
International Conference on Computer Systems and Technologies - CompSysTech’10

Encoding Watermark Integers as Self-inverting Permutations

Maria Chroni and Stavros D. Nikolopoulos

Abstract: In a software watermarking environment, several graph theoretic watermark methods use integers
as watermark values, where some of these methods encode the watermark integers as reducible
permutation graphs (RPG; these are reducible control-flow graphs with a maximum out-degree of two). Since
there is a one-to-one correspondence between self-inverting permutations and isomorphic classes of RPGs,
for encoding watermark integers most of the watermarking methods use only those permutations that are
self-inverting. In this paper we present an efficient algorithm for encoding integers as self-inverting
permutations. More precisely, our algorithm takes as input an integer w, computes its binary representation
b1b2…bn, and then produces a self-inverting permutation π* in O(n) time. Moreover, we also present an
algorithm for decoding a self-inverting permutation; our algorithm takes as input a self-inverting permutation
π* produced by the encoding algorithm and returns its corresponding integer w in O(n) time, where n is the
length of the input permutation.

Key words: Watermark, permutations, self-inverting permutations, encoding, decoding, graphs, algorithms.

INTRODUCTION
Software watermarking is a technique that is currently being studied to prevent or

discourage software piracy and copyright infringement. The idea is similar to digital (or,
media) watermarking where a unique identifier is embedded in image, audio, or video data
through the introduction of errors not detectable by human perception [6].

The Software Watermarking problem can be described as follows: Embed a structure
W into a program P such that W can be reliably located and extracted from P even after P
has been subjected to code transformations such as translation, optimization and
obfuscation. More precisely, a Software Watermarking System can be defined as follows
[10]: Given a program P, a watermark w, and a key k, a software watermarking system
consists of functions:

 embed(P, w, k) P’

 recognize(P’, k) w

Although digital watermarking has made considerable progress and become a
popular technique for copyright protection of multimedia information [6, 12], research on
software watermarking has recently received sufficient attention. The patent by Davidson
and Myhrvold [7] presented the first published software watermarking algorithm. The
preliminary concepts of software watermarking also appeared in paper [8] and patents [9,
11]. Collberg et al. [4, 5] presented detailed definitions for software watermarking. Authors
of papers [14, 15] have given brief surveys of software watermarking research.

There are two general categories of watermarking algorithms: the static and the
dynamic algorithms [4]. A static watermark is stored inside program code in a certain
format, and it does not change during the program execution. According to the
representation of watermark information, there are two types of static watermarks: data
watermarks and code watermarks. A data watermark stores watermark information as
program data, and can be stored anywhere inside a program, such as in comments or in
variables.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

CompSysTech'10, June 17–18, 2010, Sofia, Bulgaria.
Copyright©2010 ACM 978-1-4503-0243-2/10/06...$10.00.

125

International Conference on Computer Systems and Technologies - CompSysTech’10

A code watermark is represented by choosing a particular sequence of instructions in
cases (and these are common), where more than one sequence of instructions has an
equivalent effect. A static code watermark may also be stored in “dead code” (which is
never executed); any sequence of instructions may be used with equivalent effect in a
dead-code area. For example, in a Java program, a particular order of cases in a switch
statement can be used to represent a watermark number. Further discussion of static
watermarking issues can be found in [7, 9, 13].

A dynamic watermark is built during program execution, perhaps only after a
particular sequence of input. It might be retrieved by analyzing the data structures built
when watermarked program is running. In other cases, tracing the program execution may
be required. There are three kinds of dynamic watermarks: Easter Eggs, Execution Trace
Watermarks, and Dynamic Data Structure Watermarks [4].

In 1990, Davidson and Myhrvold [7] proposed the first software watermarking
algorithm which is static and embeds the watermark by reordering the basic blocks of a
control flow graph. Based on this idea, Venkatesan et al. [13] proposed an algorithm which
embeds the watermark by extending a method’s control flow graph (CFG) through the
insertion of a subgraph. The first dynamic watermarking algorithm (CT) was proposed by
Collberg et al. [4]; it embeds the watermark through a graph structure which is built on a
heap at runtime.

