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Introduction

Diffusion: process by which a piece of information
is spread and reaches individuals through
interactions
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Why do we care?

Modeling epidemics



Why do we care?

Viral marketing



Why do we care?

Viral marketing



Why do we care?

Spread of innovation



Why do we care?
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Opinion dynamics



Outline

▪ Epidemic models

▪ Influence maximization

▪ Opinion formation models



EPIDEMIC SPREAD
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Epidemics

Understanding the spread of viruses 
and epidemics is of great interest to 
• Health officials
• Sociologists
• Mathematicians
• Hollywood 

The underlying contact network clearly affects the 
spread of an epidemic
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Epidemics

• Model epidemic spread as a random process 
on the graph and study its properties

• Questions that we can answer: 

– What is the projected growth of the infected 
population?

– Will the epidemic take over most of the network?

– How can we contain the epidemic spread?

Diffusion of  ideas and the spread of influence 
can also be modeled as epidemics
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A simple model

▪ Branching process: A person transmits the disease to each 
people she meets independently with a probability p

▪ An infected person meets k (new) people while she is 
contagious

▪ Infection proceeds in waves. 

Contact network is a 
tree with branching 
factor k
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Infection Spread

• We are interested in the number of people 
infected (spread) and the duration of the 
infection

• This depends on the infection probability p
and the branching factor k

An aggressive 
epidemic with high 
infection probability

The epidemic survives
after three steps
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Infection Spread

• We are interested in the number of people 
infected (spread) and the duration of the 
infection

• This depends on the infection probability p
and the branching factor k A mild epidemic with 

low infection 
probability

The epidemic dies out
after two steps
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Basic Reproductive Number

• Basic Reproductive Number (𝑅0): the expected number of 
new cases of the disease caused by a single individual

𝑅0 = 𝑘𝑝

• Claim: (a) If R0 < 1, then with probability 1, the disease dies 
out after a finite number of waves. (b) If R0 > 1, then with 
probability greater than 0 the disease persists by infecting 
at least one person in each wave.

1. If 𝑅0 < 1 each person infects less than one person in 
expectation. The infection eventually dies out.

2. If 𝑅0 > 1 each person infects more than one person in 
expectation. The infection persists.
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Application: Reduce k, or p to combat an epidemic



Analysis

• 𝑋𝑛 : random variable indicating the number of 
infected nodes at level n (after n steps)

• 𝑞𝑛 = Pr[𝑋𝑛 ≥ 1] : probability that there exists 
at least 1 infected node after n steps

• 𝑞∗ = lim𝑞𝑛 : the probability of having 
infected nodes as 𝑛 → ∞

We want to show that 

a 𝑅0 < 1 ⇒ 𝑞∗ = 0

(b) 𝑅0 > 1=> 𝑞∗ > 0.
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Proof

▪ At level n, kn nodes

▪ Ynj: 1 if node j at level n is infected, 0 otherwise 

E[Ynj] = pn

▪ E[Xn] = R0
n

▪ E[Xn] ≥ Pr[Xn ≥ 1] => qn ≤ R0
n

This proves (a) but not (b)
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Proof

n-1

p p p

𝑞𝑛−1 𝑞𝑛−1 𝑞𝑛−1

𝑞𝑛

Each child of the root starts a 
branching process of length n-1

𝑞𝑛 = 1 − 1 − 𝑝𝑞𝑛−1
𝑘

if 
𝑓 𝑥 = 1 − 1 − 𝑝𝑥 𝑘

then
𝑞𝑛 = 𝑓(𝑞𝑛−1)

We also have: 𝑞0 = 1.

So we obtain a series of values: 1, 𝑓 1 , 𝑓 𝑓 1 ,…

We want to find where this series converges 18



Proof

• Properties of the function 𝑓(𝑥):

1. 𝑓 0 = 0 and 𝑓 1 = 1 − 1 − 𝑝 𝑘 < 1.

passes through (0, 0); below y = x, once x = 1

2. 𝑓′ 𝑥 = 𝑝𝑘 1 − 𝑝𝑥 𝑘−1 > 0, in the interval 
[0,1] but decreasing. Our function is increasing 
and concave.

3. 𝑓′ 0 = 𝑝𝑘 = 𝑅0
Slope at x = 0
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Proof

• Case 1: 𝑅0 = 𝑝𝑘 > 1. The function starts with 
above the line 𝑦 = 𝑥 but then drops below 
the line.

