDelivery partner (i.e., the
piecemeal delivery path). In these models, the time
reduction in the execution time of the company’s
process (which was initially set to 100 time units)
varied from 0% to 80%. The failure rate of the early
release of the LocalDelivery partner was set to
0.002 failures per time unit, while the failure rates of
the rest of the partners involved in this path were set to
0.001 failures per time unit. The reliability values that
resulted from these block diagrams and Markov models
correspond to the Piecemeal Early columns, given in
Figures 5(a) and 5(b), respectively.

• Similarly, block diagrams and Markov models were
developed for the company’s process execution path
which uses the mature release of the
LocalDelivery partner. In this case, the failure rate
of the LocalDelivery partner and the failure rates of the
rest of the partners involved were set to 0.001. As
previously, the time reduction in the execution time of
the company’s process varied from 0% to 80%. The
reliability values obtained correspond to the Piecemeal
Mature columns, given in Figures 5(a) and 5(b),
respectively.

• Finally, a block diagram and a Markov model were
developed for the company’s process execution path
that uses the DeliveryCompany partner (i.e., the
total delivery path). The execution time for the total
delivery path was also set to 100 time units. The failure
rates of the partners involved in this path were set to
0.001 failures per time unit. The reliability values
obtained correspond to the Total Delivery lines given in
Figures 5(a) and 5(b), respectively [note that lines were
used instead of columns to highlight that in this
experiment, the execution time of the company’s
process was not varied; therefore, the lines should not
be related with the values that are given in the x-axis of
Figures 5(a) and (b)].

 Modelling and analysing reliable service-oriented processes 161

Figure 5 Reference example reliability results, (a) block
diagrams (b) Markov models (see online version for
colours)

(a)

(b)

In all models, the number of items to be delivered was set to
ten. Moreover, the partner failures were due to permanent
faults and none of the partners represented a redundancy
schema. The system’s reliability was computed via the
block diagrams using a Microsoft Excel spreadsheet. The
Markov models were given as input to the SURE tool that
took care of all the necessary computations (including the
system of first-order equations) and produced the estimation
of the system’s reliability as an output.

Regarding the results in Figure 5(a), we can observe that
the reliability values increased with the efficiency of the
LocalDelivery partner (both in the Piecemeal Early and
the Piecemeal Mature columns). This is reasonable
considering that the faster the process gets, the less probable
it is to fail during its execution. The total delivery line in
Figure 5(a) gives the overall reliability for the process
execution path that uses the DeliveryCompany partner.
Clearly, this path was less reliable from the process
execution path that used the mature release of the
LocalDelivery partner. The reason behind this is that in
both paths, the same failure rates were used for the partners
and the execution path that involved the mature release of
the LocalDelivery partner executed faster. Even the
process execution path that used the early release of the
LocalDelivery partner was more reliable from the path
that used the DeliveryCompany partner, in certain cases
where the authors assumed that the IT team implemented
the LocalDelivery partner efficiently enough (i.e., in
cases where the execution time reduction was greater than
30%).

Figure 5(b) gives the reliability values obtained from the
Markov models. The gross observations resulted from the
block diagrams still remain valid. However, a comparison
between the reliability values obtained from the block
diagrams and the Markov models shows that the former
underestimated the overall process reliability (Figure 6).
This underestimation is due to the fact that in the block
diagrams, it is assumed that all partners should be
operational for the whole duration of the process. On the
contrary, the Markov models allowed to perform a more
fine-grained modelling by taking into account the
mean-completion times of the activities that constitute the
process. The Markov models that were constructed reflected
that the partners should be operational only during the
activities that use them. The previous increased the
reliability values that were calculated.

