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Abstract 
Middleware is a software layer standing between the operating system and the 
application, enabling the transparent integration of distributed objects.  
In this paper, we propose a framework that facilitates the comparison of middleware 
infrastructures. Our approach serves for identifying similarities and differences between 
middleware infrastructures and revealing their advantages and disadvantages when 
facing the question of choosing one that satisfies the application’s requirements. Based 
on the proposed framework, we compare CORBA with J2EE and COM+, three of the 
most widely used infrastructures in both industry and academia. 

1 INTRODUCTION 

Middleware is a current trend in the development of open distributed systems; it stands 
between the operating system and the application and enables the transparent integration 
of distributed objects [Bernstein96]. Middleware consists of reusable functionality that 
offers solutions to frequently encountered problems like heterogeneity, interoperability, 
security, dependability, etc. This functionality is offered either by the core of a 
middleware infrastructure, or by complementary services. The former mediates the 
interaction between distributed objects, while the latter deal with issues like fault 
tolerance, transactions, naming, trading, security, etc. 

In the early 90s, there have been efforts to come up with standards describing the 
semantics and the structure of middleware infrastructures, capable of supporting a wide 
range of applications. The CORBA (Common Object Request Broker Architecture) 
specification [CORBAv3.0.2] is among the most successful results of those efforts. 
Except for infrastructures that comply with the CORBA standard (e.g., [Henning et al.98, 
Lo et al.98, ORBIX, Schmidt et al.98, Puder et al.00]), there exist others, which are also 
quite famous and widely used in both industry and academia. Among the most popular, 
we find J2EE (Java 2 Enterprise Edition) [J2EEv1.4] and COM+ [COM+v1.5].  

Given this wide variety of solutions, what is still missing, from a software 
engineering point of view, is a methodology that facilitates selecting the one that better 
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tackles the particular requirements of a distributed application. Recently, the OMG 
architecture board made a statement concerning the coordinated use of existing standards 
towards Model Driven Architecture development (MDA) [MDA]. The MDA 
development process relies on the specification of models of the application’s 
architecture. In a first step, the models are infrastructure-independent (i.e., they abstract 
away technological details that do not relate to the fundamental functionality of the 
application). The application’s architecture specification may further include a 
description of technological requirements, which serve for choosing among different 
infrastructures that may satisfy them. The step that follows consists of refining 
infrastructure-independent models into infrastructure-specific ones. The MDA 
development process completes with turning infrastructure-specific models into code. 

Concerning the issues discussed above, we propose a framework for the systematic 
comparison of middleware infrastructures, which facilitates the first step of the MDA 
development process. The framework aims at systematically exploring similarities, 
differences, revealing advantages and disadvantages of middleware infrastructures, when 
facing the question of choosing one that better satisfies the application’s requirements. 

The remainder of this paper is structured as follows. Section 2 presents previous 
work and requirements related to our main objective. Section 3 details the comparison 
framework. Section 4 presents the framework in action, comparing CORBA with J2EE 
and COM+. Finally, Section 5 summarizes our contribution. 

2 BACKGROUND & REQUIREMENTS 

Most of previous approaches to the comparison of middleware infrastructures rely on 
purely functional criteria. In [Plasil et al.98], for instance, the authors compare CORBA, 
Java RMI and DCOM (a predecessor of COM+) regarding a number of basic concepts 
(e.g., request/response, remote reference, interface, proxy, marshaling, etc.) and patterns 
(e.g., the broker pattern, the proxy pattern, etc.), traditionally used for the integration of 
distributed objects. The overall comparison is faithful from a technical point of view. 
However, the comparison framework proposed by the authors does not establish 
relationships between functional concepts, patterns and typical requirements imposed by 
distributed applications. Hence, given the results from their comparison we cannot reason 
about which infrastructures are capable of satisfying the requirements of a particular 
application. Moreover, we cannot reason about which specific concepts and patterns we 
should use to satisfy those requirements.  

In [Roman et al.99] and [Gopalan98] the authors also rely on functional comparison 
frameworks. Comparing middleware infrastructures strictly from a functional point of 
view can be misleading as it is more than difficult to check all the features of one 
infrastructure against corresponding features of another one. In general, there is no 
perfect middleware infrastructure; every one of them has its weak and strong points. Even 
if a particular infrastructure has less weak points than another does, it may not be suitable 
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for the specific application that we implement because its weak points may be exactly the 
ones we have to employ to satisfy the application’s requirements.  

In [Emmerich00], the author follows a requirement-based approach. More 
specifically, the author identifies typical requirements of distributed applications over the 
middleware and examines whether or not different types of middleware infrastructures 
support those requirements. However, the comparison framework used does not establish 
the relationship between the requirements and the specific middleware functional 
concepts we should use to satisfy them.  

