
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 7, July-August 2004

Cite this article as follows: Apostolos Zarras: “Online Upgrade of Object-Oriented Middleware”, in
Journal of Object Technology, vol. 3, no. 7, July-August 2004, pp. 121-140.
http://www.jot.fm/issues/issue_2004_07/article3

Online Upgrade of Object-Oriented
Middleware

Apostolos Zarras, Computer Science Department, University of Ioannina,
Greece.

Abstract
A system that relies on object-oriented middleware comprises computational objects
that are specific to the system’s purpose and middleware objects used for the
transparent integration of the former. The efficient maintenance of such a system
involves the dynamic upgrade of the aforementioned entities. So far, there have been
various approaches dealing with the online upgrade of computational objects. This
paper examines the second part of the problem: the online upgrade of middleware.
Starting from the identification of requirements for the consistent upgrade of middleware,
we result in the design and experimental evaluation of an architectural style for CORBA-
based upgradeable middleware.

1 INTRODUCTION

Object-oriented middleware is the current practice in the development of open distributed
processing systems (ODPSs). An ODPS consists of basic architectural elements that we
call objects. An object provides one or more interfaces that can be used by others to access,
or modify its internal state. We can characterize objects as either computational, providing
functionality that is specific to the system’s purpose, or middleware, providing reusable
solutions to problems encountered in many different kinds of ODPSs [Bernstein96].
Middleware objects are parts of an overall infrastructure that consists of a base
communication mechanism, often-called broker, and a set of complementary services. The
broker masks differences in data representation and communication mechanisms to enable
interoperation between computational and middleware objects. The set of complementary
services may include repository services (e.g., naming, trading, etc.), security services and
coordination services (e.g., transactions, fault tolerance, persistence, etc.).
The evolution of the middleware concept led in the development of various standards and
infrastructures like CORBA, J2EE and COM+, whose use reduces the developer’s effort
when building an ODPS [Zarras04]. However, the ODPS development process is iterative
and the maintenance of the system involves the upgrade of the computational, or the
middleware objects that constitute it. The need to upgrade may arise from rapidly

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_07/article3

ONLINE UPGRADE OF OBJECT-ORIENTED MIDDLEWARE

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

fluctuating environmental conditions found, for instance, in the area of mobile computing.
The availability of more efficient and reliable infrastructures further triggers the need to
upgrade the ODPS to meet the often-conflicting dependability and performance
requirements found in areas such as telecommunications, real-time and embedded systems.

In the late 90’s, there has been a substantial research effort towards facilitating the
upgrade of ODPSs. Those efforts gave birth to reflective middleware infrastructures, which
expose functionality that allows monitoring and adapting, at runtime, computational and
middleware objects [Blair et. al.98, Kon et. al.02]. An issue, however, that raised in the
case of reflective middleware infrastructures is that they offer too much flexibility [Blair et.
al.00]. More specifically, they allow building upgradeable ODPSs, which can be changed
in ways that may jeopardize their overall integrity. The previous led us in the development
of a middleware service for the consistent upgrade of computational objects in CORBA-
based ODPSs [Bidan et. al.98]. Other similar approaches dealing with the upgrade of
computational objects have been proposed since then [Rodr. et. al.99, Alm. et. al.01].
Moreover, the OMG recently adopted a standard for the online upgrade of CORBA objects
[CORBAUv1.0].

This paper examines in depth the second part of the upgrade problem: the online
consistent upgrade of middleware objects. The approach we present here relies on our
previous efforts presented in [Blair et. al.00]. In particular, in Section 2, we briefly describe
the architectural style of conventional CORBA-based ODPSs (we use the term
conventional to refer to ODPSs whose middleware objects cannot be upgraded). In Section
3, we detail the problem of upgrading middleware in conventional CORBA-based ODPSs.
In Section 4, we identify requirements for the consistent upgrade of middleware objects.
Moreover, we examine traditional dynamic reconfiguration approaches and we argue about
their suitability for the middleware upgrade problem. Based on the requirements analysis,
in Section 5, we propose a CORBA-based architectural style for ODPSs, whose
middleware objects can be upgraded without compromising the ODPSs’ integrity. In
Section 6, we evaluate the proposed architectural style. Finally, Section 7 summarizes this
paper with our contribution and the future perspectives of this work.

2 CONVENTIONAL CORBA-BASED SYSTEMS

A conventional CORBA-based ODPS is organized in a set of capsules for the purpose of
encapsulation of processing and storage. A capsule comprises a number of basic units of
computation and data-store, which are called servants [CORBAv3.0.2]. A servant is an
implementation-language specific element (e.g., a C++ object, a Java object, etc.). The
capsule is responsible for creating references to provided CORBA objects that conceptually
represent the encapsulated servants. A CORBA object offers an interface that defines the
object’s type. Interfaces are specified using CORBA IDL, a purely declarative language
that supports interface inheritance. In particular, an interface specification includes a
number of operations and attributes that can be used towards accessing and changing the
object’s internal state. An attribute actually corresponds to operations that can be used to

CONVENTIONAL CORBA-BASED SYSTEMS

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 123

access or modify the attribute’s value. Interface operations and attributes are implemented
by servant-specific functionality (e.g., C++, or Java class methods). All references to
conceptual CORBA objects inherit from a standard interface, named Object. The capsule is
further in charge of obtaining references to required CORBA objects, i.e., CORBA objects
provided by other capsules and used in the context of this one. Holding a reference to a
CORBA object allows invoking its operations. An invocation results in a CORBA request
delivered to the servant that is represented by the referenced CORBA object. Technically,
request delivery relies on the proxy-pattern [Shapiro86].

