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Abstract. This paper focuses on the development of a principled
methodology for the dependability analysis of composite Web services.
The first step of the methodology involves a UML representation for the
architecture specification of composite Web services. The proposed rep-
resentation is built upon BPEL and introduces necessary extensions to
support the second step of the methodology, which comprises the speci-
fication of properties, characterizing the failure behavior of the elements
that constitute the composite Web services. The automated mapping
of this extended UML model to Block Diagrams and Markov models is
introduced as the third step of the methodology. A comparative analy-
sis of the aforementioned dependability analysis techniques in terms of
precision and complexity is also performed.

1 Introduction

The Web services architecture is an emerging paradigm for the development of
wide-area distributed systems. It aims at the transparent integration of Web
applications, based on XML-related standards, which enable the specification
of the basic services provided by the applications and the communication with
those services.

Until now, quite a lot of research efforts have been made in the field of
Web service composition and coordination. In particular, there exist several ap-
proaches dealing with the automated composition of Web services into composite
ones (e.g., [1,2,3]). Moreover, there has been work towards coordination proto-
cols for the development of secure 1 and transactional 2 Web services. The most
common approaches involve specific languages like WSFL3 and BPEL4 that can
be employed in order to regulate the workflow-like execution, or orchestration of
composite Web services.

1 http://www.ibm.com/developerworks/webservices/library/ws-secure/
2 http://www.ibm.com/developerworks/webservices/library/ws-transpec/
3 http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
4 http://www.ibm.com/developerworks/webservices/library/ws-bpel/
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This paper is placed into a different context, involving the development of
a principled methodology for the dependability analysis of composite Web ser-
vices. By definition [4], dependability is a quite wide concept, characterized by a
number of attributes including reliability, availability, safety, security, etc.. The
basic impairments to the aforementioned properties are faults, causing errors in
the state of the service. Errors, in turn, result in failures, i.e., deviations of the
delivered service from its standard specification.

For some of the dependability attributes (namely for reliability, availability
and safety) there exist probability-based theoretic foundations, enabling depend-
ability analysis. The goal of the analysis is to estimate - predict the values of these
dependability attributes, based on properties (e.g., failure rate, redundancy, etc.)
that characterize the constituents of a composite Web service. Reliability analy-
sis, for instance, aims at estimating the probability that the composite service is
correctly provided for a particular time period. Traditional dependability anal-
ysis includes techniques that rely on the specification of constraints, describing
what is needed to guarantee correct service provisioning (e.g., Block-Diagrams
(BDs) and Fault-Trees (FTs))[5]). Sophisticated approaches include techniques
based on the specification of Markov models that precisely describe the failure
behavior of the elements that constitute the service [6]. In general, the use of
traditional dependability analysis techniques is a tedious task, which requires
significant time and modelling expertise [7].

Within this context, this paper deals with the following problem: ”Given the
specification of a composite Web service in a suitable language like BPEL, how
can we assess its dependability attributes (esp. its reliability)?”. The input to the
problem is the specification of the composite Web service in BPEL. The output
is a set of measures, explaining how the composite Web service is characterized
in terms of its dependability attributes. The steps to follow towards this end can
be summarized as follows:

1. Map BPEL specifications to UML models. BPEL is a language that follows
the XML paradigm. Being such, it is fully suitable for automated parsing
and processing, but, too hard to read and write for human beings. Due
to the complexity of the overall task of dependability analysis, it is thus
quite helpful to map the BPEL constructs to some easy-to-read notation,
hopefully graphical, which can act as the blueprint of the overall scenario.
UML 5 can play this role [8]. Therefore, our first contribution involves a
principled method to map BPEL constructs to UML elements and derive the
respective UML models for composite Web service scenarios. The proposed
mapping extends the semantics of the recently adopted UML v2.0 standard
as opposed to the one proposed in [8], which relies on previous, substantially
different, versions of UML.

2. Extend the UML diagram with properties for dependability analysis. Such
properties (e.g., failure rate, redundancy) describe the failure behavior of
the constituents of the composite Web service. Therefore, our second contri-
bution involves the proposal of a set of tagged values for the UML elements

5 http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
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that we introduce, specifically intended for dependability analysis. Then, the
UML model has to be annotated with these values, before proceeding to the
evaluation of the dependability attributes of the composite Web service.

