
Multi-source Trees: Algorithms for Minimizing
Eccentricity Cost Metrics

Paraskevi Fragopoulou1, Stavros D. Nikolopoulos2, and Leonidas Palios2

1 Department of Applied Informatics and Multimedia,
Technological Educational Institute of Crete,

P.O.Box 1939, GR-71004 Heraklion-Crete, Greece
fragopou@epp.teiher.gr

2 Department of Computer Science, University of Ioannina,
GR-45110 Ioannina, Greece

{stavros, palios}@cs.uoi.gr

Abstract. We consider generalizations of the k-source sum of vertex
eccentricity problem (k-SVET) and the k-source sum of source eccen-
tricity problem (k-SSET) [1], which we call SDET and SSET, respec-
tively, and provide efficient algorithms for their solution. The SDET
(SSET, resp.) problem is defined as follows: given a weighted graph G
and sets S of source nodes and D of destination nodes, which are sub-
sets of the vertex set of G, construct a tree-subgraph T of G which con-
nects all sources and destinations and minimizes the SDET cost function�

d∈D maxs∈S dT (s, d) (the SSET cost function
�

s∈S maxd∈D dT (s, d),
respectively). We describe an O(nm log n)-time algorithm for the SDET
problem and thus, by symmetry, to the SSET problem, where n and m
are the numbers of vertices and edges in G. The algorithm introduces
efficient ways to identify candidates for the sought tree and to narrow
down their number to O(m). Our algorithm readily implies O(nm log n)-
time algorithms for the k-SVET and k-SSET problems as well.

Keywords: Multi-source trees, eccentricity, weighted graphs, networks,
communication, algorithms, complexity.

1 Introduction

The work in this paper is motivated by problems in collective communication on
networks modeled by graphs. In the general case, a group of network nodes, de-
fined as the sources, wish to consistently transmit information to another group
of network nodes, the destinations. This type of collective communication is
served by the establishment of a tree T connecting the sources to the destinations
which minimizes certain criteria in order to guarantee efficient communication.
The criteria to optimize are diverse and various cases have been considered in
the literature [1, 3, 6, 7, 9]. The main reason is that different applications pose
different cost requirements; note also that some of these cost requirements lead
to intractable problems in general graphs. The problem of collective communi-
cation from a single source node is a well studied problem [4, 5, 8, 10]. Multiple
sources have also been considered [3, 6], although to a lesser degree.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 1080–1089, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics 1081

In its general form, the construction of optimum communication spanning
trees was initiated in [4] where the problem was defined on the complete graph
with a length and a requirement on its edges; the cost measure that had to be
minimized was the sum of vertex distances weighted by the requirements between
all vertices of the graph (network). By setting the requirement equal to 0 and
parameterizing the number of source nodes, we obtain the k-SPST problem or
sum of distances from every source to every destination, which was studied in
[3] and was shown to be NP-complete. Some exact solutions were provided for
the 2-source SPST problem on restricted classes of graphs, such as unicycles and
cactuses [3]. Furthermore, approximation algorithms for both the 2-source SPST
problem on general graphs [3] and the all source SPST problem [10] are available.
In [9], heuristic algorithms were given for the minimum partial spanning trees
taking into consideration the delay between a single source node and a group of
destination nodes, while trying to bound the maximum difference in these delays.
Another problem, the k-MEST problem, is defined in terms of the maximum
distance from a source to a destination, known as the maximum eccentricity.
This cost function was studied in [3] for some special types of graphs; in [6], the
problem in its general form (arbitrary sets of source and destination nodes) was
shown to be tractable and an efficient polynomial algorithm which for a graph on
n vertices runs in O(n3) time was given. The same was independently established
in [7] considering all graph vertices as destinations via an O(n3 +nm logn)-time
algorithm, where m is the number of edges of the graph.

