
DATA MINING

LECTURE 11
Link Analysis Ranking

PageRank -- Random walks

HITS

Absorbing Random Walks and Label Propagation

Network Science

• A number of complex systems can be modeled as
networks (graphs).
• The Web

• (Online) Social Networks

• Biological systems

• Communication networks (internet, email)

• The Economy

• We cannot truly understand such complex systems
unless we understand the underlying network.
• Everything is connected, studying individual entities gives

only a partial view of a system

• Data mining for networks is a very popular area
• Applications to the Web is one of the success stories for

network data mining.

How to organize the web

• First try: Manually curated Web Directories

How to organize the web

• Second try: Web Search
• Information Retrieval investigates:

• Find relevant docs in a small and trusted set e.g.,
Newspaper articles, Patents, etc. (“needle-in-a-
haystack”)

• Limitation of keywords (synonyms, polysemy, etc)

• But: Web is huge, full of untrusted documents, random things, web
spam, etc.

 Everyone can create a web page of high production

value

 Rich diversity of people issuing queries

 Dynamic and constantly-changing nature of web
content

How to organize the web

• Third try (the Google era): using the web graph

• Sift from relevance to authoritativeness

• It is not only important that a page is relevant, but that it

is also important on the web

• For example, what kind of results would we like to

get for the query “greek newspapers”?

Link Analysis

• Not all web pages are equal on the web

What is the simplest way to

measure importance of a

page on the web?

Link Analysis Ranking

• Use the graph structure in order to determine the

relative importance of the nodes

• Applications: Ranking on graphs (Web, Twitter, FB, etc)

• Intuition: An edge from node p to node q denotes

endorsement

• Node p endorses/recommends/confirms the

authority/centrality/importance of node q

• Use the graph of recommendations to assign an

authority value to every node

Rank by Popularity

• Rank pages according to the number of incoming

edges (in-degree, degree centrality)

1. Red Page

2. Yellow Page

3. Blue Page

4. Purple Page

5. Green Page

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Popularity

• It is not important only how many link to you, but
how important are the people that link to you.

• Good authorities are pointed by good authorities
• Recursive definition of importance

PAGERANK

PageRank

• Good authorities should be pointed by
good authorities
• The value of a node is the value of the nodes that

point to it.

• How do we implement that?
• Assume that we have a unit of authority to

distribute to all nodes.

• Initially each node gets
1

𝑛
 amount of authority

• Each node distributes the authority value they have
to their neighbors

• The authority value of each node is the sum of the
authority fractions it collects from its neighbors.

The PageRank algorithm

Think of the nodes in the

graph as containers of

capacity of 1 liter.

We distribute a liter of

liquid equally to all

containers

The edges act like pipes

that transfer liquid

between nodes.

The PageRank algorithm

The contents of each

node are distributed to

its neighbors.

The PageRank algorithm

The edges act like pipes

that transfer liquid

between nodes.

The contents of each

node are distributed to

its neighbors.

The PageRank algorithm

The edges act like pipes

that transfer liquid

between nodes.

The contents of each

node are distributed to

its neighbors.

The PageRank algorithm

The edges act like pipes

that transfer liquid

between nodes.

The system will reach an

equilibrium state where

the amount of liquid in

each node remains

constant.

The PageRank algorithm

The amount of liquid in

each node determines

the importance of the

node.

Large quantity means

large incoming flow from

nodes with large quantity

of liquid.

The PageRank algorithm

PageRank

• Good authorities should be pointed by
good authorities
• The value of a node is the value of the nodes that point

to it.

• How do we implement that?
• Assume that we have a unit of authority to distribute to

all nodes.

• Initially each node gets
1

𝑛
 amount of authority

• Each node distributes the authority value they have to
their neighbors

• The authority value of each node is the sum of the
authority fractions it collects from its neighbors.