3. Automatically generate input to traditional dependability analysis techniques,
based on the annotated model. Our third contribution consists of the auto-
mated generation of Block Diagrams and Markov models, serving to the
assessment of the dependability attributes of the composite Web service.
We follow a principled approach for both of the aforementioned techniques.
The case of Block Diagrams is rather straightforward, due to their inher-
ent simplicity. Markov models, on the other hand, involve more complicated
modeling through a quite voluminous set of transitions from erroneous to
correct states.

In the rest of this paper we focus on the reliability attribute. Availability
and safety can be handled similarly. The remainder of this paper is structured as
follows. In Section 2 we present the two first steps of the methodology. The third
step is covered in two sections: in Section 3 we deal with Block Diagrams and
in Section 4, we cover the case of Markov models. Section 5 presents the overall
assessment of these techniques in terms of precision and complexity. Finally,
Section 6 discusses related work and Section 7 concludes our results and discusses
issues for future research.

2 UML for the Dependability Analysis of Web Services

The proposed UML representation of BPEL comprises the definitions of a set
of stereotypes detailed in Section 2.1. These stereotypes are further associated
with additional properties detailed in Section 2.2, which characterize their failure
behavior.

2.1 UML Stereotypes for Composite Web Services

Table 1 gives the definitions of the proposed stereotypes. A composite service in
BPEL is described in terms of a process specified using a homonymous stereo-
type. A process consists of activities, specified using the activity stereotype. The
execution of an activity relies on Web services, provided by one or more partners,
modelled in terms of the partnerLink stereotype.

The process specification further includes the description of fault and event
handlers (specified using the faultHandler and the eventHandler stereotypes). A
fault handler includes an activity, triggered upon the occurrence of a failure. Note
here that failures that are properly handled (even by aborting the process) do
not cause the failure of the overall business process. Hence, in the dependability
analysis, we only consider faults for which there exist no fault handlers. An event
handler is an activity that executes upon the reception of a particular message.

Our representation allows specifying different kinds of basic and structured
BPEL activities. The execution of a basic activity relies on a single Web service.
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Table 1. Stereotypes for structuring composite Web services.

Stereotype UML Base Class Parent

process Activity NA

activity ExecutableNode NA

partnerLink ObjectNode NA

variable DataStoreNode NA

catchAll, catch ExceptionHandler NA

onMessage, onAlarm AcceptEventAction activity

compensationHandler ExceptionHandler NA

basicActivity ExecutableNode activity

invoke CallAction basicActivity

receive AcceptCallAction basicActivity

reply ReplyAction basicActivity

throw RaiseExceptionAction activity

wait AcceptEventAction activity

empty Action NA

sequence ActivityPartition activity

switch DecisionNode activity

while PartitionNode activity

pick, flow ActivityPartition activity

On the other hand, a structured activity consists of a set of (basic or structured)
activities and prescribes the order of their execution. In other words, it defines a
number of control and data flow dependencies. These dependencies are specified
in UML using ControlFlow elements (i.e., arrows stating that the target activity
is triggered when the execution of the source activity is done) and DataFlow ele-
ments (i.e., arrows stating that the target activity accepts input from the source
activity). By definition, every basic activity is associated with a joinCondition
element, i.e., a predicate logic formula, describing requirements on one or more
flow dependencies, specified for the activity. The different kinds of basic activ-
ities supported by our representation are: (1) invoke activities, specifying the
synchronous, or asynchronous invocation of a Web service; (2) receive activities,
describing the reception of request messages that initiate a process; (3) reply ac-
tivities, delineating responses to request messages that were previously received
during the execution of receive activities.

The different kinds of structured activities supported by our representation
are: (1) sequence activities, consisting of activities that execute sequentially; (2)
switch activities, consisting of ordered activities associated with conditions - only
the first activity whose condition evaluates to true actually executes; (3) while
activities, comprising a single activity that executes more than once; (4) pick
activities, consisting of one or more event handlers; (5) flow activities, comprising
one or more activities, which by default execute concurrently - although, there
may exist control and data flow dependencies between the activities, imposing
a certain execution order.
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2.2 Failure Behavior Properties