The k-SPST problem takes into consideration all source-destination distances
but defines an intractable problem, whereas the k-MEST problem takes into con-
sideration only the maximum source-destination distance and thus does not give
any indication for the distances for the rest of the source-destination pairs. Two
cost functions that fill the gap between these two extreme cases were introduced
in [1]: the k-SVET cost function or sum of vertex eccentricities spanning tree is
defined as the sum of distances from each destination to its most distant graph
vertex in the constructed spanning tree, and the k-SSET cost function or sum of
source eccentricities spanning tree is defined as the sum of distances from each
source to its most distant vertex in the constructed tree.

In this paper, we consider the following generalizations of the k-SVET and
the k-SSET problems: for a set of source nodes and a set of destination nodes,
which are arbitrary subsets of the vertex set of a graph, we are interested in
minimizing the sum of distances from each destination (source, respectively)
to its most distant source (destination, respectively) node in the constructed
tree. Under this generalization, the two problems, the generalized k-SVET and
k-SSET, become symmetric (simply exchange S and D) and thus the results
derived for one of them apply to the other in a straightforward manner. We call
the generalized k-SVET problem SDET and the generalized k-SSET problem
SSET. We derive an O(nm log n)-time algorithm for the SDET problem and
thus, by symmetry, to the SSET problem, where n and m are the numbers
of vertices and edges of the given graph (network). The algorithm introduces
efficient ways to identify candidates for the sought tree and to narrow down their

1082 P. Fragopoulou, S.D. Nikolopoulos, and L. Palios

� � � �

� �

�

��

��

�� ��
��

�

���

��

�

��

��

��

Fig. 1. The midpoints of the vertices x, y, z on an edge uv of length 12

number to O(m). Our algorithm readily implies O(nm log n)-time algorithms for
the k-SVET and k-SSET problems as well.

2 Theoretical Framework

Let G be a simple weighted graph which models a network and has vertex
set V (G), edge set E(G), and non-negative symmetric weights on the edges,
and let S, D ⊆ V (G) be the set of source nodes and the set of destination nodes,
respectively; the sets S and D do not need to be disjoint. By d(u, v) we de-
note the length (weight) of the shortest path from vertex u to vertex v in the
graph G, and by dT (u, v) the length (weight) of the path from node u to node v
in a spanning tree T of G.

Let uv be an edge of G. A point on uv is either a vertex-endpoint or a location
on uv. For any two points α, β on uv, we denote by �(α, β) the length from α
to β along uv. Thus, the length (weight) of the edge uv is denoted by �(u, v).
(Note that d(u, v) ≤ �(u, v), although �(u, v), d(u, v) are not necessarily equal.)
With respect to the edge uv, we partition the vertex set V (G) as follows:

Vu = {u} ∪ { w | the shortest paths from v to w all go along the edge vu }
Vv = {v} ∪ { w | the shortest paths from u to w all go along the edge uv }
Vuv = V (G) − (Vu ∪ Vv).

(For example, in Figure 1, Vu = {u}, Vv = {v, w}, and Vuv = {x, y, z}.) For each
vertex x ∈ Vuv, we define the midpoint µx of x with respect to uv as the point
on uv such that �(v, µx) = 1/2 ·

(
d(u, x) − d(v, x) + �(u, v)

)
; note that for each

such vertex x, any shortest path from µx to x through u and any shortest path
from µx to x through v are of equal length (see Figure 1).

Let T be a spanning tree of the graph G and let u, v be any two distinct
vertices of G. The removal of the path ρ connecting u, v in T produces two
subtrees of T , containing u and v, respectively. Then, we say that a vertex x
that does not belong to the path ρ is connected to u (v, resp.) in T if x and u
(v, resp.) belong to the same subtree. Then, the definitions of Vu, Vv, Vuv, and
of the midpoint of a vertex imply the following observation:

Observation 1. Let p be a point on an edge uv and Tp a shortest paths tree
rooted at p. Then, for any vertex x ∈ V (G), we have:

Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics 1083

(i) If x ∈ Vu then vertex x is connected to u in Tp; if x ∈ Vv then vertex x is
connected to v in Tp.