𝑓 𝑥 crosses the line 𝑦 = 𝑥 at some point
20



Proof

• Starting from the value 1, repeated 
applications of the function 𝑓 𝑥 will converge 
to the value 𝑞∗ = 𝑞𝑛 = 𝑓(𝑞𝑛)
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Proof

• Case 2: 𝑅0 = 𝑝𝑘 < 1. The function starts with 
below the line 𝑦 = 𝑥. Repeated applications of 
𝑓(𝑥) converge to zero.
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Branching process

• Assumes no network structure, no triangles or 
shared neighbors
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The SIR model

• Each node may be in the following states

– Susceptible: healthy but not immune

– Infected: has the virus and can actively propagate it

– Removed: (Immune or Dead) had the virus but it is no 
longer active

• Parameter p: the probability of an Infected node to 
infect a Susceptible neighbor

24



The SIR process

• Initially all nodes are in state S(usceptible), 
except for a few nodes in state I(nfected).

• An infected node stays infected for 𝑡𝐼 steps.
– Simplest case: 𝑡𝐼 = 1

• At each of the 𝑡𝐼 steps the infected node has 
probability p of infecting any of its susceptible
neighbors
– p: Infection probability

• After 𝑡𝐼 steps the node is Removed
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Example
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Example
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Example
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Example
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Extensions

31

▪ Probability per pair of nodes

▪ Sequence of several states (e.g. early, middle, 
and late periods of the infection), and 
allowing the contagion probabilities to vary 
across these states

▪ Mutating, change the characteristics



SIR and the Branching process

• The branching process is a special case 
where the graph is a tree (and the 
infected node is the root)
– The existence of triangles shared neighbors 

makes a big difference

• The basic reproductive number is not 
necessarily informative in the general 
case
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SIR and the Branching process
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Example
R0 the expected number of new cases caused by a single node
assume 
p = 2/3, 
R0 = 4/3 > 1
Probability to fail at each level and stop (1/3)4 = 1/81



Percolation

• Percolation: we have a network of “pipes” 
which can carry liquids, and they can be either 
open, or closed

– The pipes can be pathways within a material

• If liquid enters the network from some nodes, 
does it reach most of the network?

– The network percolates
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SIR and Percolation

• There is a connection between SIR model and 
percolation

• When a virus is transmitted from u to v, the edge (u, v) 
is activated with probability p

• We can assume that all edge activations have 
happened in advance, and the input graph has only the 
active edges.

• Which nodes will be infected?
– The nodes reachable from the initial infected nodes

• In this way we transformed the dynamic SIR process 
into a static one.
– This is essentially percolation in the graph.
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Example
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The SIS model

• Susceptible-Infected-Susceptible
– Susceptible: healthy but not immune
– Infected: has the virus and can actively propagate it

• An Infected node infects a Susceptible neighbor 
with probability p

• An Infected node becomes Susceptible again with 
probability q (or after 𝑡𝐼 steps)
– In a simplified version of the model q = 1

• Nodes alternate between Susceptible and 
Infected status
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Example

• When no Infected nodes, virus dies out

• Question: will the virus die out?
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An eigenvalue point of view

• If A is the adjacency matrix of the network, then the 
virus dies out if

𝜆1 𝐴 ≤
𝑞

𝑝

• Where 𝜆1(𝐴) is the first eigenvalue of A

Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos. Epidemic Spreading in Real 
Networks: An Eigenvalue Viewpoint. SRDS 2003
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SIS and SIR
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Time expanded 
network



Including time

• Infection can only happen within the active 
window 
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Concurrency

• Importance of concurrency – enables 
branching
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• Initially, some nodes e in the I state and all others in 
the S state.

• Each node u that enters the I state remains infectious 
for a fixed number of steps tI During each of these tI

steps, u has a probability p of infected each of its 
susceptible neighbors.

• After tI steps, u is no longer infectious. Enters the R
state for a fixed number of steps tR. During each of 
these tR steps, u cannot be infected nor  transmit the 
disease. 

• After tR steps in the R state, node u returns to the S
state.
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INFLUENCE MAXIMIZATION

45



Maximizing spread

• Suppose that instead of a virus we have an item
(product, idea, video) that propagates through contact
– Word of mouth propagation.

