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ABSTRACT

Data warehouses can be defined as ‘subject-oriented’, integrated, time-varying, non-volatile collections of
data that is used primarily in organizational decision making. Nowadays, data warehousing became an
important strategy to integrate heterogeneous information sources in organizations, and to enable On-Line
Analytic Processing (OLAP). Unfortunately, neither the accumulation, nor the storage process, seem to be
completely credible. For example, it has been suggested in the literature that more than $2 billion of U.S.
federal loan money have been lost because of poor data quality at a single agency, that manufacturing
companies spent over 25% of their sales on wasteful practices, a number which came up to 40% for service
companies.
The question that arises, then, is how to organize the design, administration and evolution choices in such a
way that all the different, and sometimes opposing, quality user requirements can be simultaneously satisfied.
To tackle this problem, this thesis contributes as follows:
The first major result that we present is a general framework for the treatment of data warehouse metadata in
a metadata repository. The framework requires the classification of metadata in at least two instantiation
layers and three perspectives. The metamodel layer constitutes the schema of the metadata repository and the
metadata layer the actual meta-information for a particular data warehouse. The perspectives are the well
known conceptual, logical and physical perspectives from the field of database and information systems.
We link this framework to a well-defined approach for the architecture of the data warehouse from the
literature. Then, we present our proposal for a quality metamodel, which builds on the widely accepted Goal-
Question-Metric approach for the quality management of information systems. Moreover, we enrich the
generic metamodel layer with patterns concerning the linkage of (a) quality metrics to data warehouse objects
and (b) of data warehouse stakeholders to template quality goals. Then, we go on to describe a metamodel for
data warehouse operational processes. This metamodel enables data warehouse management, design and
evolution based on a high level conceptual perspective, which can be linked to the actual structural and
physical aspects of the data warehouse architecture. This metamodel is capable of modeling complex
activities, their interrelationships, the relationship of activities with data sources and execution details.
The ex ante treatment of the metadata repository is enabled by a full set of steps, i.e., quality question, which
constitute our methodology for data warehouse quality management and the quality-oriented evolution of a
data warehouse based on the architecture, process and quality metamodels. Our approach extends GQM, based
on the idea that a goal is operationally defined over a set of questions. Thus, we provide specific “questions”
for the full lifecycle of a goal: this way the data warehouse metadata repository is not simply defined
statically, but it can be actually exploited in a systematic manner.
Special attention is paid to a particular part of the architecture metamodel, the modeling of OLAP databases.
To this end, we first provide a categorization of the work in the area of OLAP logical models by surveying
some major efforts, including commercial tools, benchmarks and standards, and academic efforts.  We also
attempt a comparison of the various models along several dimensions, including representation and querying
aspects. Our contribution lies in the introduction a logical model for cubes based on the key observation that a
cube is not a self-existing entity, but rather a view over an underlying data set. The proposed model is
powerful enough to capture all the commonly encountered OLAP operations such as selection, roll-up and
drill-down, through a sound and complete algebra. We also show how this model can be used as the basis for
processing cube operations and provide syntactic characterizations for the problems of cube usability.
Finally, this thesis gives an extended review of the existing literature on the field, as well as a list of related
open research issues.
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Chapter 1
Introduction

1. DESCRIPTION
 A Data Warehouse (DW) is a collection of technologies aimed at enabling the knowledge worker
(executive, manager, analyst, etc) to make better and faster decisions. Many researchers and
practitioners share the understanding that a data warehouse architecture can be formally understood
as layers of materialized views on top of each other. A data warehouse architecture exhibits various
layers of data in which data from one layer are derived from data of the lower layer. Data sources,
also called operational databases, form the lowest layer. They may consist of structured data stored in
open database systems and legacy systems, or unstructured or semi-structured data stored in files. The
central layer of the architecture is the global (or primary) Data Warehouse. The global data
warehouse keeps a historical record of data that result from the transformation, integration, and
aggregation of detailed data found in the data sources. Usually, a data store of volatile, low granularity
data is used for the integration of data from the various sources: it is called Operational Data Store
(ODS). The Operational Data Store, serves also as a buffer for data transformation and cleaning so
that the data warehouse is populated with clean and homogeneous data. The next layer of views are
the local, or client warehouses, which contain highly aggregated data, directly derived from the global
warehouse. There are various kinds of local warehouses, such as the data marts or the OLAP
databases, which may use relational database systems or specific multidimensional data structures.
All the data warehouse components, processes and data are -or at least should be- tracked and
administered from a metadata repository. The metadata repository serves as an aid both to the
administrator and the designer of a data warehouse. Indeed, the data warehouse is a very complex
system, the volume of recorded data is vast and the processes employed for its extraction,
transformation, cleansing, storage and aggregation are numerous, sensitive to changes and time-
varying. The metadata repository serves as a roadmap that provides a trace of all design choices and a
history of changes performed on its architecture and components. For example, the new version of the
Microsoft Repository [BBC*99] and the Metadata Interchange Specification (MDIS) [Meta97]
provide different models and application programming interfaces to control and manage metadata for
OLAP databases. In Figure 1.1, a generic architecture for a data warehouse is depicted.
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Figure 1.1. A generic architecture for a data warehouse

The emergence of data warehousing was initially a consequence of the observation by W. Inmon and
E. F. Codd in the early 1990’s that operational-level on-line transaction processing (OLTP) and
decision support applications (OLAP) cannot coexist efficiently in the same database environment,
mostly due to their very different transaction characteristics [Inmo96]. Inmon defined data
warehouses as ‘subject-oriented’, integrated, time-varying, non-volatile collections of data that is
used primarily in organizational decision making. Since then, data warehousing became an important
strategy to integrate heterogeneous information sources in organizations, and to enable On-Line
Analytic Processing.
A report from the META group during the Data Warehousing Conference (Orlando, Fl) in February
1996, presented very strong figures for the area [JLVV99]:

• Data warehousing will be a $13,000 million industry within 2 years ($8,000m hardware,
$5,000m on services and systems integration), while 1995 represents $2,000m levels of
expenditure..

• The average expenditure for a data warehouse project is $3m. This is set to accelerate. 59% of the
survey’s respondents expect to support data warehouses in excess of 50GB by the middle of the
year 1996 and 85% are claiming they will be supporting over 50 users in the same timeframe.

In 1998, the reality has exceeded these figures, reaching sales of $14,600m. The number and
complexity of projects is indicative of the difficulty of designing good data warehouses. Still, it is an
interesting question to discover why the big organizations and enterprises embark in such a costly,
risky and painful task, as the construction of a data warehouse is. It is a fact, of course, that OLAP
technology gives added value to the information system of an enterprise; still practice has proved that
another issue is of equal or greater importance too.

It is well known that the ultimate goal of organizations, governments and companies, when they
accumulate and store information is the ability to process it later and take advantage of it.
Unfortunately, neither the accumulation, nor the storage process, seem to be completely credible. In
[WaRK95] it is suggested that errors in databases have been reported to be up to ten percent range
and even higher in a variety of applications. It is obvious that inaccurate, invalid, out-of-date or
incomplete data may have a heavy financial, or even social, impact. Although the implementation of
mechanisms for achieving data quality has financial risks and may prove not to be profitable for the
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organization which decides to undertake the task of implementing it, it is at least accepted that there
can be an equilibrium in the cost-quality tradeoff. In [WaSF95], it is reported that more than $2
billion of U.S. federal loan money had been lost because of poor data quality at a single agency. It also
reported that manufacturing companies spent over 25% of their sales on wasteful practices. The
number came up to 40% for service companies.

Data warehouses have proved their value to serve as repositories for integrated, homogenized and
clean data. In other words, they do not serve only as information buffers for answering complex
questions quickly but also as intermediate stages in the processing of information within the
information system of an enterprise, where the information becomes more accurate and useful. Thus,
at the end of the data processing chain, at the front end of an OLAP / DW application, is ultimately
the overall quality of the information which is provided to the end user.

2. QUALITY AND DATA WAREHOUSES
Data quality has been defined as the fraction of performance over expectancy, or as the loss imparted
to society from the time a product is shipped [BBBB95]. We believe, though, that the best definition is
the one found in [TaBa98, Orr98, WaSG94]: data quality is defined as "fitness for use". The nature of
this definition directly implies that the concept of data quality is relative. For example, data semantics
(the interpretation of information) is different for each distinct user. As [Orr98] mentions "the
problem of data quality is fundamentally intertwined in how [...] users actually use the data in the
system", since the users are actually the ultimate judges of the quality of the data produced for them: if
nobody actually uses the data, then nobody will ever take care to improve its quality.

As a decision support information system, a data warehouse must provide high level quality of data
and quality of service. Coherency, freshness, accuracy, accessibility, availability and performance are
among the quality features required by the end users of the data warehouse. Still, too many
stakeholders are involved in the lifecycle of the data warehouse; all of them seem to have their quality
requirements. As already mentioned, the Decision Maker usually employs an OLAP query tool to get
answers interesting to him. A decision-maker is usually concerned with the quality of the stored data,
their timeliness and the ease of querying them through the OLAP tools. The Data Warehouse
Administrator needs facilities such as error reporting, metadata accessibility and knowledge of the
timeliness of the data, in order to detect changes and reasons for them, or problems in the stored
information. The Data Warehouse Designer needs to measure the quality of the schemata of the data
warehouse environment (both existing and newly produced) and the quality of the metadata as well.
Furthermore, he needs software evaluation standards to test the software packages he considers
purchasing. The Programmers of Data Warehouse Components can make good use of software
implementation standards in order to accomplish and evaluate their work. Metadata reporting can
also facilitate their job, since they can avoid mistakes related to schema information. Based on this
analysis, we can safely argue that different roles imply a different collection of quality aspects, which
should be ideally treated in a consistent and meaningful way.

From the previous it follows that, on one hand, the quality of data is of highly subjective nature and
should ideally be treated differently for each user. At the same time, the quality goals of the involved
stakeholders are highly diverse in nature. They can be neither assessed nor achieved directly but
require complex measurement, prediction, and design techniques, often in the form of an interactive
process. On the other hand, the reasons for data deficiencies, non-availability or reachability problems
are definitely objective, and depend mostly on the information system definition and implementation.
Furthermore, the prediction of data quality for each user must be based on objective quality factors
that are computed and compared to users' expectations. The question that arises, then, is how to
organize the design, administration and evolution of the data warehouse in such a way that all
the different, and sometimes opposing, quality requirements of the users can be simultaneously
satisfied. As the number of users and the complexity of data warehouse systems do not permit to
reach total quality for every user, another question is how to prioritize these requirements in order to
satisfy them with respect to their importance. This problem is typically illustrated by the physical
design of the data warehouse where the problem is to find a set of materialized views that optimize
user requests response time and the global data warehouse maintenance cost at the same time.
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Before answering these questions, though, it should be useful to make a clear-cut definition of the
major concepts in these data warehouse quality management problems. To give an idea of the
complexity of the situation let us present a verbal description of the situation. The interpretability of
the data and the processes of the data warehouse is heavily dependent on the design process (the level
of the description of the data and the processes of the warehouse) and the expressive power of the
models and the languages which are used. Both the data and the systems architecture (i.e. where each
piece of information resides and what the architecture of the system is) are part of the interpretability
dimension. The integration process is related to the interpretability dimension, by trying to produce
minimal schemata. Furthermore, processes like query optimization (possibly using semantic
information about the kind of the queried data -e.g. temporal, aggregate, etc.), and multidimensional
aggregation (e.g. containment of views, which can guide the choice of the appropriate relations to
answer a query) are dependent on the interpretability of the data and the processes of the warehouse.
The accessibility dimension of quality is dependent on the kind of data sources and the design of the
data and the processes of the warehouse. The kind of views stored in the warehouse, the update policy
and the querying processes are all influencing the accessibility of the information. Query optimization
is related to the accessibility dimension, since the sooner the queries are answered, the higher the
transaction availability is. The extraction of data from the sources is also influencing (actually
determining) the availability of the data warehouse. Consequently, one of the primary goals of the
update propagation policy should be to achieve high availability of the data warehouse (and the
sources). The update policies, the evolution of the warehouse (amount of purged information) and the
kind of data sources are all influencing the timeliness and consequently the usefulness of data.
Furthermore, the timeliness dimension influences the data warehouse design and the querying of the
information stored in the warehouse (e.g., the query optimization could possibly take advantage of
possible temporal relationships in the data warehouse). The believability of the data in the warehouse
is obviously influenced from the believability of the data in the sources. Furthermore, the level of the
desired believability influences the design of the views and processes of the warehouse. Consequently,
the source integration should take into account the believability of the data, whereas the data
warehouse design process should also take into account the believability of the processes. The
validation of all the processes of the data warehouse is another issue, related with every task in the
data warehouse environment and especially with the design process. Redundant information in the
warehouse can be used from the aggregation, customization and query optimization processes in order
to obtain information faster. Also, replication issues are related to these tasks. Finally, quality aspects
influence several factors of data warehouse design. For instance, the required storage space can be
influenced by the amount and volume of the quality indicators needed (time, believability indicators
etc.). Furthermore, problems like the improvement of query optimization through the use of quality
indicators (e.g. ameliorate caching), the modeling of incomplete information of the data sources in the
data warehouse, the reduction of negative effects schema evolution has on data quality and the
extension of data warehouse models and languages, so as to make good use of quality information
have to be dealt with.

3. FRAMEWORK AND MOTIVATION FOR RESEARCH
Our proposal is based on the assumption that the metadata repository of the data warehouse can serve
as the cockpit for the management of quality. To make the repository functional, we must provide a
coherent framework that captures the data warehouse from three different viewpoints, namely the
architecture, process and quality viewpoints.

Why an architecture model?
Although many data warehouses have already been built, there is no common methodology, which
supports database system administrators in designing and evolving a data warehouse. The problem
with architecture models for data warehouses is that practice has preceded research in this area and
continues to do so. Consequently, the task of providing an abstract model of the architecture becomes
more difficult.
Formally, an architecture model corresponds to the schema structure of the meta-database that
controls the usually distributed and heterogeneous set of data warehouse components and therefore is
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the essential starting point for design and operational optimization. The purpose of architecture
models is to provide an expressive, semantically defined and computationally understood meta
modeling language, based on observing existing approaches in practice and research.
Expressiveness and services of the metadata schema are crucial for data warehouse quality.

To facilitate complex analysis and visualization, information targeted for On-Line Analytical
Processing is organized according to the multidimensional data model, which involves aggregation of
data according to specific data dimensions. It has been argued that traditional data models (e.g., the
relational one) are in principle not powerful enough for data warehouse applications, whereas
multidimensional models provide the functionality needed for summarizing, viewing, and
consolidating the information available in data warehouses [JLVV99]. Despite this consensus on the
central role of multidimensional data cubes, and the variety of the proposals made by researchers,
there is little agreement on finding a common terminology and semantic foundations for a
multidimensional data model. The missing semantic enrichment will not only enhance data
warehouse design but can also be used to optimize data warehouse operation, by providing reasoning
facilities to exploit redundant pre-materialized (or cached) information which can be reused in more
than one operations.

Why a process model?
The static description of the architecture parts of the data warehouse can be complemented, with a
metamodel of the dynamic parts of the data warehouse, i.e. the data warehouse processes. Providing a
process model for data warehouses practically captures the behavior of the system and the
interdependencies of the involved stakeholders. Since data warehouse processes are data intensive,
special care should be taken to capture the interrelationship of the process definition to the data
involved to their operation. Moreover, due to the diversity and number of the stakeholders in the data
warehouse environment, the tracking of data warehouse processes provides the ability to administer
the operation and especially the evolution of the data warehouse, based on the knowledge of the
possible effects of any actions, to the involved stakeholders or architecture objects.

Why a quality model? How to use it?
As already made explicit, apart from their role as passive buffers in the data propagation path between
operational databases and end users, data warehouses can also serve as the bridge of the gap between
subjective user requirements for information quality and objective detection and measurements of data
deficiencies. The data warehouse, being a collective off-line, multi-layered system, can serve as a
"data cleaner" for the information presented to the user. Recording the quality of the data warehouse
data and processes in a metadata repository is providing, thus, the data warehouse stakeholders with
sufficient power to evaluate, understand and possibly react against the structure and content of the
warehouse. The quality model of the data warehouse, answers questions like:
• How can the quality of a data warehouse be evaluated and designed?
• How can the quality of a data warehouse be managed in the everyday usage of the data

warehouse?

Still, although quality considerations have accompanied data warehouse research from the beginning,
most of the research has focused on issues such as the trade-off between freshness of data warehouse
data and disturbance of OLTP work during data extraction; the minimization of data transfer through
incremental view maintenance; and a theory of computation with multi-dimensional data models
[JLVV99].

From the viewpoint of information systems research, though, the problem of how to design, construct
and administer data warehouses that satisfy specific, well-defined quality criteria is still present.
Due to the versatile nature of quality requirements, it is desirable to achieve breadth of coverage
without giving up the detailed knowledge available for certain criteria. The heavy use of highly
qualified consultants in data warehouse applications indicates that we have not yet reached a high-
level, systematic solution to the problem. The basic issues raised in this context are basically
• The introduction of formal models of data warehouse quality;
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• Measurement techniques that populate the quality model, in order to make it useful;
• A methodology that ensure the quality of the data and processes during both the design and the

everyday usage of the warehouse.

As a concluding general statement, the enrichment of the metadata of a data warehouse with the
appropriate models will be beneficial for the design, administration and usage of the data warehouse.

4. ROADMAP FOR THE REST OF THE DOCUMENT
We answer all the aforementioned problems in the following chapters of this document. In Chapter 2,
we adopt an architecture metamodel [JJQV99] as the basis for the metadata repository of the data
warehouse. A framework for data warehouse metadata and a quality metamodel accompany the
architecture metamodel. In Chapter 3, the metamodel for data warehouse processes is introduced. The
three metamodels are accompanied by a methodology for quality-oriented data warehouse
management in Chapter 4. In Chapter 5 we present a formal metamodel for multidimensional
databases as well as query optimization techniques that exploit it. Chapter 6 presents information
about a prototype OLAP tool, which implemented a previous version of the multidimensional
metamodel. Finally, in Chapter 7, we conclude our results.

Specifically, the thesis is structured as follows:
The first major result that we present in Chapter 2, is a general framework for the treatment of data
warehouse metadata in a metadata repository. The framework requires the classification of metadata
in at least two instantiation layers and three perspectives. The metamodel layer constitutes the schema
of the metadata repository and the metadata layer the actual meta-information for a particular data
warehouse. The perspectives are the well known conceptual, logical and physical perspectives from
the field of database and information systems.

We link this framework to a well-defined approach for the architecture of the data warehouse from the
literature. Then, we present our proposal for a quality metamodel, which builds on the widely
accepted Goal-Question-Metric approach for the quality management of information systems.
Moreover, we enrich the generic metamodel layer with patterns concerning the linkage of (a) quality
metrics to data warehouse objects and (b) of data warehouse stakeholders to template quality goals.

Then, in Chapter 3, we go on to describe a metamodel for data warehouse operational processes. This
metamodel enables data warehouse management, design and evolution based on a high level
conceptual perspective, which can be linked to the actual structural and physical aspects of the data
warehouse architecture. This metamodel is capable of modeling complex activities, their
interrelationships, the relationship of activities with data sources and execution details.

The ex ante treatment of the metadata repository is enabled by a full set of steps, i.e., quality question,
which constitute our methodology for data warehouse quality management and the quality-oriented
evolution of a data warehouse based on the architecture, process and quality metamodels. Our
approach –presented in Chapter 4- extends GQM, based on the idea that a goal is operationally
defined over a set of questions. Thus, we provide specific “questions” for the full lifecycle of a goal:
this way the data warehouse metadata repository is not simply defined statically, but it can be actually
exploited in a systematic manner.

Special attention is paid to a particular part of the architecture metamodel, the modeling of OLAP
databases. To this end, in Chapter 5, we first provide a categorization of the work in the area of OLAP
logical models by surveying some major efforts, including commercial tools, benchmarks and
standards, and academic efforts.  We also attempt a comparison of the various models along several
dimensions, including representation and querying aspects. Our contribution lies in the introduction a
logical model for cubes based on the key observation that a cube is not a self-existing entity, but rather
a view over an underlying data set. The proposed model is powerful enough to capture all the
commonly encountered OLAP operations such as selection, roll-up and drill-down, through a sound
and complete algebra. We also show how this model can be used as the basis for processing cube
operations and provide syntactic characterizations for the problems of cube usability. In Chapter 6, we



Data Warehouse Modeling and Quality Issues: Introduction

Panos Vassiliadis Ph.D.  thesis Page: 1.7

present an experimental prototype OLAP tool, implementing a previous version of the proposed
model.

Finally, this thesis gives an extended review of the existing literature on the field, as well as a list of
related open research issues.
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Chapter 2
Architecture and Quality

Metamodels

1. INTRODUCTION
We made an interesting point at the end of the previous chapter, by stating that the efficient
management of the lifecycle of a data warehouse is enabled by the inspection of three viewpoints
concerning the data warehouse: its architecture, processes and quality. The architecture constitutes of
the static components comprising the data warehouse; the processes capture the dynamic part of the
data warehouse environment. Finally, quality is a measure of the fulfillment of the expectations of the
involved stakeholders in such an environment.
For each viewpoint, a respective metamodel can be derived. It is important, of course, that all three
metamodels respect a coherent framework, and fit gracefully with each other. We will immediately
proceed to present the architecture metamodel for a data warehouse, as well as the general framework
for metadata management. In the next section we will make a proposal for a quality metamodel and in
the fourth section we will present templates for quality management in a data warehouse environment.
The data warehouse processes -which we believe to be the more interesting part of the whole
environment- will be detailed in the next chapter.

1.1 State of the art in metadata management
As mentioned in [JLVV99], metadata is stored in a repository, where it can be accessed from every
component of the data warehouse. The Metadata Coalition has proposed a Metadata Interchange
Specification [Meta97]; additional emphasis has been placed on this area through the recent efforts of
Microsoft to introduce a repository product in their Office tool suite, including some simple
Information Models for data warehousing [BBC*99]. We refer the interested reader to [JLVV99] for a
more detailed description of these approaches. The Telos language developed jointly between the
University of Toronto and a number of European projects in the late 80’s, is specifically dedicated to
the goal of metadata management [MBJK90]. Telos, in the axiomatized form defined in [Jeus92],
offers an unlimited classification hierarchy in combination with abstractions for complex objects and
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for generalizations, both for objects and for links between them, i.e. both are first-class citizens of the
language, offering maximum flexibility in modeling and re-modeling complex metadata. In
particular, it becomes possible to define, not just syntactically but also semantically, meta models for
new kinds of metadata introduced in the distributed system managed by the repository, and therefore
in the repository itself. Such metamodels are often also called Information Models and exist typically
for all kinds of objects and processes used in system analysis, design and evolution.
The ConceptBase system, developed since 1987 at RWTH Aachen, Germany [JaRo88, JGJ*95,
NiJa98], as a knowledge-based repository, integrates a logical semantics with the basic abstractions
for the purpose of analyzing the consistency of stored repository objects such as software specifications
in different kinds of formalisms. Through the axiomatization of the Telos semantics, ConceptBase
achieves a combination of structural object-orientation with the kinds of reasoning capabilities offered
by deductive relational databases and relational query optimization. ConceptBase will be the metadata
repository to which we will refer in the rest of this document.

1.2 The proposal for a data warehouse architecture model
In [JJQV99] the need for a data warehouse metadata structure that offers three perspectives is argued:
- a conceptual business perspective developed around the enterprise model of the organization;
- a logical perspective covering all the schemata of the data warehouse environment, and
- a physical perspective representing the storage and execution properties of the data warehouse

components.

Each of these perspectives, and their interrelationships, are orthogonally linked to the three traditional
layers of data warehousing, namely sources, data warehouse, and clients. The metamodel is
reproduced in Figure 2.1. In this section, we will quickly present the extended metamodel resulting
from this approach, and the reasons for which we adopt it. This description is fully elaborated in
[JJQV99]. Note that the architecture model was basically developed in RWTH, the Technical
University of Aachen, by C. Quix, M. Jeusfeld, M. Jarke.
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Figure 2.1. The [JJQV99] Data Warehouse MetaData Framework

At the beginning of this description we would like to remind the reader that (a) data warehouse
systems are unique in the sense that they rely on a run-time meta-database (or metadata repository)
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that stores information about the data and processes in the system and (b) our approach is based on
the Telos language [MBJK90], and the ConceptBase metadata repository [JGJ*95].
A condensed ConceptBase model of the architecture notation is given in Figure 2.2, using the graph
syntax of Telos. Bold arrows denote specialization/instantiation links (depending on the respective tag
each time). The top-level object is MeasurableObject. It classifies objects at any perspective
(conceptual, logical, or physical) and at any level (source, data warehouse, or client). Within each
perspective, we distinguish between the modules it offers (e.g. client model) and the kinds of
information found within these modules (e.g. concepts and their subsumption relationships). The
horizontal levels of the information structures are coded by the three subclasses attached to Model,
Schema, and DataStore, each for a different perspective. The horizontal links isViewOn and
hasStructure establish the way how the horizontal links in Figure 2.2 are interpreted: the types of a
schema (i.e., relational or multidimensional structures) are defined as logical views on the concepts in
the conceptual perspectives. On the other hand, the components of the physical perspective get a
schema from the logical perspective as their schema.
Each object can have an associated set of materialized views called QualityMeasurements. These
materialized views (which can also be specialized to the different perspectives – not in the figure)
constitute the bridge to the quality model discussed in the Section 3.
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Figure 2.2. Structure of the Repository Meta Model

Note that all the objects in Figure 2.2 are meta-classes: actual conceptual models, logical schemas,
and data warehouse components are represented as instances of them in the meta-database. Actually,
as depicted in Figure 2.1, we can discriminate between three levels of instantiation. The metamodel
(i.e. the topmost layer in Figure 2.1) provides a notation for data warehouse generic entities, such as
schema, or agent, including the business perspective. Each box shown in Figure 2.1 is decomposed
into more detailed data warehouse objects in the metamodel of [JJQV99]. This metamodel is
instantiated with the metadata of the data warehouse (i.e. the second layer in Figure 2.1), e.g.
relational schema definitions or the description of the conceptual data warehouse model. The lowest
layer in Figure 2.1 represents the real world where the actual processes and data reside: in this level
the metadata are instantiated with data instances, e.g. the tuples of a relation or the objects of the real
world which are represented by the entities of the conceptual model.
We adopt the approach of [JJQV99] for specific reasons. During the analysis of previous data
warehouse frameworks (see [JLVV99] for a broader discussion), one could observe that these
frameworks cover only logical schemata and their physical implementation. However, data warehouse
users may interpret the data in different ways because they think of different concepts. This situation
leads often to misunderstandings of the data. Furthermore, enterprises have a huge number of
heterogeneous data sources and it is difficult to have on overall picture of what kind of data is
available in the source and to keep track of the interdependencies between the data sources. Thus, it is
important to note that the proposal of [JJQV99] extended the traditional data warehouse architecture
in two ways: (i) a conceptual perspective is clearly added and (ii) a clean separation of locality (here:
level) between the source, data warehouse and client level is made. The central object in the proposed
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metamodel depicted in Figure 2.2 is the conceptual enterprise model, which gives a conceptual
description of the data in the enterprise. All the information that is available in the sources and
requested by the clients of the data warehouse is expressed in terms of this enterprise model.

To summarize, we stress that the metadata framework that we adopt is based on the following
assumptions / requirements:
1. A clear distinction exists between different layers of instantiation. Thus, for all the metamodels

that we will present, we will require that the generic metamodel layer deals abstractly with entities
applicable to any data warehouse; the metadata layer deals will the schemata of a specific data
warehouse under examination; and finally the instance layer intantiates the previous ones at the
real-world domain. Out of the three layers of instantiation, we require that the two first should be
treated clearly by a metadata repository. The instance layer, though, is optional as far as the
metadata repository is concerned, since it deals with the actual information (and not its "meta"
description).

2. A clear distinction exists between perspectives. Following a classical database / information
systems categorization, we require that a conceptual perspective captures the world in a
vocabulary really close to the one of the final user; the physical perspective covers the data
warehouse environment in terms of real world, computer-oriented components or events; and
finally, the logical perspective acts as an intermediate between these two extremes in order to
provide a concrete vocabulary of the data warehouse environment, being independent, though,
from strict implementation details.

As we saw, the architecture model of [JJQV99], not only covers these requirements, but provides an
extra useful categorization, namely the locality attribute of any data warehouse component. In Section
3, we will introduce a quality metamodel that covers the second viewpoint for data warehouses. Still,
before that, we feel that it is necessary to present the state of the art in the field of quality definition
and management, in information systems.

2. STATE OF THE ART ON DATA WAREHOUSE QUALITY

Models and tools for the management of data warehouse quality can build on substantial previous
work in the fields of data quality.

2.1 Quality Definition
In [BBBB95], a definition and quantification of quality is given, as the fraction of Performance over
Expectance. Taguchi defined quality as the loss imparted to society from the time a product is shipped
[BBBB95]. The total loss of society can be viewed as the sum of the producer's loss and the customer's
loss. It is well known that there is a tradeoff between the quality of a product or service and a
production cost and that an organization must find an equilibrium between these two parameters. If
the equilibrium is lost, then the organization loses anyway (either by paying too much money to
achieve a certain standard of quality, called "target", or by shipping low quality products of services,
which result in bad reputation and loss of market share).

2.2 Data Quality Research
Quite a lot of research has been done in the field of data quality. Both researchers and practitioners
have faced the problem of enhancing the quality of decision support systems, mainly by ameliorating
the quality of their data. In this section we will present the related work on this field, which more or
less influenced our approach for data warehouse quality. A detailed presentation can be found in
[VaSL97] and [WaSF95].
Wang et al. [WaSF95] presents a framework of data analysis, based on the ISO 9000 standard. The
framework consists of seven elements adapted from the ISO 9000 standard: management
responsibilities, operation and assurance cost, research and development, production, distribution,
personnel management and legal function. This framework reviews a significant part of the literature
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on data quality, yet only the research and development aspects of data quality seem to be relevant to
the cause of data warehouse quality design. The three main issues involved in this field are: analysis
and design of the data quality aspects of data products, design of data manufacturing systems (DMS’s)
that incorporate data quality aspects and definition of data quality dimensions. We should note,
however, that data are treated as products within the proposed framework. The general terminology of
the framework regarding quality is as follows: Data quality policy is the overall intention and
direction of an organization with respect to issues concerning the quality of data products. Data
quality management is the management function that determines and implements the data quality
policy. A data quality system encompasses the organizational structure, responsibilities, procedures,
processes and resources for implementing data quality management. Data quality control is a set of
operational techniques and activities that are used to attain the quality required for a data product.
Data quality assurance includes all the planed and systematic actions necessary to provide adequate
confidence that a data product will satisfy a given set of quality requirements.
In [WaSF95] the research regarding the design of data manufacturing systems that incorporate data
quality aspects is classified into two major approaches: the development of analytical models and the
design of system technologies to ensure the quality of data.
In the papers concerning the development of analytical models, one can find efforts such as the ones
presented in [BaPa85], [BaPa87] and [BWPT93]. In [BaPa85] and [BaPa87] a model that produces
expressions for the magnitude of errors for selected terminal outputs, is presented. The model can be
deployed to investigate the quality of data in existing systems. Furthermore, an operations research
model is presented for the analysis of the effect of the use of quality control blocks, in the
management of production systems. In [BWPT93] a data-manufacturing model to determine data
product quality is proposed. The model is used for the assessment of the impact quality has on data
delivered to ‘data customers’.
In the field of the design of system technologies to ensure the quality of data, there exist several
interesting efforts. In [HKRW90], [PaRe90], [Redm92] a data tracking technique is proposed. This
technique uses a combination of statistical control and manual identification of errors and their
sources. The basis of the proposed methodology is the assumption that processes that create data are
often highly redundant. The aim of the methodology is to identify pairs of steps in the overall process
that produce inconsistent data. In [WaKM93], [WaRG93], [WaRK95], [WaMa90] an attribute-based
model that can be used to incorporate quality aspects of data products has been developed. The basis
of this approach is the assumption that the quality design of an information system can be
incorporated in the overall design of the system. The model proposes the extension of the relational
model as well as the annotation of the results of a query with the appropriate quality indicators. In
[WaKM93], in particular, an extension of the ER model is proposed, in order to incorporate data
quality specification. The data quality design is handled as an internal part of the whole database
design. The methodology deals with data quality requirements collection and definition. Quality
parameters are initially treated as subjective (user requirements) and then mapped to objective
technical solutions. [Svan84] reports on a case study, regarding the testing of an actual development
of an integrity analysis system. A methodology -consisting of seven steps- is suggested: i) defining
database constraints, ii) selecting statistical techniques for sampling the database, iii) selecting the
integrity analysis to be performed, iv) defining suitable quality measures, v) specifying outputs to be
produced from a defect file, vi) developing and testing program code, and finally vii) executing the
integrity analysis system.
Finally, there is a great deal of work related to the definition of data quality dimensions. In [BaPa82],
[BaPa85], [BaPa87], [BaTa89], [BWPT93], the following quality dimensions are defined: accuracy
(conformity of the stored with the actual value), timeliness (recorded value is not out of date),
completeness (no information is missing), consistency (the representation of data is uniform). In
[StLW94] data quality is modeled through the definition of intrinsic, contextual, representation, and
accessibility aspects of data. In [Jans88], [LiUp90], [WaRG93] validation, availability, traceability
and credibility are introduced. In [More82] a method that estimates the ‘true’ stored error rate is
proposed. In the field of information systems, many efforts are focused on the evaluation of the
success of a system from the user's point of view. In [Hall*78] various factors are proposed, such as
usability, reliability, independence, etc. [Krie79] proposes attributes such as accuracy, timeliness,
precision, reliability, completeness and relevancy. In [AgAh87] the reliability of an information
system is measured. The following measures are proposed: internal reliability ("commonly accepted"
characteristics of data items), relative reliability (data compliance to user requirements) and absolute
reliability (the level of data resemblance to reality).
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In [WaSF95] it is suggested that the establishment of data quality dimensions can be achieved through
two possible ways. The first is the usage of a scientifically grounded approach in order to achieve a
rigorous definition. In the context of this approach, an ontological-based [Wand89], [WaWa96],
[WaWe90] approach has been proposed in order to identify the possible deficiencies that exist when
mapping the real world into an information system. In [DeMc92] information theory is used as the
basis for the foundation of data quality dimensions, whereas in [WaSG94] marketing research is used
as the basis for the same cause. The second way to establish data quality dimensions is the use of
pragmatic approaches. E.g. data quality dimensions can be thought as user defined. Another proposal
[WaSF95] is the formation of a data quality standard technical committee for this task. A previous
example of similar practice is the IEEE standard for software quality dimensions [Schn90].

