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Abstract: In this work we propose an efficient and easily implemented codec system, which we named WaterIMAGE,
for watermarking images that are intended for uploading on the web and making them public online. An
important fact of our system is that it suggests a way in which an integer number can be represented in a two
dimensional grid and, thus, since images are two dimensional objects that representation can be efficiently
marked on them. In particular, our system uses an efficient technique which is based on a 2D representation of
self-inverting permutations and mainly consists of two components: the first component contains an encoding
algorithm which encodes an integer w into a self-inverting permutation π∗ and a decoding algorithm which
extracts the integer w from π∗, while the second component contains codec algorithms which are responsible
for embedding a watermark into an image I, resulting the image Iw, and extract it from Iw. Our system
incorporates important properties which allow us to successfully extract the watermark w from the image Iw
even if the input image has been compressed with a lossy method and/or rotated. All the system’s algorithms
have been developed and tested in JAVA programming environment.

1 INTRODUCTION

Internet technology, in modern communities, be-
comes day by day an indispensable tool for everyday
life since most people use it on a regular basis and do
many daily activities online (Garfinkel, 2001). As a
consequence, transferring digital information via the
Internet, such as audio, pictures, video, or software,
has also become very popular during the last years.

It is without any doubt that nowdays images, apart
from text, are the most frequent type of data that can
be found on the internet. Of course this frequent use
of the internet means that measures taken for internet
security are indispensable since the web is not risk-
free (Chun-Shien et al., 2000; Davis, 1997). One of
those risks is the fact that the web is an environment
where intellectual property is under threat.

Concerning the images, a characteristic type of
intellectual material, people hesitate to upload and
transfer them via the internet because of the ease of
intercepting, copying and redistributing digital im-
ages in their exact original form (O’Ruanaidh et al.,
1996). Encryption is not the problem’s solution in
most cases, as most people that upload images in a
website want them to be visible by everyone, but safe

and theft protected as well. And that’s where water-
marks come to place. Thanks to watermarks someone
can claim the property of an image if he previously
inserted one in it. Image watermarks can be visible
or not, but if we don’t want any cosmetic changes
in an image then a not visible watermark should be
used and that’s what our work suggests, a technique
according to which invisible watermarks are embed-
ded into images using features of the image’s space
domain and graph theory as well.

We next briefly describe the main idea behind the
watermarking technique, some issues about intellec-
tual property rights (IP), the motivation of our work,
and our contribution which is a technique which en-
ables us to embed a watermark that initially has the
form of an integer into a two dimensional structure
which in our case is an image.

Watermarking. Watermarks are symbols which are
placed into physical objects such as documents, pho-
tos and bank notes and their purpose is to carry in-
formation about an object’s authenticity. In our case
the watermarks have digital form and they are embed-
ded into digital objects, this technique is called digi-
tal watermarking. Digital watermarking (or, simply,



watermarking) is a technique for protecting the intel-
lectual property of a digital object; the idea is sim-
ple: a unique identifier, which is called watermark,
is embedded into a digital object which may be used
to verify its authenticity or the identity of its owners
(Grover, 1997; Collberg and Nagra, 2010). A digital
object may be audio, picture, video, or software, and
the watermark is embedded into object’s data through
the introduction of errors not detectable by human
perception (Cox et al., 1996); note that, if the object is
copied then the watermark also is carried in the copy.

The watermarking problem can be described as
the problem of embedding a watermark w into an ob-
ject I and, thus, producing a new object Iw, such that
w can be reliably located and extracted from Iw even
after Iw has been subjected to transformations (Coll-
berg and Nagra, 2010); for example, compression in
case the object is an image.

There are two general types of watermarking,
namely, visible and invisible watermarking. In vis-
ible watermarking, information (i.e., the watermark)
is visible in the object, i.e., audio, image, or video.
For example, when a television broadcaster adds its
logo to the corner of transmitted video, this is a visi-
ble watermark. Moreover, there are many watermark-
ing tools that allow us to quickly and easily protect
our images with a visible watermark; with the many
watermarking options available, we are able to per-
sonalize our images in a variety of ways. In invisible
watermarking, information is added as digital data to
object, but it cannot be perceived as such (although it
may be possible to detect that some amount of infor-
mation is hidden in the object).

It is worth noting that although digital watermark-
ing has made considerable progress and become a
popular technique for copyright protection of multi-
media information (Cox et al., 1996; Tamada et al.,
2004), our work proposes something new. And that
is the fact that we can transform a watermark from
numerical form into a representation in a two dimen-
sional grid. Also we point out certain properties of
this representation with very interesting characteris-
tics.

Intellectual Property. The term intellectual property
(IP) refers to a creation of a mind for which a set
of exclusive rights are recognized (Raysman et al.,
1999). That creation may have any form possible;
for example, it may be a work of art, an inven-
tion, literary or artistic work, a discovery or even a
phrase. More precisely, IP can be divided into two
categories: industrial property, which includes inven-
tions (patents), trademarks, industrial designs, and ge-
ographic indications of source; and copyright, which
includes literary and artistic works such as novels, po-

ems, plays, films, musical works, drawings, paintings,
photographs, sculptures, and architectural designs.

The objective of recognizing intellectual property
is to encourage innovation. That is because peo-
ple won’t have the incentive to create if they are not
legally protected in order to get the social value that
they deserve from their creations (Lemley, 2005). Of
course the world’s evolution and economic growth de-
pends on creations and inventions and that makes in-
tellectual property such an important and vital aspect
(Jain et al., 2009).