The basic properties, characterizing the stereotypes defined in Section 2.1 are
given in Table 2. In particular, the process stereotype is associated with mea-
sures, which correspond to the basic dependability attributes. The reliability
measure we use is the probability that a composite Web service executes cor-
rectly for a given time period (specified using the time property). Similarly, the
availability measure we consider is the probability that the composite service
executes correctly at a given moment in time. As a safety measure we assume
the probability that there will be no catastrophic failures for a given time pe-
riod. The impairments to the aforementioned measures are the faults and the
failures of the partners that provide the Web services used in the activities of
the composite Web service. Faults appear with a certain rate specified using the
failure-rate property given in Table 2. Moreover, the partnerLink stereotype is
associated with properties that allow distinguishing between different kinds of
faults and failures. A list of such properties given in Table 2 (detailed defini-
tions can be found in [4]). With respect to the aforementioned properties we
distinguish between:

– Permanent faults i.e., faults that are present for the lifetime of a partner.
The presence of these faults does not depend on the internal condition of
the partner, neither on the external interaction of the partner with the en-
vironment.

– Temporary faults, i.e., faults that are present for a limited time period. Tem-
porary faults are further divided in: (1) Transient faults, i.e., temporary
external faults, resulting from the interaction of the partner with the en-
vironment. Transient faults disappear with a certain rate (specified using
the disappearance-rate property, given in Table 2). (2) Intermittent faults,
i.e., temporary internal faults, resulting from the interference between the
different parts of the partner. Intermittent faults may be either active or be-
nign. In the former case, the failed partner provides incorrect services, while
in the latter the previous does not hold. Intermittent faults repeatedly go
from active to benign and back to active with certain rates (specified using
the active-to-benign-rate and the benign-to-active-rate properties defined in
Table 2).

Note here that the faults and the failures of the underlying middleware in-
frastructure used for implementing Web services may also be considered as im-
pairments to the dependability of composite Web services [9]. Dealing with the
aforementioned issues is out of the scope of this paper. However, it would imply
associating the stereotypes we defined for basic and structured activities with
properties that are similar with the ones defined for the partnerLink stereotype.

The partnerLink stereotype is further associated with properties, characteriz-
ing the fault tolerance technique that may be used in a partner. More specifically,
a partner may represent a redundancy schema, i.e., a composite partner that
encapsulates a configuration of redundant partners, which behave as a single
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Table 2. Properties of the UML stereotypes.

Stereotype Dependability Properties
(Tagged Values)

process reliability, availability, safety : 0..1
time : Integer

partnerLink Faults
nature : {physical, human}
boundary : {internal, external}
phase : {design, operational}
persistence : {permanent, temporary}
failure-rate : Real
disappearance-rate : Real
active-to-benign-rate : Real
benign-to-active-rate : Real
Failures
domain : {time, value}
perception : {consistent, inconsistent}
Redundancy
error-detection : {vote, comp, acceptance}
execution : {parallel, sequential}
confidence : {absolute, relative}
service-delivery : {continuous, suspended}
nopartners, nofailures : Integer

basicActivity completion-rate : Real

while no-iter : Integer

pick, switch branch-prob : Array[]

fault tolerant unit. This schema is characterized by the error detection mecha-
nism used, the number of partners (nopartners) that constitute it, the number of
partner failures that can be tolerated (nofailures), etc.

For the dependability analysis of composite Web services we must further
account for the completion-rate of basic activities. The completion rate of struc-
tured activities is a function of the completion rates of the basic activities that
constitute them (we assume here that there is no additional overhead intro-
duced by structured activities for the coordination of their constituents). For
the particular case of while activities a property of type integer, named no-iter,
is associated with the corresponding stereotype. The values of this property rep-
resent the approximate number of iterations performed by the while activities.
Finally, for the case of switch (resp. pick) activities with N branches we assume
a corresponding array of N probabilities, named branch-prob, as a property of
the switch stereotype.

In order to motivate the discussion, in this section we introduce a reference
example of composite Web services, chosen out of the BPEL standard specifica-
tion 6. The example is given in Figure 1 and involves a loan approval service. The
composite service is orchestrated as follows: The rcvCustomer activity receives
a loan request from a customer. Then, a service provided by an assessor part-
ner is invoked within the invAssessor activity to assess the loan request. This

6 More examples, technical details, and a detailed discussion regarding Fault
Trees can be found in the long version of this paper, in the following URL:
http://www.cs.uoi.gr/∼zarras/papers/doa04-long.pdf
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invocation results in a report, which is given as input to the approver partner,
through the invApprover activity. The approver then makes a final decision. The
decision is sent back to the customer as a reply to his/her loan request through
the rplCustomer activity.

Fig. 1. The architecture of the loan approval composite Web service.