Based on the issues raised above, we propose a comparison framework which 
combines both the requirements-based and the functional-based approaches. More 
specifically, our framework consists of a set of key requirements typically imposed by 
distributed applications over the middleware. Satisfying the requirements depends on the 
particular architectural style (i.e. the different types of elements that can be used for 
building an application on top of the infrastructure and constraints on the use of those 
elements) assumed by a middleware infrastructure and the services the infrastructure 
provides. In the proposed framework: 

• We define a generic architectural style that satisfies the key requirements; if the 
particular architectural style of a middleware infrastructure conforms to this 
generic architectural style, the infrastructure is capable of satisfying the key 
requirements.  

• We identify fundamental services that should be offered by a middleware 
infrastructure towards satisfying the key requirements. 

3 COMPARISON FRAMEWORK 

Figure 1 gives the overall structure of our comparison framework, which consists of key 
requirements imposed over the middleware, a generic architectural style for middleware 
infrastructures and fundamental middleware services.  

Key Requirements over the Middleware 

The RM-ODP (Reference Model for Open Distributed Processing) standard [RMODP] 
discusses the issue of typical requirements on the integration of distributed objects. 
Moreover, in [Emmerich00] the author further deals with this issue. Based on these 
approaches, we consider the following requirements:  

• Openness: The middleware infrastructure should enable extending the 
applications built on top of it in various ways. (e.g., adding, removing, upgrading, 
composing services, etc.).  

• Scalability: The middleware infrastructure should facilitate the effective operation 
of the applications at many different scales.  

• Performance: The middleware infrastructure should enable the efficient and 
predictable, if needed, execution of the applications that are built on top of it.  
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• Distribution transparency: is the property that determines if the application is 
perceived by users, or developers as a whole rather than as a collection of 
independent constituent elements. The requirement for distribution transparency is 
quite generic and it is usually refined into a number of more specific 
transparencies including: 

o Access transparency: the infrastructure should enable accessing local and 
remote application elements in the same way. 

o Location transparency: the infrastructure should enable accessing the 
application elements without knowledge of their physical location. 

o Concurrency transparency: the infrastructure should allow concurrent 
processing on resources, without interference. 

o Failure transparency: the infrastructure should enable service 
provisioning despite the occurrence of failures.  

o Migration transparency: the infrastructure should provide means for 
changing the location of elements of the application without 
compromising the application’s correct operation, i.e. without affecting the 
elements that depend on the migrated elements.  

o Persistence transparency: the infrastructure should provide means for 
concealing the deactivation and reactivation of elements from other 
elements that are using them.  

o Transaction transparency: the infrastructure should provide means for 
coordinating the execution of atomic and isolated transactions.   

A Generic Architectural Style 

In general, every middleware infrastructure assumes an architectural style that must be 
followed by applications using the infrastructure. Three basic principles must hold for 
this architectural style to support the development of open and scalable applications: 

• Modularity: The application should consist of a collection of elements, each one 
providing services, used by the others. Modularity enables the identification of 
dependencies between the elements that make up the system. Consequently, it allows 
determining, which elements are affected by the eventual addition, removal or 
upgrade of services.       

• Encapsulation: For each constituent element, there is a clear separation between 
the element’s interface and implementation. The interface is a well-defined 
specification of the provided services, the contract between the element and the 
entities using it. The implementation is the realization of the provided services. In 
general, it is safe to change the implementation of an element as long as the 
element’s interface is preserved. Changing an element’s interface without 
compromising the overall application integrity requires that the rest of the 
application does not depend on this particular interface, at the time of the change. 

• Inheritance: An interface specification (resp. implementation) may be derived 
from another one. The derived interface (resp. implementation) provides at least 
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the services of the base interface (resp. implementation). Inheritance enables the 
vertical and horizontal composition of services.  

 

Openness Scalability Performance
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(b) Generic Architectural Style. 
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(c) Fundamental Services. 

 

Figure 1: The basic concepts of the comparison framework. 

The generic architectural style we assume in the comparison framework respects the 
aforementioned principles. It further relies on the architectural style proposed in RM-
ODP for open distributed systems. More specifically, the basic elements that make up an 
application are engineering objects, i.e. units of data or computation, which we integrate 
transparently using functionality of a middleware infrastructure. An engineering object 
can be instantiated multiple times within an application. Instances have state and 
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collaborate towards the accomplishment of specific tasks. An engineering object provides 
one or more interfaces. Furthermore, an engineering object may require one, or more 
interfaces. Interfaces may be of the following kinds [RMODP]: 

• Signal interfaces: defining asynchronous stimuli that can be handled by instances 
of engineering objects, providing these interfaces. 

• Operation interfaces: defining operations that can be invoked on instances, 
providing these interfaces. Invoking an operation causes a request message to be 
sent by the invoker to the invoked instance. Invoking an operation may further 
result in a reply sent from the invoked instance to the invoking instance.  

• Stream interfaces: defining operations that can be invoked on instances, providing 
these interfaces. The result of invoking a stream operation is the continuous 
conveyance of information from the invoked instance to the invoking instance. 

Following RM-ODP, we assume that engineering objects are organized into clusters for 
the purpose of activation, deactivation, checkpoint, recovery, etc. Each cluster is 
associated with a cluster manager, i.e. an engineering object that coordinates the 
aforementioned activities. Clusters are organized into capsules for the purpose of 
encapsulation of processing, storage, and request flow. A capsule is associated with a 
capsule manager, i.e. an engineering object that coordinates the cluster managers of the 
constituent clusters. 