Images are a very characteristic example of intel-
lectual material and our work suggests a solution for
protecting this kind of intellectual property.

Motivation. We believe that protecting intellectual
material on the web is one of the major issues con-
cerning the proper use of the internet. Digital images
are a very characteristic part of this material found
online and our target is to make people feel free to
upload their images without hesitating because of the
fear of their work being unauthorized used.

Watermarking is the ideal solution for protecting
your property of the images and keeping them visi-
ble to the public as well, so research towards imper-
ceptible secure and robust image watermarking tech-
niques is vital. As mentioned, there are already var-
ious methods that can achieve that, but every single
method requires attention and that’s because we can
not discriminate a specific method as the best. Every
case has its ideal solution and the same idea applies
for image watermarking.

Concerning watermarking, a system should effi-
ciently watermark images that are about to be up-
loaded on the web, where users copy and use images
all the time and sometimes make certain modifica-
tions to them. We considered important to take into
account this fact and provide a method which uses
watermarks, robust under these modifications. Such
a modification might be scaling or even rotation espe-
cially if the image is an indeterminate depiction.

Contribution. In this work we present an efficient
and easily implemented codec system, which we
named WaterIMAGE, for watermarking images that
we are interested in uploading in the web and mak-
ing them public online; this way web users are now
enabled to consider how to protect their own images.

What is important for our system is the fact that
it suggests a way in which an integer number can be
represented in a two dimensional grid, and thus, since
images are two dimensional objects that representa-
tion can be efficiently marked on them resulting the
watermarked images.

In particular, our system uses an efficient tech-



nique for watermarking images, which is based on a
2D representation of self-inverting permutations (or,
for short, SIP), and mainly consists of two main com-
ponents:

• The first component consists of an encoding al-
gorithm which encodes an integer w into a self-
inverting permutation π∗ and a decoding algo-
rithm which extracts the integer w from the self-
inverting permutation π∗.

• The second component consists of codec algo-
rithms which are responsible for embedding a wa-
termark into an image I, resulting the image Iw,
and extract it from the watermarked image Iw.
Our codec algorithms use as watermark a self-
inverting permutation and embed it into images
using a 2D representation of it.

More precisely, we first present an efficient algorithm
which encodes a number (integer) w as self-inverting
permutation π∗. Our algorithm, which we call En-
code W-to-SIP, takes as input an integer w, computes
first its binary representation b1b2 · · ·bn, then con-
structs a bitonic permutation on 2n+1 numbers, and
finally produces a self-inverting permutation π∗ of
length n∗ = 2n+ 1 in O(n) time and space. We also
present a decoding algorithm which extracts the inte-
ger w from the self-inverting permutation π∗ within
the same time and space complexity; we call the de-
coding algorithm Decode SIP-to-W.

Having designed an efficient method for encoding
integers as self-inverting permutations, we next de-
scribe an algorithm for encoding a self-inverting per-
mutation into an image I using a 2D representation. In
particular, we propose the algorithm Encode SIP-to-
IMAGE which embeds the self-inverting permutation
π∗ into an image I by first mapping the elements of π∗
into an n∗×n∗ matrix A∗ and then using the informa-
tion stored in A∗ to change specific pixels of image I
resulting the watermarked image Iw. We also propose
an efficient and easily implemented algorithm, the
algorithm Decode IMAGE-to-SIP, which extract the
self-inverting permutation π∗ from the watermarked
image Iw first by locating the positions of certain pix-
els in Iw which enable us to contract the 2D represen-
tation of the self-inverting permutation π∗.

It is worth noting that our system incorporates
such properties which allow us to successfully extract
the watermark w from the image Iw even if the input
image of algorithm Decode IMAGE-to-SIP has been
compressed with a lossy method and/or rotated.

We have evaluated the embedding and extracting
algorithms by testing them on various and different in
characteristics images that were initially in JPEG for-
mat and we had positive results as the watermark was

successfully extracted at every case even if the image
was converted back into JPEG format. What is more,
the method is open to extensions as the same method
might be used with a different marking procedure part
of the Encode SIP-to-IMAGE algorithm.

All the system’s algorithms have been initially
developed and tested in MATLAB (Gonzalez et al.,
2003) and then redeveloped and also tested in JAVA.

Our system has optimal time and space perfor-
mance. Let N ×M be the size of the input image,
that is, the number of pixels of both the original im-
age I and the watermarked image Iw. The total time
performance of our codec system, neglecting the con-
version of the input image I into raw raster format,
is N× n∗ for embedding the watermark w into I and
N + M + (n∗ × n∗)× log(n∗ × n∗) for extracting w
from the watermarked image Iw. Moreover, the ex-
tra space needed by our codec system is linear in the
size of the input image since it uses only some ex-
tra auxiliary variables and an auxiliary matrix for the
2DM representation of the self-inverting permutation.

Road Map. The paper is organized as follows. In
Section 2 we present efficient representations of the
two main objects of our watermarking system: the
self-inverting permutations and the digital color im-
ages. We also describe the algorithms for encod-
ing/decoding integers w into/from self-inverting per-
mutations. In Section 3 we describe the main codec
algorithms of the proposed image watermarking sys-
tem. In Section 4 we show important properties of our
system and its time and space performance, while in
Section 5 we conclude the paper and discuss possible
future extensions.