3 Automated Transformation of UML Diagrams to Block
Diagrams

In this section, we discuss Block Diagrams and the mapping of UML models to
these modelling techniques. We use a BD to represent graphically a constraint
for correctly providing a composite Web service. Hereafter, we call such a con-
straint, constraint-to-succeed. Roughly, the BD consists of blocks (i.e., boxes),
representing the partners that provide the basic Web services, which are executed
in the activities of the composite Web service. Those blocks are connected using
serial connections. Depending on the different kinds of activities that constitute
the composite Web service we build the BD as follows:

(1) For every sequence, flow or while activity A, consisting of the
α1, α2, . . . αN constituent activities, all of them are needed to successfully com-
plete A (for while activities N = 1).

(2) For every switch or pick activity A with N branches we have N con-
stituent activities α1, α2, . . . αN . Any of them may execute, depending on the
switch condition or the particular events that occur at runtime. Hence, all the
constituent activities are needed with a certain probability branch − probαi , i =
1, . . . N to successfully complete A.

(3) Given the above, for every basic activity α1, α2, . . . αL of A (L < N) we
have:
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(3.a) Let p1, p2, . . . pK be the non-fault-tolerant partners (i.e., those that do
not represent a redundancy schema (see Section 2.2)) that provide basic Web
services used in α1, α2, . . . αL. We create a new block for every such partner.
The blocks are connected with serial connections. Moreover, the corresponding
constraint to succeed is:

Success ≡ Success
∧

l=1,...K pl

(3.b) Let pK+1, pK+2, . . . pM be the fault tolerant partners (i.e., those that
represent a redundancy schema) that provide basic Web services used in α1, α2,
. . . αL. We create a new i out-of nopartners parallel connection for every pl, K +
1 < l < M , where i = nopartners − nofailures (see Section 2.2 for the semantics
of nopartners and nofailures) In the case where nofailures = nopartners − 1, the
corresponding constraint to succeed is:

Success ≡ Success
∧

l=K+1,...M (
∨

i=1,...nopartners
pli)

(4) For every composite activity αL+1, αL+2, . . . αN of A repeatedly follow
steps 1-4.

Based on the BD built for the composite Web service we calculate the val-
ues of service’s dependability measures through simple combinatorial calcula-
tions, involving the dependability measures of the individual partners used in
the BD (possibly multiplied by certain branch probabilities if the partners are
used within pick or switch activities).

Fig. 2. A block diagram for the loan approval service.

Taking an example, the provision of the loan approval service for a time
period t requires using three partners: the customer, the assessor and the
approver. Let us assume that the approver is a redundancy schema that consists
of two redundant elements and tolerates one failure. The constraint-to-succeed
for this case is: Successloan−approval ≡ customer∧assessor∧(∨i=1..2approveri).
The corresponding BD is given in Figure 2. The approver is represented by a 1
out-of 2 parallel connection, which is connected in serial with the assessor. For
the case of the reliability attribute, the value of the corresponding measure is the
probability that Successloan−approval holds for the time period t. This value is ob-
tained using the reliability measures, Rcustomer, Rassessor, Rapprover1 , Rapprover2 ,
as follows:

RBD = P (Successloan−approval)
= Rcustomer ∗ Rassessor ∗ (Rapprover1 + Rapprover2 − Rapprover1 ∗ Rapprover2)

Every partner p is characterized by a failure-rate, λp (see Table 2 in Sec-
tion 2.2). In computer systems it is typical to assume that the probability that
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a system fails at a time T < t is exponentially distributed [6]. Given that the
partners of a composite service are, in principle, autonomous systems, we can
assume that their probability of failure is also exponentially distributed. Then,
we have: Rp = 1 − Pp(t > T ) = exp(−λp ∗ t)

4 Automated Transformation of UML Diagrams to
Markov Models

Block Diagrams are very simple modeling techniques with the advantage of being
easy to construct and quick to compute. Nevertheless, we can do better in terms
of precision of our analysis by employing Markov models. In this section, we
present Markov models as a general technique for the dependability analysis
of composite systems. Then, we focus on our specific problem that involves
composite Web services and based on the difficulty of specifying certain parts of
a Markov model, we offer automated techniques for these tasks.

