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Diffusion of items

• So far we have assumed that what is being 
diffused in the network is some discrete item:
– E.g., a virus, a product, a video, an image, a link etc.

• For each network user a binary decision is being 
made about the item being diffused
– Being infected by the virus, adopt the product, watch 

the video, save the image, retweet the link, etc.

– This decision may happen with some probability, but 
the probability is over the discrete values {0,1} and 
the decisions usually do not change



Diffusion of opinions

• The network can also diffuse opinions.
– What people believe about an issue, a person, an 

item, is shaped by their social network 

• People hold opinions that may change over time 
due to social influence

• Opinions may assume a continuous range of 
values, from completely negative to completely 
positive.
– Opinion diffusion is different from item diffusion

– It is often referred to as opinion formation.



Modeling opinion formation

• There is a lot of work from different perspectives:
– Psychologists/Sociologists: field experiments and decades 

of observations
– Statistical Physicists: model humans as particles and 

predict their behavior
– Mathematicians/Economists: Use game theory to model 

human behavior
– Computer Scientists: build algorithms on top of the models

• Questions asked:
– How do societies reach consensus?

• Not always the case, but necessary for many issues in order for 
society to function

– When do we get polarization or opinion clusters?
• More realistic in the real world where consensus tends to be local



Opinion formation models

• An opinion is a real value

– E.g., a value in the interval [0,1], or [-1,1]

• Opinions are shaped through our interactions 
with our social network



Social Influence

• There are two main types of social influence:

– Normative Influence: Users influenced by opinion 
of neighbors due to social norms, conformity, 
group acceptance, avoiding ridicule, etc

– Informational Influence: Users lacking necessary 
information, or not trusting their information, use 
opinion of neighbors to form their opinions

• Asch’s conformity experiment [55]:



Opinion formation models literature

• Long list of models
– Ising model

• Claudio Castellano, Santo Fortunato, and Vittorio Loreto. 2009. Statistical physics. of social 
dynamics. Rev. Mod. Phys. 81 (May 2009), 591–646.

– Voter model
• Holley and Liggett. 1975. Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter 

Model. The Annals of Probability 3, 4 (1975), 643–663.

– DeGroot Model
• DeGroot. 1974. Reaching a consensus. JASA 69, 345 (1974), 118–121

– Friedkin-Johnson model
• Friedkin and Johnsen. 1990. Social influence and opinions. Journal of Mathematical Sociology 15, 

3-4 (1990), 193–206.

– Bounded Confidence models
• Deffuant, Neau, Amblard, and Weisbuch. Mixing beliefs among interacting agents.Advances in 

Complex Systems. 2000. 
• Krause. A discrete nonlinear and non–autonomous model of consensus formation. 

Communications in difference equations. 2000.

– Axelrod cultural dynamics
• Axelrod. The dissemination of culture: A model with local convergence and global polarization. 

Journal of conflict resolution. 1997.

– … and multiple variants of those…
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De Groot opinion formation model 

• Every user 𝑖 has an opinion 𝑧𝑖 ∈ [0,1]

• The opinion of each user in the network is 
iteratively updated, each time taking the average
of the opinions of its neighbors and herself

𝑧𝑖
𝑡 =

𝑤𝑖𝑖𝑧𝑖
𝑡−1 + σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗𝑧𝑗

𝑡−1

𝑤𝑖𝑖 + σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗

– where 𝑁(𝑖) is the set of neighbors of user 𝑖.

• This iterative process converges to a consensus 



What about personal biases?

• People tend to cling on to their personal 
opinions



Another opinion formation model 
(Friedkin and Johnsen)

• Every user 𝑖 has an intrinsic opinion 𝑠𝑖 ∈ [0,1]
and an expressed opinion 𝑧𝑖 ∈ [0,1]

• The public opinion 𝑧𝑖 of each user in the 
network is iteratively updated, each time 
taking the average of the expressed opinions 
of its neighbors and the intrinsic opinion of 
herself

𝑧𝑖
𝑡 =

𝑤𝑖𝑖𝑠𝑖 + σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗𝑧𝑗
𝑡−1

𝑤𝑖𝑗 + σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗



Opinion formation as a game

• Assume that network users are rational (selfish) agents
• Each user has a personal cost for expressing an opinion

𝑐 𝑧𝑖 = 𝑤𝑖𝑖 𝑧𝑖 − 𝑠𝑖
2 + 

𝑗∈𝑁(𝑖)

𝑤𝑖𝑗 𝑧𝑖 − 𝑧𝑗
2

• Each user is selfishly trying to minimize her personal 
cost.