2 BASIC TOOLS

In this section we present basic tools which are used
by our image watermarking system. In particular,
we first describe discrete structures, namely, permuta-
tions, self-inverting permutations, and bitonic permu-
tations, and then briefly outline a codec system (en-
coding/decoding algorithms) which encodes an inte-
ger w into a self-inverting permutation π∗ and extracts
it from π∗. Finally, we propose a 2D representation of
permutations and give a 3D representation of color
images.

2.1 Self-inverting Permutations

Informally, a permutation of a set of objects S is an
arrangement of those objects into a particular order,
while in a formal (mathematical) way a permutation



of a set of objects S is defined as a bijection from S to
itself (i.e., a map S→ S for which every element of S
occurs exactly once as image value).

Permutations may be represented in many ways.
The most straightforward is simply a rearrange-
ment of the elements of the set Nn = {1,2, . . . ,n};
in this way we think of the permutation π∗ =
(5,6,9,8,1,2,7,4,3) as a rearrangement of the ele-
ments of the set N9 such that “1 goes to 5”, “2 goes to
6”, “3 goes to 9”, “4 goes to 8”, and so on (Sedgewick
and Flajolet, 1996; Golumbic, 1980). Hereafter, we
shall say that π∗ is a permutation over the set N9.

Definition 2.1.1. Let π = (π1,π2, . . . ,πn) be a permu-
tation over the set Nn, where n > 1. The inverse of the
permutation π is the permutation τ = (q1,q2, . . . ,qn)
with qπi = πqi = i. A self-inverting permutation (or,
for short, SIP) is a permutation that is its own inverse:
ππi = i.

By definition, every permutation has a unique in-
verse, and the inverse of the inverse is the original
permutation. Clearly, a permutation is a SIP (self-
inverting permutation) if and only if all its cycles are
of length 1 or 2; hereafter, we shall denote a 2-cycle as
c = (x,y) and an 1-cycle as c = (x), or, equivalently,
c = (x,x).

The permutation π∗ = (5,6,9,8,1,2,7,4,3) is a
SIP with cycles: (1,5), (2,6), (3,9), (4,8), and (7,7).

2.2 Encoding Numbers as SIPs

Next, we present an algorithm for encoding an inte-
ger w into a self-inverting permutation π∗ and an al-
gorithm for extracting w from π∗; both algorithms run
in O(n) time, where n is the length of the binary rep-
resentation of the integer w (author’s algorithms). The
encoding process uses the notion of Bitonic Permuta-
tions which we briefly describe below.

Bitonic Permutations. The key-object in our algo-
rithm for encoding integers as self-inverting permu-
tations is the bitonic permutation: a permutation π =
(π1,π2, . . . ,πn) over the set Nn is called bitonic if ei-
ther monotonically increases and then monotonically
decreases, or else monotonically decreases and then
monotonically increases. For example, the permuta-
tions π1 =(1,4,6,7,5,3,2) and π2 =(6,4,3,1,2,5,7)
are both bitonic.

Our encoding algorithm uses only bitonic permu-
tations that monotonically increase and then mono-
tonically decrease. Let π be such a bitonic permuta-
tion over the set Nn and let πi, πi+1 be the two con-
secutive elements of π such that πi > πi+1. Then,
the sequence X = (π1,π2, . . . ,πi) is called first in-
creasing subsequence of π and the sequence Y =

(πi+1,πi+2, . . . ,πn) is called first decreasing subse-
quence of π.

We next give some notations and terminology
we shall use throughout the encoding and decod-
ing process. Let w be an integer number. We de-
note by B = b1b2 · · ·bn the binary representation of
w. If B1 = b1b2 · · ·bn and B2 = d1d2 · · ·dm be two
binary numbers, then the number B1||B2 is the bi-
nary number b1b2 · · ·bnd1d2 · · ·dm. The binary se-
quence of the number B = b1b2 · · ·bn is the sequence
B∗ = (b1,b2, . . . ,bn) of length n.

Let B = b1b2 · · ·bn be a binary number. Then,
f lip(B) = b′1b′2 · · ·b′n is the binary number such that
b′i = 0 (1 resp.) if and only if bi = 1 (0 resp.),
1≤ i≤ n.

Algorithm W-to-SIP: We present, with the help of an
example, an algorithm for encoding an integer as self-
inverting permutation. Our algorithm, which we call
Encode W-to-SIP, takes as input an integer w, com-
putes the binary representation b1b2 · · ·bn of w, and
then produces a self-inverting permutation π∗ in O(n)
time. We next describe the encoding process for the
number 12:

Example W-to-SIP: Let w = 12 be the input wa-
termark integer in the algorithm Encode W-to-SIP.
We first compute the binary representation B = 1100
of the number 12; then we construct the binary
number B′ = 000011001 and the binary sequence
B∗ = (1,1,1,1,0,0,1,1,0) of f lip(B′); we compute
the sequences X = (5,6,9) and Y = (1,2,3,4,7,8),
and then construct the bitonic permutation π =
(5,6,9,8,7,4,3,2,1) on n′ = 9 numbers; since n′ = 9
odd, we select 4 pairs (5,1), (6,2), (9,3), (8,4) and
the number 7 and then construct the self-inverting per-
mutation π∗ = (5,6,9,8,1,2,7,4,3).