(ii) If x ∈ Vuv then: if the midpoint µx of x with respect to uv is located in the
interval [u, p) then vertex x is connected to v in Tp; if µx is located in the
interval (p, v] then x is connected to u in Tp; if µx coincides with p, then x
may be connected either to u or to v in Tp.

Observation 1 implies the following corollary.

Corollary 1. If a vertex x is connected to u in a shortest paths tree Tp rooted
at a point p of an edge uv, then x is connected to u in any shortest paths tree
rooted at any point in the interval [u, p]; if x is connected to v in Tp, then x is
connected to v in any shortest paths tree rooted at any point in the interval [p, v].

Given a spanning tree T of the graph G and a vertex v, a critical source for
vertex v in T is an element of the set S of source nodes at maximum distance
from v in T . For the tree T , two sources at maximum intrasource distance in T
(i.e., their distance in T is no less than the distance of any other pair of sources)
form a pair of critical sources. It is important to note that a tree T may have
more than one pair of critical sources; if this is the case, then we can show the
following:

Lemma 1. Let T be a spanning tree of a graph, a set S of source nodes, and
suppose that T has more than one pair of critical sources. Then:

(i) The midpoints of all the paths in T connecting pairs of critical sources coin-
cide.

(ii) Let a, b and c, d be two pairs of critical sources. Then, a, c and b, d or a, d
and b, c are also pairs of critical sources.

The following lemma, established in [1], gives properties of trees which are
important both for the k-SVET and the SDET problems.

Lemma 2. [1] Let s1 and s2 be two sources with maximum intrasource distance
in a tree T . For any vertex d ∈ V (T) and any source si ∈ S − {s1, s2}, either
dT (d, si) ≤ dT (d, s1) or dT (d, si) ≤ dT (d, s2).

In other words, for each vertex v in a tree T with a pair s1, s2 of critical sources, s1
or s2 is a critical source for v in T . Based on this and other results, Connamacher
and Proskurowski [1] showed the following theorem (the same technique had been
used to show that the maximum eccentricity problem is polynomial [6]):

Theorem 1. [1] Given a weighted graph G, there exists a point χ such that any
shortest paths tree rooted at χ is an optimal tree for the k-SVET problem.

Theorem 1 shows that the tree minimizing the k-SVET cost function is a shortest
paths tree rooted at a vertex or at a point on an edge of G. In a similar fashion,
we can show the following:

Theorem 2. Given a weighted graph G, a set S of source nodes, and a set D
of destination nodes, there exists an optimal tree for the SDET problem which
is a shortest paths tree rooted at a point on an edge of the graph G.

1084 P. Fragopoulou, S.D. Nikolopoulos, and L. Palios

3 The Algorithm

Our algorithm for the SDET problem relies on Theorem 2. It receives as input a
weighted undirected graph G with non-negative symmetric weights and outputs
a shortest paths tree that minimizes the SDET cost function. In high level, it
works as follows:

Algorithm SDET

1. for each vertex v of the graph G do
1.1 compute the distances d(v, x) in G from v to every other vertex x ∈

V (G);
1.2 associate each pair v, x with either a neighbor u of v if all the shortest

paths from v to x go along the edge uv, or with v otherwise;
2. mincost ← +∞;

for each edge uv of G do
2.1 determine the description of a shortest paths tree T of G rooted at a

point on the edge uv which minimizes the SDET cost function over all
shortest paths trees rooted at points of uv and let cost(T) be the value
of the SDET cost function for T ;

2.2 if cost(T) < mincost
then save the description of T as it gives the currently optimal tree Topt;

mincost ← cost(T);
3. Construct the tree Topt from its description and clip it by repeatedly remo-

ving leaves that do not belong to S ∪ D.

Clearly, the correctness of Step 2.1 implies the correctness of the entire algorithm.
For the execution of Step 2.1 on an edge uv, we first compute a list Luv of shortest
paths trees rooted at points on uv, which includes a tree exhibiting the minimum
of the SDET cost function over all shortest paths trees rooted on uv, and then,
among the trees in Luv, we select one with the minimum value of the SDET
cost; these are discussed in the following subsections.