2.3 Software Quality Research
Apart from the research in the quality of data, quite a lot of research has been done in the field of
software quality. The research in this field is actually centered towards the design, implementation,
testing and evaluation of software.
Several models for software quality have been proposed. The GE Model of software quality
[McRW78], suggests 11 criteria of software quality. The model developed by B. Boehm [Boeh89]
suggests 19 quality factors for software. ISO 9126 [ISO97] suggests six basic quality factors that are
further analyzed to an overall of 21 quality factors. In [HyRo96] a comparative presentation of these
three models is done. Furthermore, the SATC software quality model is presented, along with the
metrics for the software quality dimensions.
The GE Model suggests that the dimensions software should have are: correctness, reliability,
integrity, usability, efficiency, maintainability, testability, interoperability, flexibility, reusability and
portability.
Boehm’s model suggests correctness, reliability, integrity, usability, efficiency, maintainability,
flexibility, reusability, portability, clarity, modifiability, documentation, resilience, understandability,
validity, generality, economy.
ISO 9126 model suggests functionality (suitability, accuracy, interoperability, compliance, security),
reliability (maturity, fault tolerance, recoverability), usability (understandability, learnability,
operability), efficiency (time behavior, resource behavior), maintainability (analyzability,
changeability, stability, testability), portability (adaptability, installability, conformance,
replacability).
Finally, SATC suggests requirements quality (ambiguity, completeness, understandability, volatility,
traceability), product (code) quality (structure/architecture, maintainability, reusability, internal
documentation, external documentation), implementation effectivity (resource usage, completion
rates), testing effectivity (correctness).

The interested reader can find quite a lot of standards developed from ISO and IEEE in the field of
software quality. A list of them is found in Appendix A.

2.4 Quality engineering and management

2.4.1 Total Quality Management
In our days, one of the most popular trends in the field of quality engineering is Total Quality
Management (TQM). Total Quality Management is a philosophy for the improvement of an
organization in order to achieve excellence. It involves the whole structure and operation of an
organization. In [BBBB95], Total Quality Management is considered to be heavily dependent upon 6
crucial concepts:
1. A management committed to TQM ideas, in order to provide long term organizational support at

all levels.
2. An unwavering focus both to the internal and the external customers.
3. The effective involvement of all the work force of the organization.
4. The continuous improvement of all the processes of the organization.
5. The treatment of suppliers as partners.
6. The establishment of performance measures for all the processes.
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As already mentioned, TQM considers quality as the fraction of performance over expectance. The
greater quality is, the better a customer feels about a product or service. In [Garv88] the dimensions of
quality (regarding TQM) are presented:
• performance (primary product characteristics);
• features (secondary product characteristics);
• conformance (to specification standards);
• reliability (consistency of performance over time);
• durability (useful life of a product);
• service (resolution of problems, ease of repair);
• response (human-to-human interface);
• aesthetics (sensory characteristics);
• reputation (past performance).

For reasons of completeness, we will proceed in a very short presentation of the basic principles of
TQM. TQM involves a strategic planning for the achievement of quality. In [BBBB95] it is suggested
that several steps have to take place in order to complete the strategic planning successfully:
1. Discovery of the customers needs.
2. Positioning of the organization towards its customer base.
3. Future prediction.
4. Analysis of the gaps between current and future states of the organization.
5. Closing of these gaps through the construction of an action plan.
6. Alignment of this plan to the mission, vision and core values of the organization.
7. Implementation of the plan.

Nevertheless, the original design is never sufficient enough. Continuous control and improvement of
processes must take place. In [Jura88], a specific approach is presented for the achievement of this
goal. This approach is called the Juran Trilogy and consists of several steps:
• planning

⇒ determination of customers;
⇒ discovery of their needs;
⇒ development of product/service features responding to the customers' needs;
⇒ development of processes able to produce these necessary features;

• control
⇒ evaluation of the actual operating performance;
⇒ comparison of this performance to the goals of the organization;
⇒ action on the difference;

• improvement

To be useful, quality has to be measured. As reported in [Boed87], performance measures are used to
establish baseline measures, determine processes which need to be improved, indicate process gains
and losses, compare goals with actual performance, provide information for team and personal
evaluation and finally, manage by fact rather than by gut feeling. Several criteria are defined for the
evaluation of the measures employed:

• simplicity;
• number: measures should be few in number so that all users (i.e., persons that perform the

measurement) can concentrate on them;
• development by the user;
• relevance to the customer;
• focus on the improvement of processes, prevention of errors and long-term planning;
• cost;
• knowledge of the measures from the side of the users.

Several characteristics of a process or function can be used to measure the performance of a process,
as reported in [Boed87]:

• quantity of products or business processes produced;
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• cost (the amount of resources required to produce a given output);
• time (timeliness of the output of a process);
• accuracy (number of non-conformances in the output of a process);
• function (extent of performance of the specified function);
• service;
• aesthetics (quantification come through the percentage of  people who like the product's exterior

design).

2.4.2 Statistical Process Control (SPC)
Statistical Process Control (SPC) is one of the best tools for monitoring and improving product and
service quality. In [Best94], [BBBB95], seven basic techniques are proposed for this purpose:

• Pareto diagrams.
• Process flow diagrams.
• Cause and effect (Ishikawa) diagrams.
• Check sheets.
• Histograms.
• Control charts.

Pareto diagrams are used to identify the most important factors of a process, based on the assumption
that most of the errors result from very few causes. A Pareto diagram is a graph that ranks data
classifications (e.g. system failures) in a descending order. The process flow diagrams show the flow
of product (services) through the various subsystems of a bigger system. Possible errors can be
detected through the analysis of such a diagram. The cause and effect diagrams, introduced by Dr.
Ishikawa in 1943, are composed of lines and symbols representing meaningful relationships between
an effect and its causes, in a recursive fashion. Check sheets and histograms are very known
techniques for representing graphically cumulative information about failure phenomena. Finally,
control charts are used in order to relate an average (possibly expected or predefined) value of quality
to statistical data representing the behavior of the actual products (services).

2.4.3 ISO 9000
The International Organization for Standardization (ISO) was founded in Geneva, Switzerland, in
1946. Its goal is to promote the development of international standards to facilitate the exchange of
goods and services worldwide.
The original ISO 9000 [ISO92], [ISO97] standards were a series of international standards (ISO
9000, ISO 9001, ISO 9002, ISO 9003, ISO 9004), developed by ISO Technical Committee 176
(TC176) to provide guidance on selection of an appropriate quality management program (system) for
a supplier's operations. The series of standards serves the purpose of common terminology definition
and demonstration of a supplier's capability of controlling its processes. The titles and content of the
1994 edition of the ISO 9000 series are described in the following paragraphs:

ISO 9000 -1, Quality Management and Quality Assurance Standards - Guidelines for Selection and
Use. This standard explains fundamental quality concepts, defines key terms and provides guidance
on selecting, using and tailoring series. Furthermore, it helps in the selection and use of the standards
in the ISO 9000 family.
ISO 9001-1, Quality Systems - Model for Quality Assurance in Design/Development, Production,
Installation and Servicing. This is the most comprehensive standard. It addresses all elements in the
including design. The 1994 edition of the standard improved the consistency of the terminology and
clarified or expanded the meaning of some of the standards clauses. Several new requirements, such
as that for quality planning, were added. The standard contains 20 elements describing the quality
parameters, from the receipt of a contract through the design/delivery stage, until the service required
after delivery.
ISO 9002, Quality Systems - Model for Quality Assurance in Production and Installation and
Servicing. This standard is now identical to ISO 9001 except for the design requirements.
Consequently, it addresses organization not involved in the design process.
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ISO 9003, Quality Systems - Model for Quality Assurance in Final Inspection and Test. This is the
least comprehensive standard. It addresses the detection and control of problems during final
inspection and testing. Thus, it is not a quality control system. The 1994 edition added additional
requirements including: contract review, control of customer supplied product, corrective actions, and
internal quality audits.
ISO 9004 -1, Quality Management and Quality System Elements - Guidelines. This standard provides
guidance in developing and implementing an internal quality system and in determining the extent to
which each quality system element is applicable. The guidance in ISO 9004-1 exceeds the
requirements contained in ISO 9001, ISO 9002 and ISO 9003. ISO 9004-1 is intended to assist a
supplier in improving internal quality management procedures and practices. Yet, it is not intended
for use in contractual, regulatory or registration applications.

The full list of the developed standards is found in Appendix A. Out of them, the «ISO/DIS 9000-3
Quality management and quality assurance standards -- Part 3: Guidelines for the application of ISO
9001:1994 to the development, supply, installation and maintenance of computer software (Revision
of ISO 9000-3:1991)» standard, is specifically intended for use in the computer software industry.
Furthermore, there are several standards developed from ISO, concerned with the achievement of
quality in the development and evaluation of software. Yet, these standards are not directly concerned
with ISO 9000, so they are covered in the section of software quality research.

A framework for quality analysis is developed in ISO 9001-1 and consists of the following 20
elements [BBBB95]:
• management responsibility (quality policy, responsibility - authority, management review);
• the quality system (establishment and maintenance of a documented quality system);
• contract review (clear definition of contracts, existence of unusual quality requirements, feasibility

of the implementation);
• design control (establishment and maintenance of procedures to control and verify that product

design meets specified requirements);
• document control (establishment and maintenance of procedures to control all document and data

that affect the quality of a product or service);
• purchasing (conformance of purchased materials or products, to specified requirements);
• customer supplied support (identification and isolation of customer supplied materials from any

similar organization-owned items);
• product identification and traceability (establishment of procedures for the identification of the

products during all stages of production, delivery and installation);
• process control (monitoring and documentation to ensure that the design is successfully

implemented);
• inspection and testing (receiving, in-process and final inspection);
• inspection, measuring and test equipment (ownership status, control, calibration and maintenance

of all equipment used);
• inspection and test status (identification of the condition of product);
• control of nonconforming product (definition and documentation of the responsibility for product

review and the authority for the disposition of nonconforming products);
• corrective action (detection of any suspected nonconformance and responsibility for the

undertaking of the correction of the deficiency and the prevention of its recurrence);
• handling, storage, packaging and delivery (protection of the products from damage and

deterioration);
• quality records (records used to demonstrate the achievement of the required quality and verify the

effective and economical operation of the quality system);
• internal quality audits (to ensure that the quality system is working according to plan and to

provide opportunities for improvement);
• training (very general requirements, practically leaving the decision of appropriate training to the

organization involved);
• servicing (establishment of procedures for service after delivery, and verification that the service

meets the contract's specified requirements);
• statistical techniques (for the improvement and/or control of the quality of the processes or the

product).
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2.4.4 Quality Function Deployment (QFD)
As reported in [Dean97], ‘the concept of QFD was introduced in Japan by Yoji Akao in 1966. By
1972 the power of the approach had been demonstrated and in 1978 the first book on the subject was
published in Japanese. Unfortunately, for those of us who do not read Japanese, it was not translated
into English until 1994 [MiAk94]’.
QFD [Dean97], [HaCl88], [Akao90], [Day93], [MiAk94], [BBBB95] is a team-based management
tool, used to map customer requirements to specific technical solutions. This philosophy is based on
the idea that the customer expectations should drive the development process of a product.
The basic tool used in QFD is the so-called ‘House of Quality’. An example of a House of Quality is
shown in Figure 2.3.
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Figure 2.3. QFD, the House of Quality.

The basic methodology for building a house of quality is composed of several steps. The first step
involves the modeling of the needs or expectations of the customers. This step produces a list of goals-
objectives, often referred as the ‘WHATs’ [BBBB95]. It is very possible that a customer requirement
is expressed rather generally and vaguely; so the initial list is refined and a second, more detailed, list
of customer requirements is produced. If it is necessary, this procedure is repeated once more.
The second step involves the suggestion of technical solutions (the ‘HOWs’) which can deal with the
problem that was specified at the previous step. This process can also be iterated, as it is rather hard to
express detailed technical solutions at once.
The third step involves the combination of the results of the two previous steps. The basic aim of this
process is to answer the question ‘how are customer requirements and possible technical solutions
interrelated?’. To achieve that, the interior of the house of quality, called the relationship matrix, is
filled in. Symbols are usually used, determining how strong a relationship is. It is also important to
note that both positive and negative relationships exist.
The fourth step is also very crucial. It involves the identification of any interrelationships between the
technical factors. The roof of the house, also known as the ‘correlation matrix’ is also filled in. All the
conflicting points represent tradeoffs in the overall technical solution.
Next, competitive assessments must be made. The competitive assessments are a pair of weighted
tables which depict analytically, how competitive products compare with the organization products.
The competitive assessment is separated in two categories: customer assessment and technical
assessment.
The following step is the definition of the prioritized customer requirements. The prioritized customer
requirements are a block of columns corresponding to each customer requirement and contain
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columns for importance rating, target value, scale-up factor, sales point and absolute weight for each
customer requirement.
Finally, prioritized technical descriptors are also defined. Each of the proposed technical solutions is
annotated with degree of technical difficulty, target value, absolute and relative weights.
Previous research has exploited the usefulness of the QFD approach. Formal reasoning in such a
structure has been investigated in works about the handling of non-functional requirements in
software engineering, e.g. [MyCN92]. Visual tools have shown a potential for negotiation support
under multiple quality criteria [GeJJ97].

2.4.5 Taguchi's Quality Engineering
Taguchi defined quality as the loss imparted to society from the time a product is shipped [BBBB95].
Dr. Taguchi's loss function aims in the minimization of the total loss by combining cost, target and
variation into a single metric. Furthermore, signal-to-noise ratio measurements can be used in order to
be used as a proactive equivalent to the reactive loss function. The analyst tests the response of the
system by determining signal and noise factors and measuring the response of the system.
Orthogonal arrays is a method of conducting experiments. The goal of using an orthogonal array is
the detection of degrees of freedom between factors influencing a process. The array is composed of
columns, representing the possible factors and rows, representing the treatment conditions and the
analyst is experiment by changing the number of rows and columns in order to find out the correct
number of the degrees of freedom of a process. The decision upon this matter is obviously related to
the quality of a process, as it can determine the key factors from which the process is dependent upon.
As reported in [BBBB95], [Kack86], [ASII91], there are three stages in the development of a product:
product design, process design and production. The results of each stage are influenced by several
noise and variation factors (e.g. product deterioration, environmental variables, etc). Taguchi’s
techniques introduced a new way of facing the design of a product: the overall design can be viewed
as the sequence of system design, parameter design and tolerance design. The system design is the
traditional R & D development of a prototype. The parameter design is the selection of the optimal
conditions (parameters) for the reduction of the dependency of the product from noise factors. It is
suggested to start the parameter design with low-cost and inferior grade materials and gradually
ameliorate the quality of the product. Finally, tolerance design is the process where the statistical
tolerance around the quality target must be defined. The key notion here is that, even if parameter
design used low-cost tolerance, tolerance design should tighten the tolerances and achieve a good
equilibrium of cost and quality, while eliminating excessive variation of values.

2.4.6 Miscellaneous techniques
Quality systems often make use of several other techniques. Benchmarking ‘is a systematic method, by
which organizations can measure themselves against the best industry practices’ [BBBB95].
Benchmarking is used to discover what are the weaknesses of a product or service and to borrow
ideas, which led other organizations to excellence.
Concurrent engineering is another technique used to enhance the quality of a product or service.
Concurrent engineering is a way of conducting business and structuring the processes of an
organization. It involves the formulation of several teams, populated by people from several
departments of an organization. The teams work simultaneously in the conceptual modeling, design
and production planning of a product or service. The teams have to cooperate strongly in order to
produce a quality system. In fact, the basic philosophy of concurrent engineering is the broadening of
communication paths between people working on different departments of an organization.
Finally, experimental design is also a powerful technique for quality design and implementation. The
experimental design approach requires the introduction of intentional changes in the system in order
to observe their effects. The difference between experimental design and SPC is that SPC is a passive
statistical method, assuming that the right variable is controlled and the right target has been set, with
a right tolerance; whereas experimental design is an active statistical method, where everything is
extracted from the performed tests.

2.5 Commercial tools concerning data warehouse quality
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As the data warehouse market is rapidly evolving in the last few years, all the major database
companies (IBM, Oracle, Informix, Sybase, Red Brick Systems, Software AG, Microsoft, Tandem)
have already created tools and products in order to support data warehouse solutions. A large number
of smaller companies have managed to develop and market specialized tools for data warehouses.
Most (if not all) of those tools affect in some way the quality of the resulting data warehouse, and
several of the tools deal with quality explicitly. An up-to-date list of products can be found in
[Gree97].
Obviously quality of the data stored in the data warehouse depends on the quality of data used to
load/update the data warehouse. Incorrect information stored at the data sources may be propagated in
the data warehouse. Still, the data is inserted in the data warehouse through a load/update process
which may (or may not) affect the quality of the inserted data. The process must correctly integrate
the data sources and filter out all data that violate the constraints defined in the data warehouse. The
process may also be used to further check the correctness of source data and improve their quality. In
general, the most common examples of dirty data [Hurw97, JLVV99] are:
- Format differences.
- Information hidden in free-form text.
- Violation of integrity rules (e.g., in the case of redundancy).
- Missing values.
- Schema differences.

The tools that may be used to extract/transform/clean the source data or to measure/control the quality
of the inserted data can be grouped in the following categories [Orli97]:

- Data Extraction.
- Data Transformation.
- Data Migration.
- Data Cleaning and Scrubbing.
- Data Quality Analysis.

SQL*Loader module of Oracle [OrCo96a] which can extract, transform and filter data from various
data sources (including flat files and relational DBMS's). A powerful feature of SQL*Loader is its
reporting capabilities with respect to the inserted, ignored and problematic data.
Carleton’s Pure Integrate [PuIn98] (formerly known as Enterprise/Integrator), ETI Data Cleanse
[ETI98], EDD Data Cleanser tool [EDD98] and Integrity [InVa98] from Vality can be used for the
application of rules that govern data cleaning, typical integration tasks (esp. postal address
integration), etc.

3. THE QUALITY METAMODEL
After presenting the metadata framework and the architecture metamodel, as well as the related work
in the field of quality in information systems, we proceed to discuss the quality metamodel that we
propose. As we saw in the presentation of quality management techniques, there are several methods
for the engineering of quality in an information system. However, although these techniques certainly
have a useful role in rough quality planning and cross-criteria decision making, using any of them
alone could possibly throw away the richness of work created by research in measuring, predicting, or
optimizing individual data warehouse quality factors. In other words, these techniques are mostly
based on human expert participation and statistical models for ad-hoc problem resolving. We mention
two prominent examples to support this claim: (a) the solution to the data warehouse design problem
can be based on the use of concrete quality factors like the query and update frequency or the overall
data warehouse operational cost [LSTV99,ThLS99,ThSe97,ThSe99] and (b) the tuning of the
refreshment process based on specific quality factors (see also Chapter 4 and [ThBo99]).
Thus, we had to look for a new approach to the problem of quality management of the data
warehouse. The formal requirements for the quality metamodel can be summarized as follows:
- The categorizations of the metadata framework that we have adopted should be respected. Thus, all

three perspectives and layers of instantiation should be clearly present in the quality metamodel.
This would increase both the usability of the approach and the re-usability of any achieved
solutions.
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- Moreover, the exploitation of quality should be done through the use of a repository, enabling thus
the centralized collection, storage and querying of all relevant meta-information in a consistent
fashion.

- Finally, the metadata repository must allow the exploitation of the involved quality factors, through
the use of well-established automated techniques and algorithms.

3.1 The Goal-Question-Metric (GQM) approach
A solution to this problem builds on the widely used Goal-Question-Metric (GQM) approach to
software quality management [OiBa92, BaCR94]. The idea of GQM is that quality goals can usually
not be assessed directly, but their meaning is circumscribed by questions that need to be answered
when evaluating the quality. Such questions again can usually not be answered directly but rely on
metrics applied to either the product or process in question; specific techniques and algorithms are
then applied to derive the answer of a question from the measurements. In this subsection we provide
a quick review of the GQM model, based primarily on [BaCR94].

A GQM Model has 3 levels:
− Conceptual (Goal);
− Operational (Question);
− Quantitative (Metric).

A goal is defined for an object, for a variety of reasons, with respect to various models of quality,
from various points of view, relative to a particular environment. Objects of measurement are:

− Products (e.g., specifications, designs, programs, test suites).
− Processes (e.g., specifying, designing, testing, interviewing).
− Resources (e.g., personnel, hardware, software, office space).

In [BaCR94] it is also mentioned that a goal can be refined into several other subgoals.

A set of questions is used to characterize the way the assessment/achievement of a specific goal is
going to be performed based on some characterizing model. Questions try to characterize the object of
measurement (product, process, resource) with respect to a selected quality issue and to determine its
quality from the selected viewpoint.

Metrics is a set of data is associated with every question in order to answer it in a quantitative way.
The data can be:

− Objective (E.g., number of versions of a document, staff hours spent on a task, size of a
program).

− Subjective (e.g., readability of a text, level of user satisfaction).

GOAL

QUESTION QUESTIONQUESTION

METRIC METRIC METRICMETRIC

Figure 2.4. Goals, Questions and Metrics

The GQM process consists of the following steps:
− Identify a set of quality and/or productivity goals, at corporate, division or project level;

e.g., customer satisfaction, on-time delivery, improved performance.
− From those goals and based upon models of the object of measurement, we derive

questions that define those goals as completely as possible.
− Specify the measures that need to be collected in order to answer those questions.
− Develop data collection mechanisms, including validation and analysis mechanisms.
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A goal has three coordinates:
− Issue (e.g. Timeliness);
− Object (e.g. Change request processing);
− Viewpoint (e.g. project manager);

and a purpose:
− Purpose (e.g. improve).

The Issue and the purpose of the Goal are obtained from the policy and the strategy of the
organization (e.g. by analyzing corporate policy statements, strategic plans and, more important,
interviewing relevant subjects in the organization). The object coordinate of the Goal is obtained from
a description of the process and products of the organization, by specifying process and product
models, at the best possible level of formality. The viewpoint coordinate of the Goal is obtained from
the model of the organization.

There are 3 types of questions:
Group 1. How can we characterize the object (product, process, or resource) with respect to the overall
goal of the specific GQM model? E.g.,

• What is the current change request processing speed?
• Is the change request process actually performed?

Group 2. How can we characterize the attributes of the object that are relevant with respect to the
issue of the specific GQM model? E.g.,

• What is the deviation of the actual change request processing time from the estimated
one?

• Is the performance of the process improving?

Group 3. How do we evaluate the characteristics of the object that are relevant with respect to the
issue of the specific GQM model? E.g.,

• Is the current performance satisfactory from the viewpoint of the project manager?
• Is the performance visibly improving?

The development of metrics is a customized process! Suggestions for this development include:
• try to maximize the use of existing data sources if they are available and reliable;
• apply objective measures to more mature measurement objects, and more subjective evaluations to

informal or unstable objects.
• the measures we define must help us in evaluating not only the object of measurement but also the

reliability of the model used to evaluate it.

In [OiBa92] Oivo and Basili mention the fact that GQM models are constructed through 2 parallel
(and iterative) processes: (a) a generic process, which involves the creation, tailoring and reuse of
GQM template objects to build a GQM model base and (b) a specialized process, which involves the
rule-based construction and instantiation of the GQM model base into a collection of operational
GQMs. In the same paper, the authors mention that the process of construction is somehow
automated: a given goal implies a set of questions and a given question implies a set of metrics based
on the templates. The implication is produced through the "firing" of several rules.
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Goal Purpose Improve
Issue the timeliness of
Object
(process)

change request processing

Viewpoint from the project manager's viewpoint
Question Q1 What is the current change request processing speed?
Metrics M1 Average cycle time
Metrics M2 Standard deviation
Metrics M3 % cases outside of the upper limit
Question Q2 Is the (documented) change request process actually performed?
Metrics M4 Subjective rating by the project manager
Metrics M5 % of exceptions identified during reviews
Question Q3 What is the deviation of the actual change request processing time

from the estimated one?
Metrics M6 Current average cycle time – Estimated average cycle time

Current average cycle time
Metrics M7 Subjective evaluation by the project manager
Question Q4 Is the performance of the process improving?
Metrics M8 Current average cycle time

Baseline average cycle time
Question Q5 Is the current performance satisfactory from the viewpoint of the

project manager?
Metrics M4 Subjective evaluation by the project manager
Question Q6 Is the performance visibly improving?

Metrics M8 Current average cycle time
Baseline average cycle time

Figure 2.5. An Example of the GQM process [BaCR94].

In Figure 2.5, we present a brief example of how the GQM methodology can be applied for the
fulfillment of a certain quality goal [BaCR94]. In the first column, the type (Goal, Question or Metric)
of the respective step is depicted; the second column holds an ID for its identification and the third
column holds the description of each step.
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Figure 2.6. The proposed quality metamodel

3.2 The proposed quality metamodel
Our quality metamodel coherently supplements the architecture metamodel. We adopt again three
layers of instantiation. At the metamodel layer, a generic framework that follows GQM is given,
extended with associations applicable to any data warehouse environment. At the metadata layer,
specific quality goals concerning each particular data warehouse are given. Finally, concrete values
are the traces of measurement in the real world. Needless to say that the quality metamodel is part of
the metadata repository of the data warehouse, in order to be consistent with the overall approach of
data warehouse management. The definition of the metamodel has been influenced by -or better:
developed in parallel with- the proposals of [JeQJ98] and [LeBo98].

3.2.1 The Metamodel layer: the framework for quality management
A quality goal is a project where a stakeholder has to manage (e.g., evaluate or improve) the quality
of the data warehouse, or a part of it. This roughly expresses natural language requirements like
‘improve the availability of source s1 until the end of the month in the viewpoint of the DW
administrator’. Quality dimensions (e.g. ‘availability’) are used as the vocabulary to define abstractly
different aspects of quality, as the stakeholder perceives it. Of course, each stakeholder might have a
different vocabulary and different preferences in the quality dimensions. Moreover, a quality goal is
operationally defined by a set of quality questions. Each question is dispatched to concrete quality
metrics (or quality factors) which are groupings for concrete measurements of quality. A metric, thus,
is defined over a specific data warehouse object and incorporates expected / acceptable values, actually
measured values (measurements), methodology employed, timestamps etc.

Formally, the definitions of the involved entities are as follows:
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GOAL: is a project where a stakeholder has to manage (e.g., evaluate or improve) the quality of the
data warehouse or a part of it. A quality goal can be decomposed into subgoals, which are recursively
described as quality goals. A GOAL is defined by the following assertions:
1. it refers to an DW_OBJECT,
2. it has a purpose taken from the PURPOSE TYPE possible instances,
3. it has an issue taken among the intances of QUALITY DIMENSION entity,
4. it is defined with respect to a specific viewpoint of a given STAKEHOLDER.
A GOAL is refined to several QUALITY QUESTIONS.

PURPOSE-TYPE: is any action to take in order to reach a certain quality goal (improve, optimize,
enforce, etc.).

STAKEHOLDER: a person who is in some way related to the data warehouse project (administrator,
analyst, designer, etc.). A listing of data warehouse stakeholders and of the templates for their quality
goals can be found in Section 4.1 and in [JJQV99, JLVV99].

QUALITY DIMENSION: a subjective, high-level, user-oriented characterization of a given object.
Actually, the dimensions serve as the stakeholder's vocabulary for different aspects of quality. A
quality dimension could be decomposed into sub-dimensions, which are in turn also considered as
dimensions, too.

DW-OBJECT: is any object of the data warehouse framework, of any abstraction perspective
(conceptual, logical, physical) and any level (client, enterprise, source). We use DW-OBJECT to
represent processes, too (although they will be presented extensively in the next chapter). In the sequel
we will also show how this fits naturally with the different instantiation layers of the metadata
framework.

QUALITY QUESTION: is an effort to characterize the way the assessment/achievement of a specific
goal is going to be performed based on some characterizing model (GQM definition). A question is
concretely answered (i.e., evaluated and assessed) by a set of QUALITY METRICS.

QUALITY METRIC (or QUALITY FACTOR): a characterization of the action performed, made in
order to achieve a set of data (objective or subjective) which answer a question in a quantitative way.
(rephrasing GQM). For the moment we consider only calculated and expected values; yet other data
can also be of interest. A METRIC instant is related to a set of values (MEASUREMENTs). Also, a
METRIC is characterized by an extra attribute, namely DESCRIPTION (not shown in the Figure 2.6
for reasons of efficiency) characterizing the default algorithm for its MEASUREMENT’s of the
METRIC (any deviation from this default algorithm are covered by the description of the executing
agent).

MEASUREMENT: is a datum used to evaluate the quality goal. A MEASUREMENT is done for a
specific DW-OBJECT, with respect to a specific QUALITY METRIC, at a specific point in time
(TIMESTAMP) (since we need present and previous values).

ACTUAL MEASUREMENT: IS_A MEASUREMENT representing the fact that some quantification
of the quality of a DW-OBJECT has been performed. This is done using a certain AGENT (i.e.,
software program in the architecture model) for the computation and producing a specific VALUE
(which is the final quantification of the question made to a answer a GOAL).

EXPECTED-MEASUREMENT: IS_A MEASUREMENT defining the INTERVAL of allowed values
of the ACTUAL MEASUREMENTs. The INTERVAL must have the same DOMAIN with the
produced VALUES.

VALUE: the value of a specific measurement.

INTERVAL: a range of values for a metric (actually, here, the acceptable range).

DOMAIN: the domain of expected and achieved values.
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AGENT: a software program of the architecture model. Each agent is characterized by a
DESCRIPTION for its functionality.