Algorithm SIP-to-W: Having presented the encod-
ing algorithm Encode W-to-SIP, let us now present
an extraction algorithm, that is, an algorithm for de-
coding a self-inverting permutation. More precisely,
our extraction algorithm, which we call Decode SIP-
to-W, takes as input a self-inverting permutation π∗
produced by the algorithm Encode W-to-SIP and re-
turns its corresponding integer w. The time complex-
ity of the decode algorithm is also O(n), where n is
the length of the permutation π∗. We next describe,
through an example, the decoding process:

Example SIP-to-W: Let π∗ = (5,6,9,8,1,2,7,4,3)
be a self-inverting permutation produced by the algo-
rithm Encode W-to-SIP. The cycle representation of
π∗ is the following: (1,5), (2,6), (3,9), (4,8), (7);
from the cycles we construct the permutation
π = (5,6,9,8,7,4,3,2,1); then, we compute first



increasing subsequence X = (5,6,9) and the
first decreasing subsequence Y = (8,7,4,3,2,1);
we then construct the binary sequence
B∗ = (1,1,1,1,0,0,1,1,0) of length 9; we flip
the elements of B∗ and construct the sequence
B′ = (0,0,0,0,1,1,0,0,1); the binary number 1100
is the integer w = 12.

2.3 2DM Representations

Given a permutation π over the set Nn = {1,2, . . . ,n},
we first define a two-dimensional representation (2D-
representation) of the permutation π that is useful for
studying properties which help us to define, later, a
more suitable representation of π for efficient use in
our watermarking system.

In this representation, the elements of the permu-
tation π = (π1,π2, . . . ,πn) are mapped in specific cells
of an n×n matrix A as follows:

• integer i −→ entry A(π−1
i , i)

or, equivalently,

• the cell at row i and column πi is labeled by the
number πi, for each i = 1,2, . . . ,n.

Figure 1 shows the 2D representation of the self-
inverting permutation π = (5,6,9,8,1,2,7,4,3).
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Figure 1: A 2D representation of the self-inverting permu-
tation π = (5,6,9,8,1,2,7,4,3).

Note that, there is one label in each row and in each
column, so each cell in the matrix A corresponds to
a unique pair of labels; see, (Sedgewick and Flajolet,
1996) for a long bibliography on permutation repre-
sentations and also in (author’s paper) for a DAG rep-
resentation.

Based on the previous 2D representation of a per-
mutation, we next propose a two-dimensional marked
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Figure 2: A 2DM representation of the self-inverting per-
mutation π = (5,6,9,8,1,2,7,4,3).

representation (2DM representation) of a permutation
which is an efficient tool for watermarking images.

In our 2DM representation, a permutation π over
the set Nn = {1,2, . . . ,n} is represented by an n× n
matrix A∗ as follows:

• the cell at row i and column πi is marked by a
specific symbol, for each i = 1,2, . . . ,n.

Figure 2 shows the 2DM representation of the permu-
tation π. Note that, as in the 2D representation, there
is also one symbol in each row and in each column of
the matrix A∗.

We next present an algorithm which extracts the
permutation π from its 2DM representation matrix.
More precisely, let π be a permutation over Nn and
let A∗ be the 2DM representation matrix of π (see,
Figure 2); given the matrix A∗, we can easily extract
π from A∗ in linear time (in the size of matrix A∗) by
the following algorithm:

Algorithm Extract π from 2DM
Input: the 2DM representation matrix A∗ of π;
Output: the permutation π;
1. For each row i of matrix A∗, 1≤ i≤ n, do:

find the marked cell and let j be its column;
set πi← j;

2. Return the permutation π;

Remark 2.3.1. It is easy to see that the resulting per-
mutation π, after the execution of Step 1, can be taken
by reading the matrix A∗ from top row to bottom
row and write down the positions of its marked cells.
Since the permutation π is a self-inverting permuta-
tion, its 2D matrix A has the following property:
• A(i, j) = j if πi = j, and
• A(i, j) = 0 otherwise, 1≤ i, j ≤ n.



Thus, the corresponding matrix A∗ is symmetric:
• A∗(i, j) = A∗( j, i) = “mark” if πi = j, and
• A∗(i, j) = A∗( j, i) = 0 otherwise, 1≤ i, j ≤ n.

Based on this property, it is also easy to see that the
resulting permutation π can be also taken by reading
the matrix A∗ from left column to right column and
write down the positions of its marked cells.

2.4 Color Images

A digital image is a numeric representation of a 2-
dimensional image; it has a finite set of values, called
picture elements or pixels, that represent the bright-
ness of a given color at any specific point in the image
(Gonzalez and Woods, 2007).

A digital image contains a fixed number of rows
and columns of pixels which are usually stored in
computer memory as a two-dimensional matrix I of
numeric values; in our system the numeric values
are integers from 0 to 255. When we say that an
image has a resolution of N ×M we mean that its
two-dimensional matrix I contains N rows and M
columns and the value of each entry I(i, j), i.e., the
value of each pixel, is an integer k0 (grayscale im-
age), or a triple of integers (k1,k2,k3) (color image),
0≤ k0,k1,k2,k3 ≤ 255.

There are several models used for representing
color. In our system, we use the RGB model; it is
an additive color model in which red, green, and blue
light is added together in various ways to reproduce a
broad array of colors. The name of the model comes
from the initials of the three additive primary colors,
Red, Green, and Blue (Gonzalez and Woods, 2007;
Pascale, 2003).

The range of colors can be represented on the
Cartesian 3-dimensional system as a cube with the
following characteristics:
• on the x-axis (R-axis) we have the brightness of

the red color,
• on the y-axis (G-axis) we have the brightness of

the green color, and
• on the z-axis (B-axis) we have the brightness of

the blue color.
Figure 3 shows the 3D topology of the colors. For
example, the white color (255, 255, 255) is located in
the front upper right point of the color cube.