4.1 Markov Models

A Markov model for a composite Web service consists of a set of transitions
between states of the service. A state describes a situation where either the
service is correctly provided, or not. In the latter case, we say that the composite
Web service is in a death-state. The state of the service depends on the situation
of the basic activities (which may be encapsulated in structured activities or not)
and the situation of the partners that constitute it. The structured activities that
encapsulate basic activities do not affect the situation of a composite service as
they are not involved in performing any serious computation. They mainly serve
as a structuring mechanism, which further determines the execution order of
certain encapsulated activities. All the necessary computation for achieving the
composite Web service is performed by the services that are invoked within
the basic activities that constitute the structured ones. Hence, a state can be
seen as a composition of sub-states, representing the partners and the basic
activities of a composite service. A basic activity may be in 4 different states:
inactive, active, complete, or failed. The range of the different state situations
for a partner depends on the kind of faults that exist for this partner. A partner
with a permanent, or a transient fault may be: operational, or failed. Similarly,
a partner with an intermittent fault may be: operational, failed-active, or failed-
benign. The range of the different state situations for partners that represent
redundancy schemas further depends on the number of redundant partners and
the number of failures that can be tolerated. For example, for a redundancy
schema with 2 partners, tolerating 1 failure caused by a permanent, or a transient
fault we have three possible situations: both partners operational, 1 partner failed,
both partners failed.

In general, a Markov model for composite Web services comprises the follow-
ing different kinds of transitions:
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– Transitions for partner failures, which take the service from a state where
the partner is operational, to a state where the partner is failed. These
transitions are characterized by the failure-rate, or the benign-to-active-rate
of the partner (see Table 2).

– Transitions for partner recovery, taking the service from a state where the
partner is failed, to a state where the partner is operational. These transitions
are characterized by the disappearance-rate, or the active-to-benign-rate of
the partner (see Table 2).

– Transitions for activity activation, which take the service from a state where
the activity is inactive, to a state where the activity is active. These transi-
tions take place only if the preceding activities are complete (i.e., the join
condition of the activity holds) and the partner used by the activity is not
failed.

– Transitions for activity completion, taking the service from a state where the
activity is active, to a state where the activity is complete. These transitions
are characterized by the completion-rate of the activity (see Table 2).

– Transitions for activity failure, taking the service from a state where the
activity is active, to a state where the activity is failed due to the failure
of a partner used by the activity. These transitions are characterized by the
failure-rate, or the benign-to-active-rate of the partner (see Table 2).

The value of the reliability measure equals to the probability of reaching a
death-state of the Markov model within a given time period t. The calculation
of this value involves solving a system of first-order differential equations [6].

4.2 The General Framework for the Automated Generation of
Markov Models

Generally, it is recognized that the specification of Markov models is a complex
and error-prone task [7]. To deal with this problem Johnson [7] proposed an
algorithm that relies on the concepts discussed in the previous subsection. In
particular, states are modelled as tuples of integer values, representing elements
that provide basic services. The algorithm generates Markov models, given the
following input:

– The definition of the range of tuples that constitute the Markov model.
The range definition is given as a tuple of integer variables. Each variable
represents the range of all possible state situations for an element.

– The definition of a death-state constraint for the Markov model, i.e., a condi-
tional statement, defined on the values of the range variables. This statement
evaluates to true for tuples that represent the death-states of the Markov
model.

– The definition of an initial state for the Markov model.

The algorithm further accepts as input transition rules between sets of
Markov states. A transition rule consists of a conditional statement and a tran-
sition statement. The conditional statement is defined on the values of the range
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variables and identifies a set of source states that have common features (e.g.,
states where a particular partner π is operational). From all these source states
there should be transitions to target states, which also share common features
(e.g., π is failed in all target states). Moreover, the transitions to the target states
are characterized by a common rate (e.g., the failure-rate that characterizes π).
The transition statement of the rule specifies this common rate and the common
features shared amongst the set of the target states.

Given the above, the algorithm starts from the initial Markov state and
recursively applies the transition rules, as long as, their conditional statements
hold for this state. During a recursive step and for a particular transition rule,
the algorithm produces a transition to a state derived from the initial one. If the
death-state constraint holds for the resulting target state, the recursion stops.
That way the algorithm automatically produces all the possible state transitions
for the Markov model.

Still, the specification of the transition rules is complicated and error-prone,
especially for the case of complex, composite Web services. To completely alle-
viate the problem of specifying complex Markov models for the dependability
analysis of composite Web services we propose an automated procedure that gen-
erates input models for Johnson’s algorithm, from UML models of composite Web
services. The generated models are then given as input to the ASSIST tool [10],
which implements Johnson’s algorithm and generates a complete Markov model.
Finally, the Markov model may be given as input to tools like the SURE reli-
ability analysis tool [6], which solve Markov models and calculate the values of
dependability measures.