𝑤𝑣 =
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

𝑤𝑣: the PageRank value of node 𝑣

Recursive definition

Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑤𝑣 =
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Computing PageRank weights

• A simple way to compute the weights is by
iteratively updating the weights

• PageRank Algorithm

• This process converges

Initialize all PageRank weights to
1

𝑛

Repeat:

 𝑤𝑣 =
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢𝑢→𝑣

Until the weights do not change

Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑤𝑣 =
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓

t=0 0.2 0.2 0.2 0.2 0.2

t=1 0.16 0.36 0.16 0.1 0.2

t=2 0.13 0.28 0.11 0.1 0.36

t=3 0.22 0.22 0.1 0.18 0.28

t=4 0.2 0.27 0.17 0.14 0.22

Think of the weight as a fluid: there is

constant amount of it in the graph,

but it moves around until it stabilizes

Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑤𝑣 =
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓

t=25 0.18 0.27 0.13 0.13 0.27 Think of the weight as a fluid: there is

constant amount of it in the graph,

but it moves around until it stabilizes

Random Walks on Graphs

• The algorithm defines a random walk on the graph

• Random walk:
• Start from a node chosen uniformly at random with

probability
1

𝑛
.

• Pick one of the outgoing edges uniformly at random

• Move to the destination of the edge

• Repeat.

• The Random Surfer model
• Users wander on the web, following links.

Example

• Step 0

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 0

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 1

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 1

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 2

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 2

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 3

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 3

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Example

• Step 4…

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

Random walk

• Question: what is the probability 𝑝𝑖
𝑡 of being at

node 𝑖 after 𝑡 steps?

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

𝑝3
0 =
1

5

𝑝4
0 =
1

5

𝑝5
0 =
1

5

𝑝1
𝑡 =
1

3
𝑝4
𝑡−1 +
1

2
𝑝5
𝑡−1

𝑝2
𝑡 =
1

2
𝑝1
𝑡−1

+ 𝑝3
𝑡−1 +
1

3
𝑝4
𝑡−1

𝑝3
𝑡 =
1

2
𝑝1
𝑡−1 +

1

3
𝑝4
𝑡−1

𝑝4
𝑡 =
1

2
𝑝5
𝑡−1

𝑝5
𝑡 = 𝑝2

𝑡−1

𝑝1
0 =
1

5

𝑝2
0 =
1

5

The equations are the same as those for the

PageRank computation

Markov chains
• A Markov chain describes a discrete time stochastic process over a set of

states
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}

 according to a transition probability matrix 𝑃 = {𝑃𝑖𝑗}
• 𝑃𝑖𝑗 = probability of moving to state 𝑗 when at state 𝑖

• Matrix 𝑃 has the property that the entries of all rows sum to 1

 𝑃 𝑖, 𝑗 = 1

𝑗

 A matrix with this property is called stochastic

• State probability distribution: The vector 𝑝𝑡 = (𝑝𝑖
𝑡 , 𝑝2
𝑡 , … , 𝑝𝑛

𝑡) that stores the
probability of being at state 𝑠𝑖 after 𝑡 steps

• Memorylessness property: The next state of the chain depends only at the
current state and not on the past of the process (first order MC)
• Higher order MCs are also possible

• Markov Chain Theory: After infinite steps the state probability vector converges

to a unique distribution if the chain is irreducible and aperiodic

Random walks

• Random walks on graphs correspond to Markov

Chains

• The set of states 𝑆 is the set of nodes of the graph 𝐺

• The transition probability matrix is the probability that

we follow an edge from one node to another

𝑃 𝑖, 𝑗 =
1

d𝑜𝑢𝑡 𝑖

• We can compute the vector 𝑝𝑡 at step t using a

vector-matrix multiplication
𝑝𝑡+1 = 𝑝𝑡𝑃

An example

























0210021

00313131

00010

10000

0021210

P

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

























01001

00111

00010

10000

00110

A

An example

























0210021

00313131

00010

10000

0021210

P

𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

𝑝1
𝑡 =
1

3
𝑝4
𝑡−1 +
1

2
𝑝5
𝑡−1

𝑝2
𝑡 =
1

2
𝑝1
𝑡−1

+ 𝑝3
𝑡−1 +
1

3
𝑝4
𝑡−1

𝑝3
𝑡 =
1

2
𝑝1
𝑡−1 +

1

3
𝑝4
𝑡−1

𝑝4
𝑡 =
1

2
𝑝5
𝑡−1

𝑝5
𝑡 = 𝑝2

𝑡−1

Stationary distribution

• The stationary distribution of a random walk with
transition matrix 𝑃, is a probability distribution 𝜋,
such that 𝜋 = 𝜋𝑃

• The stationary distribution is an eigenvector of
matrix 𝑃
• the principal left eigenvector of P – stochastic matrices

have maximum eigenvalue 1

• Markov Chain Theory: The random walk converges
to a unique stationary distribution independent of
the initial vector if the graph is strongly connected,
and not bipartite.