Engineering objects that belong to different capsules communicate through channels. 
More specifically, two or more collaborating objects are associated with a channel, which 
provides access transparency, i.e. it masks differences in data representation and 
communication mechanisms enabling the inter-operation of the associated objects. A 
channel is a compound element consisting of proxies, skeletons, binders and protocol 
objects. 

A proxy is an engineering object that bridges the semantic gap between local (i.e. 
elements belonging to the same capsule) and remote elements (i.e. elements belonging to 
different capsules). Invoking an operation, (or sending a signal) on an object involves 
holding a reference to that object. If both the invoker and the invoked object reside in the 
same address space, the reference is a typical implementation-language specific pointer 
(e.g. a C++ pointer). On the other hand, if the invoker and the invoked object reside in 
different address spaces, the reference is a pointer to a representative of the invoked 
object (i.e. a proxy) in the invoker’s address space. Upon the invocation, the proxy 
constructs and forwards a request to the remote object, through the rest of the objects that 
make up the channel. Requests and replies must be converted into a form that is suitable 
for transmitting over the network. Technically, the previous is achieved through 
serialization of requests and replies into a byte stream. The serialization procedure is 
usually called marshalling. Several conversions may take place during marshaling, to 
deal with data representation differences between the invoker’s and the invoked object’s 
execution environments (e.g., little-endian, big-endian). 

A binder is an engineering object that maintains the integrity of a channel (e.g., it 
monitors communication failures and round-trip times and sets appropriate time-outs; it 
multiplexes connections to multiple remote objects to optimize resource usage). A 
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protocol object provides basic communication functionality (e.g., it writes a request to a 
TCP/IP socket, it performs retransmissions based on time-outs set by the binders, etc.). A 
skeleton is the representative of all objects requiring an interface provided by a remote 
object, in the capsule of the remote object. The skeleton accepts as input requests built by 
proxies and uses information that is encapsulated in those requests to perform local 
invocations on behavioral features (i.e. operations, signals) provided by the remote 
object. The skeleton may further encapsulate the result of the request into a reply, which 
is delivered back to the invoker. 

Fundamental Middleware Services 

So far, we have seen that openness, scalability and access transparency of an application 
depend on the particular architectural style assumed by the middleware infrastructure 
used for building it. Performance, on the other hand, mainly depends on the realization of 
the infrastructure’s communication channels. A basic performance criterion is the 
communication overhead introduced by the use of the channels. This overhead is usually 
not negligible; it is the penalty for dealing with communication in distributed 
applications, executing on heterogeneous execution environments.  

Achieving the rest of the requirements, identified at the beginning of this section, 
relies on the use of complementary services offered by the infrastructure. The use of the 
complementary services should be transparent to the application, whenever possible. 
More specifically, the infrastructure should provide means that relief the developers from 
explicitly using complex functionality of the services within the code of the application. 
The ideal is that developers just setup properties that characterize the objects of the 
application. Then, the middleware used for integrating the objects implicitly combines 
functionality of corresponding services to impose those properties (e.g., the developer 
just sets the replication-style to be active-replication; based on the style, appropriate 
functionality is used within channels, for multicasting requests sent by clients to groups 
of replicated objects). 

The fundamental services offered by an infrastructure can be divided into three 
categories: repository, coordination, and security services [RM-ODP].  

Repository services provide functionality that allows managing information 
regarding objects, interfaces, locations, etc. This category includes trading and naming 
services. A naming service defines a name space and provides interfaces through which 
we associate names with references to objects. Client capsules may then use names to 
obtain the associated object references. A trading service is a more sophisticated 
mechanism. The client capsules do not need to know specific names of server objects, 
they just hold a reference to a trader and use it to request for a required service. The 
trader maintains a registry that contains references to objects, providing specific services. 
A client request to the trader is specified in terms of a required interface and additional 
quality of service properties. The trader looks in the registry for a reference to an object 
that can fulfill the client’s requirements and if there exists one, the trader returns it to the 
client. Naming and trading services can be used to provide location transparency. 
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Moreover, we can use the trading service to satisfy scalability requirements as it can 
serve as a mechanism for load balancing.  

Coordination services include services that can be used to achieve concurrency 
transparency (e.g. locking). Failure transparency regarding accidental faults is realized 
using coordination services for replication, checkpoint and recovery [Laprie85]. 
Replication may be employed both at the level of engineering objects (use of groups of 
replicated objects instead of simple objects) and at the level of communication channels 
(use of request retry and redirection mechanisms). Failure transparency concerning 
intentional/malicious faults relies on the use of security services for authentication, access 
control and encryption [Laprie85]. Migration transparency is achieved using 
coordination services that allow copying or moving an object from one location to 
another, without affecting other objects that use it. Persistence transparency relies on two 
key issues: (1) references to persistent objects must remain valid despite the deactivation 
and reactivation of those objects, (2) the state of the objects must persist to their 
deactivation and reactivation. In principle, the creation and maintenance of references is a 
responsibility of the infrastructure. On the other hand, persistent state involves using a 
complementary checkpoint and recovery service. Transaction transparency involves 
using coordination services that realize atomic commitment protocols (e.g. two-phase 
commit protocol) and concurrency control protocols that guarantee isolation (e.g. two-
phase locking). 