3.2.2 Specialisation at the metamodel layer: the patterns for quality management
The abstract framework for quality management, presented in the previous subsection is enriched with
"patterns", or "templates" for specific cases of quality management in the data warehouse
environment. Take for example, the case where we want to improve the schema minimality for any
data warehouse schema. This also means that we are not interested in any particular stakeholder. A
set of template questions is also provided, which are mapped to generic quality factors (such as
‘Number of Redundant Views’). A query at the repository can produce the involved objects.

GOAL #1

What is the

current

status?

# of

redundant

views

refined to#1

answered by

Improve

purpose

<<null>>

viewpoint

ACTUAL

MEASUREMENT

DW Schema

for

Minimality

wrt

Query at the

MetaDB

produced by

issue

refers_to

actual status

Is it

acceptable?

refined to#2

Compare

achieved/

expected

Figure 2.7 Template Quality Goals and Factors at the Metamodel layer.

3.2.3 Instantiation of the quality framework at the metadata layer.
The generic templates for quality management, are of course, instantiated to specific cases for each
particular data warehouse. Suppose the instantiation of Figure 2.8 for our motivating example. One
can observe that
(a) The interplaying objects are refined from generic metamodel entities (e.g., DW-SCHEMA) to

specific warehouse dependent objects (e.g., K.’s DW-SCHEMA).
(b) The goals, questions, factors and measurements are refined too, accordingly.
(c) The dimension and purpose of the quality goal remain the same, since they provide rather

documentation than reasoning information to the repository.
(d) The stakeholder is instantiated to a specific instance (Mr. K.) for the particular quality goal under

consideration.

3.2.4 Adherence to the metadata framework
It must be evident, by now, that the proposed quality metamodel adheres by the generic metadata
framework that was introduced in Section 1. As far as the issue of perspective dicrimination is
concerned, we believe that is clear that all the perspectives of the metadata framework play a very
important role in the quality metamodel.
− Conceptual quality goals. The quality goals are expressed directly by the stakeholders, in their own

high-level, subjective vocabulary, involving abstract requirements.
− Physical quality measurements. The measurements are performed by specific algorithms / tools,

over specific data warehouse objects, at specific points of time.
− Logical quality questions. The questions are, by definition, the intermediate stage between the

high-level, abstract user requirements and the concrete, physical measurements and actions.
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Figure 2.8 Quality Goals and Factors at the Metadata layer.
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Figure 2.9. Perspectives and layers of instantiation for the quality metamodel.

At the same time, as far as the different layers of instantiation are concerned, the quality metamodel
is not instantiated directly with concrete quality factors and goals, but also with patterns for quality
factors and goals. For example, suppose that the analysis phase of a data warehouse project has
detected that the availability of the source database is critical to ensure that the daily online
transaction processing is not affected by the loading process of the data warehouse. A source
administrator might later instantiate this template of a quality goal with the expected availability of
his specific source database. Thus, the programmers of the data warehouse loading programs know
the time window of the update process and can tune accordingly the loading processes they construct.
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Based on the metamodel of data warehouse architecture, we have developed a set of quality factor
templates, which can be used as a initial set for data warehouse quality management [QJJ*98]. The
following section gives an intuition of some of them as far as (a) quality goals and (b) quality metrics
and their related processes / objects are concerned.

4. PATTERNS FOR THE DATA WAREHOUSE QUALITY
MANAGEMENT
In this section, we will detail the extension of the quality metamodel with specific templates for
quality goals and metrics. In subsection 4.1 we will provide the linkage of quality goals to data
warehouse stakeholder and, most importantly, in subsection 4.2 we will proceed to show how data
warehouse objects and processes interrelate with quality metrics.

4.1 Templates for Quality Goals
In [JJQV99] we have identified the following roles (now: viewpoints) of users in a data warehouse
environment. Note that these are roles and not different persons; i.e. a person can be involved in more
than one role:

− Decision maker;
− Data warehouse administrator;
− Data warehouse designer;
− Programmers of data warehouse components;
− Source data users, administrators, designers;
− Executive managers;

The Decision Maker is the final user of the data warehouse. He usually uses reporting and/or OLAP
tools to get answers to his questions.

Stakeholder: Decision Maker
Purpose: evaluate, understand,
improve
Issue Object
overall quality stored data, in the degree that they represent real world facts.
timeliness stored data are useless when out-of-date
ease of querying data warehouse, OLAP tool

The Data Warehouse Administrator is concerned with keeping the data warehouse properly operating.

Stakeholder: Data Warehouse
Administrator
Purpose: evaluate, understand,
improve
Issue Object
error reporting all the data warehouse processes
metadata accessibility metadata
timeliness stored data

The Data Warehouse Designer is involved in a continuous process, the data warehouse design, which
is usually done incrementally.
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Stakeholder: Data Warehouse
Designer
Purpose: evaluate, understand,
improve
Issue Object
schema quality existing and derived schemata, making most use of the

information directory.
metadata quality  metadata
software quality software packages he considers purchasing - needs software

evaluation standards to test them.

The Programmers of Data Warehouse Components are the people who develop the actual data
warehouse applications.

Stakeholder: Programmers of
Data Warehouse Components
Purpose: evaluate, understand,
improve
Issue Object
implementation quality the data warehouse components they produce - they need

software implementation standards to test them
overall SW quality all the data warehouse components, produced or purchased - they

need software evaluation standards to test them.
metadata accessibility Metadata

The Source Data Users/Administrators/Designers are affected from the data warehouse in the sense
that they could both benefit (by learning more for the quality of their data) and be disturbed from its
existence (due to loss of political power and extra work and technical load), at the same time.

Stakeholder: Legacy System
Stakeholders
Purpose: evaluate, understand,
improve
Issue Object
reporting (feedback) on the
quality

source data

system availability source operational system

Finally, the Executive Manager of an organization using a data warehouse is mostly concerned with
the financial information regarding the data warehouse.

Stakeholder: Executive
Manager
Purpose: evaluate, understand,
improve
Issue Object
value  the data warehouse (cost benefit, return of investment etc.)

Furthermore, there are also people who are in direct contact with a data warehouse environment or
they can be affected by it:

− People affected by the data warehouse related or supported decisions
− Vendors of data warehouse components

People can be easily affected from the existence of an information system and consequently of a data
warehouse in both good and bad ways, e.g. they can get information more easily, more quickly and
more credibly; on the other hand they can possibly loose their job because of these aspects of an
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information system. Vendors of data warehouse components can also be affected by the way their
parts are constructed, used and functioning, since these factors can affect sales. Although we do not
model they way these people are affected from the warehouse, or quality aspects interesting to them,
we would like to mention them for reasons of scientific completeness and social sensitivity.

4.2 Templates for quality metrics
In this paragraph we present the various data warehouse quality metrics and their relevance to the
methods for quality measurements as well as specific mathematical formulae. We categorize the
quality metrics according to the processes that take place during the data warehouse operation. Still,
their relevance to data warehouse objects is also discussed. We consider four basic processes during
the operation of a data warehouse. Furthermore, we incorporate the quality of the stored data in the
quality model. Consequently we have:

− design and administration
− software implementation and/or evaluation
− data loading
− data usage
− data quality

In the rest of this subsection we will detail the quality factors related to the aforementioned processes
of a data warehouse. For each one of them we will present the way they are refined and link them to
the appropriate data warehouse architecture components.

4.2.1 Design and Administration Quality
The schema quality refers to the ability of a schema to represent adequately and efficiently the
information. The correctness factor is concerned with the proper comprehension of the entities of the
real-world entities, the schemata of the sources as well as with the user needs. The completeness
factor is concerned with the preservation of all the crucial knowledge for the data warehouse schema.
The minimality factor describes the degree up to which undesired redundancy is avoided during the
source integration process. The traceability factor is concerned with the fact that all kinds of
requirements and decisions of users, designers, administrators and managers should be traceable in
the data warehouse schema. The interpretability factor ensures that all components of the data
warehouse are well described, in order to be administered easily. The metadata_evolution is
concerned with the way the schema evolves during the data warehouse operation.

Schema

Quality

Metadataevolution

correctness

completeness

minimality traceability

Design&

administration

quality

Interpretability

Figure 2.10 Design and Administration Quality Factors

As it is obvious from the above, the design and administration quality factors are related to all kinds
of schemata in the architecture model. Note that the quality of models and schemata does not apply
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only for the data warehouse, the sources and the clients but for the information directory itself. Factors
like interpretability and quality of metadata evolution deal mostly with the quality of the information
directory and less with the data warehouse itself. In Figure 2.10 the overall hierarchy of design and
administration quality is depicted.
The design and administration major quality factors are schema quality and metadata evolution
quality, which are in terms analyzed to other factors. The correctness, completeness, minimality and
traceability factors should be measured after the source integration process in order to guarantee the
absence of errors. The interpretability factor should be fairly documented in order to help the
administrator know the system and data architecture, the relationship models, schemata and physical
storage of the data and the processes of the data warehouse. The metadata evolution factor is used to
track down the way the schema and models of the data warehouse evolve.

Factor Methods of measurement Formulae
Schema quality
Correctness final inspection of data warehouse schema for

each entity and its corresponding ones in the
sources

number of errors in the
mapping of the entities

Completeness final inspection of data warehouse schema for
useful entities in the sources, not represented
in the data warehouse schema

number of useful entities, not
present in the data warehouse

Minimality final inspection of data warehouse schema for
undesired redundant information

number of undesired entities
in the data warehouse

Traceability final inspection of data warehouse schema for
inability to cover user requirements

number of requirements not
covered

Interpretability Inspection / reasoning in the:
physical part of the architecture (e.g. location
of machines and software in the data
warehouse)

number of undocumented
machines/pieces of software

logical part of the architecture (e.g. data
layout for legacy systems and external data,
table description for relational databases,
primary and foreign keys, aliases, defaults,
domains, explanation of coded values, etc.)

number of pieces of
information not fully
described

conceptual part of the architecture (e.g. ER
diagram)

number of undocumented
pieces of information

mapping of conceptual to logical and from
logical to physical entities

number of undocumented
mappings between conceptual,
logical and physical entities

Metadata evolution
quality

metadata evolution (versioning/timestamping
of the metadata)

number of not documented
changes in the metadata

4.2.2 Software Implementation/Evaluation Quality
Software implementation and evaluation are not tasks with specific data warehouse characteristics.
We are not actually going to propose a new model for this task, rather than adopt the ISO 9126
standard [ISO97]. Yet, for reasons of completeness we will present here the quality factors of ISO
9126, enhanced with just one factor, namely implementation efficiency.
Software implementation is a hard and time-consuming task. The quality factors defined in the
previous section can be used as guidelines for ensuring quality of the produced software. The best
measurement methods we can propose in this context -apart from standard software developing
techniques- is the testing of each module of software developed, with respect to the relative quality
factors. The measurement of the quality of each module can be done, in most cases, by tracking down
and enumerating the number of occasions where an attribute is not fully covered. As for software
evaluation, standard benchmarks have been developed for this cause, covering both the technical and
the measurement part.

Factor Methods of measurement Formulae
Functionality
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Suitability testing of functions with regard to
specified tasks

number of functions not
appropriate for specified tasks

Accuracy testing of software with regard to agreed
results or effects

number of modules not
providing the right or agreed
results or effects

Interoperability testing of software on its ability to interact
with specified systems

number of modules unable to
interact with specified systems

Compliance testing of software on its compliance to
application related standards or
conventions or regulations in laws and
similar prescriptions

number of modules not
compliant with application
related standards or conventions
or regulations in laws and
similar prescriptions

Security testing of software on its ability to prevent
unauthorized access, whether accidental
or deliberate, to programs and data

number of modules unable to
prevent unauthorized access,
whether accidental or
deliberate, to programs and data

Reliability
Maturity testing of software on the frequency of

failure by faults in it.
frequency of failure by faults in
the software

Fault tolerance testing of software on its ability to
maintain a specified level of performance
in cases of software faults or of
infringement of its specified interface

number of occasions where the
software was unable to maintain
a specified level of performance
(in cases of software faults or of
infringement of its specified
interface)

Recoverability testing of software on the capability to re-
establish its level of performance and
recover the data affected in the case of a
failure and on the time and effort needed
for it

number of occasions where the
software was unable to re-
establish its level of
performance and recover the
data affected in the case of a
failure.
Τhe time and effort needed for
this reestablishment

 Usability
Understandability documentation of the users' opinion on

the effort for recognizing the logical
concept and the applicability of the
software

percentage of acceptance by the
users

Learnability documentation of the users' opinion on
the effort for learning the application of
the software

percentage of acceptance by the
users

Operability documentation of the users' opinion on
the effort for operation and operation
control of the software

percentage of acceptance by the
users

Software Efficiency
Time behavior testing of software on response and

processing times and on throughput rates
in performing its function

response times, processing
times and throughput rates

Resource Behavior testing of software on the amount of
resources used and the duration of such
use in performing its function

amount of resources used and
the duration of such use in the
performance of the function of
the software

Maintainability
Analyzability documentation of the developers' opinion

and the man-hours spent on the effort
needed for diagnosis of deficiencies or
causes of failures, or for identifications of

man-hours needed for diagnosis
of deficiencies or causes of
failures, or for identifications of
parts to be modified
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parts to be modified
Changeability documentation of the developers' opinion

and the man-hours spent on the effort
needed for modification, fault removal or
for environmental change

man-hours needed for
modification, fault removal or
for environmental change and
percentage of acceptance from
the developers

Stability documentation of developers' opinion on
the risk of unexpected effect of
modifications

percentage of acceptance from
the developers

Testability documentation of developers' opinion and
the man-hours spent on the effort needed
for validating the modified software

man-hours needed for
validating the modified
software

Portability
Adaptability testing of software on the opportunity of

its adaptation to different specified
environments without applying other
actions or means than those provided for
this purpose for the software considered

number of occasions where the
software failed to adapt to
different specified environments
without applying other actions
or means than those provided
for this purpose for the software
considered

Installability testing of software on the effort needed to
install it in a specified environment

man-hours needed to install the
software in a specified
environment

Conformance testing of software on its compliance to
standards or conventions relating to
portability

number of modules adhering to
standards or conventions
relating to portability

Replaceability testing of software on the opportunity and
effort of using it in the place of specified
other software in the environment of that
software

number of occasions and man-
hours spent to use the software
in the place of specified other
software in the environment of
that software

Implementation
Efficiency

measurement and documentation of
resource use

amount of resources used for
the development of software
and percentage of this recourses
with respect to the originally
expected ones

measurement and documentation of
completion rate

amount of completed modules
with respect to predefined
deadlines and milestones

4.2.3 Data Loading Quality
The loading of the data in the warehouse is a crucial task for the efficient operation of the warehouse.
The usual technique is to load the data in a batch mode (e.g. at night). In the literature there is a great
deal of work regarding alternative ways of updating the information of the warehouse. In [Wido95]
four different modes for the propagation of updates at the sources are described: batch, immediate,
periodic and on demand. The quality factors which we will present and which are related to data
loading should be considered in this broader context; furthermore they are independent of the update
policy which is (or can be) chosen for the data warehouse.
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Figure 2.11 Data Loading Quality Factors

Factor Methods of measurement Formulae
Analyzability testing the data warehouse

processes for self-reporting in
erroneous situations

number of processes which do not
self-report

testing the data warehouse
processes for error-handling

number of processes which do not
perform error-handling

Transactional
availability

performance of statistic checks and
logging

the percentage of time, when
relevant information (in the sources
or the warehouse) is not available
due to update operations

The analyzability factor is concerned with the validation of each process and its interaction with the
user (i.e. to report on the result of each operation, especially in the erroneous situations) and should be
tested for self-reporting and error handling. Transactional availability should be measured in order to
track down the cases where update operations, whether in the warehouse or the sources, make
information unavailable. The transactional availability factor can be measured as the percentage of
time the information in the warehouse or the source is available due to the absence of update processes
(which write-lock the data).

4.2.4 Data Usage Quality
Since databases and -in our case- data warehouses are built in order to be queried, the most basic
process of the warehouse is the usage and querying of its data. The accessibility factor is related to the
possibility of accessing the data for querying. The security factor describes the authorization policy
and the privileges each user has for the querying of the data. The system availability factor describes
the percentage of time the source or data warehouse system is actually available to the users. The
transactional availability factor, as already mentioned, describes the percentage of time the
information in the warehouse or the source is available due to the absence of update processes which
write-lock the data.
The usefulness factor describes the temporal characteristics (timeliness) of the data as well as the
responsiveness of the system. The responsiveness is concerned with the interaction of a process with
the user (e.g. a query tool which is self reporting on the time a query might take to be answered). The
currency factor describes when the information was entered in the sources or/and the data warehouse
(in a temporal database, currency should be represented by the transaction time factor). The volatility
factor describes the time period for which the information is valid in the real world (in a temporal
database, volatility should be represented by the valid time factor). The interpretability factor, as
already mentioned, describes the extent to which the data warehouse is modeled efficiently in the
information repository. The better the explanation is, the easier the queries can be posed.
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Figure 2.12 Data Usage Quality Factor

The accessibility of the system should be measured in order to track down the cases where failures,
update operations, or other operations, whether in the warehouse or the sources, make information
unavailable. The timeliness of data has to do with the history of the operations in the sources and the
warehouse and with the relevancy of the stored information to the real world facts. Consequently, the
data entry and purging processes as well as the validity of the information with respect to time should
be tracked and measured for their quality. The interpretability has already been presented in the
design and administration task and is described again for reasons of completeness.
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Factor Methods of measurement Formulae
Accessibility
System availability performance of statistic checks and

logging
the percentage of time, when
relevant information (in the
sources or the warehouse) is not
available due to system failures or
network, backups, etc.

Transactional
availability

performance of statistic checks and
logging

the percentage of time, when
relevant information (in the
sources or the warehouse) is not
available due to update operations

Security authorization procedures (user privileges,
logging etc.) and their documentation

number of undocumented
authorization procedures

Usefulness
Responsiveness testing of processes in order to determine

whether they inform the user on their
progress

number of processes that do not
self-report to the user

Timeliness
Currency keeping track of the date when the data

were entered in the sources (internal and
external) and the warehouse

number of pieces of information
where transaction time is not
present, although needed

Volatility keeping track of the time period during
which the information is valid in the real
world

number of pieces of information
where valid time is not present,
although needed

Interpretability Inspection / reasoning in the:
physical part of the architecture (e.g.
location of machines and software in the
data warehouse)

number of undocumented
machines/pieces of software

logical part of the architecture (e.g. data
layout for legacy systems and external
data, table description for relational
databases, primary and foreign keys,
aliases, defaults, domains, explanation of
coded values, etc.)

number of pieces of information
not fully described

conceptual part of the architecture (e.g.
ER diagram)

number of undocumented pieces of
information

mapping of conceptual to logical and from
logical to physical entities

number of undocumented
mappings between conceptual,
logical and physical entities

4.2.5 Data Quality
The quality of the data that are stored in the warehouse, is obviously not a process by itself; yet it is
influenced by all the processes which take place in the warehouse environment. As already
mentioned, there has been quite a lot of research on the field of data quality, in the past. We define
data quality as a small subset of the factors proposed in other models. For example, in [WaRK95] our
notion of data quality, in its greater part, is treated as a second level factor, namely believability. Yet,
in our model, the rest of the factors proposed elsewhere, are treated as process quality factors.
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Figure 2.12 Data Quality Factors

The completeness factor describes the percentage of the interesting real-world information entered in
the sources and/or the warehouse. For example, completeness could rate the extent to which a string
describing an address did actually fit in the size of the attribute which represents the address. The
credibility factor describes the credibility of the source that provided the information. The accuracy
factor describes the accuracy of the data entry process which happened at the sources. The consistency
factor describes the logical coherence of the information with respect to logical rules and constraints.
The data interpretability factor is concerned with data description (i.e. data layout for legacy systems
and external data, table description for relational databases, primary and foreign keys, aliases,
defaults, domains, explanation of coded values, etc.)

Factor Methods of measurement Formulae
Completeness performance of statistic checks the percentage of stored information

detected to be incomplete with respect
to the real world values

Credibility documentation of the source which
provided the information

percentage of inaccurate information
provided by each specific source

Accuracy documentation of the person or
machine which entered the
information and performance of
statistical checks

the percentage of stored information
detected to be inaccurate with respect
to the real world values, due to data
entry reasons

Consistency performance of statistic checks the percentage of stored information
detected to be inconsistent

Data
Interpretability

data description (i.e. data layout for
legacy systems and external data,
table description for relational
databases, primary and foreign keys,
aliases, defaults, domains,
explanation of coded values, etc.)

number of pieces of information not
fully described

5. CONCLUSIONS
In this chapter we presented a general framework for the treatment of data warehouse metadata in a
metadata repository. The framework requires the classification of metadata in at least two
instantiation layers and three perspectives. The metamodel layer constitutes the schema of the
metadata repository and the metadata layer the actual meta-information for a particular data
warehouse. We linked this framework to a well-defined approach for the architecture of the data
warehouse [JJQV99]. Then, we presented our proposal for a quality metamodel, which builds on the
widely accepted Goal-Question-Metric approach for the quality management of information systems.
Moreover, we enriched the generic metamodel layer with patterns concerning the linkage of (a)
quality metrics to data warehouse objects and (b) of data warehouse stakeholders to template quality
goals.

The exploitation of the quality model can be performed in versatile ways. It is important to note that
as far as the lifecycle of the data warehouse is concerned, this usage can be done in a dual fashion. Ex-
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post, the metadata repository can be used as a log for the management of quality. All the steps of the
GQM process are, thus, traced in the metadata repository and can be re-used for further evaluation.
Notice, that not only do we provide an initial specialization of the quality metamodel for common data
warehouse processes, but the data warehouse stakeholder can further detail this provision with his
own templates for the quality management of his specific data warehouse, in a similar fashion.
Secondly, the use of the ConceptBase metadata repository can be exploited, due to its querying
facilities. Following [JeQJ98] we give a small example of a query upon the metadata repository.
The following two queries detect objects with trace quality problems, i.e. measurements that are
outside the expected interval, to their causes. Actually, the first query is just a view returning ranges
in the Telos language, and the second is a query (or equivalently in Telos, a view) with all the objects
whose measurement at a certain point of time was out of the acceptable range.

QualityQuery Range isA Integer
with parameter
   q: EstimatedMeasurement
constraint
   c: $ exists n/Interval, u/Integer, l/Integer

(n upper u) and (n lower l) and (q hasValue n) and
(this le u) and (this ge l) $

end

QualityQuery ObjectsWithQualityProblems isA DW_Object
with constraint
   c: $ exists q1 ActualMeasurement , q2/EstimatedMeasurement,

m/Metric, t/Timestamp
(m actual q1) and (m expescted q2) and
(q1 timestamp t) and (q2 timestamp t) and
not(q1 in range[q2]) and
(q1 for this)$

end

Third, the quality metamodel is coherent with the generic metadata framework for data warehouses
that we introduced in Section 1. Thus, every new data warehouse object can be linked to metrics and
measurements for its quality gracefully, without any change to the schema of the repository. This, ex
ante treatment of the metadata repository is complemented by a full set of steps, i.e., quality question,
which constitute our methodology for data warehouse quality management, which will be presented in
Chapter 4.
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Chapter 3
Data Warehouse Processes

1. INTRODUCTION
In Chapter 2, we have presented the proposal of [JJQV99] for the static architecture and quality
metamodels, in the context of a metadata repository. In this chapter, we complement these
metamodels with their dynamic counterpart: the processes of a data warehouse environment.
This chapter is organized as follows: in Section 2 we give a description of the types of data warehouse
processes. In Section 3 we present related work and in Section 4 we describe the proposed process
metamodel. In Section 5 we present the linkage of the metamodel to the quality model and in Section
6 we present how the metadata repository can be exploited, when enriched with this kind of
information. Finally, in Section 7 we conclude our results. The model was developed in cooperation
with RWTH Aachen and it is also presented in [VQVJ00].

2. TYPES OF DATA WAREHOUSES PROCESS
Data Warehouses are complex and data-intensive systems that integrate data from multiple
heterogeneous information sources and ultimately transform them into a multidimensional
representation, which is useful for decision, support applications. Apart from a complex architecture,
involving data sources, the global data warehouse, the operational data store (ODS), the client data
marts, etc., a data warehouse is also characterized from a complex lifecycle. The data warehouse
involves an everlasting design phase, where the designer has to produce various modeling constructs
(a conceptual model, possibly not in a standard ER formalism and a usually voluminous logical
schema), accompanied by a detailed physical design for efficiency reasons (involving indexing,
clustering etc.) To top all these, the designer must deal with the data warehouse processes too, which
are complex in structure, large in number and hard to code at the same time. Dealing with the data
warehouse as set of layered, materialized views is, thus, a very simplistic view. As it has been
indicated, the data warehouse refreshment process can already consist of many different subprocesses
like data cleaning, archiving, transformations, aggregations interconnected through a complex
schedule [BoFM99]. The administration of the data warehouse is also a complex task, where
deadlines must be met for the population of the data warehouse and contingency actions taken in the
case of errors. To make the picture complete, we must add the evolution phase, which is a
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combination of design and administration: as time passes, new data are requested by the end users,
new sources of information become available, and the data warehouse architecture must evolve to
meet these challenges.
Such systems require a careful design, which is often supported by a repository that tracks all
metadata that is relevant for the data warehouse. In Chapter 2, we have presented the metadata
modeling approach of [JJQV99] that enables the capturing of the static parts of the architecture of a
data warehouse, along with information over different quality dimensions of these components. The
linkage of the architecture model to quality parameters (quality model) and its implementation in
ConceptBase has been formally described in Chapter 2, too. In this chapter, we complement these
approaches with the meta-modeling for the dynamic part of the data warehouse environment: the
processes.
The meta-information concerning data warehouse operational processes can be used to support the
design and the evolution of the data warehouse. In these phases of the data warehouse lifecycle, the
designers of a data warehouse need different kinds of information about processes: what are they
supposed to do, why are they necessary, how are they implemented and how they affect other
processes in the data warehouse. To this end, we present a model for data warehouse processes,
influenced by ideas developed in the area of workflow management systems [CCPP95, SaOr99,
GeHS95, WfMC98] as well as the Actor-Dependency model [YuMy94] (and its last version, the
Strategic Dependency model [Yu99]). We have identified several requirements for a data warehouse
process model, which are close to the specific nature of such an environment. Specifically, these
requirements are:

(a) Complexity of structure: the data warehouse processes are quite complex in their nature, in
terms of tasks executed within a single process, execution coherence, contingency treatment,
etc. The complexity of structure is also confusing for the zooming in and out the repository,
which is a well-known requirement in the field of repository management.

(b) Relationship of processes with involved data: the data warehouse processes are data
intensive by nature. To handle the data flow in a repository, it is important that the
repository is able to capture the interrelationship between processes and relevant data.

(c) Information on process traces: not only the structure of a process is important; the specific
traces of executed processes should be tracked down too. The repository, thus, gains added
value since, ex ante the data warehouse stakeholders can use it for design purposes (e.g., to
select the data warehouse objects necessary for the performance of a task) and ex post,
people can relate the data warehouse objects to decisions, tools and the facts which have
happened in the real world [JaJR90].

(d) Respect of the metadata framework. In Chapter 2 we have defined a metadata framework
which introduces a clear separation of perspectives and instantiation layers. We demand that
both these requirements are respected. As far as the separation of perspectives is concerned,
we can discriminate between what components an information systems consists of (logical
perspective), how they actually perform (physical perspective) and why these components
exist (conceptual perspective). The data warehouse process model should reflect this
separation of viewpoints. As far as the separation of instantiation layer is concerned, the
templates for generic data warehouse processes should be clearly distinct from the
description of the specific processes of a particular data warehouse, and of course, from the
traces of these processes.

(e) Linkage to architecture and quality metamodels: Apart from respecting the overall
metadata framework, the process model should be in harmony with the adopted metamodels
for data warehouse architecture and quality, which have been presented also in Chapter 2.

The contribution of the proposed metamodel is towards the fulfillment of all the aforementioned
requirements. We do not advocate that our approach is suitable for any kind of process, but rather we
focus our attention to the internals of data warehouse systems. Our model has been implemented in
the metadata repository ConceptBase, using the Telos language. The usefulness of our approach is
demonstrated by the fact that the proposed model enables data warehouse management, design and
evolution, as we will show in section 4. First, the design of the data warehouse is supported by
extended use of consistency checks, to ensure the correctness of the representation. Moreover, instead
of treating the data warehouse as a set of layers of materialized views, we enrich this viewpoint by
deriving the description of the data warehouse materialized views from the process definitions used
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for their population. Third, the model facilitates the administration of the data warehouse, by enabling
the measurement of quality of data warehouse processes and the spotting of inefficiencies. Finally, a
specific task of data warehouse administration, namely evolution, is supported by the exploitation of
the information on the interdependencies of data warehouse components, to forecast any possible
impact by the change of any of these components.

3. RELATED WORK
In the field of workflow management, [WfMC98] is a standard proposed by the Workflow
Management Coalition (WfMC). The standard includes a metamodel for the description of a
workflow process specification and a textual grammar for the interchange of process definitions. A
workflow process comprises of a network of activities, their interrelationships, criteria for
staring/ending a process and other information about participants, invoked applications and relevant
data. Also, several other kinds of entities that are external to the workflow, such as system and
environmental data or the organizational model are roughly described. A widely used web server for
workflow literature is maintained by [Klam99].
[SaOr99] use a simplified workflow model, based on [WfMC98], using tasks and control flows as its
building elements. The authors present an algorithm for identifying structural conflicts in a control
flow specification. The algorithm uses a set of graph reduction rules to test the correctness criteria of
deadlock freedom and lack-of-synchronization freedom. In [MaOr99] the model is enriched with
modeling constructs and algorithms for checking the consistency of workflow temporal constraints. In
[DaRe99] several interesting research results on workflow management are presented in the field of
electronic commerce, distributed execution and adaptive workflows.
In [CCPP95], the authors propose a conceptual model and language for workflows. The model gives
the basic entities of a workflow engine and semantics about the execution of a workflow. The
proposed model captures the mapping from workflow specification to workflow execution (in
particular concerning exception handling). Importance is paid to the inter-task interaction, the
relationship of workflows to external agents and the access to databases. Other aspects of workflow
management are explored in [CaFM99, CCPP98].
In [KLCO96] a general model for transactional workflows is presented. A transactional workflow is
defined to consist of several tasks, composed by constructs like ordering, contingency, alternative,
conditional and iteration. Nested workflows are also introduced. Furthermore, correctness and
acceptable termination schedules are defined over the proposed model.
Process and workflow modeling have been applied in numerous disciplines. A recent overview on
process modeling is given in [Roll98], where a categorization of the different issues involved in the
process engineering field is provided. The proposed framework consists of four different but
complementary viewpoints (expressed as "worlds"): the subject world, concerning the definition of the
process with respect to the real world objects, the usage world, concerning the rationale for the
process with respect to the way the system is used, the system world, concerning the representation of
the processes and the capturing of the specifications of the system functionality and finally, the
development world, capturing the engineering meta-process of constructing process models. Each
world is characterized by a set of facets, i.e., attributes describing the properties of a process
belonging to it.
In [JaJR90] the authors propose a software process data model to support software information
systems with emphasis on the control, documentation and support of decision making for software
design and tool integration. Among other features, the model captures the representation of design
objects ("what"), design decisions ("why") and design tools ("how").
The MetaData Coalition (MDC), is an industrial, non-profitable consortium with aim to provide a
standard definition for enterprise metadata shared between databases, CASE tools and similar
applications. The Open Information Model (OIM) [MeDC99] is a proposal (led by MicroSoft) for the
core metadata types found in the operational and data warehousing environment of enterprises. The
MDC OIM uses UML both as a modeling language and as the basis for its core model. The OIM is
divided in sub-models, or packages, which extend UML in order to address different areas of
information management. The Data Transformations Elements package covers basic transformations
for relational-to-relational translations. The package is not a data warehouse process modeling
package (covering data propagation, cleaning rules, or the querying process), but covers in detail the
sequence of steps, the functions and mappings employed and the execution traces of data
transformations in a data warehouse environment.
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4. METAMODEL FOR DATA WAREHOUSE OPERATIONAL
PROCESSES
The basis of all our references will be the metadata framework, already presented in Chapter 2. A
condensed graphical overview of the architecture metamodel is given in Figure 3.1. The framework
describes a data warehouse in three perspectives: a conceptual, a logical and a physical perspective.
Each perspective is partitioned into the three traditional data warehouse levels: source, data
warehouse and client level. On the metamodel layer, the framework gives a notation for data
warehouse architectures by specifying meta classes for the usual data warehouse objects like data
store, relation, view, etc. On the metadata layer, the metamodel is instantiated with the concrete
architecture of a data warehouse, involving its schema definition, indexes, tablespaces, etc. The lowest
layer in Figure 3.1 represents the real world where the actual processes and data reside.
The static description of the architecture parts of the data warehouse (left part of Figure 3.1) is
complemented, in this chapter, with a metamodel of the dynamic parts of the data warehouse, i.e. the
data warehouse operational processes. As one can notice on the right side of Figure 3.1, we follow
again a three level instantiation: a Process Metamodel deals with generic entities involved in all data
warehouse processes (operating on entities found at the data warehouse metamodel level), the Process
Model covers the processes of a specific data warehouse by employing instances of the metamodel
entities and the Process Traces capture the execution of the actual data warehouse processes
happening in the real world.