Computing the stationary distribution

• The Power Method

• After many iterations 𝑝𝑡 → 𝜋 regardless of the
initial vector 𝑝0

• Power method because it computes 𝑝𝑡 = 𝑝0𝑃𝑡

• Rate of convergence
• determined by the second eigenvalue 𝜆2

Initialize 𝑝0 to some distribution
Repeat
 𝑝𝑡 = 𝑝𝑡−1𝑃
Until convergence

The stationary distribution

• What is the meaning of the stationary distribution 𝜋 of a
random walk?

• 𝜋(𝑖): the fraction of times that we visited state 𝑖 as 𝑡 → ∞

• 𝜋(𝑖): the probability of being at node 𝑖 after very large
(infinite) number of steps

• 𝜋 is the left eigenvector of transition matrix P

• 𝜋 = 𝑝0𝑃
∞, where 𝑃 is the transition matrix, 𝑝0 the original

vector
• 𝑃 𝑖, 𝑗 : probability of going from i to j in one step

• 𝑃2(𝑖, 𝑗): probability of going from i to j in two steps (probability of all
paths of length 2)

• 𝑃∞ 𝑖, 𝑗 = 𝜋(𝑗): probability of going from i to j in infinite steps –
starting point does not matter.

The PageRank random walk

• Vanilla random walk

• make the adjacency matrix stochastic and run a random

walk

























0210021

00313131

00010

10000

0021210

P

The PageRank random walk

• What about sink nodes?

• what happens when the random walk moves to a node

without any outgoing inks?

























0210021

00313131

00010

00000

0021210

P

























0210021

00313131

00010

5151515151

0021210

P'

The PageRank random walk

• Replace these row vectors with a vector v

• typically, the uniform vector

P’ = P + dvT





otherwise0

sink is i if1
d

The PageRank random walk

• What about loops?

• Spider traps

















































5151515151

5151515151

5151515151

5151515151

5151515151

2100021

00313131

00010

5151515151

0021210

'P' )1(

The PageRank random walk

• Add a random jump to vector 𝑣 with prob 𝛼
• Typically, to a uniform vector

• Guarantees irreducibility, convergence

• You can think of the random jump as a restart of the

random walk

𝑃’’ = (1 − 𝛼)𝑃’ + 𝛼𝑢𝑣𝑇, where u is the vector of all 1s
Random walk with restarts

PageRank algorithm [BP98]

• Rank according to the stationary

distribution

𝑤𝑣 = 1 − 𝛼
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑢→𝑣

+ 𝛼
1

𝑛

• 𝛼 = 0.15 in most cases

• The Random Surfer model

• Start with a random page

• With probability 𝛼 follow one of the

links in the page

• With probability 1 − 𝛼 restart from a

random page

1. Red Page

2. Purple Page

3. Yellow Page

4. Blue Page

5. Green Page

Stationary distribution with random jump

• If 𝑣 is the jump vector

• Explanation: When you start a random walk:
• With probability 𝛼 you will restart immediately

• With probability 1 − 𝛼 𝛼 you will do one step and then restart

• With probability 1 − 𝛼 2𝛼 you will do two steps and then restart

• Etc…

• Conclusion: you are not likely to walk very far
• On average the random walk restarts every 1/𝛼 steps