3.1 Finding Candidates (for the Optimal Tree) Rooted on an Edge

Let us consider an edge uv of the input graph G. In order to guarantee the
correctness of our algorithm, we should consider all structurally different short-
est paths trees of G rooted at points on uv. Observation 1 narrows down the
possibilities and determines which vertices are connected to u and which to v
in a tree: it implies that if we walk along the edge uv from u to v and compute
the shortest paths tree rooted at the current point of uv, the tree is unique and
remains the same for as long as we do not cross any midpoint; when we cross the
midpoint µx of a vertex x, then x, which has been connected to u in the shortest
paths trees considered so far, gets now connected to v. Since the vertices in Vuv

are those contributing midpoints on the edge uv, we consider the partition of
the set S of source nodes into the following three sets:

Su = S ∩ Vu Sv = S ∩ Vv Suv = S ∩ Vuv

Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics 1085

(for example, if S = {x, y, z, w} in Figure 1, then Su = ∅, Sv = {w}, and
Suv = {x, y, z}).

The following lemma, which we establish, helps us avoid additional unneces-
sary work as well.

Lemma 3. Let G be a graph, and S, D ⊆ V (G) be sets of source and destination
nodes, respectively. For the computation of an optimal solution for the SDET
problem for G, S, D, it suffices that we consider only shortest paths trees of G
rooted at points r satisfying both following conditions:

(i) the root r of the tree lies on the path connecting a pair of critical sources in
the tree;

(ii) the root r and the (common) midpoint of all the paths connecting pairs of
critical sources in the tree are located on (the closure of) an edge of G.

Lemma 3 has the following very important implications:

Corollary 2. Let G, S, D be as described in Lemma 3. For the computation of
an optimal solution for the SDET problem for G, S, D, it suffices that we consider
only shortest paths trees T of G such that if σu (σv, resp.) is a source connected
to u (v, resp.) in T at maximum distance from u (v, resp.), the midpoint of the
path connecting σu and σv in T belongs to the edge uv. Then, in any such tree:

(i) the sources σu, σv form a pair of critical sources in T ;
(ii) the source σu (σv, resp.) is critical for every vertex x connected to v (u,

resp.) in T .

Finally, if the midpoints of k source nodes with respect to the edge uv coincide
at a point p, then there are 2k structurally different shortest paths trees rooted
at p (and in fact, even more if midpoints of other vertices also coincide with p).
Yet, in such a case, we can show the following:

Lemma 4. Let G be a graph, S, D ⊆ V (G) be sets of source and destination
nodes, respectively, and A ⊆ S be a set of source nodes whose midpoints all fall at
a point r on an edge uv of G. Then, for the computation of an optimal solution
for the SDET problem for G, S, D, among all the shortest paths trees of G rooted
at r, it suffices that we consider only those in which the sources in A are either
all connected to u or all connected to v.

The details of the processing of an edge uv of the input graph G are given
in the Algorithm Trees Rooted on Edge presented below. For an edge uv of
G, the algorithm produces a list Luv of shortest paths trees rooted at points on
uv, which is guaranteed to include a tree minimizing the SDET cost function
over all such trees with their roots on uv; the trees are listed in Luv in the order
their roots are met along uv from u to v, and each such tree T is represented by
its root r, the distance δu(r) of u to the critical sources in T connected to u, the
distance δv(r) of v to the critical sources in T connected to v, and a number kS(r)
such that the sources stored in a subarray Σ[1..kS(r)] of an array Σ of size |S|

1086 P. Fragopoulou, S.D. Nikolopoulos, and L. Palios

are those connected to v in T whereas the remaining ones are those connected to
u. We also note that in the case that the midpoints of several sources coincide,
Algorithm Trees Rooted on Edge considers more possibilities than the two
specified in Lemma 4; nevertheless, it certainly considers those two.