Client 
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Meta Model
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Meta Data
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Figure 3.1: Framework for Data Warehouse Architecture [JJQV99].

Our approach has been influenced by ideas on dependency and workflow modeling stemming from
[CCPP95, SaOr99, JaJR90, RaDh92, YuMy94, GeHS95] and on the Workflow Reference Model,
presented in [WfMC98] by the Workflow Management Coalition (WfMC). We found the Workflow
Reference Model too abstract for the purpose of a repository serving a specific kind of processes, the
data warehouse operational processes. First, the relationship of an activity with the data it involves is
not really covered, although this would provide extensive information of the data flow in the data
warehouse. Second, the separation of perspectives is not clear, since the WfMC proposal focuses only
on the structure of the workflows. To compensate this shortcoming, we employ the basic idea of the
Actor-Dependency model to add a conceptual perspective to the definition of a process, capturing the
reasons behind its structure.

4.1 The 3 Perspectives for the Process Model.
In Figure 3.2 we offer an intuitive view for the categorization of the entities in the process metamodel.
The model has three different perspectives covering distinct aspects of a process: the conceptual,
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logical and physical perspective. The categorization is following the separation of the framework
proposed in Chapter 2, and fits naturally with the adopted architecture model of [JJQV99], since the
perspectives of the process model operate on objects of the respective perspective of the architecture
model. As mentioned in [YuMy94] there are different ways to view a process: what steps it consists of
(logical perspective), how they are to be performed (physical perspective) and why these steps exist
(conceptual perspective). Thus, we view a data warehouse process from three perspectives: a central
logical part of the model, which captures the basic structure of a process, its physical counterpart
which provides specific details over the actual components that execute the activity and the
conceptual perspective which abstractly represents the basic interrelationships between data
warehouse stakeholders and processes in a formal way.
Typically, the information about how a process is executed concerns stakeholders who are involved in
the everyday use of the process. The information about the structure of the process concern
stakeholders that manage it and the information relevant to the reasons behind this structure concern
process engineers who are involved in the monitoring or evolution of the process environment. In the
case of data warehouses it is expected that all these roles are covered by the data warehouse
administration team, although one could also envision different schemes. Another important issue
shown in Figure 3.2 is that there is also a data flow at each of the perspectives: a type description of
the incoming and outcoming data at the logical level, where the process acts as an input/output
function, a physical description of the details of the physical execution for the data involved in the
activity and a relationship to the conceptual entities related to these data, connected through a
corresponding role.

Output
Type

Input
Type

Activity Agent

Input
DataStore

Output
DataStore

Role

Input
Concept

Output
Concept

Conceptual
Perspective

Logical
Perspective

Physical
Perspective

Figure 3.2 The reasoning behind the 3 perspectives of the process metamodel.

Once again, we have implemented the process metamodel in the Telos language and specifically in
the ConceptBase metadata repository. The implementation of the process metamodel in ConceptBase
is straightforward, thus we choose to follow an informal, bird's-eye view of the model, for reasons of
presentation and lack of space. Wherever definitions, constraints, or queries of ConceptBase are used
in the chapter, they will be explained properly in natural language, too.
In the sequel, when we present the entities of the metamodel, this will be done in the context of a
specific perspective. In the Telos implementation of the metamodel, this is captured by specializing
the generic classes ConceptualObject, LogicalObject and PhysicalObject with ISA relationships,
accordingly. We will start the presentation of the metamodel from the logical perspective. First, we
will show how it deals with the requirements of structure complexity and capturing of data semantics
in the next two sections. Then, in subsections 2.4 and 2.5 we will present the physical and the
conceptual perspectives. In the former, the requirement of trace logging will be fulfilled too. The full
metamodel is presented in Figure 3.3.
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Figure 3.3 The Data Warehouse Operational Process Metamodel.

4.2 Complexity in the process structure

Following [WfMC98], the main entity of the logical perspective is an Activity. An activity represents
an amount of "work which is processed by a combination of resource and computer applications".
Activities are rather complex in nature and this complexity is captured by the specialization of
Activity, namely CompositeActivity. We follow here the lessons coming both from repository and
workflow management: there must be the possibility of zooming in and out the repository. Composite
activities are composed by ProcessElements, which is a generalization of the entities Activity and
TransitionElement. A transition element is the "bridge" between two activities: it is employed for the
interconnection of activities participating in a complex activity. The attribute Next of the process
elements captures the sequence of events.
Formally, a Process Element is characterized by the following attributes:

− Next: a ProcessElement that is next in the sequence of a composite activity. The attribute
Next has itself two attributes, that characterize it:
− Context: A CompositeActivity. Since two activities can be interrelated in more than one

complex data warehouse processes, the context of this interrelationship is captured by the
relevant CompositeActivity instance.

− Semantics: This attribute denotes whether the next activity in a schedule happens on
successful termination of the previous activity (COMMIT) or in the case where a
contingency action is required (ABORT). Thus, the class ElementNextDomain has two
instances {COMMIT, ABORT}.

A TransitionElement inherits the attributes of ProcessElement, but most important, is used to add
more information on the control flow in a composite activity. This is captured by two mechanisms.
First, we enrich the Next link with more meaning, by adding a Condition attribute to it. A Condition
is a logical expression in Telos denoting that the firing of the next activity is performed when the
Condition is met.
Second, we specialize the class Transition Element to four prominent subclasses, capturing the basic
connectives of activities, as suggested by [WfMC98]: Split_AND, Split_XOR, Join_AND, Join_XOR.
This specialization is not depicted in Figure 3.3 to avoid overloading the figure. The same happens
with several attributes of the other entities, too. Their semantics are obviously the same with the ones
of the WfMC proposal. For example, the Next activity of a Join_XOR instance is fired when (a) the
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Join_XOR has at least two activities "pointing" to it through the Next attribute and only one Next
Activity (well-formedness constraint), (b) the Condition of the Join_XOR is met and (c) only one of
the "incoming" Activities has COMMIT semantics in the Next attribute. This behavior can be
expressed in Telos with the appropriate rules.
The WfMC proposes two more ways of transition between Activities. The dummy activities, which
perform routing based on condition checking, are modeled in our approach, as simple Transition
Elements. The LOOP activities are captured as instances of CompositeActivity, with an extra
attribute: the for condition, expressed as a string.
In Figure 3.4, we depict how two transitions are captured in our model. In case (a), we model a
composite activity, composed of two sub-activities, where the second is fired when the first activity
commits and a boolean condition is fulfilled. P1_Commited? is a transition element. In case (b) we
give two alternatives for the capturing of two concurrent activities, fired together. Dummy is an
activity with no real operations performed (e.g., like the dummy activity of WfMC).

P1 P1_Commited? P2

commit commit

condition

next next

semantics semantics

(a) ON COMMIT(P1), IF <condition> START

P1

dummy
P2

next

next

(b) ON INIT(P1), START P2

P2

dummy P1

next

next

P1

Figure 3.4 Examples of complex activities.

4.3 Relationship with data

We introduce the entity Type to capture the logical representation of a data store. A Type can serve as
a wrapper for all kinds of data stores, denoting their schema. Formally, a Type is defined as a
specialization of LogicalObject with the following attributes:

− Name: a single name denoting a unique Type instance.
− Fields: a multi-value attribute. In other words, each Type has a name and a set of Fields,

exactly like a relation in the relational model.
− Stored: a DataStore, i.e., a physical object representing any application used to manipulate

stored data (e.g., a DBMS). This attribute will be detailed later, in the description of the
physical perspective.

Any kind of data store can be represented by a Type in the logical perspective. For example, the
schema of multidimensional cubes is of the form [D1,...,Dn,M1,...,Mm] where the Di represent
dimensions (forming the primary key of the cube) and the Mj measures [Vass98]. Cobol files, as
another example, are in general records with fields having two peculiarities (a) nested records and (b)
alternative representations. One can easily unfold the nested records and choose only one of the
alternative representations, reducing, thus, the intentional description of the Cobol file to a Type.
Each activity in a data warehouse environment is linked to a set of incoming types as well as to a set
of outcoming types, too. The data warehouse activities are of data intensive nature in their attempt to
push data from the data sources to the data warehouse materialized views or client data marts. We can
justify this claim by listing the most common operational processes:

(a)  data transfer processes, used for the instantiation of higher levels of aggregation in the ODS
and the data warehouse with data coming from the sources or lower levels of aggregation;
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(b)  data transformation processes, used for the transformation of the propagated data to the
desired format;

(c)  data cleaning processes, used to ensure the consistency of the data in the warehouse (i.e. the
fact that these data respect the database constraints and the business rules);

(d)  computation processes, which are used for the derivation of new information from the stored
data (e.g., further aggregation, querying , business logic, etc.).

Thus, the relationship between data and processes is apparent in such an environment and we capture
it by expressing the outcome of a data warehouse process as a function over the inputs. These
semantics are captured through SQL queries, extended with functions – wherever richer semantics
than SQL are required.
Therefore, an Activity is formally characterized by the following attributes:

− Next: inherited by Process Element.
− Name: a name to uniquely identify the activity among the rest of the data warehouse

activities.
− Input: a multi-value Type attribute. This attribute models all the data stores used by the

activity to acquire data.
− Output: a multi-value Type attribute. This attribute models all the data stores or reports,

where the activity outputs data (even a report for the decision-maker can have a schema, and
be thus represented by a Type). The Output attribute is further explained by two attributes:
− Semantics: a single value belonging to the set {Insert, Update, Delete, Select} (captured

as the domain of class ActivityOutSemantics). A process can either add (i.e., append), or
delete, or update the data in a data store. Also it can output some messages to the user
(captured by using a "Message" Type and Select semantics).

− Expression: a single SQL query, (instance of class SQLQuery) to denote the relationship
of the output and the input types. We adopt the SQL language extended with functions, to
capture this relationship.

− ExecutedBy: a physical Agent (i.e., an application program) executing the Activity. More
information on agents will be provided in the sequel.

− Role: a conceptual description of the activity. This attribute will be properly explained in the
description of the conceptual perspective.

The following table shows how the various types of processes are modeled in our approach.
Activity Semantics Expression
transfer INS/UPD SELECT * FROM <In>

transformation INS/UPD SELECT * FROM <In> WHERE attr i  = f(attr 1, ..., attr n)

cleaning DEL/UPD - Primary Key: SELECT <P.K.> FROM <IN> GROUP BY
<P.K.> HAVING COUNT(*) > 1

- Foreign Key: SELECT <P.K.> FROM <IN> WHERE <F.K.>
NOT IN (SELECT <F.K> FROM <TARGET>)

- Any other kind of query

computation INS/UPD Any kind of query

messaging SEL Any kind of query

Figure 3.5 Examples of Output attribute for particular k inds of activities

To motivate the discussion, we will use a part of a case study, enriched with extra requirements, to
capture the complexity of the model that we want to express. The role of the discussed organization is
to collect various data about the yearly activities of all the hospitals of a particular region. The system
relies on operational data coming from COBOL files. The source of data, for our example, is a
COBOL file, dealing with the yearly information by class of beds and hospital (here we use only three
classes, namely A, B and C). The COBOL file yields a specific attribute for each type of class of beds.
Each year, the COBOL file is transferred from the production system to the data warehouse and stored
in a "buffer" table of the data warehouse, acting as mirror of the file inside the DBMS. Then, the
tuples of the buffer table are used by computation procedures to further populate a «fact» table inside
the data warehouse. Several materialized views are then populated with aggregate information and
used by client tools for querying.
We assume the following four Types: CBL, Buffer, Class_info and V1. The schemata of these types
are depicted in Figure 3.6. There are four Activities in the data warehouse: Loading, Cleaning,
Computation and Aggregation. The Loading activity simply copies the data from the CBL Cobol file
to the Buffer type. H_ID is an identifier for the hospital and the three last attributes hold the number
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of beds per class. The Cleaning activity deletes all the entries violating the primary key constraint.
The Computation activity transforms the imported data into a different schema. Suppose that the date
is converted from American to European format and the rest of the attributes are converted to a
combination (Class_id, #Beds). For example, if (03,12/31/1999,30,0,50 ) is a tuple in the
Buffer table, the respective tuples in the Class_Info table are {(03,31/Dec/1999,A,30 ),
(03,31/Dec/1999,50 )}. The Aggregation activity simply produces the sum of beds by hospital
and year.

Loading Cleaning Computation Aggregation

Buffer Class_info V1CBL

next next next

INS
INS INSDELin

in in

inout
out out

out

(H_ID, DATE,
CLASS_A, CLASS_B,
CLASS_C)

(H_ID, DATE,
CLASS_A, CLASS_B,
CLASS_C)

(H_ID, EDATE,
CLASS_ID, #BEDS)

(H_ID,EDATE,
SUM(#BEDS))

Figure 3.6 Motivating Example

The expressions and semantics for each activity are listed in Figure 3.7.
Attribute name Expression Semantics
Loading.Out: SELECT * FROM CBL INS
Cleaning.Out: SELECT * FROM BUFFER B1

WHERE EXISTS (SELECT B2.H_ID, B2.DATE FROM BUFFER B2
WHERE B1.H_ID = B2.H_ID AND B1.DATE = B2.DATE
GROUP BY H_ID,DATE HAVING COUNT(*)> 1)

DEL

Computation.Out

:

SELECT H_ID, EUROPEAN(DATE) AS EDATE, 'A',
CLASS_A AS #BEDS

FROM BUFFER WHERE CLASS_A <> 0
UNION
SELECT H_ID, EUROPEAN(DATE) AS EDATE, 'B',

CLASS_B AS #BEDS
FROM BUFFER WHERE CLASS_B <> 0
UNION
SELECT H_ID, EUROPEAN(DATE) AS EDATE, 'C',

CLASS_C AS #BEDS
FROM BUFFER WHERE CLASS_C <> 0

INS

Aggregation.Out: SELECT H_ID, EDATE, SUM(#BEDS) AS SUM_BEDS
FROM CLASS_INFO
GROUP BY H_ID, EDATE

INS

Figure 3.7 Expressions and semantics for the motivating example

All activities are appending data to the involved types, so they have INS semantics, except for the
cleaning process, which deletes data, and thus has DEL semantics. We want to stress, also, that the
use of SQL as a mapping function is done for the logical perspective. We do not imply that everything
should actually be implemented through the use of the employed queries, but rather that the
relationship of the input and the output of an activity is expressed as a function, through a declarative
language such as SQL.

4.4 The Physical Perspective

Whereas the logical perspective covers the structure of a process ("what" in [YuMy94] terminology),
the physical perspective covers the details of its execution ("how"). Each process is executed by an
Agent (i.e. an application program). Each Type is physically stored, by a DataStore (providing
information for issues like tablespaces, indexes, etc.). An Agent can be formalized as follows:

− State: a single value belonging to the domain of class AgentStateDomain = {In_Progress,
Commit, Abort}.
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− Init_time, Abort_time, Commit_time: timestamps denoting the Timepoints when the
respective events have occurred.

− Execution_parameters: a multivalue string attribute capturing any extra information about an
execution of an agent.

− In, Out: physical DataStores communicating with the Agent. The types used by the respective
logical activity must be stored within these data stores.

Activity Name Loading Cleaning Computation Aggregation

Agent Name sqlldr80.exe Clean.pql Comp.pql Aggr.pql

State COMMIT COMMIT COMMIT COMMIT
Init time 31/12/99:00:00 31/12/99:01:00 31/12/99:01:15 31/12/99:03:00
Abort time -- -- -- --
Commit time 31/12/99:01:00 31/12/99:01:15 31/12/99:03:00 31/12/99:03:30
Execution
parameters

Parfile=param.par -- -- --

Figure 3.8 Trace information after a successful execution of the process of the motivating
example

In Figure 3.8 we present the trace information after a successful execution of the process described in
Figure 3.6. We show the relationship between the logical and the physical perspective by linking each
logical activity to a specific (physical) application program.

4.5 The Conceptual Perspective

One of our major purposes behind the introduction of the conceptual perspective is to help the
interested stakeholder understand the reasoning behind any decisions on the architecture and
characteristics of the data warehouse processes. First of all, each Type (i.e. Relation, Cube, etc.) in the
logical perspective is a representation of a Concept in the conceptual perspective. A concept is an
abstract entity representing a real world class of objects, in terms of a conceptual metamodel -e.g., the
ER model. Both Types and Concepts are constructed from Fields (representing their attributes),
through the attribute fields. We consider Field to be a subtype both of LogicalObject and
ConceptualObject.
The central entity in the conceptual perspective is the Role, which is the conceptual counterpart both
of activities and concepts. The Role is basically used to express the interdependencies of these entities,
through the attribute RelatesTo. Formally, a Role is defined as follows:

− RelatesTo: another Role.
− As: a single value belonging to the domain of class RelationshipDomain = {suitable,

dependent}.
− Wrt: a multi-value attribute including instances of class ConceptualObject.
− dueTo: a string attribute, textually documenting any extra information on the relationship

of two roles.
A role represents any program or data store participating in the environment of a process, charged
with a specific task and/or responsibility. The interrelationship between roles is modeled through the
RelatesTo relationship. An instance of this relationship is a statement about the interrelationship of
two roles in the real world, such as ‘View V1 relates to table Class_Info with respect to the attributes
Id, Date and number of beds as dependent due to loading reasons’. Since both data and processes can
be characterized by SQL statements, their interrelationship can be traced in terms of attributes. In
Figure 3.9 two examples are also used to clarify this instantiation, based on the example of Figure 3.6.
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Attribute Example 1 Example 2
Role 1 Buffer Aggregation
Role 2 CBL Class_Info
As Dependent Dependent
Wrt CBL.* H_ID, EDate, #Beds

Figure 3.9 Examples of role interrelationships.

The conceptual perspective is influenced by the Actor Dependency model [YuMy94]. In this model,
the actors depend on each other for the accomplishment of goals and the delivery of products. The
dependency notion is powerful enough to capture the relationship of processes where the outcome of
the preceding process in the input for the following one. Still, our approach is more powerful since it
can capture suitability too (e.g., in the case where more than one concepts can apply for the
population of an aggregation).
In the process of understanding the occurring errors or the design decisions over the architecture of a
data warehouse, the conceptual perspective can be used as a reasoning aid in the task of discovering
the interdependencies of the actors (possibly in a transitive fashion) and the possible alternatives for
different solutions through a set of suitable candidates. For example the previous statement for the
relationship of view V1 and table Class_Info could be interpreted as ‘View V1 is affected from any
changes to table Class_Info and especially the attributes Id, Date and no. of beds’. Moreover, the
provided links to the logical perspective can enable the user to pass from the abstract relationships of
roles to the structure of the system. On top of these, as we shall show in the last section, data
warehouse evolution can be designed and influenced by the interdependencies tracked by the Role
entities. We also show that these interdependencies do not have to be directly stored, but can also be
incrementally computed.

5. ISSUES ON PROCESS QUALITY
In this section we present how the process model is linked to the metamodel for data warehouse
quality, along with specific quality dimensions and factors of data warehouse operational processes.

5.1 Terminology for Quality Management
As already explained in Chapter 2, we can make good use of a quality metamodel capturing the
relationship between quality metrics (or factors) and data warehouse objects. In Chapter 2, we made a
detailed proposal for such a model and its use. In this chapter, for reasons of clarity, we will use only
a part of this model to show how data warehouse operational processes can be linked to quality
management. This subset of the metamodel is also quite close to other, similar, proposal such the one
of [JeQJ98]. The minimal subset of a quality metamodel, which is required here, is composed from
quality goals and quality factors (which are related to objects of the architecture metamodel)
interconnected through quality questions. The terminology for the quality goals is provided from a set
of quality dimensions, which can also be considered as high-level groupings of quality factors. The
semantics of all these entities are not outside the scope of the definitions of Chapter 2.

5.2 Quality Dimensions of Data Warehouse Processes

For the case of processes, we will first define a set of generic quality dimensions. We do not wish to
detail the whole set of possible dimensions for all the data warehouse processes, rather, we intend to
come up with a minimal characteristic set, which is generic enough to cover the most basic
characteristics of data warehouse processes. Then, this set of quality dimensions can be refined and
enriched with customized dimensions by the data warehouse stakeholders.
The set of generic quality dimensions is influenced mainly from the quality criteria for workflows
defined in [GeRu97] and the quality dimensions for software evaluation presented in [ISO91].

1. Correctness: a specification exists, describing the conditions under which, the process has
achieved its aim (e.g. provides the correct results).

2. Functionality: the process satisfies specific needs of data warehouse stakeholders.
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3. Efficiency: the process has a good balance between level of performance and amount of used
resources. Efficiency can be decomposed to sub-dimensions like timeliness and resource
consumption.

4. Maintenability: the degree of easiness with which the process can be modified. It can also be
decomposed to sub-dimensions like analyzability (effort required to detect deficiencies and
propose changes) and changeability (effort required to implement these changes).

Moreover, the quality of a process is also determined by the quality of its output (which is basically a
relation). We refer the reader to the previous chapter and [JJQV99] for further probing on this issue.

5.3 Relationships between Processes and Quality

Quality goals are high-level abstractions of the data warehouse quality: they describe intentions or
plans of the data warehouse users with respect to the status of the data warehouse. Moreover, we use
the repository to track how quality goals are evaluated by specific questions and measurements. In
contrast, our process model presented in section 2 describes facts about the current status of the data
warehouse and what activities are performed in the data warehouse.
However, the reason behind the execution of a process is a quality goal, which should be achieved or
improved by this process. For example, a data cleaning process is executed on the ODS in order to
improve the accuracy of the data warehouse. We have represented this interdependency between
processes and quality goals by extending the relationship between roles and data warehouse objects in
the conceptual perspective of the process model (relationship Expressed For). This is shown in the
upper part of Figure 3.10.

Role

Activity

QualityGoal

QualityQuestion

QualityFactor

Quality
Dimension

DWObject

Defined on

measures

Evaluated by

Evidence for

Expressed for

has
Role

Refers to

affects
Agent

Refers to

Executed
 by

Figure 3.10 Relationships between processes and quality

Our model is capable of capturing all the kinds of dependencies, mentioned in [YuMy94]. Task
dependencies, where the dependum is an activity, are captured by assigning the appropriate role to the
attribute Wrt of the relationship. Resource dependencies, where the dependum is the availability of a
resource, are modeled when fields or concepts populate this attribute. The relationship ExpressedFor
relates a role to a high-level quality goal; thus Goal dependencies, dealing with the possibility of
making a condition true in the real world, are captured from the model, too. Soft-goal dependencies,
are a specialization of goal dependencies, where their evaluation cannot be done in terms of concrete
quality factors: the presence or absence of this feature, determines the nature of the quality goal.
The lower part of Figure 3.10 represents the relationship between processes and quality on a more
operational level. The operation of an agent in the data warehouse will have an impact on quality
factors of data warehouse objects. The relationship Affects represents both the measured and expected
effect of a data warehouse process on data warehouse quality. The achieved effect of a data warehouse
process must always be confirmed by new measurements of the quality factors. Unexpected effects of
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data warehouse processes can be detected by comparing the measurements with the expected behavior
of the process.
Between the high-level, user oriented, subjective quality goals and the low-level, objective,
component-oriented quality factors, we use the notion of Quality Question. This provides the
methodological bridge to link the aforementioned entities. The vocabulary / domain of the quality
questions, with respect to the process model is anticipated to be the set of data warehouse activities,
which, of course, can be mapped to reasons (roles) and conditions (agents) for a specific situation.
Thus, the discrimination of logical, conceptual and physical perspectives is verified once more, in the
quality management of the data warehouse: the quality goals can express «why» things have
happened (or should happen) in the data warehouse, the quality questions try to discover «what»
actually happens and finally, the quality factors express «how» this reality is measured.

6. EXPLOITATION OF THE METADATA REPOSITORY
We exploit the metadata repository in all the phases of the data warehouse lifecycle. During the
design phase, the user can check the consistency of his/her design, to determine any violations of the
business logic of the data warehouse, or the respect of simple rules over the structure of the data
warehouse schema. During the administration phase (i.e., in the everyday usage of the data
warehouse) we can use the repository to discover quality problems. A particular task in the data
warehouse lifecycle, data warehouse evolution, is examined separately, to determine possible impacts,
when the schema of a particular object changes. The metadata repository ConceptBase is powerful
enough to allow the developer define constraints and views on the stored objects. However, our
approach can be, of course, exploited over any other metadata repository with the respective facilities.

6.1 Consistency checking in the metadata repository

The consistency of the metadata repository should be checked to ensure the validity of the
representation of the real world in the repository. The following two views find out whether the types
used as inputs (or outputs) of an activity are stored in the respective data stores used as inputs (or
outputs respectively) of the agent, executed by the activity. The check is performed as a view and not
as a constraint, since composite activities may not directly correspond to a single agent.

QueryClass InconsistentInTypes isA Type with
constraint

c : $ exists d/DataStore ac/Activity ag/Agent
(ac input this) and (ac executedBy ag) and
(ag input d) and not(this storedIn d) $

end

QueryClass InconsistentOutTypes isA Type with
constraint

c : $ exists d/DataStore ac/Activity ag/Agent
(ac output this) and (ac executedBy ag) and
(ag output d) and not(this storedIn d) $

end

Other simple checks performed through constraints involve the local structure of the process elements.
For example, split transition elements should obligatorily have at least one incoming edge and more
that one outcoming (the opposite holding for join transition elements). The timestamps of an agent
should also be consistent with its state. The repository can also be used by external programs to
support the execution of consistency checking algorithms like the ones proposed in [SaOr99,
MaOr99].

6.2 Interdependencies of types and processes

Our modeling enables us to construct a partially ordered graph: for each Type instance, say t, there is
a set of types and activities, used for the population of t ("before" t), denoted as B(t). Also, there is
another set of objects using t for their population ("after" t), denoted as A(t). We can recursively
compute the two sets from the following queries in ConceptBase:
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GenericQueryClass Previous isA Activity with
parameter

t : Type
constraint

c : $ (this output t) $

end

GenericQueryClass Before isA DW_Object with
parameter

t : Type
constraint

c : $ (this in Previous[t/t]) or
( exists t1/Type (ac in Previous[t/t]) and (ac input t1) or
( exists d/DW_Object (ac in Previous[t/t]) and (ac input t1)

     and (d in Before[t1/t]))) $

end

Queries for the successor and after relationships can be defined in a similar way. Using the previous
and successor objects of a type in the metadata repository, we can derive an SQL definition for this
type, based on the data flow that populates it. We suppose that there is a set of types belonging to the
set SourceSchema, denoting all the types found in the data sources. We treat the types of
SourceSchema as source nodes of a graph: we do not consider any processes affecting them. For the
rest of the types, we can derive an SQL expression by using existing view reduction algorithms.
Several complementary proposals exist such as [Kim82 corrected with the results of GaWo87,
Mura89, Mura92 (which we will mention as Kim82+ in the sequel)], [Daya87], [ChSh96],
[MFPR90], [PiHH92], [LeMS94]. The proposed algorithm is applicable to graphs of activities that do
not involve updates. In most cases, an update operation can be considered as the combination of
insertions and deletions or as the application of the appropriate function to the relevant attributes.

Algorithm  Extract_Type_Definitions
Input:  a list of processes P=[P 1,P 2,…,P n] , a set of types T={T 1,T 2,…,T m} . Each process P[i]  has a
type P[i].out , belonging to T, and an expression P[i].expr . Each type of T, say t , has an SQL
expression t.expr  comprised of a set of “inserted data” (t.i_expr ) and “deleted” data (t.d_expr ).
Also there is a subset of T, S, with the source types.
Output : A set of SQL definitions for each type of T.
Begin
   Initialize all the expressions of T- S to {}.
   For i := 1 to n
      Case
         P[i].semantics = ‘INS’
            P[i].out.i_expr := P[i].out.i_expr UNION Reduce(P[i].expr)
         P[i].semantics = ‘DEL’
            P[i].out.d_expr := P[i].out.d_expr UNION Reduce(P[i].expr)
      End_case
      P[i].out.expr := P[i].out.i_expr MINUS P[i].out.d_expr
   End_for
End

Where Reduce(expr):
1. Use the technique of [MFPR90] to represent SQL queries; if self-references exist (e.g. in the case of

DEL statements) discriminate between multiple occurrences of the same table.
2. Use the reduction techniques of [PiHH92], [Kim82+], [LeMS94] wherever applicable to reduce the

query definition to a compact form.

Figure 3.11. Algorithm for extracting the definition of a type in the repository

We have not implemented this algorithm in ConceptBase yet, although external programs could easily
do this.
Suppose that we apply the algorithm to our motivating example. Then the results are as shown in the
following table. For reasons of convenience, we break composite definitions of table expressions into
the different lines of Fig. 3.12. For example, when the 3rd iteration refers to the definition of table
Buffer, it does so with respect to the definition of line 2.
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The local computation of the expression of a single type can also be done. It should take into
consideration the list of processes affecting this particular type. Replace the total number of involved
process n, with the serial number of the last process that affects this particular type. Note, though,
that the intermediate definitions for any other involved type might be different from the one of
algorithm Extract_Type_Definitions .

i Expression
1 Buffer.expr = Buffer.i_expr:=

SELECT * FROM CBL
2 Buffer.d_expr:=

(SELECT * FROM CBL C1 WHERE EXISTS (SELECT C2.H_ID, C2.DATE FROM CBL C2
WHERE C1.H_ID=C2.H_ID AND C1.DATE=C2.DATE GROUP BY H_ID,DATE HAVING
COUNT(*)>1)
Buffer.expr:=
(SELECT * FROM CBL) MINUS
(SELECT * FROM CBL C1 WHERE EXISTS (SELECT C2.H_ID, C2.DATE FROM CBL C2
WHERE C1.H_ID=C2.H_ID AND C1.DATE=C2.DATE GROUP BY H_ID,DATE HAVING
COUNT(*)>1)

3 Class_info.expr = Class_info.i_expr:=
SELECT H_ID, EUROPEAN(DATE) AS EDATE, 'A', CLASS_A AS #BEDS
FROM BUFFER WHERE CLASS_A <> 0
UNION
SELECT H_ID, EUROPEAN(DATE) AS EDATE, 'B', CLASS_B AS #BEDS
FROM BUFFER WHERE CLASS_B <> 0
UNION
SELECT H_ID, EUROPEAN(DATE) AS EDATE, 'C', CLASS_C AS #BEDS
FROM BUFFER WHERE CLASS_C <> 0;

4 V1.expr = V1.i_expr:=
SELECT H_ID, EDATE, SUM(#BEDS) AS SUM_BEDS FROM CLASS_INFO
GROUP BY H_ID, EDATE

Figure 3.12. Type reduction for the motivating example.

6.3 Deriving Role Interdependencies automatically
The Roles of the conceptual perspective can be directly assigned by the data warehouse administrator,
or other interested stakeholders. Nevertheless, we can derive dependency relationships by exploiting
the structure of the logical perspective of the metadata repository. Simple rules can derive the
production of these interdependencies:

Depender Role Dependee Role As Wrt
Activity input types dependent schema of input types
Type populating activity dependent schema of type
ConceptualObject ConceptualObject dependent the set of fields wrt. which

the dependee depends
(transitivity of dependency)

Figure 3.13. Role Interdependencies

The following rule defines the first rule in ConceptBase. The other rules are coded similarly.