𝑝0 = 𝑣
𝑝1 = (1 − 𝛼)𝑝0𝑃 + 𝛼𝑣 = (1 − 𝛼)𝑣𝑃 + 𝛼𝑣
𝑝2 = (1 − 𝛼)𝑝1𝑃 + 𝛼𝑣 = (1 − 𝛼)2𝑣𝑃2 + 1 − 𝛼 𝛼𝑣𝑃 + 𝛼𝑣
𝑝2 = 1 − 𝛼 𝑝2𝑃 + 𝛼𝑣 = 1 − 𝛼 3𝑣𝑃3 + 1 − 𝛼 2𝛼𝑣𝑃2 ++ 1 − 𝛼 𝛼𝑣𝑃 + 𝛼𝑣

⋮
𝑝∞ = 𝛼𝑣 + 1 − 𝛼 𝛼𝑣𝑃 + 1 − 𝛼 2𝛼𝑣𝑃2 + ⋯ = 𝛼 𝐼 − (1 − 𝛼)𝑃 −1

Stationary distribution with random jump

• With the random jump the shorter paths are more
important, since the weight decreases exponentially
• This changes the stationary distribution. When starting from

some node 𝑥, nodes close to 𝑥 have higher probability

• Jump/Restart vector:
• If 𝑣 is not uniform, we can bias the random walk towards the

nodes that are close to 𝑣

• Personalized Pagerank:

• Always restart to some node 𝑥
• E.g., the home page of a user

• Topic-Specific Pagerank

• Restart to nodes about a specific topic

• E.g., Greek pages, University home pages

• Anti-spam

Random walks on undirected graphs

• For undirected graphs, the stationary distribution

is proportional to the degrees of the nodes

• Thus in this case a random walk is the same as degree

popularity

• This is no longer true if we do random jumps

• Now the short paths play a greater role, and the

previous distribution does not hold.

Pagerank implementation

• Store the graph in adjacency list, or list of edges

• Keep current pagerank values and new pagerank

values

• Go through edges and update the values of the

destination nodes.

• Repeat until the difference (𝐿1 or 𝐿∞ difference) is

below some small value ε.

A (Matlab-friendly) PageRank algorithm

• Performing vanilla power method is now too

expensive – the matrix is not sparse

q0 = v

t = 1

repeat

 t = t +1

until δ < ε

  1tTt q'P'q 
1tt qqδ 

Efficient computation of y = (P’’)T x

βvyy

yx β

xα)Py

11

T





 1(

P = normalized adjacency matrix

P’’ = (1-α)P’ + αuvT, where u is the vector of all 1s

P’ = P + dvT, where di is 1 if i is sink and 0 o.w.

Pagerank history

• Huge advantage for Google in the early days
• It gave a way to get an idea for the value of a page, which

was useful in many different ways

• Put an order to the web.

• After a while it became clear that the anchor text was
probably more important for ranking

• Also, link spam became a new (dark) art

• Flood of research
• Numerical analysis got rejuvenated

• Huge number of variations

• Efficiency became a great issue.

• Huge number of applications in different fields

• Random walk is often referred to as PageRank.

THE HITS ALGORITHM

The HITS algorithm

• Another algorithm proposed around the same

time as Pagerank for using the hyperlinks to rank

pages

• Kleinberg: then an intern at IBM Almaden

• IBM never made anything out of it

Query dependent input

Root Set

Root set obtained from a text-only search engine

Query dependent input

Root Set

IN OUT

Query dependent input

Root Set

IN OUT

Query dependent input

Root Set

IN OUT

Base Set

Hubs and Authorities [K98]

• Authority is not necessarily
transferred directly
between authorities

• Pages have double
identity
• hub identity

• authority identity

• Good hubs point to good
authorities

• Good authorities are
pointed by good hubs

hubs authorities

Hubs and Authorities

• Two kind of weights:

• Hub weight

• Authority weight

• The hub weight is the sum of the authority

weights of the authorities pointed to by the hub

• The authority weight is the sum of the hub

weights that point to this authority.

HITS Algorithm

• Initialize all weights to 1.