Venkatesan et al. [13] propose a software watermarking scheme which is called
GTW; in such a scheme an executable program is marked by the addition of code for
which the topology of the control flow graph (CFG) encodes a watermark. More precisely,
the GTW process is as follows: The watermark value W is encoded as a directed graph G
which, in turn, is converted into control flow graph (CFG). In [13] the construction of a
directed graph G (or, watermark graph G) is not discussed. Collberg et al. [2] proposed an
implementation of GTW, which they call GTWsm, and it is the first publicly available
implementation of the algorithm GTW. In GTWsm the watermark is encoded as a reducible
permutation graph (RPG) [3], which is a reducible control-flow graph with maximum out-
degree of two, mimicking real code.

In GTWsm implementation a watermark value (integer) is encoded as a RPG; in
particular, in the enumeration of Collberg et al. [3], an integer n is encoded as the RPG
corresponding to the nth self-inverting permutation. Note that the is a one-to-one
correspondence between self-inverting permutations and isomorphic classes of RPGs.
Thus, for encoding integers the GTWsm methods uses only those permutations that are
self-inverting.

In this paper we propose an efficient algorithm for encoding integers as self-inverting
permutations. More precisely, our algorithm takes as input an integer w, computes its
binary representation b1b2…bn, and then produces a self-inverting permutation π* in O(n)
time. Moreover, we also propose an algorithm for decoding a self-inverting permutation;
our algorithm takes as input a self-inverting permutation π* produced by the encoding
algorithm and returns its corresponding integer w in O(n) time, where n is the length of the
input permutation.

The paper is organized as follows: In Section 2 we define the reducible permutation
graphs and the self-inverting permutations. In Section 3 we introduce the notion of the
bitonic permutations which is the key-object in our algorithm for encoding integers as self-
inverting permutations. In Section 4 we present our algorithm Encode-Integers-as-SIP
which takes as input an integer w and produces a self-inverting permutation π*, while in
the same section we also present a recognition algorithm, that is, an algorithm which takes
a self-inverting permutation π* produced by algorithm Encode-Integers-as-SIP and returns
the integer w. Finally, Section 5 concludes the paper and discuses futures research
directions.

126

International Conference on Computer Systems and Technologies - CompSysTech’10

REDUCIBLE PERMUTATION GRAPHS
Several graph theoretic watermarking methods encodes a watermark value in the

topology of a control-flow graph (CFG) [1] and embed it in an application program P [2].
Note that, each node of a CFG represents a basic block which consists of instructions with
a single entry and a single exit; two basic blocks are connected by a directed edge if,
during the execution, control can pass from one basic block to the other. Moreover, note
that a CFG itself also has a single entry and a single exit.

In a graph theoretic watermarking environment, the GTW method [2] forms a typical
watermark embedding process. We next give an overview of the GTW method consisting
of the following steps:

1. The watermark value w is spited into several values w1, w2, …, wk;

2. The values w1, w2, …, wk are encoded as directed graphs G1, G2, …, Gk;

3. The generated graphs G1, G2, …, Gk are converted into CFGs W1, W2, …, Wk by
generating executable code for each CFG;

4. Each W1, W2, …, Wk is marked to indicate whether it is part of the watermark, and is
embedded in a specific location in the application code P;

Having embedded a watermark value w in an application program P, we are interested in
designing an efficient reverse method, that is, a method which takes as input the
watermarked code P and produces the watermark value w; such a reverse method is
usually called recognition method. The recognition method for the above described
embedding method is a follows:

1. Identify the marked CFGs W1, W2, …, Wk in the application program P;

2. Each CFG W1, W2, …, Wk is decoded to compute a value;

3. The individual values are combined to yield the watermark value w;

Some graph theoretic watermarking methods, like the GTW method, use integers as
watermark values and encode them as reducible permutation graphs (RPG) [2]; these are
reducible control-flow graphs with a maximum out-degree of two.
More precisely, an RPG is a reducible control-flow graph with a Hamiltonian path
consisting of four pieces: (a) a header node, (b) the preamble, (c) the body, and (d) a
footer [2].