4 THE COMPARISON FRAMEWORK IN ACTION 

In this section, we demonstrate the use of the proposed framework for comparing 
CORBA with J2EE and COM+.  

Openness 

All three platforms that we assess in this paper support the development of open systems. 
More specifically, each one of them relies on a particular architectural style, which is 
aligned with the basic principles and concepts of the generic architectural style we 
detailed in the previous section.  

CORBA forces developers to build applications that comply with the CORBA object 
model [CORBAv3.0.2]. According to that model, the basic engineering objects are called 
CORBA objects. Each CORBA object provides a single interface; it is a conceptual entity 
realized by an implementation language-specific entity (e.g. a C++ object, a Java object, 
etc.), named servant. In principle, the servant may realize more than one CORBA objects. 
By default, CORBA interfaces are operation interfaces, as defined in the generic 
architectural style. An operation may return a reply or not; in the latter case it is called a 
one-way operation. In order to realize a signal interface we have to use the CORBA 
Event Service [CORBAServices]. Stream interfaces are not supported. The specification 
of interfaces relies in CORBA IDL (Interface Definition Language), a purely declarative 
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language that supports interface inheritance. Implementation inheritance depends on the 
implementation language used for the realization of servants. 

CORBA objects that have common properties regarding activation, deactivation, etc. 
can be organized into clusters managed by a POA element (Portable Object Adapter). 
Capsules are called CORBA servers. CORBA objects that belong to different servers 
communicate using channels, which rely on the GIOP communication protocol. A more 
sophisticated approach for clustering objects that have common properties consists of 
building CORBA components instead of typical CORBA objects [CORBA-CCM]. 
Components extend the semantics of simple objects in that they can register to containers, 
i.e. objects that implicitly manage object activation and deactivation, transactions, 
security and persistence. To achieve the previous containers combine functionality of 
standard CORBA services like PSS (Persistent State Service) and OTS (the Object 
Transaction Service) [CORBAServices]. Technically, each container is associated with a 
properly configured POA. CORBA components provide more than one interfaces divided 
into two categories: (1) external interfaces used by other components of the application, 
and (2) callback interfaces, used by the container towards managing object activation and 
deactivation, transactions, security and persistence. 

 
Architectural Style OPENNESS 

Modularity Encapsulation 
Interfaces  Engineering 

Objects 
Clusters Capsules Channels 

Operation Signal Stream 

Inheritance 

CORBA CORBA 
objects   GIOP 

based     

J2EE Java 
 objects   RMI 

based     

COM+ COM+  
Objects   

DCE 
RPC 
based 

    

Table 1 : CORBA, J2EE and COM+ regarding openness. 

J2EE imposes the use of the Java object model [J2EEv1.4] for developing J2EE 
applications. According to that model, an application comprises a collection of Java 
objects, each one providing a number of Java interfaces. Java interfaces are operation 
interfaces. To realize signal interfaces we have to use the Java Message Service (JMS) 
[J2EEv1.4]. As with the case of CORBA, stream interfaces are not supported. Interfaces 
are specified using Java language-specific constructs (instead of employing a separate 
IDL language). Java allows both interface and implementation inheritance. 
ActivationGroup objects can be used to cluster objects with common properties regarding 
activation and deactivation. A capsule in J2EE is called a server. Objects that belong to 
different servers communicate through channels that  rely on the Java RMI 
communication protocol. Alike CORBA, J2EE further provides a more sophisticated 
approach for clustering objects, which involves building Enterprise Java Beans (EJBs) 
instead of typical Java objects. EJBs extend the semantics of simple Java objects in that 
they can register to EJB containers, i.e. objects that systematically manage the 
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activation/deactivation, transactional processing, persistence, etc. of the registered 
objects. 

In COM+, the basic engineering objects are called COM+ objects and provide one, or 
more interfaces [COM+v1.5]. COM+ objects are conceptual entities realized by one or 
more implementation objects written in a conventional programming language like C++, 
Java, etc. COM+ interfaces are in principle operation interfaces. Signal interfaces can be 
realized using the COM+ event service [COM+Events]. As with the previous two 
infrastructures, stream interfaces are not supported. Interfaces are specified using 
Microsoft IDL (MIDL), a purely declarative language that supports inheritance. Capsules 
in COM+ are named processes. COM+ objects are organized into clusters, named 
contexts, regarding common properties, having to do with the objects’ activation, 
deactivation, transactions, security etc. COM+ objects interact through channels that rely 
on DCE RPC [DCE-RPC].Table 1 summarizes the comparison of the three 
infrastructures regarding openness. 