Inconsistency cost: The cost for 
deviating from one’s intrinsic opinion

Conflict cost: The cost for 
disagreeing with the opinions 

in one’s social network

D. Bindel, J. Kleinberg, S. Oren. How Bad is Forming Your Own Opinion? Proc. 52nd 
IEEE Symposium on Foundations of Computer Science, 2011.



Opinion formation as a game

• The opinion 𝑧𝑖 that minimizes the personal 
cost of user 𝑖

𝑧𝑖 =
𝑤𝑖𝑗𝑠𝑖 + σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗𝑧𝑗

𝑤𝑖𝑗 + σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗

• In linear algebra terms (assume 0/1 weights):
𝐿 + 𝐼 𝒛 = 𝒔 ⇒ 𝒛 = 𝐿 + 𝐼 −1𝒔

where 𝐿 is the Laplacian of the graph.

Reminder: The Laplacian is the negated adjacency 
matrix with the degree on the diagonal



Understanding opinion formation

• To better study the opinion formation process 
we will show a connection between opinion 
formation and absorbing random walks.



Random Walks on Graphs

• A random walk is a stochastic process performed on a 
graph

• Random walk:
– Start from a node chosen uniformly at random with 

probability 
1

𝑛
.

– Pick one of the outgoing edges uniformly at random

– Move to the destination of the edge

– Repeat.

• Made very popular with Google’s PageRank algorithm.



The Transition Probability matrix
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𝑃 𝑖, 𝑗 = 1/𝑑𝑜𝑢𝑡(𝑖): Probability of 
transitioning from node 𝑖 to node 𝑗.



Node Probability vector

• The vector 𝑝𝑡 = (𝑝1
𝑡 , 𝑝2

𝑡 , … , 𝑝𝑛
𝑡 ) that stores 

the probability of being at node 𝑣𝑖 at step 𝑡

– 𝑝𝑖
0= the probability of starting from state 
𝑖 (usually) set to uniform

• We can compute the vector 𝑝𝑡 at step t using a 
vector-matrix multiplication

• After many steps 𝑝𝑡 → 𝜋 the probability 
converges to the stationary distribution 𝜋

𝑝𝑡 = 𝑝𝑡−1 𝑃 = 𝑝0𝑃𝑡



Stationary distribution
• The stationary distribution of a random walk with 

transition matrix 𝑃, is a probability distribution 𝜋, 
such that 𝜋 = 𝜋𝑃

• The stationary distribution is independent of the 
initial vector if the graph is strongly connected, 
and not bipartite. 

• All the rows of the matrix 𝑃∞ are equal to the 
stationary distribution 𝜋

• The stationary distribution is an eigenvector of 
matrix 𝑃
– the principal left eigenvector of P – stochastic matrices 

have maximum eigenvalue 1
• The probability 𝜋𝑖 is the fraction of times that we 

visited  state 𝑖 as 𝑡 → ∞



Random walk with absorbing nodes

• Absorbing nodes: nodes from which the 
random walk cannot escape.

• Two absorbing nodes: the red and the blue.
P. G. Doyle, J. L. Snell. Random Walks and Electrical Networks. 1984



Absorption probability

• In a graph with more than one absorbing 
nodes a random walk that starts from a non-
absorbing (transient) node t will be absorbed 
in one of them with some probability

– For a transient node t we can compute the 
probabilities of absorption at an absorbing node s



Absorption probabilities

• The absorption probability can be computed iteratively:
– The absorbing nodes have probability 1 of being absorbed 

in themselves and zero of being absorbed in another node.
– For the non-absorbing nodes, take the (weighted) average 

of the absorption probabilities of your neighbors 
• if one of the neighbors is the absorbing node, it has probability 1

– Repeat until convergence (= very small change in probs)

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3

2

2

1

1

1
2

1



Absorption probabilities

𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝐵𝑙𝑢𝑒|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

2

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

3

2

2

1

1

1
2

1

• The absorption probability can be computed iteratively:
– The absorbing nodes have probability 1 of being absorbed 

in themselves and zero of being absorbed in another node.
– For the non-absorbing nodes, take the (weighted) average 

of the absorption probabilities of your neighbors 
• if one of the neighbors is the absorbing node, it has probability 1

– Repeat until convergence (= very small change in probs)



Absorption probabilities

• Compute the absorption probabilities for red 
and blue

0.52
0.48

0.42
0.58

0.57
0.43 2

2

1

1

1
2

1



Absorption probabilities

• The absorption probability has several practical uses.