To improve the understanding of the middleware upgrade problem, we distinguish
between references to computational and references to middleware objects. Each capsule
holds a reference to a middleware object that realizes the standard ORB interface, which
defines operations for the initialization and management of the CORBA base
communication mechanism, i.e., the CORBA broker. In addition, the ORB object offers
operations for obtaining references to other middleware objects that are parts of the
implementation of complementary CORBA services (e.g., naming, trading, transactions,
etc. [CORBASrvs]). Each capsule further holds references to a number of objects that
realize the standard POA interface. Each POA object manages the reference creation,
activation, deactivation and request flow for a subset of CORBA objects that are included
in the capsule. The previous is achieved according to a number of POA policies, which are
configured properly by the capsule. The POA references held by the capsule are organized
in a tree structure, which determines the order of the POA objects’ activation/deactivation.
Moreover, it determines the order of activating/deactivating the objects managed by the
POA objects.

3 THE PROBLEM OF ONLINE MIDDLEWARE UPGRADES

Regarding conventional CORBA-based ODPSs, we can distinguish two cases of online
middleware upgrade situations that may arise in practice; each one of them has a different
impact on the overall ODPS architecture.

The first case amounts to dynamically upgrading the implementation of a standard
middleware service used in the ODPS for another one that still complies with the same
CORBA standard. The new service implementation may be either a later version of the old
one (both implementations come from the same vendor) or, completely different from the
implementation that is currently in use (the implementations come from different vendors).
Performing the upgrade involves identifying all capsules that hold references to
middleware objects that are part of the old service implementation (i.e., the affected
capsules), initializing the new service implementation within those capsules, and changing
the old references into references to middleware objects that are part of the new service
implementation.

The second and more complicated case amounts to dynamically upgrading the
implementation of the CORBA broker for a new one that still complies with the CORBA
standard. As with middleware service upgrades, the new broker implementation may be

ONLINE UPGRADE OF OBJECT-ORIENTED MIDDLEWARE

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

either a revised version of the old one or, it may be completely different from it. The
middleware upgrade in this case affects all of the ODPS capsules. More specifically, it
amounts to initializing the new broker implementation in each capsule, obtaining
references to new ORB and POA objects, creating new references to provided
computational CORBA objects that represent the encapsulated servants and obtaining new
references to the required computational and middleware objects.

4 BACKGROUND AND REQUIREMENTS ANALYSIS

As we discussed in the previous Section, the main goal of the online middleware upgrade is
to dynamically change the implementation of some or, in the worst-case, all middleware
objects used in an ODPS architecture. Moreover, we have to change references to old
middleware objects into references to new middleware objects. Hence, we can reduce the
problem of middleware upgrade into a problem of dynamic reconfiguration. Pioneer work
in the field of dynamic reconfiguration includes [Kramer et. al.90]. In this paper, the
authors provide a foundation of properties that should characterize a process, which
soundly manages changes in the configuration of a running system. The first essential
property discussed in the paper is the one of preserving the correct execution of the system.
As said in the paper, “changes should leave the system in a consistent state”. A consistent
state is one from which the ODPS can continue providing correct service rather than
progressing towards an error state. The definition of consistent states for a particular ODPS
involves specifying certain invariants (e.g., safety and liveness properties) that must hold
during the ODPS execution. Moreover, defining consistent states relates to the specification
of a fault model regarding the middleware and the computational objects that constitute the
ODPS. The second essential property discussed in [Kramer et. al.90] is the one of
introducing minimal disruption, while changing the configuration of the system. Upgrading
some ODPS objects should not impose suspending the execution of the whole system. At
this point, it is worth noticing that in real-time, critical systems, disrupting the execution of
the system also implies that correct execution is not preserved. Hence, for the case of
middleware upgrades we can combine the two properties discussed in [Kramer et. al.90]
into the following:

• The middleware upgrade process should leave the ODPS in a correct state, while
minimizing disruption.

A third property identified in [Kramer et. al.90] is reachability of changes. In analogy
to the previous, the second requirement for consistent middleware upgrade is that:

• The middleware upgrade process should take place within finite time.

Leaving the System in a Correct State

Based on the properties identified in [Kramer et. al.90], Kramer and Magee proposed a
corresponding reconfiguration strategy, which is further enhanced in [Goud. et. al.96].
According to this strategy, the process that manages changes first identifies a minimal set

BACKGROUND AND REQUIREMENTS ANALYSIS

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 125

of architectural elements affected by those changes. Non-affected elements should be able
to operate normally, as if there was no reconfiguration in progress. Taking the case of
substituting an old element with a new one, the affected elements are those that may initiate
requests to the element. Moreover, to substitute the old element the following steps should
be taken:

1. Block all the affected elements.
2. Wait until the old element is not engaged in serving any pending requests, or in any

request that it initiated.
3. Remove all links to, and from the old element and then remove the element itself.
4. Create the new element and setup the communication links as prescribed by the

architecture of the ODPS.
5. Unblock all the elements that were blocked during the first step.
By taking a closer look at the previous strategy, we can conclude that it is not directly

applicable in middleware upgrades. In particular, the strategy would leave the ODPS in a
correct state after the upgrade, but it would not minimize disruption. In the case of a broker
upgrade, for instance, all of the ODPS capsules are affected. Similarly, if we aim at
upgrading a frequently used middleware service like the ones for naming, trading, security,
transactions, etc. most of the ODPS capsules are affected by the change. In general, it is a
common case that most of the ODPS capsules are affected by middleware upgrades.
However, if we cannot minimize the number of ODPS capsules that are disrupted by the
upgrade process, we can still minimize the duration of this disruption. In other words, our
requirement for minimal disruption is refined as follows:

• Whatever is the disruption introduced by the upgrade process, it does not last for
long.

The duration of a service upgrade equals to the time it takes the middleware objects that
are parts of the service to reach a state where they are not engaged in serving any pending
requests, or in any request that they initiated. From now on, we call such states of
middleware objects, idle states. The duration of a broker upgrade equals to the time it takes
the middleware objects of the broker to reach an idle state. Recall that a broker upgrade
also involves upgrading the references to the middleware objects that are part of the
services used in the ODPS. In order to do the previous we have to re-initialize the services;
the re-initialization must take place at the time when the middleware objects that are part of
the services are in an idle state. Hence, the duration of the broker upgrade also includes the
time it takes the services to reach such a state.