Scalability 

As we detailed previously, the architectural styles assumed by all three infrastructures we 
examine here support the development of scalable applications. CORBA further provides 
a trading service that can be used for load balancing [CORBAServices].The CORBA 
Trader provides a registry of publicly known services. Clients may query the trader for a 
particular service, providing the specification of the service, in terms of a CORBA IDL 
interface. Client queries may further include quality of service requirements that must be 
satisfied by the service provider. The trader answers the clients’ queries with references 
to objects that can successfully offer the required service, while fulfilling the clients’ 
quality requirements.  

COM+ supports static load balancing [COM+v1.5]. More specifically, a COM+ 
system can be configured to assign certain clients to certain servers that execute the same 
logic. However, the mapping between clients and servers does not change dynamically to 
reflect changes in the servers’ workload. This technique is an easy way for dealing with 
predictable loads. A more sophisticated solution involves using referral COM+ objects 
that assign clients to component objects dynamically. J2EE also does not provide a 
standard trading service [Roman et al.99]. However, it provides means for implementing 
proprietary ones. Table 2 summarizes the comparison of CORBA, J2EE and COM+ 
regarding scalability. 

SCALABILITY Architectural Style Trading Services  
CORBA    

J2EE   
COM+   

   Table 2: CORBA, J2EE and COM+ regarding scalability. 
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Performance 

Regarding efficiency, several performance evaluation efforts [CORBABench, EJBBench, 
DCOM] show that the communication overhead is similar in orders of magnitude for 
COM+, J2EE and various CORBA compliant middleware infrastructures (e.g. OmniORB 
[Lo et al.98], ORBacus [Henning et al.98], ORBIX [ORBIX], TAO [Schmidt et al.98], 
MICO [Puder et al.00]). In CORBA, we should expect spending from 0.6 to 3.5 ms to 
send data of a basic type (e.g. long, char, float, double, short etc.) from a client to a server 
object1. J2EE, also seems to be expensive; we should count spending from 4 to 5 ms1. 
Finally, in COM+ 2.5 to 3.5 ms are needed1. The communication overhead grows for 
more complex data types like arrays, sequences, etc.  

CORBA is the only one among the infrastructures we consider here that facilitates 
the predictable execution of applications. In particular, the Real-Time CORBA [CORBA-
RT] is an extension of the standard CORBA specification, enabling clients of an 
application to create priority-banded connections to server objects. Clients can send 
prioritized requests through those connections. Servers may specify priorities on a per 
object basis, (e.g., requests targeted to a particular object may have higher priorities 
compared to requests targeted to other objects encapsulated by the same server). Request 
processing takes place according to either the client, or the server priority model, 
depending on specific properties set on the server-side. Clients may further setup 
timeouts on requests and servers can precise on the number of threads used for request 
processing. Clients and servers can also customize certain properties of the underlying 
TCP/IP communication protocol (e.g. the sizes of the communication buffers used). Real-
Time CORBA infrastructures come along with scheduling services, facilitating the 
execution of activities (i.e. sets of requests) according to various scheduling policies (e.g., 
EDF, rate-monotonic, etc. [Schmidt et al.98]). Table 3 summarizes the comparison of 
CORBA, J2EE and COM+ considering efficiency and predictability. 

 

PERFORMANCE Efficiency Predictability 

CORBA 0.5 to 3.5 ms  

J2EE 3 to 5 ms  

COM+ 2.5 to 3.5 ms  

 Table 3: CORBA, J2EE and COM+ regarding performance. 

                                                           
1 These are representative measures taken from extensive experiments performed in the context of the 
CORBA comparison project [CORBABench], the EJB comparison project [EJBBench] and [DCOM]. We 
consider that these measures are sufficient to give an idea of the performance overhead introduced by the 
infrastructures we examine. An extended performance evaluation of CORBA, J2EE and COM+ is out of 
the context of this paper.  
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Access Transparency 

CORBA, J2EE and COM+ channels provide access transparency.  More specifically, in 
CORBA, proxies and skeletons are called stubs and skeletons, respectively. Requests are 
marshaled into byte streams according to the standard CDR format (Common Data 
Representation), which deals with byte ordering differences between the machines that 
host the client and the server object. CDR further deals with the alignment of primitive 
CORBA data types within messages. Stubs and skeletons are automatically generated 
using a CORBA IDL compiler.  

CORBA binders manage connections according to the GIOP protocol. Connections 
in GIOP v1.0, v1.1 are asymmetric; the client can issue requests through the connection, 
while the server can receive requests and send replies but can not issue requests. This 
restriction is relaxed in GIOP  v1.2 and v1.3, where connections are bidirectional. 
Connection shutdown can be initiated either by a server-side binder, or by a client-side 
binder. Server-side binders can not initiate connection closure if there exist client requests 
that are pending. Client-side binders are responsible for multiplexing connections to 
objects encapsulated by the same server to optimize resource usage. If client-side binders 
do not support the previous feature, a new connection is created for every server object 
used by the client. CORBA protocol objects rely on TCP/IP. Other protocol objects may 
also be used within CORBA channels, as long as they conform to certain transport 
protocol assumptions specified in the CORBA standard. 