• Given a graph (directed or undirected) we can choose 
to make some nodes absorbing.
– Simply direct all edges incident on the chosen nodes 

towards them and create a self-loop.

• The absorbing random walk provides a measure of 
proximity of transient nodes to the chosen nodes.
– Useful for understanding proximity in graphs

– Useful for propagation in the graph
• E.g, on a social network some nodes are malicious, while some are 

certified, to which class is a transient node closer?



Penalizing long paths

• The orange node has the same probability of 
reaching red and blue as the yellow one

• Intuitively though it is further away 0.52
0.48

0.42
0.58

0.57
0.43 2

2

1

1

1
2

1𝑃 𝐵𝑙𝑢𝑒 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 1

𝑃 𝑅𝑒𝑑 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

0.57
0.43



Penalizing long paths

• Add a universal absorbing node to which each 
node gets absorbed with probability α. 

1-α
α

α

α α

1-α
1-α

1-α

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 = (1 − 𝛼)
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

With probability α the random walk dies

With probability (1-α) the random walk 
continues as before

The longer the path from a node to an  
absorbing node the more likely the random 
walk dies along the way, the lower the 
absorbtion probability



Linear Algebra

• The transition matrix of the random walk looks like this

• 𝑃𝑇𝑇: transition probabilities between transient nodes

• 𝑃𝑇𝐴: transition probabilities from transient to 
absorbing nodes

• Computing the absorption probabilities corresponds to 
iteratively multiplying matrix 𝑃 with itself

𝑃 =
𝑃𝑇𝑇 𝑃𝑇𝐴
0 𝐼



Linear algebra

• The fundamental matrix

𝐹 = 𝑃𝑇𝑇 + 𝑃𝑇𝑇
2 +⋯ =

𝑖=1

∞

𝑃𝑇𝑇
𝑖 = 1 − 𝑃𝑇𝑇

−1

– 𝐹 𝑖, 𝑗 = The probability of being in a transient state 𝑡𝑗
when starting from state 𝑡𝑖 after any number of steps

• The transient-to-absorbing matrix 𝑄
𝑄 = 𝐹𝑃𝑇𝑈

– 𝑄 𝑖, 𝑘 = The probability of being absorbed in absorbing 
state 𝑎𝑘 when starting from transient state 𝑡𝑖

𝑃∞ =
0 𝑄
0 𝐼



Propagating values

• Assume that Red has a positive value and Blue a 
negative value

• We can compute a value for all transient nodes in the 
same way we compute probabilities
– This is the expected value at the absorbing node for the 

non-absorbing node

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
−
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
−
1

6

+1

-1

0.05 -0.16

0.16 2

2

1

1

1
2

1



Linear algebra

• Computation of values is essentially 
multiplication of the matrix 𝑄 with the vector 
of values of the absorbing nodes

𝒗 = 𝑄𝒔

– 𝒔: vector of values of the absorbing nodes

– 𝒗: vector of values of the transient nodes



Electrical networks and random walks

• Our graph corresponds to an electrical network
• There is a positive voltage of +1 at the Red node, and a negative 

voltage -1 at the Blue node
• There are resistances on the edges inversely proportional to the 

weights (or conductance proportional to the weights)
• The computed values are the voltages at the nodes

+1

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
−
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
−
1

6

+1

-1
2

2

1

1

1
2

1

0.05 -0.16

0.16



Springs and random walks

• Our graph corresponds to a spring system
• The Red node is pinned at position +1, while the Blue node is 

pinned at position -1 on a line. 
• There are springs on the edges with hardness proportional to the 

weights 
• The computed values are the positions of the nodes on the line



Springs and random walks

• Our graph corresponds to a spring system
• The Red node is pinned at position +1, while the Blue node is 

pinned at position -1 on a line. 
• There are springs on the edges with hardness proportional to the 

weights 
• The computed values are the positions of the nodes on the line

0.05-0.16

0.16



Application: Transductive learning

• If we have a graph of relationships and some labels on some nodes 
we can propagate them to the remaining nodes 
– Make the labeled nodes to be absorbing and compute the probability 

for the rest of the graph
– E.g., a social network where some people are tagged as spammers
– E.g., the movie-actor graph where some movies are tagged as action 

or comedy. 