• An advertiser is interested in maximizing the spread of
the item in the network
– The holy grail of “viral marketing”

• Question: which nodes should we “infect” so that we
maximize the spread? [KKT2003]
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Independent cascade model

47

• Each node may be active (has the item) or 
inactive (does not have the item)

• Time proceeds at discrete time-steps. 

• At time t, every node v that became active in 
time t-1 activates a non-active neighbor w
with probability 𝑝𝑢𝑤. If it fails, it does not try 
again

• The same as the simple SIR model
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Independent cascade



Influence maximization

• Influence function: for a set of nodes S (target set) 
the influence s(S) (spread) is the expected number of 
active nodes at the end of the diffusion process if the 
item is originally placed in the nodes in S. 

• Influence maximization problem [KKT03]: Given a 
network, a diffusion model, and a value k, identify a 
set S of k nodes in the network that maximizes s(S).

• The problem is NP-hard
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• What is a simple algorithm for selecting the set S?

• Computing s(S): perform multiple Monte-Carlo simulations of 
the process and take the average.

• How good is the solution of this algorithm compared to the 
optimal solution?

A Greedy algorithm

Greedy algorithm
Start with an empty set S
Proceed in k steps

At each step add the node u to the set S the maximizes the 
increase in function s(S)

• The node that activates the most additional nodes
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Approximation Algorithms

• Suppose we have a (combinatorial) optimization 
problem, and X is an instance of the problem, 
OPT(X) is the value of the optimal solution for X, 
and ALG(X) is the value of the solution of an 
algorithm ALG for X
– In our case: X = (G, k) is the input instance, OPT(X) is 

the spread s(A*) of the optimal solution, GREEDY(X) is 
the spread s(A) of the solution of the Greedy 
algorithm

• ALG is a good approximation algorithm if the ratio 
of OPT and ALG is bounded.
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Approximation Ratio

• For a maximization problem, the algorithm ALG
is an 𝛼-approximation algorithm, for 𝛼 < 1, if 
for all input instances X, 

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋

• The solution of ALG(X) has value at least α%
that of the optimal

• α is the approximation ratio of the algorithm

– Ideally, we would like α to be a constant close to 1
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Approximation Ratio for Influence 
Maximization

• The GREEDY algorithm has approximation 

ratio 𝛼 = 1 −
1

𝑒

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X
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Proof of approximation ratio

• The spread function s has two properties:

• s is monotone:
𝑠(𝐴) ≤ 𝑠 𝐵 if 𝐴 ⊆ 𝐵

• s is submodular:
𝑠 𝐴 ∪ 𝑥 − 𝑠 𝐴 ≥ 𝑠 𝐵 ∪ 𝑥 − 𝑠 𝐵 𝑖𝑓 𝐴 ⊆ 𝐵

• The addition of node x to a set of nodes has greater
effect (more activations) for a smaller set.
– The diminishing returns property
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Optimizing submodular functions

• Theorem: A greedy algorithm that optimizes a 
monotone and submodular function s, each 
time adding to the solution A, the node x that 
maximizes the gain 𝑠 𝐴 ∪ 𝑥 − 𝑠(𝐴)has 

approximation ratio 𝛼 = 1 −
1

𝑒

• The spread of the Greedy solution is at least 
63% that of the optimal
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Submodularity of influence

• Why is s(A) submodular?

– How do we deal with the fact that influence is defined 
as an expectation?

• We will use the fact that probabilistic propagation 
on a fixed graph can be viewed as deterministic 
propagation over a randomized graph

– Express s(A) as an expectation over the input graph
rather than the choices of the algorithm
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Independent cascade model

• Each edge (u,v) is considered only once, and it is “activated” 
with probability puv.

• We can assume that all random choices have been made in 
advance 
– generate a sample subgraph of the input graph where edge (u, v) is 

included with probability puv

– propagate the item deterministically on the input graph
– the active nodes at the end of the process are the nodes reachable

from the target set A

• The influence function is obviously(?) submodular when 
propagation is deterministic

• The linear combination of submodular functions is also a 
submodular function
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Computation of Expected Spread
Computing s(S): perform multiple Monte-Carlo 
simulations of the process and take the average.