 

ACCESS 
TRANSPARENCY 

Proxy/Skeleton 
– Marshaling Binders – Connections Protocol 

Objects 

GIOP1.0 GIOP1.1 GIOP1.2 GIOP1.3 
CORBA GIOP 

channels CDR format unidirectional 
asymmetric 

unidirectional 
asymmetric 

bidirectional 
symmetric 

bidirectional 
symmetric 

TCP/IP  

J2EE RMI 
channels 

Java Object 
Serialization 
Protocol 

bidirectional symmetric TCP/IP  

COM+ 
DCE 
RPC 

channels 
NDR format bidirectional symmetric TCP/IP  

Table 4: CORBA, J2EE and COM+ regarding access transparency. 

J2EE channels rely either on Java RMI [JavaRMI] or on GIOP. According to RMI, at the 
time when a client obtains a reference, a new proxy is created. Consequently, multiple 
proxies in the address space of the client may represent the same remote object. 
Marshaling is based on the Java Serialization Protocol [JavaRMI]. Proxies and skeletons 
are automatically generated, using the rmic compiler. RMI binders manage the opening 
and closure of bidirectional connections. Moreover, they are responsible for multiplexing 
connections according to the Java Multiplexing Protocol [JavaRMI]. RMI protocol 
objects are based on TCP/IP. Other kinds of protocol objects are also supported.  
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COM+ channels are based on DCE RPC [DCE-RPC]. When a client process obtains a 
reference to an interface for the first time, a proxy is created. The proxy is reference-
counted to avoid creating multiple proxies, representing the same remote object. Request 
and reply marshalling relies on the DCE NDR (Normal Data Representation) format. 
Stubs and skeletons are automatically generated using the MIDL compiler. Binders 
manage the opening, closure and multiplexing of bidirectional connections. Finally, the 
protocol objects rely on TCP/IP. Other kinds of protocol objects may also be included in 
COM+ channels. Table 4 summarizes the comparison of CORBA, J2EE and COM+ 
concerning access transparency.  

Location Transparency 

CORBA provides both naming and trading services that can be used to achieve location 
transparency [CORBAServices]. J2EE provides two different naming facilities: a daemon 
process, called RMI-Registry that realizes a flat namespace and the Java Naming and 
Directory Interface (JNDI), which is similar to the CORBA Naming service [J2EEv1.4]. 
The distinctive feature of JNDI over CORBA Naming is that the former generates events, 
upon request, whenever a namespace changes due to the addition, removal, or update of a 
name binding. Clients using JNDI can then register event listeners to receive such events. 
J2EE does not provide, for the time being a trading service.  

LOCATION 
TRANSPARENCY 

Naming 
Services 

Trading 
Services 

Transparent use of 
the services 

CORBA    
J2EE    

COM+    

      Table 5: CORBA, J2EE and COM+ regarding location transparency. 

As in the case of J2EE, COM+ provides naming facilities, but it does not offer any 
trading service. More specifically, in COM+ there exist two basic global name spaces. 
The first one contains GUIDs (globally unique identifies), which are bound to COM+ 
interfaces, or to classes of COM+ objects. The second name space contains names of 
monikers, i.e. persistent COM+ objects used for storing the state of other COM+ objects.   

Using the naming and trading services is typically not a complex task; thus, the 
middleware infrastructures we assess here do not provide any means to further facilitate 
it. Table 5 summarizes the comparison of CORBA, J2EE and COM+ concerning location 
transparency.  

Concurrency Transparency 

SYNCHRONIZATION 
TRANSPARENCY 

Concurrency Control 
Services 

Transparent use of the 
services 

CORBA   
J2EE   

COM+   

      Table 6: CORBA, J2EE and COM+ regarding concurrency transparency. 
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CORBA enables the concurrent execution of requests. However, the particular request 
processing models that can be employed are not precisely defined in the standard. 
Following, we give typical models that may be supported by CORBA compliant 
infrastructures: 

• The thread-per-request model: a new thread is created for every request delivered 
to a server. 

• The thread-per-client model: a new thread is created for every new client that 
requests services from a server. 

• The thread-pool model: a fixed number of threads are used for serving requests 
(this model should be provided by infrastructures that comply with the Real-Time 
CORBA specification [CORBA-RT]). 

Concurrency control can be achieved using the CORBA Concurrency Control Service 
(CCS) - a basic locking mechanism [CORBAServices]. The use of CCS is not transparent 
to the application; locks should be explicitly acquired and released by the application. 

In J2EE, multiple requests may be delivered simultaneously to a Java object. These 
requests are served in separate threads. Concurrency control is based on standard Java 
synchronization mechanisms, whose employment can be hidden under the use of the Java 
synchronized clause (if we characterize operations op1, op2 of a Java class with the 
synchronized keyword, J2EE guarantees that upon the concurrent arrival of requests for 
op1 and op2, op1 shall start after the end of op2, or the inverse).  