Figure 6 Block diagrams and Markov comparison (see online
version for colours)

Hence, a ‘first lesson learned’ is that the gross-grained
modelling capability of block diagrams is sufficient for
driving a reliability analysis of business processes, which
may serve for studying reliability trends regarding certain
reliability properties (e.g., process execution time). On the
other hand, the block diagrams cannot capture dynamics
that relate to the execution of the activities that constitute
the business processes. Ignoring such dynamics may lead to
less precise results. In the reference example, for instance,
the block diagrams analysis shows that if the IT group of the
pharmaceutical company manages to build an early release
of the LocalDelivery partner that reduces the process
execution time by 30%, then the company’s process shall be
more reliable despite the fact that the failure rate of the
LocalDelivery partner is twice as the failure rate of the
DeliveryCompany partner. According to the Markov
models, the corresponding percentage of execution time
reduction is much higher (40%). Quite expectedly, a
‘second lesson learned’ is that Markov models are more
suitable for detailed business process reliability analysis. As
theoretically anticipated, Markov models are more
expressive when facing the issue of modelling system
dynamics such as dependent failures and repairable
behaviour (Raussand and Hoyland, 2004). Nevertheless,
there exist interesting recent works that propose extensions
of block diagrams, which overcome the modelling
limitations of conventional block diagrams (e.g., Distefano
and Puliafito, 2007).

162 A.V. Zarras et al.

The price to pay for the fine-grained modelling
capabilities of Markov models is the complexity of their
specification. The models used in the reference example
consisted of more than 50 states and more than 100
transitions. The time to calculate reliability values out of the
Markov models was comparable to the time required for the
block diagrams (less than 20 msec). However, the
complexity of the Markov models further increases if we
consider partners that fail due to temporary faults [a small
example of such a case is given in Zarras et al. (2004)]. In
this case, block diagrams are significantly faster than
Markov models.

6 Related works

The issue of quality analysis (e.g., performance, reliability,
availability, etc.) for conventional composite systems has
been explored in the past (Klein et al., 1999; Kazman et al.,
2000; Zarras and Issarny, 2000; Zarras et al., 2003;
Rodrigues et al., 2003; Majzik et al., 2003; Skene and
Emmerich, 2003; Rodrigues et al., 2004; Cardoso et al.,
2004). There are both similarities and differences with this
line of research. On the common side, these approaches
share the methodological approach to the problem (i.e.,
given a certain input, it is mapped to UML – for ease of
modelling – and then the UML model is transformed to a
model suitable for a well-known dependability analysis
technique). On the other hand, there are prominent
differences, specifically tailored for the case of web
services: both the input (BPEL in our case) and the
systematic derivation of the reliability analysis models are
different. The lesson here is that although one does not need
to reinvent the wheel in terms of fundamental techniques
(but rather, follow a principled methodology), there are still
important issues to address, which are handled in this paper.

The OMG (2004) standardisation community recently
recognised the importance of modelling the quality of
composite systems and adopted a corresponding UML
profile. The properties defined in Section 2.2 are aligned
with the aforementioned standard. They constitute a
superset of the dependability characteristics mentioned in
the standard and they are specifically tailored to the case of
BPEL business processes.

In the context of web services, the issues of quality
specification, analysis and management gained the attention
of various research communities. More specifically, in Dan
et al. (2004), the authors propose a framework for the
provision of differentiated levels of service that meet the
customers’ functional and quality requirements, which are
described in terms of service level agreements (SLAs).
SLAs are specified using a declarative language, named
WSLA. SLAng is also a language for the specification of
SLAs (Skene et al., 2004). While these approaches are quite
generic, the proposed approach focused on reliability
properties and reliability analysis techniques for
service-oriented business processes. The reliability
properties defined can be seen as SLA attributes. Then, the
models can be used to further generate WSLA or SLAng

specifications. In Cardellini et al. (2001), an
infrastructure-based solution is proposed for the provision
of differentiated levels of service. It particularly deals with
performance SLA attributes. Similarly, in Liu and Issarny
(2003), the problem of locating basic web services in ad-hoc
networks based on a set of quality criteria is tackled. In
Zeng et al. (2003), a similar problem has been dealt with.
More specifically, in this approach, the input is the
specification of a process that combines N primitive web
services. Moreover, the authors assume the existence of N
sets of compatible primitive services characterised by a
number of quality attributes like reliability, performance,
price, reputation, etc. Then, they propose a technique that
allows selecting N services out of the N sets, which
provide optimal process quality. Although the proposed
approach is interesting, its reliability analysis part can be
refined based on the methods proposed in this paper.