In our system, since a color is a triple of integers
(x,y,z), a digital image I of resolution N×M (i.e., it
contains N rows and M columns) is stored in a three-
dimensional matrix Img of size N×M×3 as follows:
• if the pixel I(i, j) of the image I has (x,y,z)

color, then Img(i, j,1) = x, Img(i, j,2) = y, and
Img(i, j,3) = z.

R

B

G(0, 0, 0)

(0, 0, 255)

(0, 255, 0)

(255, 0, 0)

(255, 255, 255)(255, 0, 255)

(0, 255, 255)

(255, 255, 0)

Figure 3: The range of colors represented on the Cartesian
3-dimensional system.

For example, let (240, 29, 35) be the color of
the upper left pixel of an image I, i.e., I(1,1) =
(240,29,35). Then, in our system Img(1,1,1) = 240,
Img(1,1,2) = 29, and Img(1,1,3) = 35.

3 OUR IMAGE WATERMARKING
SYSTEM

Having proposed an efficient method for encoding in-
tegers as self-inverting permutations using the bitonic
property of a permutation, and the 2DM representa-
tion of self-inverting permutations, we next describe
the two main algorithms of our image watermark-
ing system; the encoding algorithm Encode SIP-to-
IMAGE which encodes a self-inverting permutation
π∗, corresponding to watermark w, into an image I
resulting the watermarked image Iw and the decoding
algorithm Decode IMAGE-to-SIP which extracts the
permutation π∗ from the image Iw.

3.1 Embed Watermark into Image

We next describe the algorithm Encode SIP-to-
IMAGE of our codec system which embeds a self-
inverting permutation (SIP) π∗ into an image I; recall
that, in our system we use a SIP π∗ over the set Nn∗ for
encoding the watermark w, where n∗= 2n+1 and n is
the length of the binary representation of the integer
w (author’s technique); see, Subsection 2.2.

The algorithm takes as input a SIP π∗ and an im-
age I, in which the user wants to embed the water-
mark w = π∗, and produces the watermarked image
Iw; it works as follows:

Step 1: The algorithm first computes the 2DM
representation of the permutation π∗, that is, it com-
putes the n∗× n∗ array A (see, Subsection 2.3); the



entry (i,π∗i ) of the array A contains the symbol “*”,
1≤ i≤ n∗.

Step 2: Next, the algorithm computes the size N×
M of the input image I and do the following: if N is
an even number it removes the pixels from the bottom
row of I and reduces N by 1, while if M is an even
number it removes the pixels from the right column
of I and reduces M by 1. The resulting image has size
N∗×M∗, where N∗ and M∗ are both odd numbers.

Step 3: Let n∗ be the size of the SIP π∗ and let
N∗ ≤ M∗. Now the algorithm takes the input image
I and places on it an imaginary grid G , which covers
almost the whole image I, having

n∗×n∗ grid-cells Ci j(I)

each Ci j(I) of size

⌊N∗/n∗⌋×⌊N∗/n∗⌋

where, 1≤ i, j ≤ n∗.
It places the imaginary grid G on I as follows:

it first locates the central pixel P0
cent of the image I,

which is at position (⌊N∗/2⌋+ 1,⌊M∗/2⌋+ 1), then
locates the central pixel p0

ii of the central grid-cell
Cii(I), where i = ⌊n∗/2⌋+ 1, and places the grid G
on image I such that both P0

cent and p0
ii have the same

position in I.
Step 4: Then it scans the image and goes to each

grid-cell Ci j(I) (there are always n∗×n∗ grid-cells in
any image) and locates the central pixel p0

i j of the
grid-cell Ci j(I) and also the four pixels p1

i j, p2
i j, p3

i j,
and p4

i j around it, 1 ≤ i, j ≤ n∗; hereafter, we shall
call these four pixels cross pixels.

Then, it computes the difference between the
brightness of the central pixel p0

i j and the average
brightness of the twelve pixels around it, that is, the
pixels pℓ1i j , pℓ2i j , and pℓ3i j (ℓ= 1,2,3,4), and stores this
value in the variable dif(p0

i j) (see, Figure 4).
Finally, it computes the maximum absolute value

of all n∗× n∗ differences dif(p0
i j), 1 ≤ i, j ≤ n∗, and

stores it in the variable Maxdif(I).
Step 5: The algorithm goes again to each central

pixel p0
i j of each grid-cell Ci j and if the corresponding

entry A(i, j) contains the symbol “*”, then it increases

• the brightness k0
i j of the central pixel p0

i j, and

• the brightness k1
i j, k2

i j, k3
i j, and k4

i j of its cross pix-
els.

Actually, it first increases the central pixel p0
i j by the

value e0
i j so that it surpasses the image’s maximum

difference Maxdif(I) by a constant c; that is,

• k0
i j + e0

i j = Maxdif(I)+ c

and, then, it sets the brightness of the four cross pixels
p1

i j, p2
i j, p3

i j, and p4
i j equal to k0

i j.
In our system we use c = 5, and thus the bright-

ness k0
i j of the central pixel of each grid-cell Ci j is

increased by e0
i j, where

e0
i j = Maxdif(I)− k0

i j +5 (1)

where, 1≤ i, j ≤ n∗.
Let Iw be the resulting image after increasing the

brightness of the n∗ central and the corresponding
cross pixels, with respect to π, of the image I. Here-
after, we call the n∗ central pixels of I as 2DM-pixels;
recall that, p0

i j is a 2DM-pixel if A(i,πi) = “*”, or,
equivalently, the cell (i,πi) of the matrix A is marked.