In a broker upgrade, pending requests are those created when a required computational
object is invoked because their delivery involves the implicit use of middleware objects
that are part of the broker. Moreover, pending requests are those created when a
middleware object is explicitly invoked. From the point of view of the broker, a request
stops being pending at the time when the invoked object finishes serving it. In the case of a
service upgrade, pending requests are those created when a middleware object that is part
of the service is explicitly invoked. It is worth noticing that from the point of view of some
services, a request stops being pending with the completion of another request. The
previous refers to services that enable the execution of sessions i.e., sets of requests that

ONLINE UPGRADE OF OBJECT-ORIENTED MIDDLEWARE

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

share common properties. A typical example is the CORBA Transaction Service (TS)
[CORBASrvs]. A CORBA transaction is a set of CORBA requests that executes
atomically. From the point of view of TS, a request that creates a new transaction remains
pending until the completion of a corresponding request that commits, or aborts the
transaction. Another example is the CORBA Security Service (SS) [CORBASrvs] that
enables creating security sessions consisting of requests, which share common security
properties. Finally, consider the CORBA Concurrency Service (CS) [CORBASrvs] that
provides a simple locking mechanism, which allows executing a set of requests on an
object, in isolation from other requests. In this case, a request that acquires a lock remains
pending until the completion of a corresponding request that releases the lock.

To reduce the duration of waiting, and consequently the duration of the disruption
introduced by the upgrade process we have to change the middleware objects while there
exist pending requests. The previous implies that the state of the new middleware objects
must contain the necessary information for completing requests that were pending at the
beginning of the upgrade. Hence, the upgrade process involves transferring state
information from the old middleware objects to the new ones. Technically, transferring
state information depends on the state transfer facilities that are provided by both the old
and the new middleware objects and is feasible only for some states of the old middleware
objects, which we call safe states.

An important remark resulting from the above discussion is that safe state detection
mechanisms depend on a particular upgrade situation. Hence, building upgradeable
middleware requires knowing, in advance, the exact upgrade situations that may occur. The
previous issue is a usual limitation of typical reconfiguration approaches that are based on
state transfer [Warren et. al.95, Hauptm. et. al.96]. This limitation becomes a major
drawback in the case of middleware upgrades because the requirements of the middleware-
based ODPSs and the availability of services provided by existing middleware
infrastructures may change in any arbitrary way. Thus, there is no way to know, or even
predict, in advance, the upgrade situations that may arise during the lifetime of the ODPS.
To overcome this problem we rely on the following idea:

• The middleware upgrade process relies on state detection mechanisms that adapt
to a particular upgrade situation.

Reachability of Changes

Regarding reachability of changes, Kramer and Magee propose constraining the behavior
of the ODPS. More specifically, they assume that the interactions between the ODPS
objects complete within finite time. Following their approach in the case of middleware
upgrades means that the responsibility of performing the upgrades within finite time is
mainly assigned to the ODPS developer, while the upgrade process passively waits for the
middleware objects to reach an idle/safe state.
An alternative is to assign the responsibility of upgrading middleware within finite time
entirely to the upgrade process, by putting it in charge of enforcing an interaction that
drives the middleware objects into an idle/safe state. The state of the middleware objects

BACKGROUND AND REQUIREMENTS ANALYSIS

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 127

changes as a result of the interaction between them and the computational objects (e.g.,
computational objects may initiate and terminate transactions, or security sessions by
invoking specific operations provided by the middleware objects). Moreover, the state of
the middleware objects changes because of events that do not relate with the computational
objects that use them (e.g., network timeouts may cause the middleware to re-transmit
requests issued by ODPS objects). Finally, the state of the middleware objects may change
due to interaction between them (e.g., a transaction manager using a resource manager and
a locking mechanism). Based on the above, the upgrade process must behave as follows:

• Play the role of the computational objects, by issuing requests that cause the
middleware objects to reach an idle/safe state (e.g., issue requests for aborting all
pending transactions).

• Play the role of the software, or hardware that the middleware relies on, by
generating independent events, which cause the middleware objects to reach an
idle/safe state (e.g., introduce network and hardware failures, making the
middleware rollback all pending transactions).

• Play the role of the middleware objects, by generating events that make the
middleware objects look as if they are in an idle/safe state (e.g., raise exceptions,
which notify the computational objects that all pending transactions are rolled-
back).

Assuming that it is always possible to enforce an interaction that drives the middleware
objects to an idle/safe state, we can apply this idea to upgrade them within a finite time.
However, the upgrade process must disturb the execution of the ODPS as less as possible.
Consider, then, the case of aborting some transactions that were just about to complete
before the upgrade. Typically, the ODPS would have to retry them after the upgrade.
Hence, the requirement for minimal disruption is not preserved. Furthermore, enforcing an
idle/safe state is misleading when we assess the ODPS quality (e.g., if well-formed
transactions are aborted due to an enforced interaction, the ODPS user gets the impression
that the overall system is not reliable).

Hence, actively driving middleware objects to an idle/safe state is a rather dangerous
approach, while passively waiting for them to reach such a state establishes a strong
dependency between the upgrade process and the behavior of the ODPS. Based on the
previous remark, we follow an approach that stands between the two and relies on the idea
below:

• Assign to the upgrade process part of the responsibility for upgrading middleware
within finite time, by putting it in charge of making long waits less likely.