There is a one-to-one correspondence between self-inverting permutations and
isomorphic classes of RPGs. Thus, for encoding integers some watermarking methods
uses only those permutations that are self-inverting.

Let π be a permutation over the set Nn = {1, 2, …, n}. We think of permutation π as a
sequence (π1, π2, …, πn), so, for example, the permutation π = (1, 4, 2, 7, 5, 3, 6) has π1 =
1, π2 = 4, ect. Notice that (π-1)i, denoted here as pi, is the position in the sequence of the
number i; in our example, p4 = 2, p7 = 4, p3 = 6, ect.

Definition 1: The inverse of a permutation (π1, π2, …, πn) is the permutation (q1, q2, …, qn)
with qπi = πqi = i. A self-inverting permutation (or, involution) is a permutation that is its own

inverse: ππi
 = i.

By definition, every permutation has a unique inverse, and the inverse of the inverse

is the original permutation. Clearly, a permutation is a self-inverting permutation if and only
if all its cycles are of length 1 or 2.

127

International Conference on Computer Systems and Technologies - CompSysTech’10

BITONIC PERMUTATIONS
The key-object in our algorithm for encoding integers as self-inverting permutations is

the bitonic permutation: a permutation π = (π1, π2, …, πn) over the set Nn is called bitonic if
either monotonically increases and then monotonically decreases, or else monotonically
decreases and then monotonically increases. For example, the permutations π1 = (1, 4, 6,
7, 5, 3, 2) and π2 = (6, 4, 3, 1, 2, 5, 7) are both bitonic.

In this paper, we consider only bitonic permutations that monotonically increases and
then monotonically decreases. Let π = (π1, π2, …, πi, πi+1, …, πn) be such a bitonic
permutation over the set Nn and let πi, πi+1 be the two consecutive elements of π such that
πi > πi+1. Then, the sequence X = (π1, π2, …, πi) is called first increasing subsequence of
π and the sequence Y = (πi+1, πi+2, …, πn) is called first decreasing subsequence of π.

We next give some notations and terminology we shall use throughout the paper. Let
w be an integer number. We denote by B = b1b2…bn the binary representation of w, where

bi is either 1 or 0 (1 i n). If B1 = b1b2…bn and B2 = d1d2…dm be two binary numbers,
then the number B1||B2 is the binary number b1b2…bnd1d2…dm; for example, if B1 = 10101
and B2 = 110 are the integers 21 and 6, respectively, then the binary number B1||B2 =
10101110 is the integer 174. The binary sequence of the number B = b1b2…bn is the
sequence B* = (b1, b2, …, bn) of length n.

Let B = b1b2…bn be a binary number. Then, flip(B) = b’1b’2…b’n is the binary number

such that b’i = 0 (1) if and only if bi = 1 (0), 1 i n.

ENCODING INTEGERS
In this section, we present an algorithm for encoding an integer as self-inverting

permutation. In particular, our algorithm takes as input an integer w, computes the binary
representation b1b2…bn of w, and then produces a self-inverting permutation π* in O(n)
time. We next describe the propose algorithm:

Algorithm Encode-Integers-as-SIP
Input: a watermark integer w;
Output: the self-inverting permutation π*;

1. Compute the binary representation B = b1b2…bn of w;
2. Construct the binary number B’ = 00…0||B||1 of length 2n+1, and then the

binary sequence B* = (b1, b2, …, bn’) of flip(B’);
3. Find the sequence X = (x1, x2, …, xk) of the positions of 0’s and the sequence

Y = (y1, y2, …, ym) of the positions of 1’s in B* from left-to-right;
4. Construct the bitonic permutation π = (x1, x2, …, xk, ym, ym-1, …, y1) on n’ = 2n+1

numbers;
5. Let (z1, z2, …, zk, zk+1, zk+2, …, zn’) = (x1, x2, …, xk, ym, ym-1, …, y1);