Step 6: The algorithm returns the watermarked
image Iw.
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Figure 4: The brightness kℓi j of the central and cross pixels
pℓi j of the grid-cell Ci j(I), 0≤ ℓ≤ 4, and the brightness kℓmi j

of the cycle-cross pixels pℓmi j , 1≤ ℓ≤ 4 and m = 1,2,3.

Having described our encoding algorithm which
embeds a permutation π into an image I, let us now
show the efficiency of our algorithm by computing its
time and space complexity.

Complexity. We shall compute the complexity of
each step of the algorithm; suppose that the input im-
age I has N×M size (i.e., pixels).

It is easy to see that Step 1 requires n∗ × n∗

(asymptotic) time and space, since the length of the
permutation π and the size of the array A are n∗ and
n∗×n∗, respectively.

In Step 2 the algorithm computes the values of the
two dimensions of the image I, and thus this compu-
tations takes N +M time.

In Step 3 the algorithm places on I the imaginary
grid G having n∗× n∗ grid-cells Ci j(I) each of size
⌊N∗/n∗⌋× ⌊N∗/n∗⌋, where 1 ≤ i, j ≤ n∗, and thus it
covers (⌊N∗/n∗⌋×⌊N∗/n∗⌋)× (n∗×n∗) pixels of the
image I. The location of the n∗×n∗ central pixels p0

i j



can be done in n∗× n∗ time, where 1 ≤ i, j ≤ n∗ and
n∗ < N∗. Thus, the step takes (⌊N∗/n∗⌋n∗)2 time.

In Step 4 it computes the difference between the
brightness of the central pixel p0

i j and the average
brightness of the twelve cycle-cross pixels pℓmi j around
it, ℓ = 1,2,3,4 and m = 1,2,3. This difference, de-
noted by dif(p0

i j), is computed as follows:

dif(p0
i j) =

∣∣∣∣∣k0
i j−

∑4
ℓ=1 ∑3

m=1 kℓmi j

12

∣∣∣∣∣ (2)

where,

kℓmi j =
xℓmi j + yℓmi j + zℓmi j

3
. (3)

Recall that, the values xℓmi j , yℓmi j , and zℓmi j compose the
brightness kℓmi j of the pixel pℓmi j in the RGB model (see,
Subsection 2.4). Thus, the n∗×n∗ differences dif(p0

i j)
can be computed in n∗× n∗ time and require n∗× n∗

space (i.e., an array of n∗×n∗ size).
Finally, in this step the algorithm computes the

maximum absolute value Maxdif(I) of all n∗×n∗ dif-
ferences dif(p0

i j), that is,

Maxdif(I) = max{dif(p0
i j)|1≤ i, j ≤ n∗} (4)

which obviously takes also n∗×n∗ time.
The only operation performed in Step 5 is the in-

crement of the brightness k0
i j of each central pixel and

the brightness k1
i j, k2

i j, k3
i j, and k4

i j of its four cross
pixels by the value e0

i j (see, Equation 1); it obviously
takes n∗×n∗ time since there are n∗×n∗ such central
pixels.

Based on the above step-by-step analysis of our
encoding algorithm Encode SIP-to-IMAGE we con-
clude that it runs (asymptotically) in order N×n∗ time
and requires n∗×n∗ space, where N is the smallest di-
mension of the input image I and n∗ is the size of the
SIP.

Remark 3.1.1. The values xℓi j, yℓi j, and zℓi j which com-
pose the brightness kℓi j of the pixel pℓi j are stored in
the array Img at the entries (i′, j′,1), (i′, j′,2), and
(i′, j′,3), respectively (see, Subsection 2.4). Note
that, (i′, j′) is the position of pixel pℓi j in image I,
while (i, j) is the position of pixel pℓi j in the n∗× n∗

grid.

3.2 Extract Watermark from Image

Next we describe our decoding algorithm which is re-
sponsible for extracting the watermark w = π∗ form

Figure 5: The original image I.

Figure 6: The watermarked image Iw.

image Iw. In particular, the algorithm, which we call
Decode IMAGE-to-SIP, takes as input a watermarked
image Iw and returns the SIP π∗ which corresponds to
integer watermark w; the steps of the algorithm are
the following:

Step 1: The algorithm places again the same
imaginary n∗× n∗ grid on image Iw and locates the
central pixel p0

i j of each grid-cell Ci j(I), 1≤ i, j≤ n∗;
there are n∗ × n∗ central pixels in total. Then, it
finds the n∗ central pixels p0

1, p0
2, . . . , p0

n∗ , among the
n∗×n∗, with the maximum brightness using a known
sorting algorithm (Cormen et al., 2001).

Step 2: In this step, the algorithm takes the n∗

grid-cell C1,C2, . . . ,Cn∗ of the image Iw which corre-



spond to n∗ central pixels p0
1, p0

2, . . . , p0
n∗ , and compute

an n∗×n∗ matrix A∗ as follows:

• Initially, set A∗(i, j)← 0, 1≤ i, j ≤ n∗;

• For each grid-cell Cm, 1≤ m≤ n∗, do:

if (i, j) is the position of the grid-cell Cm in the
grid G then set A∗(i, j)← “∗ ”;

It is easy to see that, the n∗× n∗ matrix A∗ is exactly
the 2DM representation of the self-inverting permu-
tation π∗ embedded in image Iw by the algorithm En-
code SIP-to-IMAGE.