To estimate the influence 
spread of S ∪ {u}, R repeated 
simulations of RanCas(S ∪ {u}) 
are used
Each run takes O(m)
Complexity for computing the 
marginal gain of adding u:
O(Rm)

For each k, all n nodes are 
tested, thus

O(knRm)



Improvements

Computation of Expected Spread
– Performing simulations for estimating the spread 

on multiple instances is very slow. Several 
techniques have been developed for speeding up 
the process.
• CELF: exploiting the submodularity property

• Maximum Influence Paths: store paths for computation

• Sketches: compute sketches for each node for 
approximate estimation of spread

(the marginal gain of a node in the current iteration cannot be better than its marginal gain in the previous 
iteration) J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen, N. S. Glance. Cost-effective 
outbreak detection in networks. KDD 2007

W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral marketing in large-
scale social networks. KDD 2010.

Edith Cohen, Daniel Delling, Thomas Pajor, Renato F. Werneck. Sketch-based Influence Maximization and 
Computation: Scaling up with Guarantees. CIKM 2014
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Degree discount

60

General idea
▪ Select seed nodes based on their degree
▪ If node v is selected, decrease the degree of all its 

neighbors

Wei Chen, Yajun Wang, Siyu Yang: Efficient influence maximization in social networks. 
KDD 2009: 199-208
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Maximum influence path

Wei Chen, Chi Wang, Yajun Wang: Scalable influence maximization for prevalent viral 
marketing in large-scale social networks. KDD 2010: 1029-1038

General idea
▪ For each node, use the maximum influence paths 

(paths with the largest probability) to all other 
nodes
▪ Shortest weighted path

▪ Assumption: influence propagates through these 
paths

▪ Given this assumption, estimate the probability 
that a node is activated 



Reverse Reachable Sets

62

Construct graph X from G by removing each edge e in 
G with 1 − p(e) probability. 

Let v be a node in G, the reverse reachable (RR) set for 
v in X is the set of nodes in X that can reach v. 

That is, for each node u in the RR set, there is a 
directed path from u to v in X.

Youze Tang, Xiaokui Xiao, Yanchen Shi: Influence maximization: near-optimal time 
complexity meets practical efficiency. SIGMOD Conference 2014: 75-86



Reverse Reachable Sets

63

A random RR set is an RR set generated on an instance 
of X randomly sampled from G, for a node selected 
uniformly at random from X.

Let p be the probability for an RR set generated for v 
to overlap with a node set S, then when we use S as 
the seed set to run an influence propagation process 
on G, we have probability p to activate v 



Reverse Reachable Sets
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1. Generate a certain number of random RR sets from 
G.

2. Select k nodes to cover the maximum number of RR 
sets generated. (maximum coverage)

3. Return the k nodes as seed



Linear threshold model 

• Again, each node may be active or inactive 
• Every directed edge (v,u) in the graph has a weight bvu, such 

that



𝑣 is a neighbor of 𝑢

𝑏𝑣𝑢 ≤ 1

• Each node u has a randomly generated threshold value Tu

• Time proceeds in discrete time-steps. At time t an inactive
node u becomes active if



𝑣 is an active neighbor of 𝑢

𝑏𝑣𝑢 ≥ 𝑇𝑢

• Related to the game-theoretic model of adoption.
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Linear threshold model 



Influence Maximization

• KKT03 showed that in this case the influence 
s(A) is still a submodular function, using a 
similar technique

– Assumes uniform random thresholds

• The Greedy algorithm achieves a (1-1/e) 
approximation 
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Proof idea

• For each node 𝑢, pick one of the edges 
(𝑣, 𝑢) incoming to 𝑢 with probability 𝑏𝑣𝑢and 
make it live. With probability 1 − σ𝑏𝑣𝑢 it picks 
no edge to make live

• Claim: Given a set of seed nodes A, the following 
two distributions are the same:
– The distribution over the set of activated nodes using 

the Linear Threshold model and seed set A 

– The distribution over the set of reachable nodes from 
A using live edges.
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Proof idea (submodularity LT model)

• Consider the special case of a DAG (Directed Acyclic Graph)
– There is a topological ordering of the nodes 𝑣0, 𝑣1, … , 𝑣𝑛 such 

that edges go from left to right

• Consider node 𝑣𝑖 in this ordering and assume that 𝑆𝑖 is the 
set of neighbors of 𝑣𝑖 that are active. 

• What is the probability that node 𝑣𝑖 becomes active in 
either of the two models?
– In the Linear Threshold model the random threshold 𝜃𝑖 must be  
σ𝑢∈𝑆𝑖

𝑏𝑢𝑖 ≥ 𝜃𝑖
– In the live-edge model we should pick one of the edges in 𝑆𝑖

• This proof idea generalizes to general graphs
– Note: if we know the thresholds in advance submodularity does 

not hold!