• Repeat until convergence
• O operation : hubs collect the weight of the authorities

• I operation: authorities collect the weight of the hubs

• Normalize weights under some norm





jij

ji ah
:





ijj

ji ha
:

Example

hubs authorities

1

1

1

1

1

1

1

1

1

1

Initialize

Example

hubs authorities

1

1

1

1

1

1

2

3

2

1

Step 1: O operation

Example

hubs authorities

6

5

5

2

1

1

2

3

2

1

Step 1: I operation

Example

hubs authorities

1

5/6

5/6

2/6

1/6

1/3

2/3

1

2/3

1/3

Step 1: Normalization (Max norm)

Example

hubs authorities

1

5/6

5/6

2/6

1/6

1

11/6

16/6

7/6

1/6

Step 2: O step

Example

hubs authorities

33/6

27/6

23/6

7/6

1/6

1

11/6

16/6

7/6

1/6

Step 2: I step

Example

hubs authorities

1

27/33

23/33

7/33

1/33

6/16

11/16

1

7/16

1/16

Step 2: Normalization

Example

hubs authorities

1

0.8

0.6

0.14

0

0.4

0.75

1

0.3

0

Convergence

HITS and eigenvectors

• The HITS algorithm is a power-method eigenvector
computation

• In vector terms
• 𝑎𝑡 = 𝐴𝑇ℎ𝑡−1 and ℎ𝑡 = 𝐴𝑎𝑡−1
• 𝑎𝑡 = 𝐴𝑇𝐴𝑎𝑡−1 and ℎ𝑡 = 𝐴𝐴𝑇ℎ𝑡−1
• Repeated iterations will converge to the eigenvectors

• The authority weight vector 𝑎 is the eigenvector of 𝐴𝑇𝐴
• The hub weight vector ℎ is the eigenvector of 𝐴𝐴𝑇

• The vectors 𝑎 and ℎ are called the singular vectors of
the matrix A

Singular Value Decomposition

• r : rank of matrix A

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

• : left singular vectors (eig-vectors of AAT)

• : right singular vectors (eig-vectors of ATA)

•

 






































r

2

1

r

2

1

r21
T

v

v

v

σ

σ

σ

uuuVΣUA















[n×r] [r×r] [r×n]

r21 u,,u,u





r21 v,,v,v





T
rrr

T
222

T
111 vuσvuσvuσA







Why does the Power Method work?

• If a matrix R is real and symmetric, it has real
eigenvalues and eigenvectors: 𝜆1, 𝑤1 , 𝜆2, 𝑤2 ,
 … , (𝜆𝑟 , 𝑤𝑟)
• r is the rank of the matrix

• |𝜆1 ≥ |𝜆2 ≥ ⋯ ≥ 𝜆𝑟

• For any matrix R, the eigenvectors 𝑤1, 𝑤2, … , 𝑤𝑟 of R
define a basis of the vector space
• For any vector 𝑥, 𝑅𝑥 = 𝛼1𝑤1 + 𝑎2𝑤2 +⋯+ 𝑎𝑟𝑤𝑟

• After t multiplications we have:
𝑅𝑡𝑥 = 𝜆1

𝑡−1𝛼1𝑤1 + 𝜆2
𝑡−1𝑎2𝑤2 +⋯+ 𝜆2

𝑡−1𝑎𝑟𝑤𝑟

• Normalizing leaves only the term 𝑤1.

OTHER ALGORITHMS

The SALSA algorithm [LM00]

• Perform a random walk alternating
between hubs and authorities

• What does this random walk
converge to?

• The graph is essentially
undirected, so it will be
proportional to the degree.

hubs authorities

Social network analysis

• Evaluate the centrality of individuals in social

networks

• degree centrality

• the (weighted) degree of a node

• distance centrality

• the average (weighted) distance of a node to the rest in the

graph

• betweenness centrality

• the average number of (weighted) shortest paths that use node v

 
 



vu

c
u)d(v,

1
vD

  



tvs st

st
c

σ

(v)σ
vB

Counting paths – Katz 53

• The importance of a node is measured by the

weighted sum of paths that lead to this node

• Am[i,j] = number of paths of length m from i to j

• Compute

• converges when b < λ1(A)

• Rank nodes according to the column sums of the

matrix P

  IbAIAbAbbAP
1mm22 




Bibliometrics

• Impact factor (E. Garfield 72)

• counts the number of citations received for papers of

the journal in the previous two years

• Pinsky-Narin 76

• perform a random walk on the set of journals

• Pij = the fraction of citations from journal i that are

directed to journal j

ABSORBING RANDOM

WALKS

Random walk with absorbing nodes

• What happens if we do a random walk on this
graph? What is the stationary distribution?