7 Conclusions

This paper, investigated methods that enable the what-if
reliability analysis of business processes. Specifically, a
UML method for modelling business processes was
proposed. The proposed method is built upon BPEL and
introduces necessary extensions to support the specification
of reliability properties that characterise the constituents of
business processes. Moreover, systematic methods were
introduced for using the resulting BPEL-specific UML
models as input to two well-known reliability analysis
techniques that rely on block diagrams and Markov models,
respectively. Finally, the use of these techniques was
illustrated and their appropriateness regarding their
precision and the resources they require was discussed.

The formal foundations for the correctness and
reversibility of the mapping from BPEL to UML have not
been dealt with in this paper and constitute an interesting
research topic. Moreover, in this paper, it is assumed that
the end-users of the proposed approach are the designers of
web service based information systems, who statically
perform the analysis at design-time. Performing reliability
analysis dynamically during the lifetime of the system is
also an interesting research issue. Such functionality can be
part of a middleware infrastructure that supports the
development of composite web services. In the latter case,
the complexity of the analysis techniques plays an even
more important role, especially if the infrastructure is
targeted to the development of web services in pervasive
computing environments (Issarny et al., 2005).

Acknowledgements

The authors would like to thank the anonymous reviewers
for their valuable comments. This work was partially funded
by the MobWS GSRT grant for Cooperation in S&T areas
with European countries.

 Modelling and analysing reliable service-oriented processes 163

References
Butler, R.W. (1992) ‘The SURE approach to reliability analysis’,

IEEE Transactions on Reliability, Vol. 41, No. 2,
pp.210–218.

Cardellini, V., Casalicchio, E., Colajanni, M. and Mambelli, M.
(2001) ‘Web switch support for differentiated services’, ACM
SIGMETRICS Performance Evaluation Review, Vol. 29,
No. 2, pp.14–19.

Cardoso, J., Sheth, A., Miller, J., Arnold, J. and Kochut, K. (2004)
‘Quality of service for workflows and web service processes’,
Journal of Web Semantics, Vol. 1, pp.281–308.

Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D.,
Ludwig, H., Polan, M., Spreitzer, M. and Youssef, A. (2004)
‘Web services on demand: WSLA-driven automated
management’, IBM Systems Journal, Vol. 43, No. 1,
pp.136–158.

Distefano, S. and Puliafito, A. (2007) ‘Dynamic reliability block
diagrams vs. dynamic fault trees’, in Proceedings of the IEEE
Reliability and Maintainability Symposium (RAMS’2007),
pp.71–76.

Eckhardt, D.E. and Lee, L.D. (1985) ‘A theoretical basis for the
analysis of multiversion software subject to coincident
errors’, IEEE Transactions on Software Engineering, Vol. 11,
No. 12, pp.1511–1517.

Golfarelli, M., Rizzi, S. and Proli, A. (2006) ‘Designing what-if
analysis: towards a methodology’, in Proceedings of the 9th
ACM International Workshop on Data Warehousing and
OLAP, pp.51–58.

IBM, Microsoft Corporation and BEA (2002) Business Process
Execution Language for Web Service (BPEL4WS) v.1.0,
Technical Report, IBM, Microsoft Corporation, BEA,
available at http://www.ibm.com/developerworks/
webservices/library/ws-bpel/.

Issarny, V., Kloukinas, C. and Zarras, A. (2002) ‘Systematic aid
for developing middleware architectures’, Communications of
the ACM (CACM), Vol. 45, No. 6, pp.53–58.

Issarny, V., Sacchetti, D., Tartanoglou, F., Sailhan, F., Chibout, R.,
Levy, N. and Talamona, A. (2005) ‘Developing ambient
intelligence systems: a solution based on web services’,
Journal of Automated Software Engineering, Vol. 12, No. 1,
pp.101–137.

Johnson, S.C. (1988) ‘Reliability analysis of large complex
systems using ASSIST’, in Proceedings of the 8th AIAA/IEEE
Digital Avionics Systems Conference, pp.227–234.

Johnson, S.C. and Boerschlein, D.P. (2000) ASSIST User Manual,
January, NASA Langley Research Center.

Kazman, R., Carriere, S.J. and Woods, S.G. (2000) ‘Toward a
discipline of scenario-based architectural engineering’,
Annals of Software Engineering, Vol. 9, pp.5–33.