69



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Assume that all edge weights incoming to any node sum to 1
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Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The nodes select a single incoming edge with probability 
equal to the weight (uniformly at random in this case)
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Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Node 𝑣1 is the seed
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Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Node 𝑣3 has a single incoming neighbor, therefore for 
any threshold it will be activated
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Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The probability that node 𝑣4 gets activated is 2/3 since it has 
incoming edges from two active nodes.
The probability that node 𝑣4 picks one of the two edges to 
these nodes is also 2/3 74



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Similarly the probability that node 𝑣6 gets activated is 2/3 
since it has incoming edges from two active nodes.
The probability that node 𝑣6 picks one of the two edges to 
these nodes is also 2/3 75



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The set of active nodes is the set of nodes reachable from 𝑣1
with live edges (orange). 
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One-slide summary

• Influence maximization: Given a graph 𝐺 and a budget 𝑘, 
for some diffusion model, find a subset of 𝑘 nodes 𝐴, such 
that when activating these nodes, the spread of the 
diffusion 𝑠(𝐴) in the network is maximized.

• Diffusion models:
– Independent Cascade model
– Linear Threshold model

• Algorithm: Greedy algorithm that adds to the set each time 
the node with the maximum marginal gain, i.e., the node 
that causes the maximum increase in the diffusion spread.

• The Greedy algorithm gives a 1 −
1

𝑒
approximation of the 

optimal solution 
– Follows from the fact that the spread function 𝑠 𝐴 is 

• Monotone
• Submodular 

𝑠 𝐴 ≤ 𝑠 𝐵 , if 𝐴 ⊆ 𝐵

𝑠 𝐴 ∪ {𝑥} − 𝑠 𝐴 ≥ 𝑠 𝐵 ∪ 𝑥 − 𝑠 𝐵 , ∀𝑥 if 𝐴 ⊆ 𝐵
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Evolving network

• Consider a network that changes over time

– Edges and nodes can appear and disappear at 
discrete time steps

• Model:

– The evolving network is a sequence of graphs 
{𝐺1, 𝐺2, … , 𝐺𝑛} defined over the same set of 
vertices 𝑉, with different edge sets 𝐸1, 𝐸2, … , 𝐸𝑛
• Graph snapshot 𝐺𝑖 is the graph at time-step 𝑖 .

N. Gayraud, E. Pitoura, P. Tsaparas. Maximizing Diffusion in Evolving Networks. 
ACM COSN 2015
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Example

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟐 𝑮𝟑𝑮𝟏

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑
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Time

• How does the evolution of the network relates to the 
evolution of the diffusion?
– How much physical time does a diffusion step last?

• Assumption: The two processes are in sync. One 
diffusion step happens in on one graph snapshot

• Evolving IC model: at time-step 𝑡, the infectious nodes 
try to infect their neighbors in the graph 𝐺𝑡.

• Evolving LT model: at time-step 𝑡 if the weight of the 
active neighbors of node 𝑣 in graph 𝐺𝑡 is greater than 
the threshold the nodes gets activated.
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Submodularity

• Will the spread function remain monotone 
and submodular?

• No!

81



Monotonicity for the EIC model

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
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𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
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𝒖𝟑

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑
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Monotonicity for the EIC model

𝑮𝟏 𝑮𝟐 𝑮𝟑𝑮𝟎

𝑮𝟏 𝑮𝟑𝑮𝟐
𝑮𝟎

The spread is not monotone in the case of the Evolving IC model
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Submodularity for the EIC model
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Submodularity for the EIC model
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Activating node 𝑣1 at time 𝑡 = 0 has spread 7
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Submodularity for the EIC model

Activating node 𝑣1 at time 𝑡 = 0 has spread 7

Adding node 𝑣6 at time 𝑡 = 3 does not increase the spread
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Submodularity for the EIC model
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Activating nodes 𝑣1 and 𝑣5 at time 𝑡 = 0 has spread 4
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Submodularity for the EIC model

Activating nodes 𝑣1 and 𝑣5 at time 𝑡 = 0 has spread 4
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Adding node 𝑣6 at time 𝑡 = 3 increases the spread  to 9
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Evolving LT model

• The evolving LT model is monotone but it is not 
submodular

• Expected Spread: the probability that 𝑢 gets infected
– Adding node 𝑣3 has a larger effect if added to the set  
{𝑣1, 𝑣2} than to set {𝑣1}.