4.3 Generating State-Range Definitions

The generation of a state range definition from the architectural description of
a composite Web service relies on the following steps. First, we select all the
partnerLink elements used in the specification of the process that describes the
architecture of the composite service. Each one of them represents a partner and
a corresponding variable is created in the state-range definition. The range of the
integer values for this variable depends on the fault and the failure properties
that are associated with the partnerLink element. More specifically we have:

– For a partner π with permanent, or transient faults the value of the variable
is 0 in states where π is operational and 1 in states where π is failed.

– For a partner π with intermittent faults the value of the variable is 0 in
states where π is operational, 1 in states where π is failed and the fault is
active and 2 in states where π is failed and the fault is benign.

Moreover, the range of the integer values depends on the redundancy properties
that are associated with the partnerLink element.

Following, we select all the basic activities (invoke, receive, and reply activ-
ities) that are specified in the process (as in previous cases, some of them may
be encapsulated into more complex structured activities). For each activity α,
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we also create a variable in the state-range definition. More specifically, if α is
encapsulated in a while structured activity that performs approximately no-iter
iterations, the variable takes values from 0 to no-iter+1. Otherwise, the vari-
able takes values from 0 to 3. The semantics of these values are summarized in
Table 3.

Table 3. Range of state-range variables for activities.

embedded in While activities not embedded in While activities

Value Semantics

0 α is inactive.

i : 1, . . ., no-iter - 1 α is executed for the ith time.

no-iter α is complete.

no-iter+1 α is failed due to the failure of
the partner used by this activity.

Value Semantics

0 α is inactive.

1 α is active.

2 α is complete.

3 α is failed due to the failure of
the partner used by this activity.

Based on the previous steps, the state-range definition for the loan approval
service is:

space = (customer : 0..1, assessor : 0..1, approver : 0..1,
rcvCustomer : 0..3, invAssessor : 0..3, invApprover : 0..3, rplCustomer : 0..3);

Note that the syntax used is the one required by the SURE-ASSIST analysis
tools [6], which we use for solving Markov models.

4.4 Generating Death-State Constraints

A process is considered as failed in states where any of the activities that con-
stitute it is failed (see Section 3). Hence, to generate a death-state constraint,
we select all the activities of the process. Based on the selected activities, we
build the death-state constraint, which is the disjunction of a number of boolean
expressions. Each expression involves a state-range variable that represents one
of the activities, say α. If α is encapsulated in a while activity that performs
no-iter iteration, the expression evaluates to true if the variable equals to no-
iter+1 (see Table 3). In all other cases the expression evaluates to true if the
variable equals to 3. Following the aforementioned steps for the loan approval
service gives us the following death-state constraint:

deathif (rcvCustomer = 3 ∨ invAssessor = 3∨
invApprover = 3 ∨ rplCustomer = 3);

4.5 Generating Transition Rules

The generation of transition rules from the UML model of a composite service
is slightly more complicated. In Section 4.1 we identified 4 different categories
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of transitions. Consequently, here we distinguish between 4 different categories
of transition rules.

Transition rules for partner failures: for every partner specified in the process
that describes the composite Web service, we generate a rule whose conditional
statement holds for all source states where the partner is operational and there
are no active activities. The rule prescribes that for these source states there
should be transitions to target states, whose common feature is that the partner
is failed. The rate for these transitions is the failure-rate, or the benign-to-active-
rate of the partner. Following, we give an example of a rule for the approver
partner of the loan approval service:

if approver = 0 ∧ invApprover �= 1 then
tranto (customer, approver + 1, rcvCustomer, invApprover, rplCustomer)

by failure-rate; endif;

Transition rules for partner recovery: for every partner that may fail because
of temporary faults (i.e., transient, or intermittent faults) we generate a corre-
sponding transition rule. The conditional statement of this rule holds for states
where the partner is failed. On the other hand, the transition statement depends
on the kind of the fault that may occur for the partner. For transient faults, in
particular, the transition statement specifies transitions to target states, whose
common feature is that the partner is operational again. The rate for these
transitions is the disappearance-rate that is associated with the partner. For in-
termittent faults, the transition statement prescribes transitions to target states,
whose common feature is that the partner is still failed, but the fault is not ac-
tive. The rate for these transitions is the active-to-benign-rate that is associated
with the partner. Below, we give an example of a rule that is generated for the
approver partner of the loan approval service, if we suppose that the approver
may fail because of a transient fault.

if approver = 1 then tranto (approver = 0) by disappearance-rate; endif;

Transition rules for activity activation: for every basic activity α of the pro-
cess we generate a transition rule, whose conditional statement holds for states
where: (1) The activity is inactive; (2) The activities upon which α depends
are complete (i.e., the join condition of α holds); (3) The partner, used in α is
operational.