COM+ allows the concurrent execution of requests in the following sense. COM+ 
objects within a server are organized into apartments, depending on the request-
processing model they use. There are two types of apartments: single-threaded, and 
multi-threaded. A single-threaded apartment consists of exactly one thread, so requests to 
COM+ objects that belong to it are served sequentially. A multi-threaded apartment 
comprises more than one thread, assigned to requests targeted to the objects that belong 
to the apartment. Concurrency control in multi-threaded apartments can be based on 
COM synchronization mechanisms (e.g., functionality that realizes the IBlockingLock 
interface), whose use, however, is not transparent to the application. Table 6 summarizes 
the comparison of CORBA, J2EE and COM+ regarding concurrency transparency.  

Failure Transparency 

CORBA was recently extended to support fault tolerance. More specifically, the standard 
specification for Fault Tolerant CORBA [CORBAv3.0.2] defines basic mechanisms and 
interfaces for replication, checkpoint and recovery of CORBA object groups. From the 
client perception, the employment of the fault tolerance mechanisms is transparent since 
groups are used as normal CORBA objects. Clients hold a group reference instead of an 
object reference and request services provided by the group.  
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Accidental Faults Intentional Faults 

FAILURE 
TRANSPARENCY Replication 

Services 

Checkpoint 
and Recovery 

Services 

Transparent use 
of the services Security Transparent use 

of the services 

CORBA      
J2EE      

COM+      

      Table 7: CORBA, J2EE and COM+ regarding failure transparency. 

Depending on the particular replication style used, the CORBA infrastructure either 
forwards a client request to one member (called primary object) of the group (passive 
replication), or multicasts the request to all members, while guaranteeing totally ordered 
request delivery (active replication). In active replication, whenever a member fails, the 
remaining replicas are used to guarantee correct service provisioning. In passive 
replication the state of the primary is either periodically stored in a log (cold-passive 
replication), or loaded into one or more backup replicas (warm-passive replication). Upon 
the occurrence of a failure, a backup object becomes the new primary. CORBA further 
defines mechanisms employed at the level of CORBA channels for request retry and 
redirection. Fault tolerance support in J2EE and COM+ is limited; channels include 
mechanisms for network/hardware fault detection and connection recovery. 

Regarding intentional faults, all three infrastructures provide security services for 
authorization, authentication and encryption. The functionality provided by those services 
is embedded in the communication channels. Hence, the use of security services, in all 
three cases, is transparent to the application. In CORBA, different kinds of secure 
channels may be employed, relying on security protocols like SSL, GSS Kerberos and 
CSI-EKMA (those protocols differ mainly regarding the flexibility they provide in the 
delegation of identities and privileges; SSL appears to be the least flexible protocol, since 
delegation is not allowed). Security in J2EE and COM+ is based on SSL channels. 
However, channels relying on other security protocols (e.g. Kerberos) are also supported 
[Roman et al.99]. 

Table 7 summarizes the comparison of CORBA, J2EE and COM+ regarding failure 
transparency.  

Migration Transparency 

In CORBA there are two possible ways of migrating an object. The primitive way is to 
invoke an operation on another object that resides at the target location and pass a copy of 
the object that is to be migrated as a parameter. Then, the original copy can be destroyed. 
The migrated object must be passed by value. The previous is possible in CORBA only if 
the migrated object is a valuetype (i.e. a special kind of object, whose specification 
comprises the definition of both the object’s interface and the object’s state). CORBA 
channels can redirect requests issued by clients that hold references to the original copy 
of the migrated object. Consequently, the integrity of the application is preserved. Passing 
objects by value is also possible in J2EE.  
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However, this primitive approach to object migration does not deal with dependencies 
that may exist between a migrated object and other objects. Such dependencies may 
further impose the migration of the dependent objects. To deal with these cases, CORBA 
provides a more sophisticated service called CORBA LifeCycle [CORBAServices]. 

Passing objects as parameters in CORBA and J2EE and using the CORBA LifeCycle 
service is not transparent to the application. Table 8 summarizes the comparison of 
CORBA, J2EE and COM+ regarding migration transparency. 

MIGRATION 
TRANSPARENCY 

Passing Objects by 
Value Migration Services Transparent use of the 

services 
CORBA    

J2EE    
COM+    

Table 8: CORBA, J2EE and COM+ regarding migration transparency. 

Persistence Transparency 

In CORBA, references to an object may be either persistent, or transient depending on the 
policies of the POA that manages the lifecycle of the object. Moreover, CORBA provides 
the Persistent State Service (PSS) [CORBAServices], for logging (resp. restoring) 
objects’ states to (resp. from) persistent storage. Checkpoint and recovery of objects’ 
states is not transparent in the sense that it is the responsibility of the application to log 
periodically the state of its constituent objects. To achieve fully transparent persistence 
we have to build persistent CORBA components instead of simple CORBA objects and 
register them into CORBA containers. Upon registration, the containers take over the 
responsibility of logging and restoring the components’ state. 

PERSISTENCE 
TRANSPARENCY Persistent References Checkpoint and Recovery 

Services 
Transparent use of 

the services 
CORBA    

J2EE    
COM+    

Table 9 : CORBA, J2EE and COM+ regarding persistence transparency. 