Then, the permutation π∗ can be extracted
from the matrix A∗ using the algorithm Ex-
tract π from 2DM; see, Subsection 2.3.

Step 3: Finally, the algorithm returns the self-
inverting permutation π∗.

Let us next compute the time and space efficiency
of the proposed decoding algorithm Decode IMAGE-
to-SIP by computing the complexity of each step sep-
arately.

Complexity. Again, we suppose, as we did with the
encoding algorithm Encode SIP-to-IMAGE, that the
input image Iw has N×M size (i.e., it consists of N×
M pixels) and N ≤M.

In Step 1 the algorithm places on Iw an imaginary
n∗× n∗ grid, as the embedding algorithm do on im-
age I, and thus the values of the two dimensions of
the image Iw must be known; this computations takes
N +M time. Then, the location of the n∗×n∗ central
pixels p0

i j can be done in n∗× n∗ time, 1 ≤ i, j ≤ n∗,
while the finding of the n∗ central pixels, among the
n∗ × n∗, with the maximum brightness can be done
in (n∗× n∗)× log(n∗× n∗) time; note that, it is well
known that fastest sorting algorithm on an input of
size n takes n logn time (Cormen et al., 2001).

In Step 2 the algorithm takes the n∗ grid-cell
C1,C2, . . . ,Cn∗ of the image Iw which correspond to
the n∗ central pixels p0

1, p0
2, . . . , p0

n∗ , and compute an
n∗× n∗ matrix A∗. It is easy to see that this compu-
tation can be done in n∗× n∗ time. It is also easy to
see that the permutation π∗ can be extracted from A∗,
using the algorithm Extract π from 2DM, within the
same time. Thus, Step 2 requires n∗×n∗ time. Obvi-
ously, Step 3 takes constant time.

Based on the above complexity analysis we con-
clude that the proposed decoding algorithm De-
code IMAGE-to-SIP extracts the watermark SIP π∗
from the image Iw in N+M+(n∗×n∗)× log(n∗×n∗)
time; it requires n∗×n∗ space.

4 Performance

Our image watermarking system mainly consists of
four algorithms, each of which is responsible for a
particular codec operation:

• Encode W-to-SIP: algorithm for encoding an in-
teger w into a self-inverting permutation π∗;

• Decode SIP-to-W: algorithm for extracting w
from π∗;

• Encode SIP-to-IMAGE: algorithm for encoding a
self-inverting permutation π∗ into an integer I;

• Decode IMAGE-to-SIP: algorithm for extracting
π∗ form the watermarked image;

The two algorithms that are considered the basic ones
for our system are those responsible for embedding a
SIP into an image and extracting the SIP from it.

We next discuss some issues concerning the per-
formance of our image watermarking system. In par-
ticular, we mainly focus on the embedding algorithm
Encode SIP-to-IMAGE and the efficiency of water-
marking image Iw produced by this algorithm, and
also on important properties of the n∗×n∗ matrix A∗

which stores the 2DM representation of a SIP. Finally
we show the time and space performance of our sys-
tem by computing the complexity of their algorithms.

It is worth noting that our system incorporates
such properties which allow us to successfully extract
the watermark w from the image Iw even if the in-
put image Iw of algorithm Decode IMAGE-to-SIP has
been compressed with a lossy method and/or rotated.

We have evaluated the embedding and extracting
algorithms by testing them on various and different in
characteristics images that were initially in JPEG for-
mat and we had positive results as the watermark was
successfully extracted at every case even if the image
was converted back into JPEG format. What is more,
the method is open to extensions as the same method
might be used with a different marking procedure part
of the Encode SIP-to-IMAGE algorithm.

All the system’s algorithms have been initially
developed and tested in MATLAB (Gonzalez et al.,
2003) and then redeveloped and also tested in JAVA.

Compression. The experimental results show that the
watermark w is “well hidden” in the image Iw. We be-
lieve that it is because we mark the image by chang-
ing the difference between the brightness of the 2DM-
pixels p0

i j of the n∗ × n∗ imaginary grid and its 12
neighborhood pixels around it, that is, the pixels pℓ1i j ,
pℓ2i j , and pℓ3i j , for ℓ = 1,2,3,4 (see, Figure 4 and also
Step 2 of the embedding algorithm Encode SIP-to-
IMAGE); recall that, we also set the brightness of the



four cross pixels of each 2DM-pixel p0
i j, that is, the

pixels p1
i j, p2

i j, p3
i j, and p4

i j, to be equal to the bright-
ness of the 2DM-pixel p0

i j.
Note that, we change the brightness of the 2DM-

pixels by increasing them so that they surpass the im-
age’s maximum difference Maxdif(I) by a constant c,
where in our implementation c = 5. We add five be-
cause if we compress the image the values of the pix-
els may slightly change, and we want our watermark
to be robust. We also believe that this technique de-
spite being simple, it is efficient because the bright-
ness of each of the n∗ marked central pixels does
not have a great difference from the brightness of the
12 neighborhood pixels and thus the modified central
pixel, along with the cross pixels, does not change
something significantly in the image.