Hence, to build the conditional statement we rely on the dataflow and control
dependencies that are specified for α and the join condition that is associated
with it. The transition statement of the rule states that for all source states
there should be transitions to target states, whose common feature is that α
is active. If α is embedded in a pick or a switch activity, the transitions are
characterized by the branch-prob of the corresponding branch. Otherwise, they
are characterized by a default rate. If α is encapsulated in a flow activity together
with activities β, γ, . . . and the join condition for all of them is the same, then the
conditional and the transition statements of the rule involve all these activities,
which are finally concurrently activated. Below, we give an example of a rule for
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the activation of the invApprover activity that uses the approver partner and
depends on the completion of the invAssessor activity.

if invApprover = 0 ∧ invAssessor = 2 ∧ approver = 0 then
tranto (invApprover = 1) by trig-rate; endif;

Transition rules for activity completion: for every basic activity α we further
generate a transition rule, whose conditional statement holds for states where:
(1) α is active; (2) The partner that is used in α is operational. Regarding the
transition statement of the rule we have: (1) If α is encapsulated in a while
activity, then the transition statement prescribes transitions to target states
whose common feature is that α is reactivated. These transitions actually model
the fact that in the source state α executes within the ith iteration of the while
activity, while in the target state it executes within the ith + 1 iteration of
the while activity (2) Otherwise, the transition statement specifies transitions
to target states, whose common feature is that α is complete. The transitions
described by the aforementioned rule are characterized by the completion-rate of
α. Following, we give an example of a rule for the completion of the invApprover
activity that uses the approver partner.

if invApprover = 1 ∧ approver = 0 then
tranto (invApprover + +) by completion-rate; endif;

Transition rules for activity failure: for every basic activity α we generate
a transition rule, whose conditional statement holds for states where: (1) α is
active. (2) The partner that is used in α is operational. The transition statement
of the rule states that there should be transitions from the aforementioned states
to target states, whose common feature is that the partner is failed. In the target
states, α is also considered as failed due to the failure of the partner. The rate for
these transitions is the failure-rate, or the benign-to-active-rate of the partner.
Following, we give an example of a rule for the approver partner of the loan
approval service:

if approver = 0 ∧ invApprover = 1 then
tranto (customer, assessor, approver + 1, rcvCustomer,

invAssessor, invApprover + 2, rplCustomer) by failure-rate; endif;

5 Assessment

To assess the overall methodology proposed in this paper, we experiment using
the loan approval Web service. In particular, we assess the advantages and the
disadvantages of BDs and Markov models regarding their precision and their
complexity in the context of Web services.

In terms of our motivating example, we used the following setup for our
experiments. The approver partner in the loan approval service fails due to a
transient fault. The rest of the partners in the loan approval service fail because
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of permanent faults. For all kinds of faults we consider a range of failure-rates
from 10−10 to 10−3. Transient faults have a disappearance rate of 0.5. Follow-
ing, we generated the BDs and the Markov models for the loan approval service.
Based on the Markov models, we used the SURE tool to calculate the values
of the reliability measure, for each different failure-rate and for a period t of 10
time-units. Similarly, we calculated corresponding values of the reliability mea-
sure using the BDs. Figure 3 (a) shows the results we got. More specifically, we
observe that the reliability values that were calculated using the BDs are smaller
compared to the ones calculated using the Markov models. The percentage of
the difference between the two dependability analysis techniques increases as we
increase the failure rates (see Figure 3(b)). The BD-based technique underesti-
mates the reliability of the service because it does not take into account that the
transient faults of partners may disappear before the activation of the activities
that use those partners. In these cases, the transient faults do not affect the
correct execution of the service. This fact is captured in the Markov models,
which specify more precisely the failure behavior of the elements that constitute
the composite Web services.