• All the probability mass on the red sink node:
• The red node is an absorbing node

Random walk with absorbing nodes

• What happens if we do a random walk on this graph?
What is the stationary distribution?

• There are two absorbing nodes: the red and the blue.

• The probability mass will be divided between the two

Absorption probability

• If there are more than one absorbing nodes in the

graph a random walk that starts from a non-

absorbing node will be absorbed in one of them

with some probability

• The probability of absorption gives an estimate of how

close the node is to red or blue

Absorption probability

• Computing the probability of being absorbed:
• The absorbing nodes have probability 1 of being absorbed in

themselves and zero of being absorbed in another node.

• For the non-absorbing nodes, take the (weighted) average of
the absorption probabilities of your neighbors

• if one of the neighbors is the absorbing node, it has probability 1

• Repeat until convergence (= very small change in probs)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3

2

2

1

1

1
2

1

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝑅𝑒𝑑 = 1 , 𝑃 𝑅𝑒𝑑 𝐵𝑙𝑢𝑒 = 0

Absorption probability

• Computing the probability of being absorbed:
• The absorbing nodes have probability 1 of being absorbed in

themselves and zero of being absorbed in another node.

• For the non-absorbing nodes, take the (weighted) average of
the absorption probabilities of your neighbors

• if one of the neighbors is the absorbing node, it has probability 1

• Repeat until convergence (= very small change in probs)

𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝐵𝑙𝑢𝑒|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

2

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

3

2

2

1

1

1
2

1

𝑃 𝐵𝑙𝑢𝑒 𝐵𝑙𝑢𝑒 = 1 , 𝑃 𝐵𝑙𝑢𝑒 𝑅𝑒𝑑 = 0

Why do we care?

• Why do we care to compute the absorption
probability to sink nodes?

• Given a graph (directed or undirected) we can
choose to make some nodes absorbing.
• Simply direct all edges incident on the chosen nodes towards

them and remove outgoing edges.

• The absorbing random walk provides a measure of
proximity of non-absorbing nodes to the chosen
nodes.
• Useful for understanding proximity in graphs

• Useful for propagation in the graph

• E.g, some nodes have positive opinions for an issue, some have
negative, to which opinion is a non-absorbing node closer?

Example

• In this undirected weighted graph we want to

learn the proximity of nodes to the red and blue

nodes

2

2

1

1

1
2

1

Example

• Make the nodes absorbing

2

2

1

1

1
2

1

Absorption probability

• Compute the absorbtion probabilities for red and

blue

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

3

0.52

0.48

0.42

0.58

0.57

0.43 2

2

1

1

1
2

1
𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 = 1 − 𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 = 1 − 𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 = 1 − 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

Penalizing long paths

• The orange node has the same probability of

reaching red and blue as the yellow one

• Intuitively though it is further away
0.52

0.48

0.42

0.58

0.57

0.43 2

2

1

1

1
2

1
𝑃 𝐵𝑙𝑢𝑒 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 1

𝑃 𝑅𝑒𝑑 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

0.57

0.43

Penalizing long paths

• Add an universal absorbing node to which each

node gets absorbed with probability α.

1-α
α

α

α α

1-α
1-α

1-α

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 = (1 − 𝛼)
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

With probability α the random walk dies

With probability (1-α) the random walk

continues as before

The longer the path from a node to an

absorbing node the more likely the random

walk dies along the way, the lower the

absorbtion probability

e.g.

Random walk with restarts

• Adding a jump with probability α to a universal absorbing node
seems similar to Pagerank

• Random walk with restart:
• Start a random walk from node u

• At every step with probability α, jump back to u

• The probability of being at node v after large number of steps defines again a
similarity between nodes u,v

• The Random Walk With Restarts (RWS) and Absorbing Random
Walk (ARW) are similar but not the same
• RWS computes the probability of paths from the starting node u to a node v,

while AWR the probability of paths from a node v, to the absorbing node u.