• This is a form of semi-supervised learning/classification 
– We make use of the unlabeled data, and the relationships

• It is also called transductive learning because it does not produce a 
model, but just labels the unlabeled data that is at hand.
– Contrast to inductive learning that learns a model and can label any 

new example



Back to opinion formation

• The value propagation we described is closely related 
to the opinion formation process/game we defined.
– Can you see how we can use absorbing random walks to 

model the opinion formation for the network below?

2

2

1

1

1
2

1

s = +0.5

s = -0.3

s = -0.1s = +0.2

s = +0.8
Reminder:

𝑧𝑖 =
𝑠𝑖 + σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗𝑧𝑗

1 + σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗



Opinion formation and absorbing 
random walks

2

2

1

1

1
2

1

1

1

1 1

1

s = +0.5

s = -0.3

s = -0.1s = -0.5

s = +0.8

The expressed opinion for each 
node is computed using the 
value propagation we described

• Repeated averaging

One absorbing node per user 
with value the intrinsic 
opinion of the user

z = +0.22z = +0.17

z = -0.03
z = 0.04

z = -0.01

One transient node per user 
that links to her absorbing 
node and the transient nodes 
of her neighbors

It is equal to the expected intrinsic opinion at the place of absorption



Opinion of a user

• For an individual user u

– u’s absorbing node is a stationary point 

– u’s transient node is connected to the absorbing 
node with a spring. 

– The neighbors of u pull with their own springs.





Opinion maximization problem

• Public opinion:

𝑔 𝑧 =

𝑖∈𝑉

𝑧𝑖

• Problem: Given a graph G, the given opinion formation 
model, the intrinsic opinions of the users, and a budget 
k, perform k interventions such that the public opinion 
is maximized.

• Useful for image control campaign.

• What kind of interventions should we do?



Possible interventions

1. Fix the expressed opinion of k nodes to the maximum value 1.
– Essentially, make these nodes absorbing, and give them value 1.

2. Fix the intrinsic opinion of k nodes to the maximum value 1.
– Easy to solve, we know exactly the contribution of each node to the 

overall public opinion.

3. Change the underlying network to facilitate the propagation of 
positive opinions.
– For undirected graphs this is not possible

𝑔 𝑧 =

𝑖

𝑧𝑖 =

𝑖

𝑠𝑖

– The overall public opinion does not depend on the graph structure!
– What does this mean for the wisdom of crowds?



Fixing the expressed opinion

2

2

1

1

1
2

1

1

1

1 1

1

s = +0.5

s = -0.3

s = -0.1s = -0.5

s = +0.8

z = +0.22z = +0.17

z = -0.03
z = 0.04

z = -0.01



Fixing the expressed opinion

2

2

1

1

1
2

1

1

1

1

1

s = +0.5

s = -0.3

s = -0.5

s = +0.8

z = 1



Opinion maximization problem

• The opinion maximization problem is NP-hard.

• The public opinion function is monotone and 
submodular

– The Greedy algorithm gives a 1 −
1

𝑒
-approximate 

solution

• In practice Greedy is slow. Heuristics that use 
random walks perform well.

A. Gionis, E. Terzi, P. Tsaparas. Opinion Maximization in Social Networks. SDM 2013



Additional models

• Ising model

• Voter model

• Bounded confidence models

• Axelrod cultural dynamics model



A Physics-based model

• The Ising ferromagnet model:
– A user 𝑖 is a “spin” 𝑠𝑖 that can assume two values: ±1
– The total energy of the system is 

𝐻 = −
1

2


𝑖,𝑗

𝑠𝑖𝑠𝑗

Defined over the neighboring pairs

– A spin is flipped with probability exp(−
ΔE

T
) where Δ𝐸 is the 

change in energy, and T is the “temperature” of the system.

• The model assumes no topology
– Complete graph (all-with-all), or regular lattice.

• For low temperatures, the system converges to a single 
opinion



The Voter model

• Each user has an opinion that is an integer value 

– Usually opinions are in {0,1} but multiple opinion 
values are also possible.

• Opinion formation process:

– At each step we select a user at random

– The user selects one of its neighbors at random 
(including herself) and adopts their opinion

• The model can be proven to converge for certain 
topologies. 