In J2EE, object references can be persistent. More specifically, if a client tries to contact 
an object that can be activated, but is currently not active, the RMI Registry responsible 
for the object is contacted instead. The daemon shall reactivate the object and provide the 
client proxy with an updated object reference. Regarding persistent storage, objects can 
use JDBC or SQL/J to access a database. The use of the previous facilities is not 
transparent, unless we built EJBs, instead of simple Java objects, and register them to 
EJB containers that systematically log in database storage the state of the registered EJBs.  

References to COM+ component objects are not persistent. The state of component 
objects can be stored to a database, using ADO or OLE-DB interfaces. However, the use 
of the aforementioned facilities is not transparent to the application [Roman et al. 99]. 
Table 9 summarizes the comparison of CORBA, J2EE and COM+ concerning persistence 
transparency. 
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Transaction Transparency 

CORBA comes along with the Object Transaction Service (OTS) [CORBAServices], 
which realizes the well-known 2-phase-commit protocol. Most implementations of the 
OTS specification support the execution of both flat and nested transactions. The use of 
OTS alone does not guarantee isolation. To achieve the previous we have to combine 
OTS with CCS. The use of OTS and CCS is not transparent to the application. More 
specifically, application objects that participate in a transaction must register the 
resources they use to a transaction coordinator. Moreover, before serving transactional 
requests, the participating objects must try to acquire locks on their resources. When the 
transaction completes, OTS releases all locks that have been acquired. Hence, the first 
phase of the well-known 2-phase-locking protocol is a responsibility of the application, 
while OTS transparently performs the second phase, using CCS functionality.  

To achieve fully transparent transactional processing we have to implement 
transactional CORBA components and register them into CORBA containers. Then, the 
containers handle client invocations appropriately (e.g., they may implicitly acquire 
locks, register resources, etc.).  
 

Transaction Services TRANSACTION 
TRANSPARENCY Flat 

Transactions 
Nested 

Transactions 

Transparent use of 
the services 

CORBA    
J2EE    

COM+    

      Table 10: CORBA, J2EE and COM+ regarding transaction transparency. 

J2EE provides a service, named JTS (Java Transaction Service) that is similar to OTS. 
One significant difference is that JTS only supports the flat transaction model. Moreover, 
container-managed transactions are supported for EJBs. COM+ provides OLE 
transactions for the atomic and isolated execution of invocations on COM+ objects. Both 
flat and nested transaction models are supported. Moreover, COM+ provides MTS 
(Microsoft Transaction Server), a container for COM+ transactional objects. Table 10 
summarizes the comparison of CORBA, J2EE and COM+, regarding transaction 
transparency. 
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Figure 2: Overall comparison of CORBA, J2EE and COM+, regarding their standard specifications. 

Figure 1 gives an overall view of the results we obtained from the comparison of 
CORBA, J2EE, and COM+. More specifically, we counted one point-in-favor of an 
infrastructure for every ( ) mark we gave in the detailed comparison (for openness and 
access transparency we only counted an overall point-in-favor for each infrastructure 
because they all have common features regarding those properties). Figure 1(a) gives the 
points-in-favor per-requirement, while Figure 1(b) gives the total number of points-in-
favor for each infrastructure. From both figures, we can come into conclusion that 
CORBA, in general, provides more facilities for satisfying typical requirements imposed 
by distributed applications. To be fair with the other two infrastructures we have to 
highlight that this conclusion is based on the comparison of the standard CORBA 
specification with the specifications of J2EE and COM+. However, not all 
implementations of the CORBA standard specification provide all of the CORBA 
services and facilities we identified during the detailed comparison. 

Based on the previous remark, we examined a number of available implementations 
of CORBA (omniORB, ORBacus, ORBIX, TAO, MICO), regarding the availability of 
the CORBA services and facilities we identified in the detailed comparison. Then, we 
calculated the points-in-favor for each implementation and compared them with those for 
J2EE and COM+. Figure 2 gives the results from this comparison. With the exception of 
omniORB, all CORBA implementations appear better than COM+. However, they are all 
quite close to J2EE. 
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Figure 3: Overall comparison of available CORBA implementations, J2EE and COM+.

5 CONCLUSION 

The main contribution of this paper is twofold: (1) it proposes a comparison framework 
for middleware infrastructures and (2) presents a detailed comparison of three widely 
used infrastructures in both industry and academia: CORBA, J2EE and COM+. The 
comparison framework we propose constitutes a foundation for further research we 
perform in the field of MDA. More specifically, we currently work towards a developer-
oriented environment for MDA development, which relies in the approach proposed in 
[Issarny et al.02]. The core element of our environment is a UML-based representation 
for the specification of infrastructure independent models of distributed applications. The 
comparison framework presented here serves for specifying the applications’ 
technological requirements and selecting a middleware infrastructure that provides 
functionality, which can be used for satisfying those requirements. Our environment 
further comprises automated procedures for: (1) refining infrastructure independent 
models into infrastructure specific ones and (2) generating code from infrastructure 
specific models.   
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