Class Activity with
rule

activityDependentOnOutput :
$ forall ac/Activity t/Type r,r1/Role f/field
exists c/Concept
((ac input t) and (ac role r) and
(t modeledFrom c) and (c field f)) ==>
((r relates c) and (r1 in r!relates) and
(r1 As 'dependent') and (r1 wrt f)) $

end
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In our motivating example, this rule would produce the following result:
Depender Role Dependee Role As Wrt
Load CBL dependent CBL.*
Clean Buffer dependent Buffer.*
Compute Buffer dependent Buffer.*
Aggregate Class_Info dependent H_ID, EDATE, #BEDS

Figure 3.14. Role interdependencies for the motivating example.

The rest of the interdependencies can be produced similarly. One could use external algorithms to
produce also the possibility of reusing a type for the computation of a materialized view (suitability
relationships).

6.4 Exploitation of the quality modeling in the repository for the

administration of the data warehouse

The information stored in the repository may be used to find deficiencies in data warehouse. To show
how the quality model is exploited, we take the following query. It returns all data cleaning activities
related to data stores whose availability has decreased, according to the stored measurements. The
significance of the query is that it can show that the implementation of the data cleaning process has
become inefficient.

GenericQueryClass DecreasedAccuracy isA DWCleaningAgent with
parameter

ds : DataStore
constraint

c : $ exists qf1,qf2/DataStoreAccuracy t1,t2,t3/Commit_Time
  v1,v2/Integer

(qf1 onObject ds) and (qf2 onObject ds) and
(this affects qf1) and (this affects qf2) and
(this executedOn t3) and (qf1 when t1) and (qf2 when t2)
and (t1 < t2) and (t1 < t3) and (t3 < t2) and
(qf1 achieved v1) and (qf2 achieved v2) and (v1 > v2) $

end

The query has a data store as parameter, i.e. the query will return only cleaning processes that are
related to the specified data store. The query returns the agents which have worked on the specified
data store and which were executed between the measurements of quality factors qf1 and qf2, and the
measured value of the newer quality factor is lower than the value of the older quality factor.

6.5 Repository support for d ata warehouse evolution

The data warehouse is a constantly evolving environment. A data warehouse is usually built
incrementally. New sources are integrated in the overall architecture from time to time. New
enterprise and client data stores are built in order to cover novel user requests for information. As
time passes by, users seem more demanding for extra detailed information. Due to these reasons, not
only the structure but also the processes of the data warehouse evolve.
Thus, the problem that arises is to keep all the data warehouse objects and processes consistent to each
other, in the presence of changes. For example, suppose that the definition of a materialized view in
the data warehouse changes. This change triggers a chain reaction in the data warehouse: the update
process must evolve (both at the refreshment and the cleaning steps), the old, historical data must be
migrated to the new schema (possibly with respect to the new selection conditions too) and all the data
stores of the data warehouse and client level which are populated from this particular view must be
examined with respect to their schema, content and population processes.
In our approach, we distinguish two kinds of impact:

− Direct impact: the change in the data warehouse object imposes that some action must be
taken against an affected object. For example when an attribute is deleted from a materialized
view, then the activity which populates it must also be changed accordingly.
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− Implicit impact: the change in the data warehouse object might change the semantics of
another object, without obligatorily changing the structure of the latter.

We have shown in a previous subsection, that we can produce a set of previous and successor objects
for each materialized view (Type) in a data warehouse. Suppose that a type t is characterized by an
expression e which is supported by a set of auxiliary SQL expressions producing, thus the set
e={e1,e2,…,e}. Obviously some of the expressions belonging to e belong also to B(t). Thus, we extend
B(t) as B(t)∪e (with set semantics). Suppose, then, that the final SQL expression of a type t, say e,
changes into e'. Following the spirit of [GuMR95], we can use the following rules for schema
evolution in a DW environment (we consider that the changes abide by the SQL syntax and the new
expression is valid):

− If the select clause of e' has an extra attribute from e, then propagate the extra attribute down
the line to the base relations: there must be at least one path from one type belonging to a
SourceSchema to an activity whose out expression involves the extra attribute. In the case
where we delete an attribute from the select clause of a Type, then it must not appear in the
select clause at least of the processes that directly populate the respective type, as well as in
the following Types and the processes that use this particular Type. In the case of addition of
an attribute, the impact is direct for the previous objects B(t) and implicit for the successor
objects A(t). In the case of deletion the impact is direct for both categories.

− If the where clause of e' is more strict than the one of e, then the where clause of at least one
process belonging to B(t) must change identically. If this is not possible, a new process can be
added just before t simply deleting the respective tuples through the expression e'-e. If the
where clause of e' is less strict than the one of e, then we can use well known subsumption
techniques [SDJL96, LMSS95, GuHQ95, NuSS98] to determine which types can be (re)used
to calculate the new expression e’ of t. The having clause is treated in the same fashion. The
impact is direct for the previous and implicit for the successor objects.

− If an attribute is deleted from the group by clause of e, then at least the last activity
performing a group-by query should be adjusted accordingly. All the consequent activities in
the population chain of t must change too (as if an attribute has been deleted). If this is not
feasible we can add an aggregating process performing this task exactly before t. If an extra
attribute is added to the group by clause of e, then at least the last activity performing a group
by query should be adjusted accordingly. The check is performed recursively for the types
populating this particular type, too. If this fails, the subsumption techniques mentioned for
the where-clause can be used for the same purpose again. The impact is direct both for
previous and successor objects. Only in the case of attribute addition it is implicit for the
successor objects.

We do not claim that we provide a concrete algorithmic solution to the problem, but rather, we sketch
a methodological set of steps, in the form of suggested actions to perform this kind of evolution.
Similar algorithms for the evolution of views in data warehouses can be found in [GuMR95, Bell98].
A tool could easily visualize this evolution plan and allow the user to react to it.

7. CONCLUSIONS
This chapter describes a metamodel for data warehouse operational processes. This metamodel
enables data warehouse management, design and evolution based on a high level conceptual
perspective, which can be linked to the actual structural and physical aspects of the data warehouse
architecture. The proposed metamodel is capable of modeling complex activities, their
interrelationships, the relationship of activities with data sources and execution details. Finally, the
metamodel complements proposed architecture and quality models in a coherent fashion, resulting in
a full framework for data warehouse metamodeling. We have implemented this metamodel using the
language Telos and the metadata repository system ConceptBase.
In this chapter, we have dealt only with the operational processes of a data warehouse environment.
Yet, there are also design processes in such an environment, which do not seem to fit this model so
smoothly. It is in our future plans to investigate the modeling of design processes and to capture the
trace of their evolution in a data warehouse. Also, we have used the global-as-view approach for the
data warehouse definition, i.e., we reduce the definition of the data warehouse materialized views to
the data sources. We plan to investigate the possibility of using the local-as-view approach (which
means reducing both the view definitions and the data sources to a global enterprise model), as it
appears to provide several benefits that the global-as-view approach lacks [CDL*99].



Data Warehouse Modeling and Quality Issues: Data Warehouse Processes

Panos Vassiliadis Ph.D. thesis Page: 3.18

In the next chapter we will complement our approach by providing a methodology for the actual
exploitation of the information found in the metadata repository and the quality-oriented evolution of
a data warehouse based on the architecture and quality model.
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Chapter 4
Data Warehouse Repository

Exploitation

1. INTRODUCTION
In Chapter 2, a metadata modeling approach has been presented that enables the capturing of all the
crucial parts of the architecture of a data warehouse, along with information over different quality
dimensions of these components. In this chapter, we refine the quality metamodel with a more detailed
linkage between objective quality factors and user-dependent quality goals. Moreover, we extend the
Goal-Question-Metric (GQM) methodology [BaCR94] in order (a) to capture the interrelationships
between different quality factors with respect to a specific quality goal, and (b) to define an appropriate
lifecycle that deals with quality goal evaluation and improvement. The chapter is based on the work
presented in [VaBQ99].
Our methodology comprises a set of steps aiming, on the one hand, to map a high-level subjective
quality goal into the measurement of a set of interrelated quality factors, and, on the other hand, to
propose improvement actions which may help in achieving the target quality goal. These steps involve
the design of the quality goal, the evaluation of the current status, the analysis and improvement of this
situation, and finally, the re-evaluation of the achieved plan. The metadata repository together with this
quality goal definition methodology constitute a decision support system which helps data warehouse
designers and administrators to take relevant decisions to achieve reasonable quality level which fits
the best user requirements.
We want to stress out that we do not follow the ISO 900x paradigm [ISO92] in our approach; rather we
try to present a computerized approach to the stakeholder, for both the storage and exploitation of
information relevant to the quality of the data warehouse. The objective of this chapter is to show how
subjective quality goals can be evaluated using more objective quality factors, following an extended
GQM approach.
The chapter is organized as follows: Section 2 gives some general definitions, using an example for the
instantiation of the architecture and quality metamodel. In Section 3, we detail the proposed
methodology for quality management. Section 4 presents some hints on data warehouse evolution. A
case study for the partial application of the methodology is presented in section 5. Section 6 contrasts
our approach to related work and finally, in section 7 we summarize our results.
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2. LINKAGE TO THE ARCHITECTURE AND QUALITY
MODEL

2.1 Architecture and Quality Model
In Chapter 2, we have presented an architecture and quality model, acting as a framework for the
metadata of the data warehouse repository. The proposed architecture metamodel (i.e., the topmost
layer in Figure 2.1) provides a notation for data warehouse generic entities, such as schema, or agent,
including the business perspective. Each box shown in Figure 2.1 is decomposed into more detailed
data warehouse objects in the metamodel of [JJQV99]. This metamodel is instantiated with the
metadata of the data warehouse (i.e., the second layer in Figure 2.1), e.g. relational schema definitions
or the description of the conceptual data warehouse model. The lowest layer in Figure 2.1 represents
the real world where the actual processes and data reside: in this level the metadata are instantiated
with data instances, e.g., the tuples of a relation or the objects of the real world which are represented
by the entities of the conceptual model.
Each object in any level and perspective of the architectural framework can be subject to quality
measurement. Since quality management plays an important role in data warehouses, we have
incorporated it in our meta-modeling approach. Thus, the quality metamodel is part of the metadata
repository, and quality information is explicitly linked with architectural objects. This way,
stakeholders can represent their quality goals explicitly in the metadata repository, while, at the same
time, the relationship between the measurable architecture objects and the quality values is retained.
The quality meta-model is not instantiated directly with concrete quality factors and goals, it is
instantiated with patterns for quality factors and goals. The use of this intermediate instantiation level
enables data warehouse stakeholders to define templates of quality goals and factors. For example,
suppose that the analysis phase of a data warehouse project has detected that the availability of the
source database is critical to ensure that the daily online transaction processing is not affected by the
loading process of the data warehouse. A source administrator might later instantiate this template of a
quality goal with the expected availability of his specific source database. Thus, the programmers of
the data warehouse loading programs know the time window of the update process.
Based on the meta-model of data warehouse architecture, we have developed a set of quality factor
templates, which can be used as an initial set for data warehouse quality management. The exhaustive
list of these templates can be found in [QJJ*98]. The following section gives an intuition of some of
them, which are associated to the data warehouse refreshment process.
We want to stress that our approach exploits the fact that data warehouse objects are related to quality
factors and measurements. Thus it is orthogonal to any quality metamodel, as far as it fulfills this
requirement. Examples of such a metamodel are the metamodel of Chapter 2, or the metamodel
presented in [JeQJ98].

2.2 Quality metamodel instantiation: the refreshment case
The refreshment process is one of the main data warehouse processes for which the quality is an
important issue. In this subsection, we will exploit the work performed in [BFMS98] to give an
example of how quality factors interplay with each other. Moreover, we will provide a categorization
for different kinds of quality factors, based on this kind of interplay.
The quality template associated with the refreshment process includes quality dimensions such as
coherence, completeness and freshness.
• Data coherence: the respect of (explicit or implicit) integrity constraints from the data. For

example, the conversion of values to the same measurement unit allows also to do coherent
computations.

• Data completeness: the percentage of data found in a data store, with respect to the
necessary amount of data that should rely there.

• Data freshness: the age of data (with respect to the real world values, or the date when the
data entry was performed).

Given a quality dimension, several low level quality factors of this dimension may be defined in a data
warehouse. For example, one can define quality factors like the availability window or the extraction
frequency of a source, the estimated values for the response time of an algorithm or the volume of the
data extracted each time, etc. However, the quality factors are not necessarily independent of each
other, e.g., completeness and coherence may induce a certain accuracy of data. We discriminate
between primary and derived quality factors as well as design choices. A primary quality factor is a
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simple estimation of a stakeholder or a direct measurement. For example, the completeness of a source
content may be defined with respect to the real world this source is supposed to represent. Hence, the
completeness of this source is a subjective value directly assigned by the data warehouse administrator
or the source administrator. On the other hand, derived quality factors are computed as formulae over
some other quality factors: for example, the completeness of the operational data store content can be
defined as a formula over the completeness of the sources. The design choices are a special kind of
quality factors, expressed as parameter values and control strategies which aim to regulate or tune the
algorithm followed for the performance of each task in the data warehouse.

We believe that quality dimensions, quality factors and design choices are tightly related. For example,
in the case of the refreshment process, the design choice ‘extraction policy’ is related to the derived
quality factor ‘extraction frequency’ of each source, which is computed from the corresponding
primary quality factor ‘availability window’ of each source. In Table 4.1, which was derived both from
practical experience and the study of research results in the field of data warehousing, we mention
several quality factors, which are relevant to the refreshment process and link them to the
corresponding data warehouse objects and quality dimensions. One can also notice that some quality
factors may belong to more than one dimension. Some of them are primary quality factors, arbitrarily
assigned by the data warehouse administrator, others are derived. The deriving procedures can be either
mathematical functions, logical inferences or any ad hoc algorithms. The values of derived quality
factors depend on design choices, which can evolve with the semantics of the refreshment process.
Underlying the design choices are design techniques, that comprise all the rules, events, optimizations
and algorithms which implement the strategies on which refreshment activities are based.

3. EXPLOITATION OF THE METADATA REPOSITORY AND
THE QUALITY METAMODEL
In the GQM approach, each goal is defined from a set of questions, in order to help the transition from
a very general, high level, user request to a set of specific measurements. Yet, the selection of the right
set of questions for a specific goal, or better, for a specific type of goals, remains an open issue. Basili
gives some hints [Bacr94,OiBa92]: there are questions informative on the current status of an object (or
process), questions objectively quantifying this situation through specific measures and finally
questions subjectively judging the current status from the viewpoint of the user.
Naturally, these guidelines are too general, since they are supposed to open a path for the development
of specific algorithms/methodologies for the different fields of applications. As a result the suggested
guidelines do not really provide a concrete set of steps for the operational usage of the metadata
repository. So, in our approach we attack this problem from a methodological point of view: we try to
come up with a set of steps in order to be able to exploit the information residing inside the data
warehouse metadata repository. To perform this task, we customize the GQM process to fit with the
DWQ approach as far as the problems of data warehousing and the given solutions are concerned.

 Quality
  Dim.

 DW objects  Primary Quality Factors  Derived Quality
Factors

 Design Choices

 Coherence
 

 • Sources
 • ODS
 • Views

 • Availability window of
each source
 • Expected response time for
a given query

 • Extraction frequency
of each source
 • Estimated response
time of extraction for
each source

 • Granularity of data
 • Extraction and
cleaning policy
 • Integration policy

 Complete-
ness

 • Sources
 • ODS

 • Availability window of
each source
 • History duration for each
DW store

 • Extraction frequency
of each source
 

 • Extraction policy
 • Integration policy

 Freshness  • Sources
 • ODS
 • Views

 • Availability window of
each source
 • Expected freshness for a
given query
 • Estimated response time of
extraction for each source, of
integration and of
propagation
 • Volume of data extracted
and integrated

 • Extraction frequency
of each source
 • Actual freshness for a
given query
 • Actual response time
for a given query

 • Extraction policy
 • Integration policy
 • Update policy

Table 4.1. Different levels of abstraction for the management of quality for the
refreshment of the data warehouse.
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More specifically, we base our approach on the idea that a goal is operationally defined over a set of
questions. Thus, we provide specific “questions” for the full lifecycle of a goal, not only for the
identification of a situation, but also for the interrelationships between its crucial components and
quality factors. Moreover, we do not restrict our approach to the detection of the anomalies in the
quality of a data warehouse: we extend GQM towards the re-action to encountered problems by
providing guidelines for the improvement of an undesired situation as well as for the re-evaluation of
the usage of a goal in the presence of a continuously evolving environment as a data warehouse.
Underlying our methodology, we exploit:
• A metadata repository, which provides all the necessary knowledge to understand quality

goals, quality factors and their related data warehouse objects. This repository allows to trace
design decisions, and to report on the history of quality goals with their successive
evaluations and improvements.

• A computational engine composed of all the deriving procedures of quality factors. The
techniques underlying this engine can be simple functions and procedures or more
sophisticated reasoning mechanisms. For example, in the case of performance evaluation of a
given query, a mathematical function is generally sufficient while in the case of coherence
validation of a conceptual schema we need a more sophisticated inference mechanism.

Based on this, the proposed methodology for quality management is composed of four main phases:
(i) the design phase which elaborates a quality goal by defining its “ingredients” and their

interrelationships at the type level;
(ii)  the evaluation phase which deals with the computation of quality factors;
(iii)  the analysis and improvement phase which gives an interpretation to the quality goal

evaluation and suggests a set of improving actions;
(iv) the re-evaluation and evolution phase, which deals with the problem of continuous change

both of the data warehouse and the status of the quality goals of the users.
In Figure 4.1, we graphically present our methodological approach for quality management. This
methodology is influenced by the TQM paradigm, which has also been adopted by other approaches
such as TDQM [Wang98]. In the sequel we provide a detailed presentation for the different steps /
questions of each phase. Before proceeding, we would like to mention that the proposed methodology
does not consist of a strict algorithm: one may choose to ignore several steps, according to the specific
situation he is tackling.
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Figure 4.1. The proposed methodology for data warehouse quality management

3.1 The Design Phase
Naturally, when dealing with a quality goal, we assume that there is always a first time when an
involved stakeholder defines the goal. The design process of the goal is the first phase of its interaction
between the stakeholder and the repository and should result in the selection of the involved object
types and their quality factors.
There are two steps that can take place at the same time: the identification of the object types which are
related to the goal and the respective low level quality factors. The identification of the object types
tries to reuse the experience stored in the metadata repository. The metamodel is powerful enough to
model the relationships not only at the instance but at the type level as well.
Take for example, the refreshment process, described in Section 2.3. Several object types of the data
warehouse are involved, e.g., “source data stores”, “ODS”, “materialized views” (Table 4.1). Each of
these template object types can be linked to template quality factors (e.g., “availability window of each
data source”). Actually, there are two kinds of template object types that can be reused this way. First,
at the metamodel level, we can find relationships between object and quality factor types applicable to
any data warehouse. In the DWQ project, we have provided a “list” of such template interrelationships
for all the crucial phases of the data warehouse lifecycle. It is not our intention to detail these results
here, but rather we refer the interested reader to [QJJ*98]. Second, these interrelationships, found at the
metamodel level, can be enriched with template patterns at the metadata level (i.e., concerning the
architecture of the particular data warehouse that the involved stakeholder considers). This can be the
case, when a general pattern is followed for a certain kind of processes, throughout all the data
warehouse. We will exemplify this situation in Section 5, where we present a real-world case study.
The identification of the involved object and quality factor types is accompanied by a complementary,
but necessary step. Since the identified object types are most probably composite (e.g. a schema is
composed from several relations) one has to decompose them at a satisfactory level of detail. For
example, if the examined type is the refreshment process, one can try to decompose it into more refined
objects such as data extraction, data cleaning and transformation, data integration and high level
aggregation.
The next step deals with the identification of the interrelationships between objects and quality factors.
Each object can be viewed as a node of graph. Every node in the graph has input and output arcs,



Data Warehouse Modeling and Quality Issues: Data Warehouse Repository Exploitation

Panos Vassiliadis Ph.D. thesis Page: 4.6

determining the interdependencies of the data warehouse components with respect to their quality
factors. Several design choices are by default encapsulated in the figure (e.g. the simple fact that the
data of a materialized view stem from source data). The graph is enriched by the tracking of high-level
quality dimensions, expressed by the user. The final output of the application of the methodology will
be a set of specific quality factors, measuring these quality dimensions.
The goal of this process is, not only to set up a list of the “ingredients” of the problem, but also, to
come up with a list of “functions”, determining the outcome of the quality of an object, in terms both of
its own characteristics and of the quality of other objects affecting it. We call the outcome of the
process, the scenario of the quality goal.
More specifically, to produce the list of functions, the involved stakeholder has to try to define the
interrelationships between the determined object types, by inspecting the peculiarities of the problem.
Take for example the problem of determining the timeliness of a materialized view. The stakeholder
should use a standard statistical methodology, like a Pareto diagram [BBBB95], or a specific algorithm
(acting like a function) to take into account the availability of the sources, the frequency of updates and
queries and the capacity of the propagators.
We do not advocate that these functions can always be derived or discovered in an analytic form.
Before proceeding, we feel that it is important to stress that the presence of an analytical function, or a
concrete algorithm, can be the case in several occasions. We will demonstrate this with an elementary
example in the sequel. We also refer the interested reader to results concerning the data warehouse
refreshment [ThBo99] and design [LSTV99,ThLS99,ThSe97,ThSe99] problems that present such
algorithms.
Still, even if this is not the case, we can complement the lack of an analytical function to describe the
relationship of two quality factors, in various ways. First, it is quite common -as we have observed in
our practical experience- that the involved stakeholders have a detailed empirical knowledge of the
domain in which they are involved. This kind of knowledge can be captured both in the design and the
evaluation stage (as we shall also see in the sequel). Moreover, it is important to note that even the
existence of an interdependency link can be used as a boolean function to denote dependency, between
the involved objects. We will demonstrate how this kind of interrelationship works in Section 5, where
we present a real-world case study.

Example. In the example of Figure 4.2, we try to quantify a quality dimension: the believability of the
information delivered to the final user. To achieve this goal, we decide that we have to measure a
specific quality factor: the accuracy of the data in the views used by the final users. The scenario is
composed from all the components participating in the refreshment of a view: the source database
(which in terms is decomposed to a set of source relations), the transformation agents converting the
data to the desired format and the data warehouse / ODS views, each one possibly defined on top of
another view. We also provide an analytical function for the accuracy of a view, calculating it from the
size and the accuracy of the input data.
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Figure 4.2. The scenario of a quality goal

A fascinating feature of a scenario is the tracking of the inverse relationships between the quality
factors. In other words, by describing the interdependencies of the quality factors, not only do we get a
clear view of the way the overall quality of our final “product” is influenced, but also we get a first
insight of how to remedy an undesired situation. For example, in Figure 4.2, we can improve the
believability of our information by increasing its accuracy, something which, in terms, can be achieved
through the improvement of the accuracy of the transformation agents and/or the source relations. In
the case of redundant information, one can also increase the volume of the utilized data from a source
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with higher accuracy. In any case, to generalize this observation, the inverse functions can be either
analytical relationships or the inverse interdependency path on the scenario.

3.2 The Evaluation Phase
After the design process, the following step is the evaluation of the current status. The purpose of the
evaluation phase is to construct a detailed map based on the constructed scenario, which describes
accurately all the interplaying components and factors at the instance level. This can also be the first
step, when a goal has already been defined in the past and a scenario has been developed and can be
currently reused.
First, we must determine the specific object instances of the specific evaluation through a query to the
metadata repository. In the example of Figure 4.2, one can identify two source relations (S1, S2),
pumping data to two views in the ODS (V1, V2), through a respective transformation agent and a final
view (V3), the accuracy of which we have to quantify (Figure 4.3).
Next, one must take into account several design choices, i.e. the properties of the interplaying objects
which influence the quality of the outcome. In our example, one can take into account the size of the
propagated data, the time windows of the sources, the regularity of the refreshment, etc. For reasons of
simplicity of the presentation and since we deal only with the accuracy factor, we retain only the size of
the propagated data and the view definitions.
Apart from the component refinement, we can also refine the interrelationships between the quality
factors. The refinement can be performed either through the use of analytical formulae or direct
instantiations in the scenario, based on the empirical knowledge of a specific situation. Empirical
knowledge can be obtained from simple observation, user expertise, or through the use of well-tested
techniques such as statistical process control (SPC), concurrent engineering, etc. [BBBB95]. In our
example, simple sampling could show that in the past, the transformation agent increased the accuracy
of the data by a scale of 2.
Then, for each quality factor one should also determine the metrics and measuring agents. If no
measuring agent(s) has ever been defined, one must determine the computation procedure for the actual
values of the quality factors. Also, the parameters of the measuring procedures should be set
accordingly.
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Figure 4.3. The map of a quality goal

The final step is the addition of acceptable/expected values for each quality factor, wherever necessary.
This is a crucial step for the evaluation of the current status later on. The accepted range of values will
be the basic criterion for the objective judgment of a subjective quality goal. The outcome of this step
should provide the stakeholder with a well-defined map of the problem (see also Figure 4.3).
With respect to the scenario of Figure 4.2, the map is enriched with (a) agents for the computation of
primary quality factors (e.g. the queries at the metadata repository), (b) formulae for the computation of
the derived quality factors, (c) properties of the components such as the view definition, or the size of
the propagated data and (d) acceptable ranges of values (e.g. accuracy of view 3).
After that, the only thing left is the acquisition/calculation of the specific values of the selected quality
factors, though the necessary computation. In Figure 4.4, a certain instance of the quality map is
depicted.
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The acquisition of these values is performed through the use of the already defined measuring agents.
In fact, we anticipate that if the values are regularly (i.e. not on-demand) computed and stored in the
metadata repository, then their acquisition can be done through a simple query to the metadata
repository.
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Figure 4.4. Instance of a quality map

Here we must clarify again, that several steps can be omitted. In fact, if we consider that the metadata
repository is regularly refreshed through an external agent, then some of the intermediate steps of this
process can be avoided.

3.3 The Analysis and Improvement Phase
At the end of the second phase, the map of the problem is fully instantiated with actual values (e.g., like
in Figure 4.4). Yet, if the situation is not satisfactory, the stakeholder may choose to react against it.
Although this is a process with different characteristics each time, we can still draw some basic
guidelines for the steps that can be taken. Consider for example the case in Figure 4.4, where the
computed accuracy for view 3 is not within the accepted range. Obviously there must be some reaction
against this undesired situation.
One of the main advantages of our approach is that if we have an understanding of the mechanism that
produces the problem, we can attack the problem directly through the use of the inverse quality
functions, which have been derived during the design phase or detected during the evaluation phase.
Again, by ‘inverse functions’ we mean both the possible analytical functions and the inverse
interrelationships in the map of the problem.
The inverse functions in our example suggest that an increase of 10% for the accuracy of view 3 calls
for one of the following actions:
 a) Use the analytical formulae directly: increase of 10% to the accuracy of views 1 and 2 (directly
through the formula), which in terms implies:
• increase of the accuracy of source 1 by 10%;
• increase of the accuracy of source 2 by 5% or the accuracy of the agent by 10% or a combination of

the two.
b) Customize the reaction to the specific characteristics of the situation: Through the use of the
specific measurements one could also try to derive a plan taking into account the sizes of the input
views. For example, elementary calculations prove that it suffices to increase the accuracy of source 2
to 45%, for the quality of the view 3 to be in the accepted range.
We call the final result of the negotiation process, the final instance of the quality map. In Figure 4.5,
the final map instance of the motivating example is depicted, according to the second proposed solution
(b).
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Figure 4.5. Final instance of a quality map

Nevertheless, there is always the possibility that this kind of approach is not directly feasible. If our
understanding of the problem is not full, then steps must be taken so that we deepen our knowledge.
Moreover, it is possible that the derived solution is not feasible -or is too costly to achieve.
In the first case, we must go all the way back to the design process and try to refine the steps of the
function discovery. In the second case, we must try to use the inverse functions in order to determine
which are the feasible limits of values that we can negotiate. The negotiation process is a painful task,
since one has to deal with contradictory goals and priorities. Yet, several specific techniques exist
which can be applied to the negotiation problem. In section 6, we present as example the QFD and the
Statistical Process Control methodologies. Other examples are the experimental design, the Taguchi
quality engineering etc. [BBBB95].

4. DATA WAREHOUSE EVOLUTION
Complementing the three previous steps of the proposed methodology is the last step: Re-evaluation
and evolution. A data warehouse is a very complex system whose components evolve frequently
independently of each other. New materialized views can be created and old ones can be updated.
Some sources may stop being used, while others are added. The enterprise model can evolve with new
enterprise objectives and strategies. The technical environment constantly changes due to product
evolution and updates. Design choices at the implementation level can also evolve in order to achieve
user requirements and administration requirements.
As a result of evolution and errors, our quality factors are never to be fully trusted. Each time we reuse
previous results we must always consider cases like: lack of measurement of several objects, errors in
the measurement procedure (e.g. through an agent that is not appropriate), outdated information of the
repository with respect to the data warehouse, etc.
In this section, we do not deal with the problem of schema evolution or the redefinition of data
warehouse views, but rather we focus on how the evolution of quality factors and quality goals fits into
our methodology. We adopt the approach of [JeQJ98], where the quality of the data warehouse is a
view of the metadata and data of the warehouse. For example, the quality of the data warehouse
depends on the quality of the sources, the quality of the extraction process and the quality of the data
warehouse components itself. One can think of the quality factors as materialized views over the
metadata and data of the warehouse; thus the evolution of the data warehouse can be seen as a view
maintenance problem on the aggregated quality views.
The consequence of this observation is that, exactly as in the case of view maintenance, the relevance
of data warehouse evolution and quality factors is two-fold. On the one hand, changes in the
architecture of a data warehouse result in the evolution of its quality factors. On the other hand, a
change in the user goals can impose a change in the architecture of the data warehouse, in any
perspective: conceptual, logical or physical. In the former case, which we will describe in subsection
4.1, we are dealing with a situation similar to the view refreshment problem, whereas in the latter case,
which we present in subsection 4.2, we have a situation similar to the view evolution problem. Both
these cases are efficiently supported by the results of the application of our methodology. Still, in
subsection 4.3 we present how the use of the data warehouse metadata repository can provide further
support to both cases, in a uniform fashion.

4.1 Evolution of Quality Factors
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Quality factors can evolve because of changes in the architecture of the data warehouses. The data
stores can produce changes due to reasons of schema evolution in logical and conceptual perspective,
changes to the physical properties of the source (e.g., location, performance etc.), insertions or
deletions of a data store, or specific reasons due to their nature (e.g., in the sources, the time window
for extraction or the data entry process can change). The software components can be upgraded,
completed, debugged, etc. The propagation agents of all types (e.g., loaders, refreshers, wrappers,
mediators and source integrators) can obtain new schedules, new algorithms, rules, physical properties,
etc. Moreover, the business rules of an organization are never the same, due to real world changes.
In all these cases, the evolution of the quality factors can take many forms: new factors can be needed
for the precise tracking of the new situation, while existing ones maybe useless. The measurement
techniques may need to change too and the values of the quality factors have to be recomputed. For
example, if a source is changed – either its data or its properties that are captured by the system
metadata – the quality of the source must be recomputed. All objects and their quality factors which
depend on this source must be adapted to the new situation. As another example, in the case a new
source is integrated, we just have to compute the quality of this source and recompute the data
warehouse and data mart quality using the information of the process quality, which describes how the
data is transformed and what improvement or debasement to the data quality has been made.
Our methodology is powerful enough to support this kind of evolution efficiently, both at the
metamodel and the metadata levels. The metamodel level captures interdependencies of generic types
(e.g., a view depends on its sources, or the data freshness inside the data warehouse depends on the
extraction frequency of the sources). The quality scenarios trap this meta-information explicitly,
through the respective dependency functions. Note that, due to their nature, it is rather straightforward
to hardcode any generic technical results from database research and practice into the quality scenarios.
For example, the operational cost for loading and maintaining the data warehouse, as a result of the
design process [ThLS99], depends on the query and update frequencies: this meta-information can be
incorporated into the respective quality scenarios of the repository. Thus, any change in the instances of
any of the involved types in a quality scenario signifies the need to redesign (or simply re-evaluate) the
respective instances of the quality factor types appearing in this scenario.
At the same time, at the metadata level, the peculiarities of the interdependencies in the data warehouse
that the interested stakeholder examines, are captured in the quality maps of the metadata repository.
Thus, any changes in the particular object instances, appearing in the quality maps calls for the re-
evaluation – or even redesign – of the affected quality factors.