Bounded confidence model

• Confirmation bias: People tend to accept 
opinions that agree with them

– “Why facts don’t change our minds” (New Yorker)

• Bounded Confidence model: A user 𝑖 is 
influenced by a neighbor 𝑗 only if

𝑧𝑖 − 𝑧𝑗 ≤ 𝜖

for some parameter 𝜖

https://www.newyorker.com/magazine/2017/02/27/why-facts-dont-change-our-minds


Bounded Confidence models

• Defuant model: Given a parameter 𝜇 at time 𝑡, a randomly 
selected user 𝑖 selects a neighbor 𝑗 at random, and if 
𝑧𝑖
𝑡 − 𝑧𝑗

𝑡 ≤ 𝜖 their opinions are updated as:
𝑧𝑖
𝑡+1 = 𝑧𝑖

𝑡 + 𝜇(𝑧𝑗
𝑡 − 𝑧𝑖

𝑡)

𝑧𝑗
𝑡+1 = 𝑧𝑗

𝑡 + 𝜇(𝑧𝑖
𝑡 − 𝑧𝑗

𝑡)

• Hegselmann-Krause (HK) model: Each node 𝑖 updates their 
opinions as the average of the opinions of the neighbors 
that agree with them

𝑧𝑖
𝑡 =

𝑤𝑖𝑖𝑧𝑖
𝑡−1 + σ

𝑗∈𝑁 𝑖 : 𝑧𝑖
𝑡−𝑧𝑗

𝑡 ≤𝜖
𝑤𝑖𝑗𝑧𝑗

𝑡−1

𝑤𝑖𝑖 + σ
𝑗∈𝑁 𝑖 : 𝑧𝑖

𝑡−𝑧𝑗
𝑡 ≤𝜖

𝑤𝑖𝑗

Similar to Voter model

Similar to DeGroot model



Bounded Confidence models
• Depending on the parameter 𝜖 and the initial opinions, bounded 

confidence models can lead to plurality (multiple opinions), polarization
(two competing opinions), or consensus (single opinion)



Axelrod model

• Cultural dynamics: Goes beyond single opinions, and looks 
at different features/habits/traits
– Tries to model the effects of social influence and homophily.

• Model: 
– Each user 𝑖 has a vector 𝜎𝑖 of 𝐹 features
– A user 𝑖 decides to interact with user 𝑗 with probability 

𝜔𝑖𝑗 =
1

F


𝑓=1

𝐹

𝛿(𝜎𝑖 𝑓 , 𝜎𝑗(𝑓))

– If there is interaction, the user changes one of the disagreeing 
features to the value of the neighbor

• The state where all users have the same features is an 
equilibrium, but it is not always reached (cultural pockets) 

Fraction of common features



Empirical measurements

• There have been various experiments for validating the 
different models in practice

• Das, Gollapudi, Munagala (WSDM 2014)
– User surveys: 

• estimate number of dots in images
• Estimate annual sales of various brands.

– For each survey:
• Users asked to provide initial answers on all questions in the 

survey
• Then, each user shown varying number of (synthetic) neighboring 

answers.
• Users given opportunity to update their answers



Online User Studies

• Define 𝑠 =
|𝑜𝑖−𝑜𝑓|

|𝑜𝑖−𝑜𝑒|

– (𝑜𝑖: original opinion, 𝑜𝑓: final opinion, 𝑜𝑒: closest neighboring opinion)

• User behavior categorized as: 
– Stubborn (𝑠 < 0.1)
– DeGroot (0.1 < 𝑠 < 0.9)
– Voter (𝑠 > 0.9)  

?



Voter vs DeGroot

Distribution over stubborn, deGroot and voter

• Voter model is prevalent for large number of neighbors, 

• DeGroot becomes more prevalent for smaller number of 
neighbors

Effect of number of neighboring opinions
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Biased Conforming Behavior

• Adoption of neighboring opinions not uniform random (unlike 
Voter Model)

• Users give higher weights to “close by” opinions



Other problems related to opinion 
formation

• Modeling polarization

– Understand why extreme opinions are formed and 
people cluster around them

• Modeling herding/flocking

– Understand under what conditions people tend to 
follow the crowd

• Computational Sociology

– Use big data for modeling human social behavior.

R. Hegselmann, U. Krause. Opinion Dynamics and Bounded Confidence. Models, 
Analysis, and Simulation. Journal of Artificial Societies and Social Simulation (JASSS) 
vol.5, no. 3, 2002
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