Algorithm Trees Rooted on Edge

1. Compute the sets Su, Sv, and Suv, and the midpoints of the source nodes in
Suv as well as their distances from vertex u on the edge uv;

2. Construct a sorted list (s1, s2, . . . , st) of the source nodes in Suv in order of
non-decreasing distance of their midpoints (on the edge uv) from u;
Construct a sorted array Σ of the source nodes which stores the elements
of Sv, followed by the sources s1, s2, . . . , st in that order, followed by the
elements in Su;
s0 ← source node in Sv (if any) at maximum distance from v;
st+1 ← source node in Su (if any) at maximum distance from u;

3. Construct two arrays: Au = [d(u, s1), d(u, s2), . . . , d(u, st), d(u, st+1)] and
Av = [d(v, s0), d(v, s1), d(v, s2), . . . , d(v, st)];

4. Compute the suffix-maxima [a1, a2, . . . , at+1] on the array Au and the prefix-
maxima [b0, b1, . . . , bt] on the array Av, i.e., ai = max{d(u, si), d(u, si+1), . . .,
d(u, st+1)} and bi = max{d(v, s0), d(v, s1), . . . , d(v, si)};

5. Luv ← an empty list;
for each i = 0, 1, 2, . . . , t do

{consider the shortest paths tree rooted at u if i = 0 or at µsi otherwise,
in which the sources in Sv ∪ {s1, s2, . . . , si} are connected to v and
the sources in {si+1, si+2, . . . , st+1} ∪ Su are connected to u}
if (i = 0 and Sv = ∅) or (i = t and Su = ∅)
then do nothing; {b0 or at+1 are not well defined}
else if | ai+1 − bi | ≤ �(u, v)

then {the midpoint of the paths connecting pairs of critical
sources belongs to uv}

if i = 0 then r ← u;
else r ← midpoint µsi of si on the edge uv;

δu(r) ← ai+1;
δv(r) ← bi;
kS(r) ← |Sv| + i;
insert at the end of Luv a record for a shortest paths tree
represented by its root r, δu(r), δv(r), and kS(r);

6. Return the list Luv of shortest paths trees and the array Σ;

The correctness of the algorithm follows from Observation 1, Theorem 2, Corol-
lary 2, and Lemma 4. It is not difficult to see that the algorithm runs in
O(|S| log |S|) time. Thus, we have:

Lemma 5. Given a weighted graph G, a set of source nodes S ⊆ V (G), and an
edge uv of G, Algorithm Trees Rooted on Edge computes in O(|S| log |S|)
time a collection of shortest paths trees rooted at points on uv among which there
is one that minimizes the SDET cost function over all shortest paths trees rooted
on uv.

Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics 1087

3.2 Selecting a Shortest Paths Tree of Minimum Cost Among
Those Rooted at Points of an Edge

Let uv be an edge of the given graph G. In light of Lemma 5, finding a shortest
paths tree of minimum SDET cost among those rooted at points on uv reduces
to finding a tree of minimum SDET cost among those computed by Algorithm
Trees Rooted on Edge (see Section 3.1). We process these trees in the order
their roots are met on the edge uv from u to v; similarly, we process the desti-
nation nodes in the order their midpoints are met on the edge uv from u to v.
If we consider the partition of the set D of destination nodes into

Du = D ∩ Vu, Dv = D ∩ Vv, Duv = D ∩ Vuv ,

then, for any shortest paths tree T rooted at a point r of uv and any destina-
tion node d, Observation 1 specifies whether d is connected to u or to v in T .
Additionally, the critical sources connected to u (v, resp.) are critical for each
destination node connected to v (u, resp.); see Corollary 2. Finally, Lemma 6
(similar to Lemma 4) addresses the case of destination nodes whose midpoints
coincide with the root of a shortest paths tree.