To achieve the above we use mechanisms that selectively block invocations issued to
computational and middleware objects. The purpose of blocking is to prevent the creation
of requests that keep the middleware objects away from an idle/safe state. The requests that
need to be blocked to facilitate reaching an idle state do not depend on a particular upgrade
situation. For example, preventing the creation of requests that initiate new transactions is a
way to help a transaction manager reach an idle state. On the other hand, the requests that
need to be blocked to reach a safe state depend on a particular upgrade situation. Suppose,

ONLINE UPGRADE OF OBJECT-ORIENTED MIDDLEWARE

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

for instance, that we can change the transaction manager even if there exist pending
transactions, as long as the manager is not engaged in performing a two-phase-commit
protocol between the participants of a pending transaction. In this case, the blocking
mechanisms should prevent requests for committing pending transactions. Hence, the
blocking mechanisms that contribute in reaching a safe state are specific to the upgrade
situation that takes place. In order to deal with the lack of a-priory knowledge regarding
this situation, we rely on the idea that we already proposed for the case of state detectors. In
particular:

• The middleware upgrade process is based on blocking mechanisms that adapt to a
particular upgrade situation.

5 CORBA-BASED ARCHITECTURAL STYLE FOR UPGRADEABLE
MIDDLEWARE

Based on the requirements analysis detailed in the previous Section, we extend
conventional CORBA-based ODPS architectures with additional elements that detect and
assist in reaching an idle/safe state and elements used for the coordination of the overall
upgrade process. In particular, Figure 1 gives the architectural style of CORBA-based
ODPS architectures, whose middleware can be upgraded.

Basic Architectural Elements

Detecting an idle/safe state involves monitoring the interaction between computational
and middleware objects and inspecting the state of the latter. Blocking requests that drive
middleware objects away from an idle/safe state also requires monitoring the interaction
between computational and middleware objects. Technically, we achieve the previous
using a set of wrapper objects in every ODPS capsule. Each wrapper corresponds to a
required computational or middleware object and embeds a reference to that object. The
wrapper’s interface is identical with the interface of the embedded object and it is further
derived from the UpgradeableObject interface defined in Figure 2(a). At this point, we
distinguish between wrappers that monitor pending requests from the broker’s point of
view and wrappers that monitor pending requests from the point of view of services that
allow the creation and execution of sessions (see Section 4). Hereafter, we call the former
kind of wrappers broker-specific and the latter session-specific.

The wrappers are actually pseudo CORBA objects (i.e., they are used only within the
capsule that contains them) and hence, there is no need to employ the proxy pattern in
order to communicate with them. The reason why we use wrappers instead of CORBA
interceptors (i.e., user-specific objects, which we can register to the CORBA broker;
thereafter the broker calls operations on those objects before issuing a request and after
delivering one) is that interceptors are parts of the broker implementation, which
eventually becomes the subject of an upgrade. This fact unnecessarily complicates the
middleware upgrade and strengthens the dependency between the duration of the upgrade
process and the implementation of CORBA broker in use.

CORBA-BASED ARCHITECTURAL STYLE FOR UPGRADEABLE MIDDLEWARE

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 129

UpgradeableObject UpgradeableObject UpgradeableObject

UpgradeableObject

Object
<<computational>>

Servant
<<native>>

ORB
<<middleware>>

1
1
1
1

Object
<<middleware>>

1

1

1

1

Object
<<computational>>

1
1
1
1

POA
<<middleware>>

*

1

+managed*

1

*

1

+managed*

1

1

1

1

1

AdaptationMgr

1+registered 1

1

*

1

+registered * *+registered *

1* 1

+registered

*

Capsule

* +created* *

1

+encapsulated*

1

1 +held1 * +held* * +held*

* +held*

UpgradeMgr
1..* 1

+coordinated
1..* 1

CORBA-based ODPS
1..* 1
+constituent

1..* 1

1

1

1

1

Figure 1: Extending the conventional CORBA architectural style to support middleware upgrades.

Creating the wrapper objects is a responsibility of the ODPS capsules. More specifically,
when a capsule obtains a reference to a required CORBA object it creates a corresponding
wrapper and associates it with the reference by setting the theObjectRef attribute. The
capsule should always use the wrapper to invoke operations on required CORBA objects.
In other words, to invoke an operation on a required CORBA object, the capsule uses the
corresponding operation of the wrapper that encapsulates a reference to it.

Each capsule further creates an object that implements the AdaptationMgr interface
defined in Figure 2(c). The AdaptationMgr object coordinates the upgrade within the
capsule. Moreover, the capsule registers structural information to the AdaptationMgr
object, using the registration operations showed in Figure 2(c). The structural information
serves for creating new references to computational and middleware objects (e.g. ORB,
POA objects) and for reconstructing the associations between them in the case of a
service or a broker upgrade, (e.g., reconstructing the associations between POA objects,
servants and provided CORBA objects). More specifically, the wrappers that embed
references to POA objects are registered using the registerPOA() operation, which accepts
as arguments both the wrapper that embeds the POA object and the wrapper that
encapsulates its parent POA object. Similarly, the wrappers that contain references to
provided computational objects are registered, using the registerProvidedObject()
operation, which takes as arguments the wrapper of the computational object, the wrapper
of the POA object that manages the computational object’s lifecycle and the object’s
name. Finally, information regarding required references to computational objects and
middleware objects that are part of complementary CORBA services is registered using
the registerRequiredObject() operation. This operation takes as arguments the name of the
object or the service, a wrapper to a computational or middleware object, and a Boolean
parameter whose value determines if the wrapper is broker-specific or session-specific.

ONLINE UPGRADE OF OBJECT-ORIENTED MIDDLEWARE

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

(a) UpgradeableObject
interface. (b) UpgradeMgr interface.

(c) AdaptationMgr interface.

Figure 2: Interfaces of the basic entities that facilitate the middleware upgrade process.

The creation of an AdaptationMgr object is followed by the object’s registration to a
central control unit that implements the UpgradeMgr interface (defined in Figure 2(b)) and
coordinates the overall upgrade process. The UpgradeMgr object further serves as a
lightweight naming facility; it maintains a registry of name contexts that contain
associations between names and CORBA object references created by capsules. The use of
the registry is crucial for upgrading references to required computational objects. As with
the case of interceptors, we avoid using an implementation of the standard CORBA naming
service because the former may eventually become the subject of an upgrade. Capsules that
create references to provided computational CORBA objects register them to the
UpgradeMgr object using the createdObjectRef() operation. On the other hand, capsules
may obtain references to required computational objects using either the lookupObjectRef()
operation of the UpgradeMgr object, or any other standard CORBA repository service
(e.g., naming, trading).