Rotation. The watermarked images produced by our
embedding method have a property worth to be ref-
erenced. And this is certain characteristics noticed
at the 2DM representation of the image’s watermarks
which in our system are self-inverting permutations.
Sometimes an image might show an indeterminate de-
piction, such as a night sky or an aerial view. These
types of images might be rotated changing the coor-
dinates of the watermark’s marks making invalid the
watermark that we are about to extract. Also it is
about an indeterminate depiction which does not al-
low someone to tell which is the right angle of the
image.

Thanks to our embedding method’s properties this
problem can be overcome. It has to do with the co-
ordinates of the marks of a 2DM representation of a
self-inverting permutation found on image Iw. Those
coordinates allow us to turn the image into the initial
angle and then extract the watermark successfully.

The 2DM representation of a self-inverting per-
mutation has the following properties:

(i) The main diagonal of the n∗× n∗ symmetric ma-
trix A∗ have always one and only one marked cell,
and

(ii) this marked cell are always in the entries (i, i) of
A∗, where i = ⌈ n∗

2 ⌉+1,⌈ n∗
2 ⌉+2, . . . ,n∗.

If the main diagonal of matrix A∗ has no marked
cell then we rotate the image by 90 degrees. Addition-
ally, if the marked cell of the main diagonal is in entry
(i, i) with i≤ ⌈ n∗

2 ⌉, then we turn the image by 180 de-
grees and thus we end up at the initial image from
which we are able to extract the right watermark.

Time and Space Complexity. As far as the time and
space complexity of our codec system is concerned,
we should mention that it is asymptotically linear in

the size (i.e., number N ×M of pixels) of the input
images.

More precisely, the embedding algorithm takes
(N× n∗)+ (n∗× n∗) time which is less than the size
N×M of the input image I. Recall that, in our imple-
mentation: (i) N ≤M, and (ii) the length of the water-
mark is n∗ and thus we always have n∗×n∗ grid-cells.

The extracting algorithm is also very fast since it
also operates mainly on the n∗× n∗ grid-cells of the
input image Iw. The most time consuming step of the
algorithm is that of sorting the n∗×n∗ cental pixels of
the image in order to find the n∗ pixels with the max
brightness; it takes n∗×n∗× log(n∗×n∗) time.

Finally, it is fair for the time performance of our
system to take into consideration the time needed for
converting the image I that the system takes as in-
put from the initial format to raw raster format; note
that, the system usually uses compressed images as
input. It is obvious that the time needed for convert-
ing the image I into a raw raster format depends on
the type of the image selected. The most common
types of images would be the JPEG as digital cameras
store images of this type and also nearly every image
on the WWW (world wide web) is in JPEG format.
The compression to a JPEG requires the usage of the
DCT (discrete cosine transform); the DCT is similar
to a Fourier transform and it is of order n2, but it is
also possible to do the same thing by doing something
similar to the FFT (fast fourier transform) which is of
order n logn. Note that the same techniques applies
for the JIF images which are also popular in the web
(Ahmed et al., 1974; Cooley and Tukey, 1965).

Summarizing, the total time performance of our
codec system, neglecting the conversion of the input
image I into raw raster format, is N× n∗ for embed-
ding the watermark w into I and N +M+(n∗×n∗)×
log(n∗× n∗) for extracting w from the watermarked
image Iw. Moreover, the extra space needed by our
codec system is linear in the size of the input image,
i.e., it uses only some extra auxiliary variables and
an auxiliary matrix for the 2DM representation of the
self-inverting permutation.

5 CONCLUDING REMARKS

In this paper, we proposed a codec system, which we
named WaterIMAGE, for watermarking images that
are intended for online publication.

Our system embeds an integer w into an image I
using the following main steps: it computes first a
self-inverting π∗ which corresponds to w, then com-
putes a 2D representation of π∗, and finally selects
and marks specific pixels of the image I, according



to 2D representation of π∗, resulting the watermarked
image Iw. Moreover, our system efficiently finds the
marked pixels of a watermarked image Iw, using the
locations of the marked pixels in Iw, then produces
the self-inverting permutation π∗ and finally returns
the corresponding integer w.

The proposed WaterIMAGE system has the fol-
lowing design and functional advantages:

• it is an efficient image watermarking system; the
experimental results showed that the watermark w
is “well hidden” in the image Iw,

• its embedding method incorporates properties that
allow us to successfully extract the watermark w
for the image Iw even if the image Iw has been
compressed with a lossy method and/or rotated,

• it is a simple and easily implemented system, and

• finally, as far as the time and space needed for the
encoding/decoding process, it performs very well.

We should point out that the main feature of our Wa-
terIMAGE system is the fact that it uses a combina-
torial object to watermark an image; we show that
an integer can be efficiently represented by a self-
inverting permutation which, in turn, can be repre-
sented in the 2-dimensional space and, thus, this rep-
resentation forms a suitable watermarking object for
images. In our system we propose a marking method
but apart from that the investigation of alternative and
more efficient methods for marking an image using a
2D representation of a permutation are an open prob-
lem for further research.

It is fair to mention that, although our system is
now in a fully operational stage, we believe that a
friendly graphical user interface should support our
system making it accessible to users from various spe-
cialization levels; we have to design and integrate
such a feature in our system (Sommerville, 2010;
Gamma et al., 1995; Taylor et al., 2009).

Furthermore, since the WaterIMAGE system is
time and space efficient, it might be extended so that
it will be able to take a watermark w as an input and
search between targeted websites and find if they use
watermarked images Iw. So, that system would be
something like a search engine which searches in web
for images Iw from a specific owner; we leave such a
system’s extension as a topic for further investigation.
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