Case 1: n’ even: select n’/2 pairs (z1, zn’), (z2, zn’-1), …, (zn’/2, z(n’+3)/2);
 for each selected pair (zi, zj), do the following:

πzj = zi and πzi = zj;

Case 2: n’ odd: select n’/2 pairs (z1, zn’), (z2, zn’-1), …, (z n’/2 , z n’/2 +2) and

 the number z n’/2 +1;
 for each selected pair (zi, zj), do the following:

πzj = zi and πzi = zj;

πz n’/2 +1 = z n’/2 +1;

6. Return the self-inverting permutation π* = (π1, π2, …, πn’) on n’ = 2n+1
numbers;

Example 1: Let w = 12 be the input watermark integer in the Algorithm Encode-Integers-
as-SIP. We first compute the binary representation B = 1100 of the number 12; then we

128

International Conference on Computer Systems and Technologies - CompSysTech’10

construct the binary number B’ = 000011001 and the binary sequence B* = (1, 1, 1, 1, 0, 0,
1, 1, 0) of flip(B’); we compute the sequences X = (5, 6, 9) and Y = (1, 2, 3, 4, 7, 8), and
then construct the bitonic permutation π = (5, 6, 9, 8, 7, 4, 3, 2, 1) on n’ = 9 numbers; since
n’=9 odd, we select 4 pairs (5, 1), (6, 2) , (9, 3), (8, 4) and the number 7 and then construct
the self-inverting permutation π* = (5, 6, 9, 8, 1, 2, 7, 4, 3).

Next, we present a recognition algorithm, that is, an algorithm for decoding a self-

inverting permutation. More precisely, our recognition algorithm, which we call Decode-
SIP, takes as input a self-inverting permutation π* produced by Algorithm Encode-Integers-
as-SIP and returns its corresponding integer w. The time complexity of the decode
algorithm is also O(n), where n is the length of the permutation π*. We next describe the
propose algorithm:

Algorithm Decode-SIP
Input: a self-inverting permutation π* produced from Algorithm Encode-Integers-as-SIP;

Output: an integer w;
1. Compute the cycle representation C = c1c2 … ck of the self-inverting

permutation π* = (π1, π2, …, πn’), where n’ = 2n+1;
2. Initially, i = 1, j = n’ and all the cycles of C are unmarked;
3. While there exists an unmarked cycle c in C, do the following:

Select the first unmarked cycle c of C from left-to-right;
Case 1: the selected cycle c has length 2 and let c = (a, b):
 πi = a and πj = b;
 mark cycle c; i = i+1 and j = j -1;
Case 2: the selected cycle c has length 1 and let c = (a):
 πi = a; mark cycle c; i = i+1;

4. Find the first increasing subsequence X = (x1, x2, …, xk) and then the first
decreasing subsequence Y = (y1, y2, …, ym) of π;

5. Construct the binary sequence B* = (b1, b2, …, bn’) as follows:
set 0’s in positions x1, x2, …, xk and 1’s in positions y1, y2, …, ym;

6. Compute B’ = flip(B*) = (b1, b2, …, bn, bn+1, …, b2n, b2n+1);
7. Return the integer w of the binary number B = bn+1, bn+2, …, b2n;

Example 2: Let π* = (5, 6, 9, 8, 1, 2, 7, 4, 3) be a self-inverting permutation produced from
Algorithm Encode-Integers-as-SIP. The cycle representation of π* is the following: (1, 5),
(2, 6), (3, 9), (4, 8) (7); from the cycles we construct the permutation π = (5, 6, 9, 8, 7, 4, 3,
2, 1); then, we compute first increasing subsequence Χ = (5, 6, 9) and the first decreasing
subsequence Y = (8, 7, 4, 3, 2, 1); we then construct the binary sequence B* = (1, 1, 1, 1,
0, 0, 1, 1, 0) of length 9; we flip the elements of B* and construct the sequence B’ = (0, 0,
0, 0, 1, 1, 0, 0, 1); the binary number 1100 is the integer w = 12;

CONCLUSIONS AND FUTURE WORK
In this paper we presented an efficient algorithm for encoding watermark integers as

self-inverting permutations. Our algorithm takes as input an integer w and produces a self-
inverting permutation π* in O(n) time, where n is the number of bits in the binary
representation b1b2…bn of w. We also presented a decoding algorithm; it takes as input a
self-inverting permutation π* produced by the encoding algorithm and returns its
corresponding integer w in O(n) time, where n is the length of the input permutation. Both
algorithms are simple, easy implemented and very fast.