CORBA-BASED ARCHITECTURAL STYLE FOR UPGRADEABLE MIDDLEWARE

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 131

The Behavior of the Wrapper Elements

In general, we decompose a wrapper implementation into the state detection part and the
blocking mechanism part. Initially, each ODPS capsule contains wrappers whose
implementation detects and facilitates reaching an idle state since this kind of support
does not depend on a particular upgrade situation.

IdleState NonIdleStateinvocation[counter++]
invocation / counter++

counter > 0

return / counter--

[No]

[Yes]

(a) Idle state detector.

NonBlockingState

BlockingState

ctx == null and TSCurrent.get_status() ==
StatusNoTransaction and (not theAdaptMgr.chkDep(thr))

endBlocking() / monitor.notifyAll()

invocation(ctx) / TSCurrent = orb.resolve_initial_references("TransactionCurrent")

[No] învocation(ctx)

[Yes] / monitor.wait()

startBlocking()

(b) Blocking mechanism.

Figure 3: The behavior of broker-specific wrappers that detect idle state.

As already mentioned the broker-specific wrappers provide different interfaces depending
on the type of the objects, whose references they encapsulate. However, the way they
monitor requests is the same for all of them and, hence, we can generate their
implementation based on the IDL specifications of their interfaces. In particular, the
behavior of the state detection part of broker-specific wrappers conforms to the pattern
described in the state-chart diagram of Figure 3(a). Initially, each wrapper is in the
IdleState. Upon the invocation of an operation, the wrapper gets into the NonIdleState and
a counter is increased. Subsequent invocations further increase the counter, while the
wrapper remains in the NonIdleState. When an invocation is done, the counter is decreased;
if the counter remains greater than zero the wrapper stays in the NonIdleState, else the
wrapper gets back in the IdleState. The behavior of the blocking part conforms to the
pattern described in Figure 3(b). In particular, when the startBlocking() operation is called,
the wrappers get into the BlockingState. For every subsequent invocation of a wrapper
operation x(), the wrapper checks whether any of the following conditions hold:

ONLINE UPGRADE OF OBJECT-ORIENTED MIDDLEWARE

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

• x() is nested within another invocation y() that started before the beginning of the
upgrade. In this case, performing x() is necessary for the completion of y().

• x() is performed within a thread that is involved in serving or issuing requests that
are necessary for driving a session into completion.

IdleState

NonIdleState exists i | (status[i] != StatusCommitted or status[i] !=
StatusNoTransaction or status[i] != StatusRolledback)

[timeout] / forall i | status[i] = coord[i].get_status()

control = create_transaction / coord[i] = control.get_coordinator()
[Yes]

[No]

control = create_transaction / coord[i] = control.get_coordinator()

(a) Idle state detector for TransactionFactory objects.

NonBlockingState

BlockingState

ctx == null and TSCurrent.get_status() ==
StatusNoTransaction and (not theAdaptMgr.chkDep(thr))

endBlocking() / monitor.notifyAll()

create_transaction(ctx) / TSCurrent = orb.resolve_initial_references("TransactionCurrent")

startBlocking()

[Yes] / monitor.wait() [No] ĉreate_transaction()

(b) Blocking mechanism for TransactionFactory objects.

Figure 4: The behavior of session-specific wrappers that detect idle state for CORBA TS.

Checking the first condition is rather simple in CORBA; every operation invocation on a
target object can be associated with a Context object, which contains named values and is
transferred to the target object, along with the request that is generated from the invocation.
In our case, if y() is a non-nested invocation on a wrapper, it is associated with an empty
context ctx. The wrapper implementation of y() appends to ctx the string-ified reference of
the target object that is included in the wrapper and calls y() on the object. If the target
object implementation of y() involves invoking x() on another wrapper, it associates ctx
with this invocation. Consequently, the wrapper implementation of x() shall receive a non-
empty context, which signifies that the invocation is nested.

Checking whether the second condition holds is slightly more complicated. Most of
the CORBA services that enable creating sessions (e.g., CORBA TS, CORBA SS) also
provide means for obtaining references to Current objects that offer operations, which
allow discovering whether a thread that holds a reference to a Current object is involved
in the execution of a session. Upon an invocation, the wrappers use references to service-

CORBA-BASED ARCHITECTURAL STYLE FOR UPGRADEABLE MIDDLEWARE

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 133

specific Current objects to check for the existence of such kind of associations between
the invoking thread and pending sessions. For middleware services that do provide
implementations of the Current interface (e.g., the CORBA CS), special care must be
taken. More specifically, the AdaptationMgr object in each capsule provides operations
for creating, removing and checking for dependencies between threads and pending
sessions. Creating those dependencies is a responsibility of the session-specific wrappers.

SafeState

control = create_transaction / coord[i] = control.get_coordinator()

NonSafeState

control = create_transaction / coord[i] =

exists i | (status[i] == StatusPreparing
or status[i] == StatusCommitting or ...)

exists i | (status[i] == StatusPreparing or
status[i] == StatusCommitting or)

[timeout] / forall i | status[i] = ...

[No]

[Yes]

[timeout] / forall i | status[i] = coord[i].get_status()

[yes]

[No]

(a) Safe state detector for TransactionFactory objects.

BlockingStateNonBlockingState

startBlocking()

endBlocking() / monitor.notifyAll()

commit() / monitor.wait()

(b) Blocking mechanism for Terminator objects.

Figure 5: The behavior of session-specific wrappers that detect safe state for CORBA TS.

At this point, it is worth noticing that the decision of blocking an invocation may also
involve checking the existence of synchronization dependencies between the invoking
thread and threads that are involved in the completion of other pending requests, or
sessions. However, CORBA does not provide standard specifications of thread
synchronization services, or standard specifications of thread models. Hence, examining
the previous issue is out of the context of this paper.