• RWS defines a distribution over all nodes, while AWR defines a probability for
each node

• An absorbing node blocks the random walk, while restarts simply bias towards
starting nodes

• Makes a difference when having multiple (and possibly competing) absorbing nodes

Propagating values

• Assume that Red has a positive value and Blue a
negative value
• Positive/Negative class, Positive/Negative opinion

• We can compute a value for all the other nodes by
repeatedly averaging the values of the neighbors
• The value of node u is the expected value at the point of absorption

for a random walk that starts from u

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6

+1

-1

0.05 -0.16

0.16 2

2

1

1

1
2

1

Electrical networks and random walks

• Our graph corresponds to an electrical network

• There is a positive voltage of +1 at the Red node, and a
negative voltage -1 at the Blue node

• There are resistances on the edges inversely proportional to
the weights (or conductance proportional to the weights)

• The computed values are the voltages at the nodes

+1

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6

+1

-1
2

2

1

1

1
2

1

0.05 -0.16

0.16

Opinion formation

• The value propagation can be used as a model of opinion formation.

• Model:
• Opinions are values in [-1,1]

• Every user 𝑢 has an internal opinion 𝑠𝑢, and expressed opinion 𝑧𝑢.
• The expressed opinion minimizes the personal cost of user 𝑢:

𝑐 𝑧𝑢 = 𝑠𝑢 − 𝑧𝑢
2 + 𝑤𝑢 𝑧𝑢 − 𝑧𝑣

2

𝑣:𝑣 is a friend of 𝑢

• Minimize deviation from your beliefs and conflicts with the society

• If every user tries independently (selfishly) to minimize their personal
cost then the best thing to do is to set 𝑧𝑢to the average of all opinions:

𝑧𝑢 =
𝑠𝑢 + 𝑤𝑢𝑧𝑢𝑣:𝑣 is a friend of 𝑢

1 + 𝑤𝑢𝑣:𝑣 is a friend of 𝑢

• This is the same as the value propagation we described before!

Example

• Social network with internal opinions

2

2

1

1

1
2

1

s = +0.5

s = -0.3

s = -0.1 s = +0.2

s = +0.8

Example

2

2

1

1

1
2

1

1

1

1 1

1

s = +0.5

s = -0.3

s = -0.1 s = -0.5

s = +0.8

The external opinion for each node is

computed using the value propagation

we described before

• Repeated averaging

Intuitive model: my opinion is a

combination of what I believe and

what my social network believes.

One absorbing node per user with

value the internal opinion of the user

One non-absorbing node per user

that links to the corresponding

absorbing node

z = +0.22 z = +0.17

z = -0.03
z = 0.04

z = -0.01

Hitting time

• A related quantity: Hitting time H(u,v)

• The expected number of steps for a random walk

starting from node u to end up in v for the first time

• Make node v absorbing and compute the expected number of

steps to reach v

• Assumes that the graph is strongly connected, and there are no

other absorbing nodes.

• Commute time H(u,v) + H(v,u): often used as a

distance metric

• Proportional to the total resistance between nodes u,

and v

Transductive learning

• If we have a graph of relationships and some labels on some
nodes we can propagate them to the remaining nodes
• Make the labeled nodes to be absorbing and compute the probability

for the rest of the graph

• E.g., a social network where some people are tagged as spammers

• E.g., the movie-actor graph where some movies are tagged as action
or comedy.

• This is a form of semi-supervised learning
• We make use of the unlabeled data, and the relationships

• It is also called transductive learning because it does not
produce a model, but just labels the unlabeled data that is at
hand.
• Contrast to inductive learning that learns a model and can label any

new example

Implementation details

• Implementation is in many ways similar to the

PageRank implementation

• For an edge (𝑢, 𝑣)instead of updating the value of v we

update the value of u.

• The value of a node is the average of its neighbors

• We need to check for the case that a node u is

absorbing, in which case the value of the node is not

updated.

• Repeat the updates until the change in values is very

small.