4.2 Evolution of Quality Goals
Similarly to the view evolution problem, where a change in the view definition signifies a new way to
materialize it, the user requirements continuously change, possibly resulting in a new data warehouse
architecture. New requirements arise, while old ones may become obsolete, new users can be added,
priorities and expected/acceptable values change through the time, etc. In such an evolving context of
the data warehouse, the re-evaluation of a goal and of the strategy to achieve it is a strict contingency in
a data warehouse environment. There are 3 main reasons for this:

(a) evolution reasons: there are natural changes happening in such a complex environment;
(b) failure in the achievement of the desired quality, and
(c) meta-quality: we can never be sure for the quality of our measuring processes.

All these changes, or observations, may lead to the evolution of the data warehouse architecture, so that
the new quality goals of the users are met. Consequently, in addition to the maintenance process of the
quality, the inverse of the computation functions for the quality factors can be used, to find the data
warehouse object that has to be improved to reach a certain quality goal. This process can be compared
with the view update process in databases systems, where updates to views (here: derived quality
factors, expressed as “views”) are translated to updates in base data (here: primary quality factors). As
an example, we can mention the very common case, where the users demand more fresh data: this
evolving user quality goal affects directly the data warehouse architecture, at least at its physical level,
since new definitions of the data warehouse materialized views (in the logical perspective) are
employed, along with the appropriate physical changes in the clustering and indexing of the data
warehouse tablespaces. Alternatively, or when these techniques are proved to be inadequate, new
refreshment techniques and tools have to be applied, in order to achieve the requested timeliness.
Our methodology can support the evolution of the user quality goals through the use of its intermediate
results. Whilst the direct dependency functions support the architecture evolution, the inverse
dependency functions can enable the evolution of quality goals. Take for instance the working example
of Section 3: it was the existence of the inverse functions that led to the solution of the problem. In a
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similar manner, the inverse functions indicate which quality factors are affected or should interplay in
an evolved user requirement. Again, as in the case of architecture evolution, this can happen both at the
metamodel (here: scenario) and the metadata (here: map) level.

4.3 Repository Support for Data Warehouse Evolution
Apart from the facilities provided by the methodologically derived scenarios and maps, we can extend
the support provided by the repository for the task of data warehouse evolution. The repository, thus,
gains added value since, ex ante the data warehouse stakeholders can use it for design purposes (e.g., to
perform what if analysis through the application of the methodology) and ex post, people can relate the
data warehouse objects to decisions, tools and the facts which have happened in the real world
[JaJR90].
A way to control data warehouse evolution is to provide complementary metadata which track the
history of changes and provides a set of consistency rules to enforce when a quality factor has to be re-
evaluated. To do so, it is necessary to link quality factors to evolution operators that affect them. The
idea behind this is to enrich the metadata repository in order to ease the impact analysis of each
evolution operator and its consequences on the quality factor measures.
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Figure 4.6. A meta model for data warehouse evolution [Quix99].

In this subsection we show how we can combine our ex ante approach with the metamodel for data
warehouse evolution, proposed in [Quix99]. The metamodel of [Quix99] tries to document the
semantics of evolution operations and to their effect on data warehouse quality in an ex post fashion. In
this proposal, a data warehouse evolution process is composed of several sub-processes, which may be
further decomposed. These sub-processes are executed in a specific order, which is described by the
next relationship between evolution processes. An evolution process works on an object type and its
result is some value of a Domain. The process is linked to a stakeholder that controls or has initiated
the process. Processes affect a quality factor of an object type, e.g. the availability of data source or the
accuracy of a data store. It might be useful to store also the expected effect on the quality factor, i.e. if
the process improves or decreases the quality factor. However, the achieved effect on the quality factor
can only be determined by a new measurement of this factor. A query on the metadata repository can
then search for the processes, which have improved the quality of a certain object.
While this description provides the general framework under which the evolution operators function,
we also provide interrelationships between specific data warehouse objects and the impact of their
evolution on quality. In [ClNR99], a taxonomy for schema evolution operators in object-oriented
databases is given. We have adapted this taxonomy to relational databases, which constitute the most
popular platform used in data warehouses. Table 4.2 summarizes the evolution operators for base
relations and views, and relates them to the quality factors, which are affected by this evolution
operator.
The evolution operators for base relations and views in data warehouse mainly work (a) on the
representation of the relation in the logical perspective of the architecture model, i.e. the relation itself
and the logical schema it belongs to, and (b) on the physical objects where the data of the relation is
stored or where the view is materialized, i.e. the data stores. In addition, if there exists a view, which is
based on the evolved relation or view, the view definition, the materialization of the view, and the
maintenance procedure must be updated, too.
The completeness, correctness and consistency of the logical schema with respect to conceptual model
are the most important quality factors affected by these evolution operators. Furthermore, the deletion
of a base relation or an attribute might have a positive impact on the minimality or the redundancy of
the logical schema. The renaming of attributes and relations to more meaningful names improves the
interpretability and the understandability of the logical schema. The change of the domain of an
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attribute to a more applicable domain, e.g. changing the domain from string to date, improves the
interpretability of data. New integrity constraints in the logical schema may improve the credibility and
the consistency of the data. Finally, if the view definition is changed without an impact on the structure
of the view (e.g. the WHERE clause in a SQL statement is changed) the view may become useful for
more client applications.

Evolution
Operator

Affects Quality Factor Works On

Add base relation
/ view

• Completeness, correctness and consistency of the
logical schema wrt. the conceptual model

• Usefulness of schema
• Availability of the data store

• Relation
• Logical Schema
• Data Store

Delete base
relation / view

• Minimality of logical schema
• Completeness, correctness and consistency of the

logical schema wrt. the conceptual model
• Availability of data store

• Relation, Log. Schema
• Data Store
• View
• View Maintenance (VM) Agent

Add attribute to
base relation /
view

• Completeness, correctness and consistency of the
logical schema wrt. the conceptual model

• Interpretability of the relation
• Redundancy of the attributes

• Relation
• Data Store
• View
• VM Agent

Delete attribute
from base relation
/ view

• Completeness, correctness and consistency of the
logical schema wrt. the conceptual model

• Interpretability of the relation
• Redundancy of the attributes

• Relation
• Data Store
• View
• VM Agent

Rename Relation,
View, or Attribute

• Interpretability and understandability of the
relation and their attributes

• Relation, View
• Data Store, VM Agent

Change of
attribute domain

• Interpretability of data • Relation, View
• Data Store, VM Agent

Add Integrity
Constraint

• Credibility and Consistency of data in data store• Logical Schema
• Data Store

Delete Integrity
Constraint

• Consistency of data wrt. integrity constraints • Logical Schema
• Data Store

Change to view
definition

• Completeness, correctness and consistency of the
logical schema wrt. the conceptual model

• Usefulness of schema

• View
• Data Store
• VM Agent

Table 4.2. Evolution operators for base relations and views in data warehouses and their effect on
data warehouse quality [Quix99].

5. CASE STUDY
To further demonstrate the power of our approach, we will present its partial application to a specific
case study. The case study involves an organization of the Greek public sector, which is not revealed
for reasons of confidentiality. In this section we will briefly present the architecture of the data
warehouse which was built, the problems that occurred during its testing and the way we applied our
methodology to resolve the respective situations.

5.1 The system architecture
The role of this organization is to support the general policy of Greek State towards issues of health. In
the past, various data about the yearly activities of all the Greek hospitals were collected from all the
hospitals once a year and an annual report was produced from a legacy system. The data warehouse
that we built aimed to replace and extend the old system. In the sequel, we will present a small subset
of the data warehouse, concerning a specific problem, which we resolved with our methodology.
The system relies on operational data coming from COBOL files. We focus on two COBOL files, the
first dealing with the yearly information for the hospitals by department of a hospital and the second
with the yearly information by class of beds. Each COBOL file yields a specific attribute for each type
of department (or class of beds respectively), along with various other information. Each year, the
COBOL files are transferred from the operational system to the data warehouse and stored in “buffer”
tables of the data warehouse, acting as mirrors of the files, inside the DBMS. Then, the tuples of the
buffer tables are used by computation procedures to further populate normalized tables in the data
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warehouse. Several materialized views are then populated with aggregate information and used by
client tools for querying. In this study, we will present a case where the materialized view could be
populated from any of two different data flows. The wrong choice of data flow led to incorrect data.
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Figure 4.7. The data flow in the architecture of the case study

5.2 Problems and quality goals of the project
Among the requirements that were originally set for the system, we distinguish two that will concern us
in this presentation:
• Data Completeness. All the information for all the hospitals should be in place after the

yearly refreshment process.
• Data Consistency. Any information presented to the users should be identical to the one

that would be presented by the legacy system (for the parts that provided the same
functionality).

The testing of the deployed application showed that the first goal was achieved. Nevertheless, the
application seemed to fail the second goal. In particular, we observed that there were hospitals where
the total number of beds did not match the number calculated for the legacy system. Thus, the
following quality goal was set: “Achieve 100% data consistency for the data warehouse materialized
views”. In the sequel, we will show the results and the actions undertook in the context of each step of
the methodology.

5.3 Scenario of the quality goal
To find out what had gone wrong we first designed the scenario of the loading process (we do not
present the querying process here, for reasons of simplicity). Note that the loading process that we
previously described followed a general pattern that was followed throughout the whole data
warehouse. This way, the scenario that we built could be reused later, for testing other parts of the data
warehouse architecture, too.
We identified the following important object types for the map of the quality goal: the source COBOL
file, the “buffer” mirror table , the normalized table and the materialized view in the data warehouse.
The loading, cleaning and computing applications that were used were also of great importance. The
identified quality factors which were of importance are mainly the correctness of the developed
software applications and the completeness and consistency of the involved data stores.
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Figure 4.8. The scenario of the quality goal of the case study

The analytical functions we employed were rather naive: the completeness of a data store equals the
completeness of its previous data store in the data flow by the correctness of the intermediate programs.
The same holds for consistency too. For example,

Norm_Table.completeness = Computation.correctness* Cleaning.correctness* Buffer_Table.completeness

In our case study we did not have the possibility of using a metadata repository. Thus, we did not have
the possibility of storing this template and reusing it electronically; still the meaning of the approach
was kept, even on hard-copy. The same applies for the rest of the steps that will be presented in the
sequel.

5.4 Map of the quality goal and analysis of the situation
The construction of the map of the quality goal was rather easy, due to the simplicity of the processes
involved. We had to define metrics and agents to test the assigned quality factors. The task was dealt
with naive techniques: white box testing would examine the correctness of deployed applications. The
completeness and consistency of the data stores would be tested using SQL queries with respect to the
previous data store in the data flow. As one can notice in Figure 4.9, we instantiated the “template”
types, such as Buffer_table, Materialized View, Computation Process, to specific architecture objects
such as tables “Buff_class”, “Hospital_info” and processes “Computation_c1” and “Computation_c2”.
Initially, we performed the computation of the hospital beds from the tables involving the “class of
beds”. We used the “inverse functions” to test the application: we started testing from the application
performing the load / update of the materialized view, then tested the consistency of the “normalized”
tables, etc. We were surprised to see that the consistency of the data, with respect to the previous data
stores in the data flow, was 100%, all the way back to the buffer table. The mystery was solved when
the source administrators verified – or better, admitted – our suspicion that the COBOL file for the
“class of beds” was inconsistent. Moreover, they empirically knew that the COBOL file involving
departments was the right one to choose. Of course, this file was also the one used in the production of
the reports of the legacy system. Our testing (following again the constructed map) verified their –
rather late to arrive – story. Our scripts were changed accordingly, so that the correct information was
delivered to the users.
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Figure 4.9. The map of the case study.

The final map of the problem is depicted in Figure 4.10. In Figure 4.10 one can notice that the new
computation process “Computation_d2” performs the computation of the materialized view
“Hospital_Info”.
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Figure 4.10. The final map instance of the case study.

6. RELATED WORK
The TDQM methodology [Wang98] follows the Total Quality Management approach, adapted for the
evaluation of data quality in an information system (by assuming that each piece of produced
information can be considered a product). The TDQM methodology also follows the TQM cycle:
Definition, Measurement, Analysis and Improvement. The Definition part identifies the important
quality dimensions and the corresponding requirements. The Measurements step produces the quality
metrics. The Analysis step identifies the roots of any quality problems and their interplay, while the
Improvement step provides techniques for improving the quality of information.
Negotiation techniques enable the negotiation over the desired quality of a system. We will make a
quick summary in the rest of this subsection and refer the interested reader to Chapter 1 for a detailed
description. Statistical Process Control (SPC) is one of the best tools for monitoring and improving
product and service quality [BBBB95]. SPC comprises of several techniques, such as Pareto diagrams
(used to identify the most important factors of a process), process flow diagrams, cause and effect (or
Ishikawa) diagrams, check sheets, histograms and control charts.
Quality Function Deployment, (QFD) [Dean97,BBBB95] is a team-based management technique, used
to map customer requirements to specific technical solutions. This philosophy is based on the idea that
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the customer expectations should drive the development process of a product. The basic tool used in
QFD is the so-called “House of Quality”, mapping user expectations to technical solutions, taking into
account priorities and conflicts.
However, while the two aforementioned techniques certainly have a useful role in rough quality
planning and cross-criteria decision making, using any of them alone would throw away the richness of
work created by research in measuring, predicting, or optimizing individual data warehouse quality
factors. In other words, these techniques are mostly based on human expert participation and statistical
models for ad-hoc problem resolving. Our proposal, on the other hand, suggests a treatment of the
quality problems at two levels, namely the type and instance level, increasing thus the reusability of the
solutions. Moreover, the exploitation of quality is done through the use of a repository, enabling in this
way the potential measurement of the involved quality factors through the use of well-established
automated techniques and algorithms. We mention two prominent examples to support this claim: (a)
the solution to the data warehouse design problem can be based on the use of concrete quality factors
like the query and update frequency or the overall data warehouse operational cost
[LSTV99,ThLS99,ThSe97,ThSe99] and (b) the tuning of the refreshment process based on the quality
factors of section 2.3 [ThBo99].

7. SUMMARY
In this chapter, we deal with the problem of quality-oriented design, usage and evolution of data
warehouses. Following the approach of previous work [JeQJ98,JJQV99], we store semantically rich
meta-information of a data warehouse in a metadata repository concerning the conceptual, logical and
physical perspective of the data warehouse. In addition, the information on the quality of the stored
objects is recorded in this repository.
Our approach extends GQM, based on the idea that a goal is operationally defined over a set of
questions. Thus, we provide specific “questions” for the full lifecycle of a goal: this way the data
warehouse metadata repository is not simply defined statically, but it can be actually exploited in a
systematic manner. These questions are expressed as a set of steps aiming, in one hand, to map a
high-level subjective quality goal into the measurement of a set of interrelated quality factors, and, in
the other hand, to propose improvement actions which may help in achieving the target quality goal.
These steps involve the design of the quality goal, the evaluation of the current status, the analysis and
improvement of this situation, and finally, the re-evaluation of the achieved plan. Specific products
stem out of each case: a quality scenario is the outcome of the design phase, capturing the problem at
the type level. This reusable component is instantiated in the second step resulting in the specific map
of the problem. The third step modifies this map, so that the user receives an acceptable value for his
quality goal.
The benefit from the use of the methodology is not only the obtained solution to a specific problem.
Maybe of greater importance is the fact that the involved stakeholder gets a more clear view of the data
warehouse interdependencies. This is achieved through the systematic application of the
methodological steps, which convert a subjective problem, expressed in a high-level vocabulary, to
specific measurable factors that affect the solution to the problem. In Table 4.3 we can clearly depict
this fact.

 DWQ methodology  Nature  Orientation  GQM
 Goal and dimensions  subjective  User  Goal for Issue
 Quality Scenario & Map  hybrid  Process  Question
 Quality factors  objective  system components  Metric

Table 4.3. Different levels of abstraction for the management of quality in a data warehouse

The subjective, user-oriented GQM Goal, shown in the first row of Table 4.3, is captured by the
proposed Quality Goal of our methodology. The objective solution to the problem, obtained with
respect to data warehouse architecture components is achieved through the application of specific
metrics (in GQM vocabulary), expressed as quality factors in our approach, as shown in the last row of
Table 4.3. The mediator between the problem and the solution is the proposed methodology, expressed
as a process, which produces specific quality scenarios and maps (instead of more abstract GQM
questions).
The application of our GQM-like methodology also helps us to design and maintain the knowledge
about the data warehouse evolution efficiently. We make extensive use of our metadata repository, so
that the information is obtained in a controlled, efficient fashion. We have elaborated on our quality
metamodel, in order to track the basic primitives of the interrelationships between data warehouse
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components and quality factors. Our GQM extension gives us the advantage of exploiting the
interrelationships of components and tracks the full lifecycle of a stakeholder’s requirement.
We have verified our methodology in a set of case studies. One of these cases has also been presented
in this chapter as an example of the partial application of the methodology. We believe that the full
application of the methodology in a wider extent in the future will provide the academic community
with the insight for further tuning.
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Chapter 5
Modeling Multidimensional

Databases

1. INTRODUCTION
The data warehouse metadata framework, which is presented in Chapter 2, divides the space of data
warehouse metamodels in nine areas, produced by the combination of three levels and three
perspectives. The levels deal with the location of data: the source level covers the production systems
that provide data to the warehouse; the primary data warehouse level acts as a uniform container of
meta-information and data; and finally, the client level deals with customized, aggregated information
(along with the respective schemata), directly accessible to the user. The perspectives, on the other
hand, follow a more traditional separation: the conceptual perspective deals with the high level
representation of the world; the physical perspective deals with the details of the representation of the
information in the hardware; and the logical perspective, which acts as an intermediate between the
two aforementioned extremes, tries to balance a storage-independent paradigm and a natural
representation of the information in terms of computer-oriented concepts.
On-Line Analytical Processing (OLAP) is a trend in database technology, based on the
multidimensional view of data, which is employed at the client level. While several conceptual (e.g.
[BaSa98],[Kimb96]) and physical (e.g. [Sara97]) models exist, it has been argued that traditional
logical data models (e.g., the relational one) are in principle not powerful enough for data warehouse
applications, and that data cubes provide the functionality needed for summarizing, viewing, and
consolidating the information available in data warehouses [JLVV99]. Despite this consensus on the
central role of multidimensional data cubes, and the variety of the proposals made by researchers, there
is little agreement on finding a common terminology and semantic foundations for a logical data
model.
Several industrial standards already exist [OLAP97a, TPC98, Meta97, Micr98], yet, apart for the last
one, none of them seems to propose a well-founded model for OLAP databases. In academia, several
proposals on the modelling of cubes also exist [AgGS95, LiWa96, GyLa97, BaPT97, CaTo97, Lehn98,
Vass98]. Despite all these efforts, we feel that several key characteristics of a cube model have not
been stressed, neither by the academia nor the industry. To this end, we present a logical model for
cubes. This model extends the proposal of [Vass98] in a more formal and systematic way. It deals with
all the commonly encountered entities of a multidimensional model (dimension hierarchies, data cubes
and cube operations) without being restricted from their physical implementation (e.g., ROLAP or
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MOLAP architectures). One of our key observations is that a cube is not a self-existing entity, but
rather a view (materialised or not) over an underlying data set. This property allows us to develop
complex operations, not dealt by other models so far (e.g., the drill-down operation and the change of
aggregation function).
To our knowledge, existing OLAP tools behave in an “extensional” fashion. Cubes are treated simply
as sets of tuples, ignoring the fact that they are produced as queries over an underlying detailed data set
(e.g., the fact table of a data warehouse). Our framework, instead, suggests a different strategy: we
keep the “history” of performed selections and thus, we are able to compute a new cube taking into
account its “intentional” description. Therefore, we can define more complex operations (such as drill-
down) and sequences of operations, which are not covered by other models. Our model is accompanied
by an algebra powerful enough to capture the usual OLAP operations such as (a) selection over a cube,
(b) roll-up, which means aggregation over a cube to coarser granularities of information and (c)
drill-down, which involves de-aggregation of a specific cube and presentation of more detailed
information.
The contribution of this chapter lies not only in terms of expressiveness, but also we present results on
optimization issues for multidimensional databases. We investigate the cube usability problem, a
variant of the relational view usability problem, for multidimensional cubes. We accompany our
framework with optimization techniques for the cube usability problem that enable the exploitation of
existing cubes in order to compute new cubes. To handle the cube usability problem, we extend well-
known techniques already found in the relational context on the containment of selection conditions
[Ullm89]. We have observed that although quite a lot of work has been performed in the field of query
containment and view usability in the context of relational databases [DJLS96, GuHQ95, NuSS98,
CKPS95], there exist no results to exploit the information about dimension hierarchies in the context of
multidimensional databases. We present results on two major topics. First, we tackle the problem of
containment of two selections, taking into account their marginal conditions in the presence of
dimension hierarchies. Secondly, we come up with a set of axioms to characterize containment for
expressions involving functionally dependent attributes. Although several results already exist to
characterize query containment between expressions involving one domain [Ullm89], to our
knowledge, no results exist for expressions involving different functionally dependent levels. The
results that we present are based on [VaSk99, VaSe99] and were achieved in cooperation with my
colleague Spiros Skiadopoulos in the National Technical University of Athens.
This chapter is organised as follows. In Section 2 we make an overview of the related work. Then, in
Section 3 we present the logical cube model. Finally, Section 4 presents optimisation issues.

2. RELATED WORK
In this section we will focus on the presentation of different proposals for multidimensional data cubes,
which are the basic logical model for OLAP applications.
We have proceeded in the following categorization of the work in the field: on the one hand there are
the commercial tools -which actually initiated the work in the field; we present them first, along with
terminology and standards, in subsection 2.2. On the other hand there are academic efforts, which are
mainly divided in two classes: the relational model extensions and the cube-oriented approaches. We
present the former in subsection 2.3 and the latter in subsection 2.4. Finally, in subsection 2.5, we
attempt a comparative analysis of the various efforts.

2.1 Terminology, Products and Standards

2.1.1 Terminology

A good definition of the term OLAP is found in [ OLAP97]: "…On-Line Analytical Processing (OLAP)
is a category of software technology that enables analysts, managers and executives to gain insight into
data through fast, consistent, interactive access to a wide variety of possible views of information that
has been transformed from raw data to reflect the real dimensionality of the enterprise as understood by
the user. OLAP functionality is characterized by dynamic multidimensional analysis of consolidated
enterprise data supporting end user analytical and navigational activities including calculations and
modeling applied across dimensions, through hierarchies and/or across members, trend analysis over
sequential time periods, slicing subsets for on-screen viewing, drill-down to deeper levels of
consolidation, rotation to new dimensional comparisons in the viewing area etc. …". A standard
terminology for OLAP is provided by the OLAP Council [OLAP97].
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The focus of OLAP tools is to provide multidimensional analysis to the underlying information. To
achieve this goal, these tools employ multidimensional models for the storage and presentation of data.
Data are organized in cubes (or hypercubes), which are defined over a multidimensional space,
consisting of several dimensions. Each dimension comprises of a set of aggregation levels. Typical
OLAP operations include the aggregation or de-aggregation of information (roll-up and drill-down)
along a dimension, the selection of specific parts of a cube and the re-orientation of the
multidimensional view of the data on the screen (pivoting).

2.1.2 Products and Technologies

The debate on the underlying physical model, supporting OLAP, is centered around two major views.
Whereas some vendors, especially vendors of traditional relational database systems (RDBMS),
propose the ROLAP architecture (Relational On-Line Analytical Processing) [MStr95, MStr97, Info97,
RBSI97], others support the MOLAP architecture (Multidimensional On-Line Analytical Processing)
[Arbo96]. The advantage of the MOLAP architecture is, that it provides a direct multidimensional view
of the data whereas the ROLAP architecture is just a multidimensional interface to relational data. On
the other hand, the ROLAP architecture has two advantages: (a) it can be easily integrated into other
existing relational database systems, and (b) relational data can be stored more efficiently than
multidimensional data.

    SALES
Geography Code
Time Code
Account Code
Product Code
Dollar Amount
Units

Geography
Geography Code
Region Code
Region Manager
State Code
City Code
.....

   Product
Product Code
Product Name
Brand Code
Brand Name
Prod. Line Code
Prod. Line Name

     Time
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Date

  Account
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Figure 5.1. Star schema [STGI96]

In a ROLAP architecture, data are organized in a star (Figure 5.1) or snowflake schema. A star schema
consists of one central fact table and several denormalized dimension tables. The measures of interest
for OLAP are stored in the fact table (e.g. Dollar Amount, Units in the table SALES). For each
dimension of the multidimensional model there exists a dimension table (e.g. Geography, Product,
Time, Account) with all the levels of aggregation and the extra properties of these levels. The
normalized version of a star schema is a snowflake schema, where each level of aggregation has its
own dimension table.
Multidimensional database systems (MDBMS) store data in multidimensional arrays. Each dimension
of the array represents the respective dimension of the cube. The contents of the array are the
measure(s) of the cube. MDBMS require the precomputation of all possible aggregations: thus they are
often more performant than traditional RDBMS [Coll96], but more difficult to update and administer.

2.1.3 Benchmarks and Standards

The OLAP Council has come up with the APB-1 benchmark [OLAP97a] for OLAP databases. The
APB-1 benchmark simulates a realistic OLAP business situation that exercises server-based software.
The standard defines a set of dimensions with respect to their logical perspective. The logical database
structure is made up of six dimensions: time, scenario, measure, product, customer, and channel. The
benchmark does not assume a specific underlying physical model: the input data are provided in the
form of ASCII files. The operations nicely simulate the standard OLAP operations and include bulk
and incremental loading of data from internal or external data sources, aggregation or drill-down of
data along hierarchies, calculation of new data based on business models, etc.
The TPC-H and TPC-R benchmarks [TPC99] (replacing the older TPC-D benchmark) model a decision
support environment in which complex, ad hoc, (pre-canned respectively) business-oriented queries are
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submitted against a large database. TPC-H and TPC-R use the same hybrid star and snowflake schema,
involving several dimension and fact tables. The benchmarks are definitely relational-oriented: there is
no explicit treatment of cubes and dimension hierarchies. Of course, one can always deduce them
implicitly from the underlying schema; nevertheless, the dimensions seem too simple in their structure
and depth. Each benchmark is accompanied by a set of queries which seem to be close to the usual
queries in a DSS environment. These queries do not seem to fit the pattern of typical OLAP operations,
which are sequential and interactive in their nature.
The OLEDB for OLAP [Micr98] standard has been developed by Microsoft as a set of COM objects
and interfaces, destined to provide access to multidimensional data sources through OLEDB. OLEDB
for OLAP employs a model for cubes and dimensions, that supports the logical notions already
explained in section 2.1. Moreover, it provides a language of MultiDimensional eXpressions (MDX)
for the calculation and presentation of cubes. OLEDB for OLAP provides a good intuition on the
entities comprising a multidimensional database; nevertheless it has several disadvantages: it lacks a
solid theoretical background (e.g. there is no definition of the schema of a multicube)  and combines
presentational with computational issues. The result is a complex and, to some extent, hard to use
(although powerful enough) language.
The Metadata Coalition, an open group of companies such as IBM, Sybase, Informix, etc, proposed the
Metadata Interchange Specification [Meta97]. The Metadata Interchange Specification (MDIS)
provides a standard access mechanism and a standard application-programming interface to control and
manage metadata with interchange specification-compliant tools. MDIS tries to present a metadata
metamodel for a wide set of database models (relational, object-oriented, entity-relationship, etc.), with
a model for multidimensional databases belonging to this set. The model proposed by MDIS supports
the notion of dimension, which just comprises a set of levels. Cubes are not directly modeled in the
MDIS model.

2.2 Relational Extensions

2.2.1 Models for OLAP

The data cube operator was introduced in [GBLP96]. The data cube operator expands a relational
table, by computing the aggregations over all the possible subspaces created from the combinations of
the attributes of such a relation. Practically, the introduced CUBE operator calculates all the marginal
aggregations of the detailed data set. The value 'ALL' is used for any attribute, which does not
participate in the aggregation, meaning that the result is expressed with respect to all the values of this
attribute.
In [LiWa96] a multidimensional data model is introduced based on relational elements. Dimensions are
modeled as dimension relations, practically annotating attributes with dimension names. Cubes are
modeled as functions from the cartesian product of the dimensions to the measure and are mapped to
grouping relations through an applicability definition. A grouping algebra is presented, extending
existing relational operators and introducing new ones, such as ordering and grouping to prepare cubes
for aggregations. Furthermore, a multidimensional algebra is presented, dealing with the construction
and modification of cubes as well as with aggregations and joins. For example, the operator roll  is
almost a monotone roll-up. Finally, a relation can be grouped by intervals of values; the values of the
“dimensions” are ordered and then "grouped by", using an auxiliary table.
In [BaPT97], multidimensional databases are considered to be composed from sets of tables forming
denormalized star schemata. Attribute hierarchies are modeled through the introduction of functional
dependencies in the attributes of the dimension tables. Nevertheless, this work is focused on the data
warehouse design optimization problem and not on the modeling of cubes or cube operations.
In [GyLa97] n-dimensional tables are defined and a relational mapping is provided through the notion
of completion. An algebra (and an equivalent calculus) is defined with classical relational operators as
well as restructuring, classification and summarization operators. The expressive power of the algebra
is demonstrated through the modeling of the data cube and monotone roll-up operators.
In [GiLa98] a new extension of the relational model and a new language are proposed. The underlying
model is an extension of the relational model to handle federated names. A complex name is a pair,
comprising of a name (or concept) and a finite set of associated criteria set, relating the concept to a
common, global set of criteria. An extension of SQL, nD-SQL is also provided, along with its mapping
to an extension of the relational algebra. The applicability of the language to OLAP operations is
shown through a set of examples, practically modeling the CUBE operator of [GBLP96]. The authors
give different semantics to the ROLLUP and DRILLDOWN operators than the ones we give here.
Moreover, results on the optimization of the execution of queries are also provided.
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2.2.2 Relationship with Statistical Databases

A lot of relevant work has been done in the past in the area of statistical databases [Shos97]. In
[Shos97] a comparison of work done in statistical and multidimensional databases is presented. The
comparison is made with respect to application areas, conceptual modeling, data structure
representation, operations, physical organization aspects and authorization/security issues. The basic
conclusion of this comparison is that the two areas have a lot of overlap, with statistical databases
emphasizing on conceptual modeling and OLAP emphasizing on physical organization and efficient
access.
In [OzOM85, OzOM87] a data model for statistical databases is introduced. The model is based on
summary tables and operators defined on them such as construction/destruction,
concatenation/extraction, attribute splitting/merging and aggregation operators.  Furthermore, physical
organization and implementation issues are discussed. [OzOM85] is very close to practical OLAP
operations, although discussed in the context of summary tables.
In [RaRi91] a functional model ("Mefisto") is presented. Mefisto is based on the definition of a data
structure, called "statistical entity" and on operations defined on it like summarization, classification,
restriction and enlargement.