Session-specific wrappers that detect idle state depend on the particular service that
enables the creation and execution of the corresponding sessions. Here we take CORBA
TS as a representative example. Among the basic TS interfaces, we have the
TransactionFactory, the Terminator and the Coordinator interfaces with operations for
creating new transactions, committing/aborting transactions and checking the status of
transactions, respectively. For TransactionFactory objects, we use session-specific
wrappers whose state detection and blocking parts behave as described in the state-charts
of Figure 4. According to Figure 4(a), a TransactionFactory wrapper is initially in
IdleState. Upon the invocation of the create_transaction() operation, the wrapper gets into

ONLINE UPGRADE OF OBJECT-ORIENTED MIDDLEWARE

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

the NonIdleState and obtains a reference to a Coordinator object that is responsible for the
newly created transaction; the reference is added in a sequence of references maintained
by the wrapper. The wrapper uses this sequence to periodically check the status of the all
pending transactions. More specifically, the wrapper calls the get_status() operation on
each one of the referenced Coordinator objects. If the values returned by all calls are
StatusCommitted, StatusNoTransaction or StatusRolledBack, the wrapper returns to
IdleState; otherwise, it remains in NonIdleState. According to Figure 4(b), the blocking
part of the wrapper, blocks invocations on the create_transaction() operation, except if
they are nested in invocations that are needed for completing other pending requests or
sessions.

As discussed in Section 2, the ability to upgrade middleware, while there exist
pending requests reduces the disruption introduced by the overall upgrade process. The
behavior of broker-specific and session-specific wrappers that detect safe state depends
on the particular upgrade situation. Again, we take a representative example of wrappers
that detect safe state for CORBA TS. In particular, suppose that we can upgrade the TS
implementation for a new one if there exist pending transactions, as long as the
middleware objects that are part of TS are not engaged in performing a two-phase commit
protocol. To detect this kind of safe states we have to use wrappers to TransactionFactory
objects that behave as given in the state-chart diagram of Figure 5(a). Each of those
wrappers holds a sequence of references to Coordinator objects that are responsible for
pending transactions. While being in the NonSafeState, the wrapper checks the status of
pending transactions using the aforementioned references. If the status reported by any of
the Coordinator objects is StatusCommitting, StatusPreparing, or StatusRollingBack, the
wrapper remains in NonSafeState. Otherwise, it gets into SafeState. The blocking part of
the wrappers to the TransactionFactory objects is not interesting, since it is not necessary
to block the creation of new transactions to drive TS objects in a safe state. On the other
hand, reaching a safe state requires blocking invocations of the commit() operation,
issued to Terminator objects; these are the invocations that actually trigger the execution
of the two-phase-commit protocol. To achieve the previous, the wrappers to Terminator
objects behave as in Figure 5(b). Technically, if a set of broker-specific or session-
specific wrappers that detect safe state is available at the time when a particular upgrade
situation occurs, it substitutes the corresponding set of wrappers that detect idle state. The
UpgradeMgr object invokes either the upgradeBrokerWrappers() or the
upgradeSessionWrappers() operation on every AdaptationMgr object. The
aforementioned operations take as input parameter the name of a helper library that
contains functionality, which is dynamically loaded by each AdaptationMgr object. The
AdaptationMgr object uses this functionality to create new wrappers in place of the old
ones. Moreover, it uses the state of the old wrappers for the initialization of the new ones.

The Behavior of the Coordination Elements

The sequence diagram in Figure 6 describes the overall upgrade of a broker, which is
triggered by calling the upgradeBroker() operation on the UpgradeMgr object. The
upgrade of a service is performed similarly by calling the upgradeService(). The

CORBA-BASED ARCHITECTURAL STYLE FOR UPGRADEABLE MIDDLEWARE

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 135

upgradeBroker() operation takes as input parameter the name of a helper library that
contains functionality for the initialization of the new broker implementation.

Figure 6: Coordinating the middleware upgrade.

In response to the upgradeBroker() invocation, the UpgradeMgr object notifies the
AdaptationMgr objects that coordinate the middleware upgrade in the individual ODPS
capsules about the beginning of the upgrade and about the helper library that is going to be
used during the upgrade. Each AdaptationMgr object dynamically loads the functionality
contained in the helper library and initializes the blocking and the state detection
mechanisms. Then, it waits until all of the encapsulated wrappers report that they reached
an idle/safe state. At this point, the AdaptationMgr object calls the iAmReady() operation
on the UpgradeMgr object to notify the latter that it is safe to upgrade the broker from the
point of view of the capsule for which the AdaptationMgr object is responsible. The
UpgradeMgr object waits until the reception of notifications by all of the AdaptationMgr
objects and then, invokes the prepareUpgrade() operation on these objects. In response to
this call, each AdaptationMgr object creates a reference to an ORB object that relies on the
new broker implementation. Moreover, it uses the structural information that was registered
to it, to reconstruct the POA tree (recall that this information was provided by the capsule
with the use of the registerPOA() operation). The new tree shall comprise references to
POA objects that rely on the new broker implementation. If the ODPS architecture contains
safe state detection mechanisms instead of idle state ones, the state of the old broker objects

 : UpgradeMgr : AdaptationMgr : UpgradeableObjectsysAdm

upgradeBroker(Name)
upgradeBroker(Name)

 startBlocking()

areYouReady()
iAmReady() iAmReady()

prepareUpgrade()

preparedUpgrade()

commitUpgrade(UpgradeMgr)

lookupObjectRef(Name)

theObjectRef(Object)

createdObjectRef(Name, Obje...

registerAdaptationMgr(AdaptationMgr)

 endBlocking()

theUpgradeMgr(UpgradeMgr)

ONLINE UPGRADE OF OBJECT-ORIENTED MIDDLEWARE

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

must be transferred into the new broker objects. Then, the AdaptationMgr object creates a
new computational object for every old one and activates it using the appropriate POA
object. The AdaptationMgr object creates references to the new computational objects and
registers them to the UpgradeMgr object using the createdObjectRef() operation. Then, the
AdaptationMgr object creates a new reference to itself, registers it to the UpgradeMgr
object and calls the preparedUpgrade() operation. The accomplishment of all tasks
mentioned up to this point, relies on the use of the functionality that is provided by the
dynamically loaded library. When all of the AdaptationMgr objects are done, the
UpgradeMgr object creates a new reference to it and makes it public. Then, it calls
commitUpgrade() on every AdaptationMgr object. In respond to this call, each
AdaptationMgr object looks in the UpgradeMgr object registry for new references to
required computational objects. The new references are set in place of the old ones in every
wrapper used in the capsule for which the AdaptationMgr object is responsible.