It is worth noting that our approach enable us to encode the integer w = b1b2…bn as
self-inverting permutation π* of any length; indeed, π* can be constructed over the set Nn’ =
{1, 2, …, n’}, where the smallest value of n’ is O(logn).

129

International Conference on Computer Systems and Technologies - CompSysTech’10

REFERENCES
[1] A.V. Aho, R. Sethi, J.D. Ullman, Compilers, Principles, Techniques, and Tools,

Addison-Wesley, 1986.
[2] C. Collberg, A. Huntwork, E. Carter, G. Townsend, and M. Stepp, “More on graph

theoretic software watermarks: Implementation, analysis, and attacks,” Information and
Software Technology 51 (2009) 56-67.

[3] C. Collberg, E. Carter, S. Kobourov, and C. Thomborson, “Error-correction
graphs,” Workshop on Graphs in Computer Science (WG’03), 2003.

[4] C. Collberg and C. Thomborson, "Software watermarking: models and dynamic
embeddings," 26th Symposium on Principles of Programming Languages (POPL '99),
ACM, 1999.

[5] C. Collberg, C. Thomborson, and D. Low, “On the limits of software
watermarking,” Technical Report No 164, Department of Computer Science, The
University of Auckland, 1998.

[6] I. Cox, J. Kilian, T. Leighton, and T. Shamoon, “A secure, robust watermark for
multimedia,” LNCS 1174, 1996, pp. 317–333.

[7] R. L. Davidson and N. Myhrvold, "Method and system for generating and auditing
a signature for a computer program," US Patent 5.559.884, Microsoft Corporation, Sep
1996.

[8] D. Grover, The Protection of Computer Software - Its Technology and
Applications, Cambridge University Press New York, 1997.

[9] S. A. Moskowitz and M. Cooperman, "Method for stegacipher protection of
computer code," US Patent 5.745.569, The Dice Company, Jan 1996.

[10] G. Myles and C. Collberg, “Software watermarking via opaque predicates:
Implementation, analysis, and attacks,” Electron Commerce Res 6 (2006) 155-171.

[11] P. Samson, “Apparatus and method for serializing and validating copies of
computer software,” US Patent 5.287.408, 1994.

[12] H. Tamada, M. Nakamura, A. Monden, and K. Matsumoto, “Design and
evaluation of birthmarks for detecting theft of java programs,” International Conference on
Software Engineering (IASTED SE’04), 2004, pp. 569–575.

[13] R. Venkatesan, V. Vazirani, and S. Sinha, "A graph theoretic approach to
software watermarking," 4th International Information Hiding Workshop (IH’01), LNCS
2137, 2001, pp. 157-168.

[14] L. Zhang, Y. Yang, , X. Niu, and S. Niu, “A survey on software watermarking,”
Journal of Software 14 (2003) 268–277.

[15] W. Zhu, C. Thomborson, and F.-Y. Wang, “A survey of software watermarking,”
in IEEE ISI 2005, LNCS 3495, 2005, pp. 454–458.

ABOUT THE AUTHORS
Maria Chroni, MSc, PhD Candidate, Department of Computer Systems, University of

Ioannina, Phone: +30 265 100 8832, Е-mail: mchroni@cs.uoi.gr
Stavros D. Nikolopoulos, Professor, PhD, Department of Computer Systems,

University of Ioannina, Phone: +30 265 100 8801, Е-mail: stavros@cs.uoi.gr

130