2.3 Cube-Oriented Models
There have been efforts to model directly and more naturally multidimensional databases; we call these
efforts cube-oriented. This does not mean that they are far from the relational paradigm − in fact all of
them have mappings to it − but rather that their main entities are cubes and dimensions.
In [AgGS95], a model for multidimensional databases is introduced. The model is characterized from
its symmetric treatment of dimensions and measures. A set of minimal (but rather complicated)
operators is also introduced dealing with the construction and destruction of cubes, join and restriction
of cubes, and merging of cubes through direct dimensions. Furthermore, an SQL mapping is presented.
In [CaTo97], a multidimensional database is modeled through the notions of dimensions and f-tables.
Dimensions are constructed from hierarchies of dimension levels, whereas f-tables are repositories for
the factual data. Data are characterized from a set of roll-up functions, mapping the instances of a
dimension level to instances of another dimension level. A query language is the focus of this work: a
calculus for f-tables along with scalar and aggregate functions is presented, basically oriented to the
formulation of aggregate queries. In [CaTo98a] the focus is on the modeling of multidimensional
databases: the basic model remains practically the same, whereas ER modeling techniques are given for
the conceptual modeling of the multidimensional database. A mapping to physical entities such as
relations and multidimensional arrays is provided. In [CaTo98b] a graphical query language as well as
an equivalent algebra is presented. The algebra is a small extension to the relational algebra, including
a roll-up operator, yet no equivalence to the calculus is provided.
In [Vass98] dimensions and dimension hierarchies are explicitly modeled. Furthermore, an algebra
representing the most common OLAP operations is provided. The model is based on the concept of the
basic cube representing the cube with the most detailed information (i.e. the information at the lowest
levels of the dimension hierarchies). All other cubes are calculated as expressions over the basic cubes.
The algebra allows for the execution of sequences of operations as well as for drill-down operations. A
relational mapping is also provided for the model, as well as a mapping to multidimensional arrays.
In [Lehn98] another model is presented, based on primary and secondary multidimensional objects. A
Primary Multidimensional Object (PMO), which represents a cube, consists of a cell identifier, a
schema definition, a set of selections, an aggregation type (e.g. sum, avg, no-operator) and a result
type. A Secondary Multidimensional Object (SMO) consists of all the dimension levels (also called
“dimensional attributes”) to which one can roll-up or drill-down for a specific schema. Operations like
Roll-up, Drill-down, Slice, Dice etc. are also presented; yet not all of them are defined at the instance
level. In [LeAW98], which is a sequel to the previous paper, two multidimensional normal forms are
proposed, defining (a) modeling constraints for summary attributes and (b) constraints to model
complex dimensional structures.
In [GeJJ97] the CoDecide model is − informally − presented. The so-called tape model consists of
structured hierarchies called tapes (corresponding to dimensions). Each tape consists of a set of
hierarchically interrelated tracks (corresponding to levels). The intersection of tracks defines a
multidimensional matrix. Operations like roll-up and drill-down are defined for the tape model. It is
important to note that the tape model can combine several matrices, defined as networks of crossing
tapes. Moreover, the tape model is the lower part of a layered set of models, representing the logical
perspective. On top of it, the transformation, visualization and control models are defined
(presentational perspective).
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2.4 Comparison
In this subsection, we present a comparison of the various models. The first list of requirements for
logical cube models is found in [BSHD98]. In our approach we followed the discrimination between
entities and operations and came up with three big categories of attributes for cube models. The first
group of attributes deals with the representation of the multidimensional space: as usual, we check
whether entities are modeled as cubes or tables (denoted by C or T respectively) and whether level
hierarchies are modeled, or not. The second group of attributes deals with language issues: the
character of the query language (procedural, declarative, visual), the direct support of sequences of
operations and a subjective characterization of how naturally the classical OLAP operations are
modeled. The third group is concerned with the existence of physical mappings to relations and/or
multidimensional arrays.
In Table 1, 'SQL ext.' indicates extension of SQL, and N/A means that the information is not directly
available in the material examined (papers).

Table 5.1. Comparison of the various cube models.

Clearly, a lot of interesting work can be expected in the area. The issue of reaching a consensus on the
modeling issues is still open, both in the logical and the conceptual perspective. Devising a common
standard declarative language is also of high importance.  Moreover, there is potential for useful
results, in the area of logical optimization and caching rules (in order to exploit the possibility of
reusing existing cubes for the computation of new ones), through the use of a generic logical
multidimensional model (independently from the underlying physical model).

3. CUBES FOR MULTIDIMENSIONAL DATABASES
In this section we present the basic entities and operations of the proposed model. Entities involve
dimensions, data sets and cubes. Operations involve selections and change in the granularity of data.
This model extents previous proposals of [Vass98, CaTo97, Lehn98].
One of the main characteristics of OLAP applications is the multidimensional view of data in the
perception of the user, which considers that information is stored in a multi-dimensional array, called
Cube or HyperCube. Thus, a Cube is a group of data cells. Each cell is uniquely defined by the
corresponding values of the dimensions of the cube. The contents of the cell are named measures and
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Cubes
level

hierarchies
Procedural

QL
Declarativ

e QL
Visual QL Seq. of

operations
natural
repr.

relational
mapping

m/d
mapping

Relational-
Oriented

GBLP96 T SQL ext. �

LiWa96 T implicitly Algebra � �

GyLa97 T � Algebra calculus �

GiLa98 T � � �

BaPT97 T � �

Cube-
Oriented

AgGS95 C Algebra � �

CaTo97,
98, 98a

C � Algebra calculus � � � �

Vass98 C � Algebra � � � �

Lehn98,
LeAW98

C � Algebra � � implic.

GeJJ97 C implicitly N/A N/A � � N/A N/A
Standards APB-1 C � Natural

lang.
�

TPC H/R T SQL �

OLEDB C � VB, C++
calls

SQL-like MS Excel,
Access

� � implic.

MDIS T �

Statistical OzOM85 T implicitly Algebra � �

RaRi91 T implicitly Algebra � � �
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represent the measured values of the real world. Measures are functionally dependent, in the relational
sense, on the dimensions of the cube.
A dimension is defined in [OLAP97] as “a structural attribute of a cube that is a list of members, all of
which are of a similar type in the user's perception of the data”. Informally, a dimension models all the
possible ways in which the user can group the detailed information stored in the multidimensional
database with respect to a specific context. Each dimension has an associated hierarchy of levels of
aggregated data i.e., it can be viewed from different levels of detail. Formally, a dimension D is a lattice
( L, p) : L=(L 1,…,L n,ALL) . We require that the upper bound of the lattice is always the level ALL,
so that we can group all the values of the dimension into the single value 'all '. The lower bound of the
lattice is called the detailed level of the dimension. For instance, let us consider the dimension Date  of
Figure 5.6. Levels of dimension Date  are Day, Week, Month , Year  and All . Day is the most
detailed level. Level All  is the most coarse level for all the dimensions. Aggregating to the level All
of a dimension ignores the respective dimension in the grouping (i.e., practically groups the data with
respect to all the other dimensions of the cube, except for this particular one).
The relationship between the values of the dimension levels is achieved through the use of the set of
anc L2

L1
 functions. A function anc L2

L1
 assigns a value of the domain of L2 to a value of the domain of L1.

For instance anc Year
Month (Feb-97)=1997 .

The major multi-dimensional operations are selection and navigation. Selection is used whereby a
criterion is evaluated against the data or levels of a dimension in order to restrict the set of retrieved
data. Navigation is a term used to describe the processes employed by users to explore a cube
interactively by changing the granularity of the multi-dimensionally viewed data [JLVV99, OLAP97].
Possible navigation operations, which can be applied to a cube, are: (a) Roll-up which corresponds to
the aggregation of data from a lower to a higher level of granularity within a dimension’s hierarchy, (b)
Drill-Down which is the inverse of roll-up and allows the de-aggregation of information moving from
higher to lower levels of granularity and (c) Slice which corresponds to the grouping of data with
respect to a subset of the dimensions of a cube. For instance, let us consider the dimension Date ;
aggregating from Month  to Year  is a roll-up operation and de-aggregating from Month  to Day is a
drill-down operation. In our model, the slice operation is modelled as a roll-up to level All .
In our model, we denote sets of tuples under a specific schema by the term data set. Moreover, we
assume the existence of a detailed data set, i.e., a data set that is defined at the finest levels of
granularity for all its dimensions. This detailed data set is the central source of data, which will
populate any cubes produced during an OLAP session (e.g., a fact table in a data warehouse).
One of our key observations is that a cube is not a self-existing entity (as commonly encountered in the
literature), but rather a view over an underlying detailed data set. As usual, a view (and thus a cube)
can be either materialised or not. Therefore, a cube can be seen either as a data set or simply a query. In
our model, we retain this dual nature formally; a cube is not only a set of tuples, but also has a
definition. This definition is a query that reduces the computation of the cube to a set of operations over
the initial materialised detailed data set.
Formally, a cube c over the schema [L 1,…,L n,M1,…,Mm] , is an expression of the form: c=(DS 0

,φ,

[L 1,…,L n,M1,…,Mm],[agg 1(M
0
1),…,agg m(M

0
m)]) , where DS0 is a detailed data set over the

schema S=[L 0
1,…,L 0

n,M
0
1,…,M0

k] , m≤k, φ is a detailed selection condition, M0
1,… , M0

m are detailed

measures, M1,…,Mm are aggregated measures, L0
i  and Li  are levels such that L0

i pLi , 1≤i ≤n and agg i ,

1≤i ≤m are aggregated functions from the set {sum,min,max,count} .
Intuitively, to compute a cube, first we apply the selection condition to the detailed data set. Then, we
replace the values of the levels for the tuples of the result, with their respective ancestor values (at the
levels of the schema of and group them into a single value for each measure, through the application of
the appropriate aggregate function. Note that a data set can be trivially expressed as a cube, having a
true  selection condition. For instance, the cube of the detailed data set DS0 of Figure 5.2 is expressed
as: c0=(DS0,true,[day,day,item,salesman,city, sales],sum(sales)) .
This approach introduces a powerful expression mechanism, able to directly capture operations like
drill-down and change of aggregate function and thus, aimed towards the modelling of sequences of
operations, as normally encountered in OLAP systems. To our knowledge, no other model can capture
these operations directly. The reduction of a cube’s definition to a normalised form seems to be the
only alternative that directly achieves this kind of functionality.

Formally, the model consists of the following elements:
− Each dimension D is a lattice ( L, p)  such that: L=(L 1,…,L n,ALL)  is a finite subset of Levels

and p is a partial order defined among the levels of L, such that L1pLi pALL for every 1≤i ≤n.
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− A family of functions anc L2

L1
 satisfying the following conditions (extending [CaTo97]):

1. For each pair of levels L1 and L2 such that L1pL2 the function anc L2

L1
 maps each element of

dom(L 1)  to an element of dom(L 2) .
2. Given levels L1, L2 and L3 such that L1pL2pL3, the function anc L3

L1
 equals to the composition

anc L2

L1
° anc L3

L2
.

3. For each pair of levels L1 and L2 such that L1pL2 the function anc L2

L1
 is monotone, i.e.,

∀x,y ∈dom(L 1),L 1pL2:  x<y  ⇒ anc L2

L1
(x) ≤anc L2

L1
(y) .

4. For each pair of levels L1 and L2 the anc L2

L1
 function determines a set of finite equivalence

classes Xi  such that: ∀x,y ∈dom(L 1),L 1pL2:  anc L2

L1
(x) =anc L2

L1
(y) ⇒ x,y  belongs to the

same Xi .
5. The relationship desc L2

L1
 is the inverse of the anc L2

L1
 function -i.e., desc L2

L1
(l)=

{x ∈dom(L):anc L2

L1
(x)=l} .

− Each data set DS over a schema S=[L 1,…,L n,M1,…,Mm]  is a finite set of tuples over S such that:
comprise a primary key (in the usual sense).

− Each selection condition φ is a formula in disjunctive normal form. An atom of a selection
condition is true , false  or an expression of the form x  θ y , where θ is an operator from the set
(>, <, =, ≥, ≤, ≠) and each of x  and y can be one of the following: (a) a level L, (b) a value l , (c)
an expression of the form anc L2

L1
(L 1)  where L1pL2 and (d) an expression of the form anc L2

L1
(l)

where L1pL2 and l ∈dom(L 1) . The detailed equivalent of φ, denoted by φ0, is a selection
condition obtained through the following procedure: for each occurrence of a level name L in φ,
we substitute it with the equivalent expression anc L

L0(L 0) , where L0 is the detailed level of the
dimension to which L belongs.  

− Each cube c over the schema [L 1,…,L n,M1,…,Mm] , is an expression of the form: c=(DS 0
,φ,

[L 1,…,L n,M1,…,Mm],[agg 1(M
0
1),…,agg m(M

0
m)]) , where DS0 is a detailed data set over the

schema S=[L 0
1,…,L 0

n,M
0
1,…,M0

k] , m≤k, φ is a detailed selection condition, M0
1,… , M0

m are detailed

measures, M1,…,Mm are aggregated measures, L0
i  and Li  are levels such that L0

i pLi , 1≤i ≤n and

agg i , 1≤i ≤m are aggregated functions from the set {sum,min,max,count} . The expression
characterising a cube has the following formal semantics:

c={x ∈Tup(L 1,…,L n,M1,…,Mm)| ∃y∈ φ(DS0),x[L i ]=anc
Li

L0
i
(y[L 0

i ]), 1 ≤i ≤n,

x[M j ]=agg j ({q| ∃z∈ φ(DS0),x[L i ]=anc
Li

L0
i
(z[L 0

i ]),1 ≤i ≤n,q=z[M 0
j ]}),1 ≤j ≤m}.

The Cube Algebra (CA) is composed of three operations:
1.  Navigate: Let S=[L 1,…,L n,M1,…,Mm]  be a schema and agg 1, …, agg m be aggregate

functions. If La
i  and Li  belong to the same dimension Di  and

agg i ∈{sum,min,max,count}  then, navigation is defined as follows:
 nav(c a,S,agg 1,…,agg m)=(DS 0

,φ
a,S,[agg 1(M

0
1),…,agg m(M

0
m)]) .

2. Selection: Let φ be a selection condition applicable to ca. Then, we define the selection
operation as:

σφ(c
a)=(DS 0

,φ
a∧φ0,[L a

1,…,L a
n,M

a
1,…,Ma

m],[agg 1(M
0
1),…,agg m(M

0
m)])

 where φ0 is the detailed equivalent of the selection condition φ.  
3. Split measure: Let M be a measure of the schema of the cube c . Without loss of generality, let

us assume that M is Mm. Then split measure is defined as follows:

π
 
Mm

(c a)=(DS 0
,φ

a,[L a
1,…,L a

n,M
a
1,…,Ma

m-1],[agg 1(M
0
1),…,agg m(M

0
m-1)]) .

Example 3.1. To motivate the discussion we customise the example presented in [Micr98] to an
international publishing company with travelling salesmen selling books and CD's to stores all over the
world. The database (Figure 5.2) stores information about the sales of a title that a salesman achieved
on a particular date and city. The dimensions of our example are Person  (Figure 5.3), Location
(Figure 5.4), Product  (Figure 5.5) and Date  (Figure 5.6). Measure Sales  is functionally dependent
on dimensions Date , Product , Person  and Location .
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The organisation of information in different levels of aggregation (i.e., dimensions) is in hand because
OLAP users are unlikely to directly ask questions about the detailed data that are stored in the database.
Instead, they are more interested in aggregated information according to the categorisation groupings.

Following, we present three queries and the respective algebraic representation that could have been a
typical sequence of operations during an OLAP session. These queries result in the data of  Figures 5.7,
5.8 and 5.9, respectively.

Query 1. Find the maximum sales by month, category of item, salesman and country.
c1=nav(DS 0,[Month,Category,Salesman,Country,Max_val],max(sales))=
(DS0,true,[Month,Category,Salesman,Country,Max_val],max(sales)) .

Query 2. Find the maximum sales outside the American continent by month, category of item,
salesman and country.

c2
=σ

 

anc continent
country (country) ≠‘America’ (c 1)=(DS 0,anc continent

city (City) ≠'America',

[Month,Category,Salesman,Country,Max_val],max(sales)) .

Query 3. Find the summary of sales outside the continent of America by month, type of title and
country of store.

c3=nav(c 2,[Month,Type,All,Country,Sum_val],sum(Sales))= (DS 0,
anc continent

city

(City) ≠'America',[Month,Type,All,Country,Sum_val],sum(sales)) .

During this particular OLAP session the user has performed:
1. a roll-up from the detailed data set.
2. a selection.
3. a slicing (of dimension Person ) combined with a drill down (from Category  to Type  level)

and a change in the aggregation function (from max to sum).
In the first operation, one can notice that the semantics of the navigation operation allow us to use an
arbitrary name (e.g., Max_val ) for the measure that computes the maximum value per group of
aggregation.
In the second operation, notice that the expression anc continent

country (Country)  which is directly
applicable to the schema (and data) of the cube c1 is transformed to its equivalent anc continent

city

(City) , that directly applies to the detailed data set DS0, through the use of the definition of the
detailed selection condition.

Day Title Salesman Store Sales

6-Feb-97 Symposiu
m

Netz Paris 7

18-Feb-97 Karamazof
brothers

Netz Seattle 5

11-May-97 Ace of
Spades

Netz Los
Angeles

20

3-Sep-97 Zarathustra Netz Nagasaki 50
3-Sep-97 Report to

El Greco
Netz Nagasaki 30

1-Jul-97 Ace of
Spades

Venk Athens 13

1-Jul-97 Piece of
Mind

Venk Athens 34

Figure 5.2: Detailed Data Set DS0 .

all
ALL

Salesman

Venk,

Netz

Figure 5.3: Dimension Person .
allALL

Continent AsiaEurope

France JapanHellas

Athens Paris NagasakiStore

Country

America

U.S.A

Seattle,

Los Angeles

Figure 5.4: Dimension Location .

all

Category MusicBooks

Philosophy Heavy MetalLiterature

Report to El Greco,

Karamazof Brothers

Zarathustra,

Symposium

Piece of Mind,

Ace of Spades
Title

Type

ALL

Figure 5.5: Dimension Product .

all

1997

Feb-97

2w-97

ALL

Year

May-97 Sep-97

Day

Month
Jul-97

6-Feb-97

2w-97

18-Feb-97

19w-97

11-May-97

27w-97

1-Jul-97

36w-97

3-Sep-97

Week

Figure 5.6: Dimension Date .
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The presented model stresses the fact that a cube we can treated both as a query and as a set of tuples.
We believe that this aspect of OLAP was neglected in the previous approaches. In this example, the
contribution of treating cubes as views over the detailed data set is eminent. Actually, the fact that we
have retained the history of selections permits us to be able to drill-down and change the aggregation
function. Otherwise, to perform the drill-down operations we should employ a join operation of c2 with
DS0. The same also holds for the change in the aggregation function. Using the history of selections we
can (a) avoid to perform a costly join operation and (b) possibly further optimise the execution of the
operation through the use of already computed cubes. The second possibility will be investigated in
Section 4.

Theorem 3.1. The Cube Algebra CA is sound (i.e., the result of all the operations is always a cube) and
complete (i.e., any valid cube can be computed as the combination of a finite set of CA operations).
Proof . We will prove the soundness first and the completeness next.
Soundness. If we consider a detailed data set DS0 under the schema S0=[L 0

1,…,L 0
n,M

0
1,…,M0

k] , the
valid cubes that can be defined over DS0 must respect the following requirements:

C1. Their selection condition must be a detailed selection condition applicable to DS0.
C2. All their levels must belong to the same dimensions with the respective levels of DS0 (which

also implies that they have the same number of dimensions).
C3. The number of their measures must be less or equal to the number of the measures of DS0.
C4. All their measures must be produced from the application of {sum,max,min,count}  to

the respective measures of DS0.
One can easily see that the results of all operations respect the constraints (C1) - (C4).
Completeness. Consider a detailed data set DS0 under the schema S0=[L 0

1,…,L 0
n,M

0
1,…,M0

k] . Let also
c  be an arbitrary cube which can be defined over DS0:

c=(DS 0
,φ,[L1,…,L n,M1,…,Mm],[agg 1(M

0
1),…,agg m(M

0
m)]) .

We can compute c  as follows:
1.  First, we construct the detailed cube. Although we use the aggregate function sum, one

can use any other aggregation function at this stage:
c0=(DS0,true,[L 0

1,…,L 0
n,M

0
l ,…,M0

k]],[sum(M 0
l ),…,sum(M 0

k)])

2. Secondly, we split the non-relevant measures (which without loss of generality can be considered to
be the last k-m  measures).

c1
= π

 
Mm+1
(π M

 
Mm+2
(…(π

 
Mk

(c 0))))=(DS 0,true,[L 0
1,…,L 0

n,M
0
1,…,M0

m],[sum(M 0
l ),…,sum(M 0

m

)])
3. Then, we apply a selection operator to c1 and we obtain a primary cube c2:

c2
=σφ(c

1)=(DS 0
,φ,[L

0
1,…,L 0

n,M
0
1,…,M0

m],[sum(M 0
l ),…,sum(M 0

m)])

4. Finally, we navigate to the levels of the schema of c .
nav(c 2,[L 1,…,L n,M1,…,Mm],[agg 1(M

0
1),…,agg m(M

0
m)]]=

(DS0
,φ,[L1,…,L n,M1,…,Mm],[agg 1(M

0
1),…,agg m(M

0
m)]) ≡c . ■

Month Category Salesman Country Max_val

Feb 97 Books Netz France 7
Sept 97 Books Netz Japan 50
July 97 Music Venk Greece 34

Figure 5.8: Cube c2 - Selection

Month Category Salesman Country Max_val

Feb 97 Books Netz France 7
Feb 97 Books Netz USA 5
May 97 Music Netz USA 20
Sept 97 Books Netz Japan 50
July 97 Music Venk Greece 34

Figure 5.7: Cube c1 - navigation as roll-up

Day Type ALL Country Sum_val

Feb 97 Philosophy All France 7
Sep 97 Philosophy All Japan 50
Sep 97 Literature All Japan 30
Jul 97 Heavy Metal All Greece 47

Figure 5.9: Cube c3 -  Complex sequence
of operations
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As we have already stressed, this is a logical model for cubes. We do not advocate that the physical
computation of the results of an operation should actually be computed all the way back from the
detailed data set. Actually, although drill-down and change of aggregation function can be performed
directly, only through the use of the semantics of our model, can the selection and roll-up operations be
performed over the original cube, without referring to the detailed data set. In the case of selection, it
suffices to simply pass all the tuples of the cube from the filter of the applied selection condition. In the
case of roll-up to coarser levels of granularity, it also suffices to group the tuples of the cube and apply
the appropriate aggregate function. These simple optimisation strategies are generalised in Section 4
with a more powerful approach, capable of detecting whether any cube can be computed from the data
of another cube, simply by comparing their definitions.

For the moment, we restrict our selves to give a «passive», declarative mapping of cubes to relations
and multidimensional arrays. The mapping of the logical cube model to the physical models is
straightforward and is similar to mappings already proposed in the literature [Vass98, CaTo98]. Our
approach is powerful enough to capture both the ROLAP and the MOLAP case.

First we will present the mapping to the relational model for ROLAP databases. Suppose a dimension
D, composed from levels L1,…,L n,ALL . These levels form a lattice, where L1 is the detailed level (i.e.
the lower bound of the lattice) and ALL the highest level. We map the dimension D to a homonymous
table under the schema D=(D_ID,L 1,…,L n,ALL) . Each tuple t  in table D is defined as follows:
t[L i ]=anc Li

L1
(t[L 1]) . Note that since L1 is the common lower bound of the dimension and all the

ancestor functions are defined with respect to it, this representation is feasible. The artificial key D_ID
could be omitted, although this is not the standard practice in star and snowflake schemata, used in data
warehousing. The single-valued attribute ALL, could also be omitted. Moreover, it is easy to guarantee
all the constraints of the ancestor functions in such a context.

A data set DS, under the schema S=[L 1,…,L n,A 1,…,A k]  is mapped to a table
DS=[ID 1,…,ID n,A 1,…,A k] . A primary cube c  over a detailed data set F0 is expressed through the
following view C:

c=(F 0
,φ,[L1,…,L n,M1,…,Mm],[agg 1(M

0
1),…,agg m(M

0
m)])

DEFINE VIEW C AS

SELECT L1,…,L n,agg 1(M
0
1) AS M 1,…,agg m(M

0
m) AS M m

FROM F0,D 1,D 2,…,D n

WHERE F.ID 1=D1.ID 1 AND F.ID 2=D2.ID 2 AND … AND F.ID n=Dn.ID n

AND σ

GROUP BY L1,…,L n

where
• D1,…,D n are the dimension tables.
• σ is produced from the primary selection condition of c , if we keep the values l  and the level

names L unchanged and replace expressions of the form anc L'
L  with L’ .

The mapping to multidimensional arrays (MOLAP) is performed exactly as in [Vass98, CaTo98]. We
assume that there exists a mapping function enum(d)  between a value l  of a dimension level L and
the set of integers. In other words, for each dimension level, we assign a unique integer to each one of
its values. The assignment is done in a contiguous fashion. As a result, each value
x=[l 1,l 2,…,l n,m1,m2,…,mm] , belonging to the cell data of a cube can be considered to be as the
conjunction of co-ordinates [enum(l 1),enum(l 2),…, enum(l n)]  having [m1,m2,…,mm]  as
values. We consider that the multidimensional array takes a NULL value in the conjunction of co-
ordinates when the corresponding tuple of its conjunction does not exist in the cell data of the original
cube. In the case where the multidimensional array does not support multiple measures, the primary
cube can be split into many single measured primary cubes and reconstructed as requested, on demand.
The same can be considered also for secondary cubes. The dimensions can be stored in an arbitrary
fashion (i.e. as cubes, indexes, relational tables or any other format the MOLAP engine supports).

4. THE CUBE USABILITY PROBLEM
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Problem description
There are several cases where there is the need to decide whether a view can be recomputed from
another view. To name two prominent examples, (a) the OLAP users perform interactive navigations
over their data and (b) the DW designer has to choose, among many candidates, which views to
materialise. In the first case, the problem is as follows: the OLAP user selects some data and performs
an operation over them. The result of the new query can be computed, of course, from the detailed data.
Nevertheless, it is possible that previously computed and cached results, or existing materialised views
could also allow the computation of the requested information. In the second case, the designer of the
DW needs algorithmic aid in order to decide if he/she is going to materialise any extra (possibly
redundant) views in the DW, so that user queries are answered more efficiently. Sometimes, the
redundancy can aid in the refreshment of the DW data, too [ThLS99, LSTV99, Gupt97]. Part of the
design algorithm, then, is a method that determines whether a view can be used to compute a query (or
another view). As a general statement, one could say that the problem lies in whether the computation
of a new cube can be performed from an intermediate level of aggregation, than from the detailed data
set.
Formally, let DS0 be a detailed data set. Let also cold  and cnew be two cubes defined over DS0. By
definition, cubes cold  and cnew can be calculated from DS0. The cube usability problem lies on
determining whether the tuples of cold  can be used to compute cube cnew. It is clear that the cube
usability problem is a variant of the view subsumption problem, already investigated in the field of
relational databases [Ullm97].

Shortcomings of current approaches
Too much effort has been spent, in the past, to tackle the problem of view subsumption and query
rewriting in the presence of views [NuSS98, CoNS99, DJLS96, CKP95, GuHQ95, LMSS95, ChSh96,
LaYa85]. Nevertheless, the previous approaches were relational-oriented and lack to deal with specific
characteristics of the multidimensional modelling. We will use two examples to demonstrate these
shortcomings.

Example 4.1. Intuitively, someone would expect, that in order to solve the cube usability problem, the
new cube cnew should:
1. be defined over the same dimensions with cold  and at a higher or equal level;
2. be defined over the same measure of DS0. Moreover, the aggregation functions agg new and agg old

should be the same;
3. have a more restrictive selection condition than cold , i.e., φnew is contained in φold  in the usual

relational sense.
Checking conditions 1 and 2 is an easy task. To perform the comparison of Condition 3, we need to
transform the selection conditions of the two cubes in order to treat them as conjunctive queries
[Ullm89]. One could argue that existing relational techniques are adequate to handle this problem.
Unfortunately, as we will show, there are cases where those techniques are not sufficient.

Figure 5.10: Cube usability problems

Let us consider the detailed data set DS0 of Figure 5.2. Let ci , 1≤i ≤3 be cubes defined as ci =[DS 0,
φi, [Month,ALL,ALL,ALL,ALL,ALL,ALL,Sales],sum(sales)] . Figure 5.10a presents the
Month  level, the Sales  measure and the selection conditions for each of the cubes. The problem is
whether a new cube c3 can be computed using the tuples of one of the existing cubes c1 and c2. Since
Conditions 1, 2 and 3 hold, one could argue that this is feasible. Yet, as we can see in Figure 5.10a,

 

Feb 97 May 97 Sep 97

c
1

c
2

c
3

 (b)

Cube c1 Cube c2 Cube c3

Month Sales Month Sales Month Sales
Feb 5 Feb 12 Feb 5
May 20 May 20 May 20
Sep 80 Sep 80

φ1=18-Feb-97≤day≤3-Sep-97 ∧Salesman=Netz
φ2=6-Feb-97≤day≤3-Sep-97∧Salesman=Netz

φ3=18-Feb-97≤day≤31-May-97∧Salesman=Netz
(a)
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only c1 can be used to compute c3. The intuitive explanation of the problem is depicted in Figure
5.10b. There are three horizontal axes defined at the day  level, each for one of the cubes c1, c2 and c3.
Each bold line denotes the set of days participating in the computation of the respective cube. Cube c3

is defined at the month  level; consequently, we partition the three axes with respect to the function
anc month

day . As we can see, we have three partitions: Feb’97 , May’97  and Sep’97 . Cube c3 can be

computed from c1 because for all the partitions of c3 (i.e., Feb’97 , May’97 ), cubes c1 and c3 cover
exactly the same days. This does not hold for c1 and c2. 

Example 4.2. Suppose the case, where a cube c1 has a selection condition
φ1=arr.year<dep.year  (where arr  denotes dimension arrival date  and dep  denotes the
dimension departure date ). Suppose also that a cube c2 is defined at the month level and has a
selection condition φ2=arr.month<dep.month . We can see that cube c1 can be computed from
c2. This means that if c2 is materialised we can use its tuples to compute c1. We are able to perform
this kind of reasoning because we take advantage of the relationship between months and years,
expressed through the dimension hierarchies, and the family of anc  functions. To our knowledge,
there is no effort in the view subsumption literature that uses this kind of knowledge.
In Figure 5.11, we depict the problem graphically. As one can see, we represent the tuples of the
detailed as cells in a 2-dimensional space. The horizontal axis represents the dimension departure
date  and the vertical axis represents the dimension arrival date  (we focus only on these
dimensions taking part in the selection conditions of the example). As one can notice, the set of tuples
of the detailed data set, fulfilling the condition arr.month<dep.month  is a strict superset of the set
of tuples fulfilling condition arr.month<dep.month . 
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Figure 5.11. Graphical description of the fitness of data for the cube usability problem

Contribution
In this section, we will show that the cube usability problem is reduced to simple tests and operations.
Different tests apply for different classes of queries. We divide the selection conditions in two
categories: (a) selection conditions with atoms involving values (i.e., of the form Lθl,Lθanc

L2

L1
(l) ,

etc.) and (b) selection conditions with atoms involving only levels (i.e., of the form L1θL2, Lθanc
L2

L1

(L 1) , etc.). We will examine the optimisation issues for the former in subsection 4.1 and for the latter
in subsection 4.2. Finally, subsection 4.3 presents a theorem with sufficient criteria and the
corresponding rewriting algorithm for both cases of the cube usability problem under consideration.

In the rest of the chapter, for reasons of simplicity, we will deal with cubes having only one measure.
All our results can be easily extended to cubes having an arbitrary number of measures [NuSS98]. Let
cnew= (DS 0

,φ
new,[ Lnew,Mnew],agg new(M))  be the new cube and

cold =(DS0
,φ

old ,[ Lold ,Mold ],agg old (M))  be the candidate cube, where Lnew and Lold  are sets of
levels coming from dimension sets Dnew and Dold  respectively, Mnew and Mold  are measures, and finally,
agg new and agg old  are aggregate functions.

4.1 Equivalent Transformations for Atoms Involving Values

Suppose two level Lold  and Lnew, such that Lold
pLnew. Function anc Lnew

Lold  defines a partition over the
values of Lold  with respect to the values of Lnew (e.g., the partition of year  to month ). Suppose now,
two atoms a1 and a2 over Lold , as in the case of Figure 5.10. To perform an aggregation to Lnew, the
two atoms must hold the same ranges of values for each and every partition that Lnew defines over Lold .
Generalising this observation, in the case where two selection conditions involve a larger conjunction
of atoms, we must:
(a) transform the selection conditions to concrete ranges for each dimension;
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(b) reduce the atoms to the same level, using appropriate transformations (so that they can be
compared);

(c) check whether the broader selection condition is defined identically for the marginal constraints of
the other selection condition.