6 EXPERIMENTAL RESULTS

To evaluate the proposed architectural style we used a typical client-server benchmark that
consists of a server capsule and one or more client capsules. Each client capsule holds a
reference to a CORBA object that represents a servant provided by the server capsule. The
client repeatedly calls an operation on the CORBA object. Each invocation passes a string
(328 bytes), which is echoed by the server object. We deployed the client and the server
capsules on different Sun Blade100 workstations, running Solaris v5.8. The workstations
are connected with an idle 100Mbps Ethernet. The experiments we performed were aiming
at measuring: (1) the performance overhead introduced by the additional elements we add
in conventional CORBA-based ODPS architectures, to be able to upgrade their middleware
parts; (2) the disruption introduced by the upgrade process itself.

Performance Overhead Introduced in Conventional CORBA Architectures

To measure the overhead introduced in conventional CORBA-based ODPS to support the
middleware upgrade process we compared the time for a client invocation in a
conventional ODPS architecture that comprises a client and a server capsule, with the
time for a client invocation in the corresponding ODPS architecture that supports the
middleware upgrade process. For each one of the aforementioned architectures we
produced two different implementations based, respectively, on the OMNI v2.7.0 and the
MICO v3.2.7 implementations of the CORBA standard.

Figure 7 gives the results obtained from this experiment. The overhead introduced is
quite small (5% for OMNI v2.7.0 and 4% for MICO v3.2.7). One would expect it to be
larger, since the requests, issued by the client, go through an additional layer of
invocation. However, this is not the case since the wrapper objects we use in the
architecture are pseudo CORBA objects. Consequently, invocations on the wrapper
objects are cheap, as they do not rely on the proxy pattern. Considering that OMNI and
MICO are among the most efficient implementations of the CORBA standard, providing

EXPERIMENTAL RESULTS

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 137

rather fast base communication channels [DSCG], we expect that the overhead in cases of
other CORBA implementations is going to be negligible.

Figure 7: Performance overhead introduced in conventional CORBA ODPS architectures.

Disruption Introduced by the Upgrade Process

In this experiment, we measured the time for changing the OMNI v2.7.0 broker for an
OMNI v3.0.4 broker in 4 different ODPS architectures that comprise 1 server capsule and 1
up to 4 client capsules. We performed the upgrades at a time when the middleware was in
an idle state.

Figure 8, shows the results obtained. More specifically, we can remark that the
fluctuation of the time it takes to upgrade the broker is impressive, especially as we
increase the number of the client capsules that continuously access the server. However, the
proportion of this time spent for the coordination of the overall upgrade process is quite
stable and predictable; the rest of it is spent while waiting for the broker to reach an idle
state. The previous remarks give us a strong hint about the benefits we have if we can
change the broker without having to wait for it to complete all pending requests. More
specifically, if it was possible to transfer any state of the old broker into the new broker, the
disruption introduced by the upgrade would be minimal and equal to the communication
overhead introduced for coordinating the upgrade.

The architectural style we proposed in this paper specifically deals with the technical
aspects that concern the aforementioned kinds of upgrades. Most importantly, it deals with
the uncertainty introduced at the level of the state detection and the blocking mechanisms,
when facing the fact that we cannot a-priori know the upgrade situations that may arise
during the lifetime of the system. However, our solution strongly relies on the assumption
that the standard middleware infrastructures provide functionality that enables accessing
and modifying the state of middleware objects. The previous is currently not the case with
CORBA, where the provision of standard introspection and state transfer mechanisms is
limited compared to the facilities provided by other non-standard reflective middleware
infrastructures [Blair et. al.98]. Based on the previous, we can derive the conclusion that it
is time to develop infrastructures that bridge the gap between CORBA that imposes too
many constraints on developers and, completely open reflective infrastructures that leave
them without any protection against the flexibility they provide. The architectural style
proposed here may constitute a first step towards this direction.

0
2000
4000
6000
8000

mean time for
invocation

(usec) Upgradeable
Conventional

Upgradeable 6793 7893

Conventional 6440 7560

Omni v2.7.0 Mico v3.2.7

ONLINE UPGRADE OF OBJECT-ORIENTED MIDDLEWARE

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

2 capsules (1 client 1 server)

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

subsequent changes

tim
e

(u
se

c)

Overall Disruption Communication Overhead

3 capsules (2 client 1 server)

0
50000

100000
150000
200000
250000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

subsequent changes

tim
e

(u
se

c)

Overall Disruption Communication Overhead

4 capsules (3 client 1 server)

0

500000

1000000

1500000

2000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

subsequent changes

tim
e

(u
se

c)

Overall Disruption Communication Overhead

5 capsules (4 client 1 server)

0

500000

1000000

1500000

2000000

2500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

subsequent changes

tim
e

(u
se

c)

Overall Disruption Communication Overhead

Figure 8: Overall disruption vs. communication overhead.

7 CONCLUSION

Dynamic middleware upgrade is an issue in the development of tomorrows open
distributed processing systems. In this paper, we examined the different dimensions of this
problem. Starting from the basic requirements for consistent middleware upgrade, we went
through the examination of different techniques used in the past in the field of dynamic
reconfiguration of software architectures, and reached our main contribution: An
architectural style for open distributed processing architectures whose middleware can be
upgraded.