Based on the above, it is safe to argue that, as originally expected, the
Markov-based technique is more precise for analyzing the dependability of com-
posite Web services. However, as we discussed in Section 4, the most serious
argument against its use is that the specification of Markov models is a complex
task. A reasonable experimental metric for the complexity of a Markov model,
Cmarkov, is the number of transitions rules required as input to Johnson’s algo-
rithm [7]. Moreover, the complexity of a BD, CBD can be measured with respect
to the number of blocks that constitute it. Then, for a composite Web service
that consists of N partners with permanent faults, M partners with temporary
faults and K activities, we have: CMarkov = N +2∗M +3∗K and CBD = N +M .

For the specific case of the loan approval we have the values given in Fig-
ure 3(c). Moreover, BDs are quite faster to compute due to their simplicity.
Figure 3(d) shows the execution times for calculating the values of reliability,
given the generated BDs and Markov models.

The previous results, generally, highlight the significance of principled
methodologies for the automated transformation of Web service architectural
specifications, into traditional models (Markov models, queueing networks, Petri-
nets, etc.) for the quality analysis of non-functional properties. Another impor-
tant aspect that advocates the previous argument without being highlighted by
the numbers shown in Figure 3 is that these methodologies encapsulate the mod-
elling expertise of domain experts, which is not necessarily part of the knowledge
of everyday’s developers.

6 Related Work

The issue of dependability analysis for conventional composite systems has been
explored in the past [11,9,12,13,14]. There are both similarities and differences
with this line of research. On the common side, we share the methodological
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(a) Reliability for the shipping service. (b) % of reliability underestimation of
BDs.

(c) Complexity of Markov models and
BDs

(d) Execution times

Fig. 3. Experimental evaluation with BD’s and Markov models

approach to the problem (i.e., given a certain input, we map it to UML - for
ease of modelling - and then we transform the UML diagram to a well known
dependability analysis technique). On the other hand, there are prominent dif-
ferences, specifically tailored for the case of Web Services: both the input (BPEL
in our case) and the automated derivation of the dependability analysis models
are different.

In the context of composite Web services, the issues of quality specifica-
tion, analysis and management just begin to gain the attention of various re-
search communities. More specifically, in [15] the authors propose a framework
for the provision of differentiated levels of service that meet the customers’ func-
tional and quality requirements, described in terms of Service Level Agreements
(SLAs). SLAs are specified using a declarative language, named WSLA. SLAng
is also a language for the specification of SLAs [16]. While these approaches are
quite generic, we specifically focus on dependability properties and dependability
analysis techniques. The dependability properties can be seen as SLA attributes.
In [17] the authors also propose an infrastructure-based solution for the provi-
sion of differentiated levels of service. They particularly deal with performance
SLA attributes. In [18] the authors deal with a similar problem. More specifi-
cally, in this approach the input is the specification of a composite Web service
that combines N primitive Web services. Moreover the authors assume the exis-
tence of N sets of compatible primitive Web services characterized by a number
of quality attributes like reliability, performance, price, reputation, etc. Then,
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they propose an analysis method that allows selecting N services out of the N
sets, which can be used in the composite Web service to achieve optimal qual-
ity. Although the proposed approach is interesting, the part of the analysis that
concerns reliability is simplified and can be enhanced based on the principled
methodology we propose in this paper.

7 Conclusions

In this paper, we investigated the dependability analysis of composite services.
More specifically, we concentrated on a principled methodology for achieving the
previous. First, we presented a representation for the architecture specification
of composite Web services that relies on UML v2.0 and introduces necessary
extensions to support the specification of properties that characterize the failure
behavior of the elements that constitute the composite Web services. Then, we
detailed the automated transformation of UML models that rely on the afore-
mentioned representation to Block Diagrams and Markov models, which enable
the subsequent estimation of the reliability measures of the composite Web ser-
vices. Finally, we performed a comparative analysis of the BDs and Markov
models with respect to their precision and complexity. This analysis revealed
some of the benefits of the proposed methodology.

A more detailed evaluation in the context of real-world case studies is consid-
ered as part of our future research. Another interesting topic for future research
is that of building a quality analysis Web service that performs the depend-
ability analysis, on-the-fly, by monitoring a set of available Web services; such
functionality can be either part of a UDDI implementation, or part of a middle-
ware infrastructure that supports the development of composite Web services.
In the latter case, the complexity of the analysis techniques plays a even more
important role, especially if the infrastructure is targeted to the development of
Web services in pervasive computing environments [19].
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