𝑮𝑼

𝒗𝟏 𝒗𝟑

𝒗𝟐

𝒖

𝑮𝟏 𝑮𝟐

𝒗𝟏 𝒗𝟑

𝒗𝟐

𝑢

𝒗𝟏 𝒗𝟑

𝒗𝟐

𝒖
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Extensions

• Other models for diffusion
– Deadline model: There is a deadline by which a node can be 

infected

– Time-decay model: The probability of an infected node to infect 
its neighbors decays over time

– Timed influence: Each edge has a speed of infection, and you 
want to maximize the speed by which nodes are infected.

• Competing diffusions
– Maximize the spread while competing with other products that 

are being diffused. 

A. Borodin, Y. Filmus, and J. Oren. Threshold models for competitive influence in social networks. WINE, 2010.
M. Draief and H. Heidari. M. Kearns. New Models for Competitive Contagion. AAAI 2014.

N. Du, L. Song, M. Gomez-Rodriguez, H. Zha. Scalable influence estimation in continuous-time diffusion networks. NIPS 2013.

W. Chen, W. Lu, N. Zhang. Time-critical influence maximization in social networks with time-delayed diffusion process. AAAI, 2012.

B. Liu, G. Cong, D. Xu, and Y. Zeng. Time constrained influence maximization in social networks. ICDM 2012.
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Extensions

• Reverse problems:
– Initiator discovery: Given the state of the 

diffusion, find the nodes most likely to have 
initiated the diffusion

– Diffusion trees: Identify the most likely tree of 
diffusion tree given the output

– Infection probabilities: estimate the true infection 
probabilities
M. Gomez-Rodriguez, D. Balduzzi, B. Scholkopf. Uncovering the temporal dynamics of diffusion 
networks. ICML, 2011.

M. Gomez Rodriguez, J. Leskovec, A. Krause. Inferring networks of diffusion and influence. KDD 
2010

H. Mannila, E. Terzi. Finding Links and Initiators: A Graph-Reconstruction Problem. SDM 2009
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Multiple copies model

• Each node may have multiple copies of the same 
virus
– 𝒗: state vector : 𝑣𝑖 : number of virus copies at node 𝑖

• At time 𝑡 = 0, the state vector is initialized to 𝒗0

• At time t,
For each node i

For each of the 𝑣𝑖
𝑡 virus copies at node 𝑖

the copy is copied to a neighbor 𝑗 with prob 𝑝

the copy dies with probability 𝑞

G. Giakkoupis, A. Gionis, E. Terzi, P. T. Models and algorithms for network immunization. Technical Report C-2005-75, 
Department of Computer Science, University of Helsinki, 2005 94



Analysis

• The expected state of the system at time t is 
given by

𝒗𝒕 = 𝑝𝑨 + 1 − 𝑞 𝑰 𝒗𝒕−𝟏 = 𝑴𝒗𝒕−𝟏

𝑀 =

1 − 𝑞 𝑝
0 1 − 𝑞

𝑝 0
𝑝 𝑝

0 0
𝑝 0

1 − 𝑞 𝑝
0 1 − 𝑞

𝑣1

𝑣2

𝑣3

𝑣4

Probability that the copy from 
node 𝑣4is copied to node 𝑣1

Probability that the copy from 
node 𝑣4 survives at 𝑣4
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Analysis

• As 𝑡 → ∞

– if 𝜆1 𝑀 < 1 ⇔ 𝜆1 𝐴 < 𝑞/𝑝 then 𝑣𝑡 → 0

• the probability that all copies die converges to 1

– if 𝜆1 𝑀 = 1 ⇔ 𝜆1 𝐴 = 𝑞/𝑝 then 𝑣𝑡 → 𝑐

• the probability that all copies die converges to 1

– if 𝜆1 𝑀 > 1 ⇔ 𝜆1 𝐴 > 𝑞/𝑝 then 𝑣𝑡 → ∞

• the probability that all copies die converges to a constant < 1
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Another example

• What is the spread from the red node?

• Inclusion of time changes the problem of 
influence maximization
– N. Gayraud, E. Pitoura, P. Tsaparas, Diffusion Maximization on Evolving 

networks
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