The approach for consistent middleware upgrade proposed in this paper can be
combined with offline analysis of changes in the middleware parts of ODPS architectures.
Into this context, in [Issarny et. al.02] we proposed an approach for the performance and
reliability analysis of middleware architectures. Currently, we work towards extending this
approach for analyzing the impact of middleware changes in ODPSs with real-time
requirements. Moreover, we concentrate on refining the proposed architectural style with
respect to middleware infrastructures used in wireless, resource-constrained execution
environments.

CONCLUSION

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 139

REFERENCES

[Bernstein96] P. A. Bernstein. Middleware: “A Model for Distributed System
Services”. In Communications of the ACM, vol. 39 no. 2, pp. 86-98.
1996.

[Zarras04] A. Zarras. “A Comparison Framework for Middleware
Infrastructures”. In Journal of Object Technology, vol. 3 no. 5, May-
June 2004, pp. 103-123. http://ww.jot.fm/issues/issue_2004_05/
article2

[Blair et. al.98] G. Blair and G. Goulson and M. Papathomas. “An Architecture for
Next Generation Middleware”. In Proceedings of the 1st IFIP/ACM
International Conference on Distributed Systems Platforms and
Open Distributed Processing (Middleware'98), pp. 191-203, 1998.

[Kon et. al.02] F. Kon, F. Costa, G. Blair, and R. H. Campbell. “The Case of
Reflective Middleware”. In Communications of the ACM, vol. 45 no
6, pp.33-38, 2002.

[Blair et. al.00] G. Blair, L. Blair and V. Issarny, P. Tuma and A. Zarras. “The Role
of Software Architecture in Constraining Middleware Adaptation in
Component-Based Middleware Platforms”. In Proceedings of the
2nd IFIP/ACM International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware'2000),
2000.

[Bidan et. al.98] C. Bidan, V. Issarny, T. Saridakis and A. Zarras. “A Dynamic
Reconfiguration Service for CORBA”. In Proceedings of the 4th
IEEE International Conference on Configurable Distributed
Systems, pp. 35-42,1998.

[Rodr. et. al.99] N. L. R. Rodríguez and R Ierusamlimschy. “Dynamic
Reconfiguration of CORBA-Based Applications”. In Proceedings of
the 26th Conference on Current Trends in Theory and Practice of
Informatics, LNCS 1725, pp. 95-111, 1999.

[Alm. et. al.01] J-P. A. Almeida, M. Wegdam, M. van Sinceren and L.
Nieuwenhuis. “Transparent Dynamic Reconfiguration for CORBA”.
In Proceedings of the 3rd IEEE International Symposium on
Distributed Objects and Applications, pp. 197-207, 2001.

[CORBAUv1.0] CORBA Online Upgrades v.1.0. OMG Document, ptc/2002-07-01.
http://ww w.omg.org/technology/documents/specialized_corba.htm.

[CORBAv3.0.2] Common Object Request Broker Architecture (CORBA/IIOP)

http://ww.jot.fm/issues/issue_2004_05/article2
http://ww.jot.fm/issues/issue_2004_05/article2
http://ww w.omg.org/technology/documents/specialized_corba.htm

ONLINE UPGRADE OF OBJECT-ORIENTED MIDDLEWARE

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

v.3.0.2. OMG Document, formal/2002-12-06. http://www.omg.org
/technology/documents/for mal/corba_iiop.htm.

[Shapiro86] M. Shapiro. “Structure and Encapsulation in Distributed Systems:
The Proxy Principle”. In Proceedings of 6th Interantional
Conference on Distributed Computer Systems, pp.198-204, 1986.

[CORBASrvs] CORBAServices Specification. OMG Document. http://www.omg.
org/technology/documents/corbaservices_spec_catalog.htm.

[Kramer et. al.90] J. Kramer and J. Magee. “The Evolving Philosophers Problem”. In
IEEE Transactions on Software Engineering, vol. 15 no. 1, pp.
1293-1306, 1990.

[Goud. et. al.96] K.M. Goudarzi and J. Kramer. ”Maintaining Node Consistency in
the Face of Dynamic Change”. In Proceedings of the 3rd IEEE
International Conference on Configurable Distributed Systems, pp.
62-69, 1996.

[Warren et. al.95] J. Warren and I. Sommerville. “Dynamic Configuration
Abstraction”. In Proceedings of the 2nd Joint ACM SIGSOFT
Symposium on the Foundations of Software Engineering and
European Software Engineering Conference (FSE-ESEC’95), pp.
173-190. 1995.

[Haupt et. al.96] S. Hauptmann and J. Wasel, “On-line Maintenance with On-the-Fly
Software Replacement”. In Proceedings of the 3rd IEEE
International Conference on Configurable Distributed Systems, pp.
70-80. 1996.

[GSCG] CORBA Comparison Project Web site. Distributed Systems Group,
Charles University. http://nenya.ms.mff.cuni.cz/projects.phtml?p=c
bench&q=3.

[Issarny et. al.02] V. Issarny, C. Kloukinas and A. Zarras. “Systematic Aid for
Developing Middleware Architectures”. In Communications of the
ACM, vol. 45, no. 6, pp. 53-58. 2002.

About the author
Apostolos Zarras got his Ph.D. in the year 2000 from the University of Rennes I, France.
From 2000 to 2002, he worked as a research engineer at INRIA-Rocquencourt, France.
Currently he is a visiting assistant professor at the University of Ioannina, Greece. His
current research interests include model driven architecture development, adaptive
middleware, and quality analysis of software systems. He can be reached at
zarras@cs.uoi.gr.

http://www.omg.org//technology/documents/for mal/corba_iiop.htm.
http://www.omg.org/technology/documents/corbaservices_spec_catalog.htm.
http://nenya.ms.mff.cuni.cz/projects.phtml?p=cbench&q=3
mailto:zarras@cs.uoi.gr