Klein, M., Kazman, R., Bass, L., Carriere, S.J., Barbacci, M. and
Lipson, H. (1999) ‘Attribute-based architectural styles’, in
Proceedings of the 1st IFIP Working Conference on Software
Architecture (WICSA-1), pp.225–243.

Knight, J.C. and Leveson, N.G. (1986) ‘An experimental
evaluation of the assumption of independence in
multi-version programming’, IEEE Transactions on Software
Engineering, Vol. 12, No. 1, pp.96–109.

Laprie, J-C. (1985) ‘Dependable computing and fault tolerance:
concepts and terminology’, in Proceedings of the 15th
International Symposium on Fault-Tolerant Computing
(FTCS-15).

Laprie, J-C., Arlat, J., Beounes, C. and Kanoun, K. (1990)
‘Definition and analysis of hardware and software
fault-tolerant architectures’, IEEE Computer, Vol. 23, No. 7,
pp.39–51.

Liu, J. and Issarny, V. (2003) ‘QoS-aware service location in
mobile ad-hoc networks’, in Proceedings of the 5th IEEE
International Conference on Mobile Data Management
(MDM’04).

Majzik, I., Pataricza, A. and Bondavalli, A. (2003) Architecting
Dependable Systems, LNCS, Chapter Stochastic
Dependability Analysis of System Architecture Based on UML
Models, Vol. 2677, pp.219–244, Springer-Verlag.

Mantell, K. (2003) From UML to BPEL, Technical Report, IBM,
available at http://www.106.ibm.com/developerworks/
webservices/library/ws-uml2bpel/.

OMG (2004) UML Profile for Modelling Quality of Service and
Fault Tolerance Characteristics and Mechanisms, Technical
Report, OMG, ptc/2004-06-01, available at
http://www.omg.org/docs/ptc/04-06-01.pdf.

Rausand, M. and Hoyland, A. (2004) System Reliability Theory
Models Statistical Methods and Applications, 2nd ed., Wiley.

Rodrigues, G., Rosenblum, D. and Emmerich, W. (2004) ‘A model
driven approach for software systems reliability’, in
Proceedings of the 26th IEEE/ACM/SIGSOFT International
Conference on Software Engineering (ICSE’04), pp.30–32.

Rodrigues, G.N., Roberts, G., Emmerich, W. and Skene, J. (2003)
‘Reliability support for the model driven architecture’, in
Proceedings of the 2nd IEEE-ACM-SIGSOFT ICSE
Workshop on Software Architectures for Dependable Systems
(WADS’03), p.7.

Skene, J. and Emmerich, W. (2003) ‘A model driven architecture
approach to analysis of non-functional properties of software
architectures’, in Proceedings of the 18th IEEE Conference
on Automated Software Engineering (ASE’03), pp.236–239.

Skene, J., Lamanna, D. and Emmerich, W. (2004) ‘Precise service
level agreements’, in Proceedings of the 26th
IEEE/ACM/SIGSOFT International Conference on Software
Engineering (ICSE’04), pp.179–188.

W3C (2001) Web Services Description Language (WSDL) v1.1,
Technical Report, W3C, available at
http://www.w3c.org/TR/wsdl.

W3C (2002) Simple Object Access Protocol (SOAP) v1.2,
Technical Report, W3C, available at
http://www.w3c.org/TR/soap12-part0.

Zarras, A. and Issarny, V. (2000) ‘Automating the performance
and reliability analysis of enterprise information systems’, in
Proceedings of the 16th IEEE International Conference on
Automated Software Engineering (ASE’01), pp.350–355.

Zarras, A., Kloukinas, C. and Issarny, V. (2003) Architecting
Dependable Systems, LNCS, Chapter Quality Analysis of
Dependable Systems: A Developer Oriented Approach,
Vol. 2677, pp.197–218, Springer-Verlag.

Zarras, A., Vassiliadis, P. and Issarny, V. (2004) ‘Model-driven
dependability analysis of web services’, in Meersman, R.,
Tari, Z. et al. (Eds.): Proceedings of the 6th International
Symposium on Distributed Objects and Applications
(DOA’2004), LNCS, No. 3290, pp.1608–1626.

Zeng, L., Benatallah, B. and Dumas, M. (2003) ‘Quality driven
web services composition’, in Proceedings of the 12th ACM
International Conference on the World Wide Web (WWW’03),
p.411.