Lemma 6. Let G be a graph, D ⊆ V (G) the set of destination nodes, B ⊆ D be
a set of destination nodes whose midpoints all fall at a point r on an edge uv of
G, and let σu, σv be sources connected to u and v, repsectively, forming a critical
pair in a shortest paths tree rooted at r. Then, for the computation of an optimal
solution for the SDET problem for G, S, D, among all the shortest paths trees of
G rooted at r, it suffices that we consider only the one in which the destinations
in B are either all connected to v if d(u, σu) + �(u, r) < �(r, v) + d(v, σv), or all
connected to u otherwise.

The details of the computation are given below:

Algorithm Edge Min Cost

1. Compute the sets Du, Dv, and Duv, and the midpoints of the destination
nodes in Duv as well as their distances from vertex u on the edge uv;

2. Construct a sorted array ∆ of the destination nodes which stores the elements
of Dv, followed by the elements of Duv in order of non-decreasing distance
of their midpoints (on the edge uv) from u, followed by the elements in Du;

3. Execute Algorithm Trees Rooted on Edge on the edge uv: in addition to
an ordered array Σ of the sources, the algorithm returns a list Luv of shortest
paths trees rooted at points on uv in the order their roots r1, r2, . . . , rt′

appear along uv from u to v; the tree rooted at ri is also associated with the
distances δu(ri) and δv(ri), and the number kS(ri) (see Section 3.1);

4. cu ←
∑

x∈D−Dv
d(u, x) and cv ←

∑
x∈Dv

d(v, x);
j ← |Dv| + 1 and mincost ← +∞;
for each candidate root location ri ∈ Luv, 1 ≤ i ≤ t′, do
4.1 while j ≤ |D| − |Du| and µ∆[j] is to the left of ri on the edge uv do

subtract the value d(u, ∆[j]) from cu;
add the value d(v, ∆[j]) to cv;
j ← j + 1;

1088 P. Fragopoulou, S.D. Nikolopoulos, and L. Palios

4.2 if δu(ri) + �(u, ri) < �(ri, v) + δv(ri) {apply Lemma 6}
then while j ≤ |D| − |Du| and µ∆[j] coincides with ri do

subtract the value d(u, ∆[j]) from cu;
add the value d(v, ∆[j]) to cv;
j ← j + 1;

kD(ri) ← j − 1; {number of destination nodes connected to v}
4.3 cost ← cv + kD(ri) ·

(
�(u, v) + δu(ri)

)
+

cu +
(
|D| − kD(ri)

)
·
(
�(u, v) + δv(ri)

)
;

if cost < mincost
then r̂uv ← ri;

mincost ← cost;
5. return a description of the computed shortest paths tree consisting of its

root r̂uv , its cost mincost, the ordered pair (u, v), and the source nodes stored
in Σ[1..kS(r̂uv)] and the destination nodes stored in ∆[1..kD(r̂uv)] which are
to be connected to v whereas the remaining source and destination nodes
are to be connected to u;

The correctness of the algorithm follows from the discussion preceding the de-
scription of the algorithm. Regarding the complexity of the algorithm, we have:
Step 1 requires O(|D|) time, Step 2 O(|D| log |D|) time, Step 3 O(|S| log |S|) time
(Lemma 5), Step 4 O(|S|+ |D|) time (for each di ∈ D, the distances d(u, di) and
d(v, di) are available in constant time thanks to Step 1 of Algorithm SDET and
we spend O(1) time for each candidate root ri and each destination node), and
Step 5 O(|S|+|D|) time. In total, the algorithm runs in O(|S| log |S|+|D| log |D|)
time. Thus, we have the following result.

Lemma 7. Given a weighted graph G, a set of source nodes S ⊆ V (G), a
set of destination nodes D ⊆ V (G), and an edge uv of G, then Algorithm
Edge Min Cost runs in O(|S| log |S| + |D| log |D|) time and produces the de-
scription of a shortest paths tree of G rooted at a point of uv which minimizes
the SDET cost function over all shortest paths trees rooted at points on uv.

3.3 Time Complexity of Algorithm SDET

We assume that the input graph G has n vertices and m edges and is given in
adjacency list representation.

Step 1: The distances d(v, x) from v to all other vertices x of the input graph G
can be computed using the well known Dijkstra’s algorithm in O((n + m) log n)
time [2]. Since |S| + |D| = O(n), we have that Step 1.1 is executed in O(n(n +
m) log n) time. Finding whether the shortest paths from vertex v to any source
or destination node x all go along the same edge incident on v or not can be
easily carried out by executing a slightly modified version of Dijkstra’s algorithm
for v which maintains this information; the modified version runs in O(n(n +
m) log n) time for all pairs of vertices of G as well. In total, Step 1 requires
O(n(n + m) log n) time.
Step 2: Since Algorithm Edge Min Cost runs in O(|S| log |S| + |D| log |D|)
time for each edge of G (Lemma 7), the step is executed in O(nm log n) time.

Multi-source Trees: Algorithms for Minimizing Eccentricity Cost Metrics 1089

Step 3: The shortest paths tree Topt can be constructed from its description in
O((n + m) log n) time by using Dijkstra’s algorithm to determine the desired
shortest paths, while the clipping of unnecessary leaves takes O(n) time.

Therefore, we obtain the following result.

Theorem 3. The SDET problem on a weighted graph G on n vertices and m
edges is solved in O(nm log n) time.

4 Concluding Remarks

We described an algorithm for the SDET problem, which runs in O(nm log n)
time and, to the best of our knowledge, is the first one for the problem in
question. The algorithm also provides O(nm log n)-time algorithms for the k-
SVET and k-SSET problems for which it has only been proven that they are
polynomial. The obvious open question is whether a faster algorithm can be
obtained for the SDET problem; a potential improvement would arise if the set
of edges contributing candidate roots for the sought shortest paths tree could be
narrowed to only o(m) edges.

References

1. H.S. Connamacher and A. Proskurowski, “The complexity of minimizing certain
cost metrics for k-source spanning trees”, Discrete Applied Mathematics 131 (2003)
113–127.

2. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms
(2nd edition), MIT Press, Inc., 2001.

3. A.M. Farley, P. Fragopoulou, D.W. Krumme, A. Proskurowski, and D. Richards,
“Multi-source spanning tree problems”, Journal of Interconnection Networks 1
(2000) 61–71.

4. T.C. Hu, “Optimum communication spanning trees”, SIAM Journal on Computing
3 (1974) 188–195.

5. D.S. Johnson, J.K. Lenstra, and A.H.G. Rinnoy Kan, “The complexity of the
network design problem”, Networks 8 (1978) 279–285.

6. D.W. Krumme and P. Fragopoulou, “Minimum eccentricity multicast trees”, Dis-
crete Mathematics and Theoretical Computer Science 4 (2001) 157–172.

7. B. McMahan and A. Proskurowski, “Multi-source spanning trees: algorithms for
minimizing source eccentricities”, Discrete Applied Mathematics 137 (2004) 213–
222.

8. R. Ravi, R. Sundaram, M.V. Marathe, D.J. Rosenkrantz, and S.S. Ravi, “Spanning
trees - short or small”, SIAM Journal of Discrete Mathematics 9 (1996) 178–200.

9. G.N. Rouskas and I. Baldine, “Multicast routing with end-to-end delay and delay
variation constraints”, IEEE Journal on Selected Areas in Communications 15
(1997) 346–356.

10. B.Y. Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi, and C.Y. Tang, “A polynomial
time approximation scheme for minimum routing cost spanning trees”, Proc. 9th
Annual ACM-SIAM Symposium on Discrete Algorithms – SODA’98 (1998) 21–32.

	Introduction
	Theoretical Framework
	The Algorithm
	Finding Candidates (for the Optimal Tree) Rooted on an Edge
	Selecting a Shortest Paths Tree of Minimum Cost Among Those Rooted at Points of an Edge
	Time Complexity of Algorithm SDET

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