The following auxiliary definition introduces the notion of dimension interval, which is a concrete
range over the domain of a certain dimension level.

Definition 4.1: A dimension interval (DI) is one of the following (a) true , (b) false  and (c) an
expression of the form l 1≤L≤l 2, where L is a variable ranging over the level of a dimension and l 1

and l 2 are values. ■

Atom Dimension Interval Atom Dimension Interval
True true anc L’

L (L)<l - ∞<L≤max(desc L’
L (prev(l)))

False false l ≤anc L’
L (L) min(desc L’

L (l)) ≤L<+∞
anc L’

L (L)=l min(desc L’
L (l)) ≤L≤max(desc L’

L (l)) l<anc L’
L (L) min(desc L’

L (next(l))) ≤L<+∞
anc L’

L (L) ≤l  - ∞<L≤max(desc L’
L (l))

Figure 5.12: Transformation from atoms to dimension intervals

Figure 5.12 shows how single atoms can be transformed to DI's. Values - ∞ and +∞ have the obvious
semantics. Moreover, functions prev  and next  result in the previous and the following value of l  in
the domain of L respectively.
In general, to determine whether a cube cold  can be used for the computation of cnew, we need to
partition the detailed level of each dimension according to the respective level of cnew. If for each
partition of cnew, if there exists an identical partition of cold , then cold  can be used to compute cnew.
We formalise this relationship between two cubes, through Definition 4.2.

Definition 4.2. L-containment: Let D be a set of dimensions and φ
old , φnew be two selection

conditions involving levels only from D. Let L be a set of levels, each belonging to a different
dimension of D. Let also the two cubes cnew=(DS0

,φ
new,[ L,M],agg(M))  and

cold =(DS0
,φ

old ,[ L,M],agg(M)) , defined over an arbitrary detailed data set DS0. Selection
condition φnew is L-contained in φold  (denoted by φnew⊆Lφ

old ) if cnew⊆cold  for any data set DS0. ■

To tackle the problem of cube usability between cubes of different aggregation granularities, we start
by checking the containment of conjunctions of atoms that involve values. Notice that our analysis
does not include ≠. This case will be handled in subsection 4.3.
Algorithm Check_Atoms_Usability  of Figure 5.13 takes as inputs two conjunctions of atoms, a
and b, involving only values. It yields true  if a L-contains b with respect to a specific set of levels
L’ , and false  otherwise. The algorithm proceeds as follows. Initially, Algorithm
Check_Atoms_Usability  rewrites all atoms of α and β to DI's using the transformations of
Figure 5.13 (Line 1). Then, it groups all dimension intervals of α and β by dimension level and
produces, for every set, a single DI having the most restrictive boundaries. The result is stored in the
sets of DI's α’ and β’ respectively (Line 2). Lines 3-6 check whether there exists a dimension level
Di .L  of a in α’ that does not exist in any DI of β’. In that case, the algorithm introduces the
dimension interval - ∞≤Di .L

0≤+∞ to b’  (Line 5). Finally, Lines 7-24 check if for every DI β of β
there exists a DI α in α such that β⊆L’ α for a certain level L’ ∈L’ . More specifically, Lines 12-21
check whether the DI α is L-contained with respect to DI β. Lines 12-13 check whether DI β is broader
than α. Then, the algorithm checks whether the marginal partitions are identical (Lines 14-17). If all
these conditions are fulfilled, then the algorithm returns true .
For Example 4.1 using Algorithm Check_Atoms_Usability  we can deduce that φ1 L-contains φ3

(with respect to level Month ), while φ2 does not. Moreover, it is interesting to see that if one considers
the year  level, neither φ1 nor φ2 L-contains φ3.
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 Algorithm  Check_Atoms_Usability .
Input : Two conjunctions of atoms a and b involving only values, and a set of levels L’ .
Output : true if a⊆L’ b, false otherwise.
1. Write all atoms of a and b as DI's using the transformations of Figure 5.12.
2. Group all DI's of a and b by dimension level and produce for every set a single DI' having the most restrictive

boundaries. Let a’  and b’  be the result, respectively.
3. For every DI a of a’
4. If a is defined over dimension level Di .L

0 that does not exist in any DI of b’  Then
5. Introduce DI - ∞≤Di .L 0≤∞ to b’ .
6. EndFor
7. flag = false
8. For every DI a of a’
9. flag = false
10. For every DI b of b’
11. For every dimension level L’  of L’  involved in b
12.  Case As<Bs or Be<Ae or b=false
13. flag = true
14. Case L≠L’ and As≠min(desc L’

L (anc L’
L (A s)))  and As≠Bs

15. flag = false
16. Case L≠L’  and Ae≠max(desc L’

L (anc L’
L (Αe))) and Ae≠Be

17. flag = false
18. Default
19. flag = true
20. EndFor
21. EndFor
22. If flag = false  Then
23. Return false
24. EndFor
25. Return true

Figure 5.13: Algorithm Check_Atoms_Usability

4.2 Equivalent Transformations for Atoms Involving only Levels
Following [Ullm89], we assume the existence of two infinite, totally ordered domains, L and L’
isomorphic to the integers. Let also f  be a total, monotone function over L, mapping the values of
domain L to the values of domain L’ . The family of anc  functions fulfils these requirements.
We assume that we are given a collection of inequalities of the form X<Y, X≤Y, X≠Y, f(X)<f(Y) ,
f(X) ≤f(Y) , f(X) ≠f(Y)  and equalities of the form f(X)=f(Y) . We do not allow equalities of the
form X=Y. If such a subgoal is found in a query, we substitute every occurrence of X with Y. We also
eliminate any pair of inequalities f(X) ≤f(Y)  and f(Y) ≤f(X) , where X,Y are distinct variables, with
f(X)=f(Y) .
We will use the following set of axioms for these inequalities:

Α1 X≤X Α8 X≤Z, Z ≤Y, X ≤W, W≤Y and W ≠Z imply X ≠Y
Α2 X<Y implies X ≤Y Α9 X≤Y implies f(X) ≤f(Y)
Α3 X<Y implies X ≠Y Α10 F(X)<f(Y) implies X<Y

Α4 X≤Y and X ≠Y imply X<Y Α11 F(X) ≠f(Y) implies X ≠Y
Α5 X≠Y implies Y ≠X Α12 F(X) ≤f(Y) and f(Y) ≤f(X) implies f(X)=f(Y)
Α6 X<Y and Y<Z imply X<Z Α13 F(X)=f(Y) and f(Y) ≤f(Z) implies f(X) ≤f(Z)
Α7 X≤Y and Y ≤Z imply X ≤Z Α14 F(X)=f(Y) and f(Y) ≠f(Z) implies f(X) ≠f(Z)

Α15 f(X)=f(Y) implies f(X)≤f(Y)

Figure 5.14: Axioms for L-containment checking.

We assume that our models are assignments of integers to variables. Expressions of the form f(X)  are
also treated as variables. For variables of the form X we apply axioms A1 to A9 and for variables of the
form f(X)  we apply axioms A1 to A15.
Theorem 4.1: The axioms are sound and complete. 
Proof. We will prove the soundness first and then we will proceed to prove the completeness claim.
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Soundness. To show the axioms sound, we must show that they infer only true statements. In other
words, we must show that they hold in each model. A1-A8  are already proved to be sound in
[Ullm89]. A9-A15  are simple, well-known, properties of the monotone function f .
Completeness. We will extend the proof of [Ullm89]. Let U be a finite set of variables. Let S be a set
of inequalities, involving a subset of U, namely V, and a finite set of variables V’ , such that all the
variables participating in V’ , are of the form V’ ={f(X),X ∈U} . Let U'  also be a finite set of
"dummy" variables, having the same size with U. We restrict V and V’ , so that we cannot derive from
S, using A1 through A15, inequalities of the form X<X, X≤Y∧Y≤X, f(X)<f(X) , f(X)θY, Xθf(Y),
f(X)=f(Y)  and f(X) ≤f(Y)  for every pair of distinct variables X and Y.
Suppose also that S+ is the set of inequalities that follow logically, using the axioms A1 to A15. Will
we refer to S+ as the closure of S. If S+ is complete, every inequality XθY (respectively f(X)θf(Y))
not in S+, has some assignment of integers to the variables of U that makes every inequality in S+ true,
but XθY (respectively f(X)θf(Y)) false.
We initialise S+ to be identical to S. As a first step, we search the set S+ for pairs of inequalities of the
form f(X) ≤f(Y)  and f(Y) ≤f(X) . We replace any occurrence of any of these inequalities in S+,
with the single statement f(X)=f(Y) . After this step, one can be certain that if any inequality of the
form f(X) ≤f(Y)  is found in S+, then no inequality of the form f(Y) ≤f(X)  is also found in S+.
Suppose also that G is a set, comprising of sets of variables. For each set of variables
{f(X 1),f(X 2),…,f(X k)}  such that f(X 1)=f(X 2)=…=f(X k) , we introduce a new set in G. Each
set of this kind will be called group in the sequel. All the aforementioned transformations and set
instantiations can be done in finite time. Using A13 and A15 we can easily prove that the sets of G are
disjoint. Moreover, if G={g 1,g 2,…}  and A∈g1,B ∈g2, then:

• if A<B then all members of g1 are smaller than all member of g2 (by A14 and A3);
• if A≤B then all members of g1 are smaller or equal than all member of g2 (by A15) and

there does not exist A’ ∈g1,B’ ∈g2, such that B’ ≤A’ , because then the two sets would
not be disjoint;

• if A≠B, then all members of g1 are different from all the members of g2 (by A14).
In the sequel, we will often need to group and/or order the variables of U. The result of this process will
be referred to as G.
In order to prove the completeness of S+, we must show that every inequality XθY (respectively
f(X)θf(Y)) not in S+, has some assignment of integers to the variables of U that makes every
inequality in S+ true, but XθY (respectively f(X)θf(Y)) false. Depending on the type of the
inequality we consider the following cases:
Case 1: X≤Y. We need to construct an assignment that satisfies S+ but makes Y<X true. Let A be a set
of variables A such that X≤A∈S+ and B a set of variables B such that B≤Y∈S+. Let also C=U- A- B. We
will refer to A, B and C as blocks. In general, if A∈A, B∈B, and C∈C, we can be sure that neither C≤B
nor A≤C holds. Also, the sets A,B  and C are disjoint. (C is disjoint from the other two sets by
definition. A and B are also disjoint or else ∃K∈A,B ,  s.t. X ≤K,K ≤Y∈S+, which implies X≤Y∈S+,
contrary to our initial assumption). Note also that all variables of the form f(X)  are found in C, since
we do not allow inequalities of the form f(X)θY.
Now, we topologically sort A, B and C with respect to the order ≤. Remember that after the initial
transformation of S+ we cannot derive both A1≤A2 and A2≤A1 for two distinct variables. For A and B,
which do not involve variables of the form f(X) , the sorting is straightforward. For C we use the
following trick: all the variables f(U)  and f(V) such that f(U)=f(V)  (i.e. belonging in the same
group in G, are replaced from a single dummy variable, just for the sake of the topological ordering).
After this transformation the topological ordering is feasible, since we cannot derive both f(U) ≤f(V)
and f(V) ≤f(U)  for two distinct variables. After the topological ordering is performed we replace the
dummy variable with the respective variables, placed in consecutive positions. Next, we order all the
variables in U, as follows: First we list all the elements of B in topological order, then all the elements
of C in order and finally all the elements of A in order. After that, we assign distinct integers 1, 2, ... to
the variables in this order, except for variables belonging to the same group, which are assigned the
same integer. We call the integer assigned to a variable U, through this assignment, a(U) .
So forth, we have managed that X is given a larger value than Y, so a(X) ≤a(Y)  does not hold. Now,
we must show that all the inequalities in S+ hold in this assignment. We will use the variable names U,
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V for the members of V and f(U) , f(V)  for the members of V' . Depending on the form of
inequalities we consider the following cases:
a. U≠V∈S+. Since no variables of this form are assigned to the same integer, all ≠ inequalities hold.
b. U≤V∈S+. We have the following possible combinations for U and V:

b1. U, V are the same variable. Then, a(U) ≤a(V)  holds.
b2. U, V are in the same block. Then, a(U) ≤a(V)  holds, since each block is topologically

ordered.
b3. U∈B, V∈C (or A). Then, a(U) ≤a(V)  holds, since in the final order, everything in B

precedes everything else in the other blocks.
b4. U∈C, V∈A. Then, a(U) ≤a(V)  holds for the same reason.
b5. U∈A then V must also be in A (or else A7 is violated) so b1 holds. Moreover, if U∈C

then V must be in A so b4 holds.
All the above are summarised in the following table.

U↓  V→ B C A
B b2 b3 b3

C b5 b2 b4

A b5 b5 b2

c. U<V∈S+. Obviously, U, V are not the same variable. The argument given for U≤V can also be given
in this case (b2-b5). Thus U<V is satisfied by the proposed assignment.
d. f(U) ≠f(V) ∈S+. All these variables are in C. Due to the nature of the assignment and the fact that
only equal variables are assigned the same integer, the inequality holds.
e. f(U) ≤f(V) ∈S+. The assignment respects the order, due to its nature. Remember that due to the
"cleaning" transformations, inequalities of the form f(V) ≤f(U)  or f(V)=f(U)  do not exist in S+.
f. f(U)<f(V) ∈S+. Obviously, f(U) ≠f(V)  (i.e., they are not the same variable). The argument for
case e can be reused.
g. f(U)=f(V) ∈S+. Due to the nature of the assignment, the variables which are equal to each other
are assigned the same integer.
Since all the possible combinations of expressions that can be found in S+ respect the assignment and
a(Y)<a(X)  then we conclude that the assignment satisfies S+ but not X≤Y.
Case 2: Suppose that X≠Y is not in S+. We must find an assignment such that a(X) ≠a(Y)  is false and
all the other assignments in S+ are true. [Ullm89] observes that there cannot be two distinct variables Z,
W such that X≤Z and Z≤Y and Y≤W and W≤X. Consequently, there is an order between X, Y and without
loss of generality we can assume that X≤Y. We define the following blocks: Let Z be a set containing
all variables Z such that X≤Z≤Y∈S+, D be the set containing X, Y and all the variables from set Z, A be
the set of variables A such that D≤A∈S+, for any D∈D, but A is not itself in D, B is the set of variables B
such that B≤D is in S+, for any D∈D, but B is not itself in D and C be the set of variables that remain.
Sets B, C, D, A are disjoint. (C is disjoint from the rest of the sets by definition. A and B are disjoint
from D, by definition too. A and B are disjoint, or else ∃K∈A,B  and D1,D2∈D such that,
D1≤K,K ≤D2∈S+, which implies X≤D1≤K≤D2≤Y∈S+, meaning that K∈Z and consequently K∈D,
contrary to our initial assumption). If A∈A, B∈B and C∈C then it is possible that B≤C≤A and B≤D≤A.
Moreover, the following do not hold: A≤C,C≤B,A ≤D,D≤B. For example, A≤C cannot hold, because if
it did, then ∃D∈D such that, D ≤A≤C∈S+, implying that C∈A, which cannot hold. The rest of the cases
can be proved similarly. Again all the variables of the form f(U)  are found in C.
We topologically order all these sets of variables with respect to the order ≤, using the methodology of
Case 1. We combine the orders in the sequence B, C, D, A. We assign distinct integers to all variables,
except (a) for the variables of D and (b) for the variables belonging to the same set in G. In both these
cases, each set of variables is given the same integer. Surely, X≠Y is not satisfied by this assignment,
since a(X)=a(Y) . We will prove that all the inequalities in S+ are satisfied. We consider again the
following seven cases for inequalities in S+:
a. U≠V∈S+. Since no variables of this form are assigned to the same integer, except for variables
belonging to D, all these inequalities hold. For the case where both U, V belong to D, we can prove that
it is not possible that U≠V∈S+. Suppose that ∃Z,W∈D, such that X≤Z≤Y,X ≤W≤Y,Z ≠W∈S+. Then X≠Y

is implied (by A8), which contradicts our hypothesis. Consequently, there are no ≠ inequalities between
members of D.
b. U≤V∈S+. We have the following possible combinations for U and V:
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b1. U, V are the same variable. Then, a(U) ≤a(V)  holds.
b2. U, V are in the same block. Then, a(U) ≤a(V)  holds, since each block is

topologically ordered and the topological order respects the inequality for this kind of
variables.

b3. U∈B and V∈C,D or A. Then, a(U) ≤a(V)  holds, since in the final order, everything
in B precedes everything else in the other blocks.

b4. U∈C and V∈D or A. For the same reason, a(U) ≤a(V)  holds.
b5. U∈D and V∈A. For the same reason, a(U) ≤a(V)  holds.
b6. U∈A then V must be in A (or else A7 is violated). Moreover, if U∈C then V can not be

in B.
b7. U∈D then V∈D,A and not in B or C . This holds because if V∈B then D≤B which does

not hold. If, on the other hand, V∈C then X≤U≤Y and U≤V, implying that ∃D∈D, such
that D≤V, i.e., V∈A, which does not hold either.

c. U<V∈S+. Obviously, U,V  are not the same variable. The argument given for U≤V can also be given
in this case too (b2-b7). Thus U<V is satisfied by the proposed assignment.
d. f(U) ≠f(V) ∈S+. All these variables are in C. Due to the nature of the assignment and the fact that
only equal variables are assigned the same integer, the inequality holds.
e. f(U) ≤f(V) ∈S+. The assignment respects the order, due to its nature. Remember that due to the
"cleaning" transformations, inequalities of the form f(V) ≤f(U)  or f(V)=f(U)  do not exist in S+.
f. f(U)<f(V) ∈S+. Obviously, f(U) ≠f(V)  (i.e., they are not the same variable). The argument for
case e can be reused.
g. f(U)=f(V) ∈S+. Due to the nature of the assignment, the variables which are equal to each other
are assigned the same integer.
Since all the possible combinations of expressions that can be found in S+, respect the assignment and
a(Y)=a(X)  then we conclude that the assignment satisfies S+ but not X≠Y.
Case 3: Suppose that X<Y is not in S+. We must find an assignment such that X<Y is false and all the
other assignments in S+ are true. If both X≤Y and X≠Y are in S+, then, by A4, X<Y is also in S+,
contrary to the initial assumption for Case 3. Consequently, for X<Y not to be in S+, at least one of the
following two cases must hold:
a. X≤Y∉S+. Then we can use the assignment of Case 1; it satisfies S+ and proves that X<Y is false.
b. X≠Y∉S+. Then we can use the assignment of Case 2; it also satisfies S+ and proves that X<Y is false.
In both cases, a(X)<a(Y)  is false and all the other assignments in S+ are true.
Case 4: Suppose that f(X) ≤f(Y)  is not in S+. We need to construct an assignment that satisfies S+

but makes a(f(Y))<a(f(X))  true. Let A be a set of variables A such that f(X) ≤f(A)  is in S+ and
B a set of variables B such that f(B) ≤f(Y)  is also in S+. Let also C=U- A- B. In general, if f(A) ∈A,
f(B) ∈B, and f(C) ∈C we can be sure that neither f(C) ≤f(B) , nor f(A) ≤f(C)  hold. Also, the sets
A, B and C are disjoint (similarly with Case 1). Note that all variables belonging to V (i.e., of the form
U) are found in C, since we do not allow inequalities of the form f(X)θY. Moreover, one can show
that if a variable f(U)  belongs to a block and there exists a variable f(V) , such that f(U)=f(V) ,
then both variables are found in the same block. This holds for all the three blocks A, B and C.
Moreover, f(X) , f(Y)  are allowed to be found in different blocks, since if f(U)=f(V)  is found in
S+, this would imply that f(X) ≤f(Y)  (A15) is also found in S+, which we have already assumed that
is not true.
Now, we topologically sort A, B and C with respect to the order ≤. We use the following trick: all the
variables f(U)  and f(V) such that f(U)=f(V) , i.e., belonging in the same group in G are replaced
from a single dummy variable, just for the sake of the topological ordering. Now, the topological
ordering is feasible, since we cannot derive both f(U) ≤f(V)  and f(V) ≤f(U)  for two distinct
variables. After the topological ordering is performed we replace the dummy variable with the
respective variables, placed in consecutive positions. Next, we order all the variables in U, as follows:
First we list all the elements of B in order, then all the elements of C in order and finally all the
elements of A in order. After that, we assign distinct integers 1, 2, ... to the variables in this order,
except for variables belonging to the same group, which are assigned the same integer. We call the
integer assigned to a variable U, through this assignment, a(U) .
So forth, we have managed that f(X)  is given a larger value than f(Y) , so f(X) ≤f(Y)  does not
hold (remember that f(X) , f(Y)  cannot be related with equality, so they are assigned different
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numbers). Now, we must show that all the other inequalities in S+ hold in this assignment. We consider
the following cases.
a. U≠V∈S+. Since no variables of this form are assigned to the same integer, all ≠ inequalities hold.
b. U≤V∈S+. All these variable belong to C, there are no equalities between them and the topological
ordering assigns different integers to different variables: consequently, the assignment holds.
c. U<V∈S+. Obviously, U and V are not the same variable. The argument given for U≤V can also be
given in this case. Thus U<V is satisfied by the proposed assignment.
d. f(U) ≤f(V) ∈S+. All variables of the same group in G, belong to the same block. We consider the
following cases:

b1. f(U)  and f(V)  are in the same block. Remember that f(X)=f(Y) is not in S+ and
that only equal variables are assigned the same integer. Then, a(f(U)) ≤a(f(V))
holds, since each block is topologically ordered and the topological order respects the
inequality for this kind of variables.

b2. f(U) ∈B and f(V) ∈C or A. Then, a(f(U)) ≤a(f(V))  holds, since in the final
order, everything in B precedes everything else in the other blocks.

b3. f(U) ∈C and f(V) ∈A. Then, for the same reason, a(f(U)) ≤a(f(V))  holds.
b4. f(U) ∈A. Then, f(V) ∈A (or else A7 is violated), so f(V)  cannot be in B, C. The

same happens if f(U) ∈C and f(V) ∈B.
e. f(U) ≠f(V) ∈S+. These two variables do not belong to the same group in G, thus they are assigned
different integers.
f. f(U)<f(V) ∈S+. Obviously, f(U) ≠f(V)  (i.e., they are not the same variable). The argument for d
can be reused.
g. f(U)=f(V) ∈S+. Due to the nature of the assignment, the variables which are equal to each other
are assigned the same integer.
Since all the possible combinations of expressions that can be found in S+, respect the assignment and
a(f(Y))<a(f(X))  then we conclude that the assignment satisfies S+ but not f(X) ≤f(Y) .
Case 5: Suppose that f(X) ≠f(Y) ∉S+. We need to construct an assignment that satisfies S+ but
makes a(f(Y)) ≠a(f(X))  false. First, note that since f(X) ≠f(Y)  is not in S+, then (by A5 and
A3) also f(X)<f(Y)  and f(Y)<f(X)  are not in S+. Since f(Y)<f(X)  is not in S+, we can
construct the following set D:

D={f(D):{f(X) ≤f(D) ≤f(Y)} ∪{f(D)=f(X)} ∪{f(D)=f(Y)}}
Note that the definition of D is legitimate. There are three cases: (a) f(X) ≤f(Y) ∈S+, (b)
f(Y) ≤f(X) ∈S+, (c) none of the previous two. In the first case the definition of D is as previously
mentioned. In the second case, obviously f(X),f(Y)  are used in reverse order. In the third case, the
set {f(X) ≤f(D) ≤f(Y)}  is empty. Without loss of generality, we choose that the first case holds.
We construct the following sets: Let A be the set of variables f(A)  such that f(D) ≤f(A) ∈S+, for
some f(D) ∈D, but f(A)  is not itself in D, let B is the set of variables f(B)  such that
f(B) ≤f(D) ∈S+, for some f(D) ∈D, but f(B)  is not itself in D and let C be the set of remaining
variables. The sets B, C, D and A are disjoint. C is disjoint from the rest of the sets by definition. A and
B are disjoint from D, by definition too. A and B are disjoint, or else ∃f(K) ∈A,B, f(D) ∈D such that,
f(D) ≤f(K),f(K) ≤f(D) ∈S+, which implies f(K)=f(D) , meaning that f(K) ∈D, which cannot
hold. Moreover if f(B) ∈A, f(D) ∈D, f(B) ∈B and f(C) ∈C then f(B) ≤f(C) ≤f(A)  and
f(B) ≤f(D) ≤f(A)  can possibly hold and f(A) ≤f(C) , f(C) ≤f(B) , f(A) ≤f(D)  and
f(D) ≤f(B)  do not hold. Again all the variables of the form U are found in C.
We topologically order these sets of variables with respect to the order ≤, using the methodology of
Case 1. We combine the orders in the sequence B, C, D and A. We assign distinct integers to all
variables, except (a) for the variables of D and (b) for the variables belonging to the same set in G. In
both these cases, each set of variables is given the same integer.
Surely, a(X) ≠a(Y)  is not satisfied by this assignment. We will prove that all the inequalities in S+ are
satisfied. We consider again the following cases:
a. U≠V∈S+. Since no variables of this form are assigned to the same integer, all such ≠ inequalities
hold.
b. U≤V∈S+. All these variable belong to C, there are no equalities between them and the topological
ordering assigns different integers to different variables: consequently, the assignment holds.
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c. U<V∈S+. Obviously, U, V are not the same variable. The argument given for U≤V can also be given
in this case. Thus U<V is satisfied by the proposed assignment.
d. f(U) ≠f(V) ∈S+. By default any variables that do not belong to the same group in G, are assigned
different integers. The only problem could happen with variables belonging to D. Similarly with Case
2, we can prove that there are no variables f(U) ≠f(V)  such that
f(X) ≤f(U) ≤f(Y),f(X) ≤f(V) ≤f(Y) ∈S+. Moreover, if there is a variable belonging to the same
group with either f(X)  or f(Y) , then there is no possibility for a ≠ inequality to hold for it, since then
f(X) ≠f(Y)  would belong to S+.
e. f(U) ≤f(V) ∈S+. For any pair of variables the inequality for the assignment holds (as shown in
previous cases). For the case of two variables belonging to D, then a(f(U)) ≤a(f(V))  holds, since
a(f(U))=a(f(V))  holds.
f. f(U)<f(V) ∈S+. As with the case of e, for any pair of variables the inequality for the assignment
holds (as shown in previous cases). For the case of two variables belonging to D, it is not possible that
such an inequality holds (or else f(U)<f(V)  would imply f(U) ≠f(V) ∈S+).
g. f(U)=f(V) ∈S+. Due to the nature of the assignment, the variables which are equal to each other
are assigned the same integer.
Case 6: Suppose that f(X)<f(Y)  is not in S+. Similarly with Case 3, we must find an assignment
such that a(f(X))<a(f(Y))  is false and all the other assignments in S+ are true. If both
f(X) ≤f(Y)  and f(X) ≠f(Y)  are in S+, then, by A4, f(X)<f(Y)  is also in S+, contrary to the initial
assumption for Case 3. Consequently, for f(X)<f(Y)  not to be in S+, at least one of the following
two cases must hold:
a. f(X) ≤f(Y) ∉S+. Then we can use the assignment of Case 4; it satisfies S+ and proves that
f(X)<f(Y)  is false.
b. f(X) ≠f(Y) ∉S+. Then we can use the assignment of Case 5; it also satisfies S+ and proves that
f(X)<f(Y)  is false.
In both cases, a(f(X))<a(f(Y))  is false and all the other assignments in S+ are true.
Case 7: Suppose that f(X)=f(Y) ∉S+. We need to construct an assignment that satisfies S+ but
makes a(f(Y))=a(f(X))  true. Since f(X)=f(Y) ∉S+, we can deduce that only one of the
following three cases can hold: (a) f(X) ≤f(Y) ∈S+, (b) f(Y) ≤f(X) ∈S+, (c) none of the previous
two. For the second and the third case we can use directly the assignment of Case 4, which produces
a(f(Y))<a(f(X))  (implying that (f(Y)) ≠a(f(X)) ) and respects all the inequalities found in
S+, at the same time. For the first case, we can use the assignment of Case 4 with reverse roles for
f(Y)  and f(X) . ■
In order to check whether one set of inequalities T follows from another set of inequalities S we
compute the closure S+ by applying the axioms A1-A15 until they no longer generate any new
inequalities. Then, we check whether T is a subset of S+.

4.3 Testing Cube Usability
In this section, we combine the results of subsections 4.1 and 4.2 to provide a test for several cases of
cube usability. One can transform any kind of formula using logical transformations [Ende72] to an
equivalent formula consisting of disjunctions of conjunctions which do not involve ≠ and ¬. Theorem
4.1 provides sufficient criteria for a cube cold  to be used for the computation of another cube cnew.
Algorithm Cube_Usability  describes the specific steps to be followed for this computation.
Theorem 4.2: Suppose a detailed data set DS0=[L 0

1,…,L 0
n,M

0]  and two cubes
cold =(DS0

,φold ,[L old
1 ,…,L old

n ,Mold ],agg old (M0))  and cnew=(DS0
,φnew,[L new

1 ,…,L new
n

,Mnew],agg new(M0)) . If
(a) agg old =agg new,
(b) Lold

i pLnew
i , 1≤i ≤n, and

(c) one of the following two cases holds for φold  and φnew:
• φold  and φnew involve conjunctions of atoms only of the form Li θLj , all the levels Li ,L j  are

higher from the respective levels of the schema of cold  (i.e. Lold
i,j pLi,j ) and φold  belongs to the

closure of φnew, or,
• φold  and φnew involve conjunctions of atoms of the form Lθl and φnew⊆ 

[L new
1 ,…,L new

n ] φold ,

then Algorithm Cube_Usability  correctly computes cnew from the tuples of cold . 
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Algorithm  Cube_Usability .
Input : Α detailed data set DS0=[L 0

1,…,L 0
n,M

0]  and two cubes cold =(DS0
,φold ,[L old

1 ,…,L old
n

,Mold ],agg old (M0))  and cnew=(DS0
,φnew,[L new

1 ,…,L new
n ,Mnew],agg new(M0))  such that φold  and φnew

involve either (a) conjunctions of atoms of the form Lθl or (b) conjunctions of atoms of the form LθL’

where L and L’  are levels and l  is a value.
Output : A rewriting that calculates cube cnew from the tuples of cold .
1. If all atoms of φold  and φnew involve conjunctions of atoms of the form Lθl Then
2. For every atom a=anc L

L0(L 0
)θl in φnew (or equivalent to this form)

3. If Lold  is the respective level in the schema of cold  and Lold
pL Then

4. Transform a to anc L
Lold (L old

)θl

5. EndIf
6. ElseIf Lold  is the respective level in the schema of cold  and LpLold  Then
7. Transform a to Lold

θ’anc
Lold

L (l)  where θ’=θ except for two cases:

(a) a=anc L
L0(L 0)<l  and l ≠min(desc Lold

L (anc Lold

L (l)))  where θ’= ≤,

(b) a=anc L
L0(L 0)>l  and l ≠max(desc Lold

L (anc Lold

L (l)))  where θ’= ≥
8. EndIf
9. EndFor
10. EndIf
11. If all atoms of φold  and φnew involve conjunctions of atoms of the form a=anc L

L0(L 0
)θanc

L’
L0’ (L 0’ )  (or

equivalent to this form), where both L and L’ are higher than the respective levels of cold  Then
12. For every atom a=anc L

L0(L 0
)θanc

L’
L0’ (L 0’ )  in φnew

15. Transform a to anc L
Lold (L old

)θanc
L’
Lold’ (L old’ )

16. EndFor
17. EndIf
18. Apply the transformed selection condition to cold  and derive a new data set DS1.
19. Replace all the values of DS1 with their ancestor values at the levels of cnew, resulting in a new data set DS2.
20. Aggregate (“group by” in the relational semantics) on the tuples of DS2, so that we produce cnew.

Figure 5.15: Algorithm Cube_Usability

Proof. We distinguish two cases for the theorem: (a) selection conditions involving only levels and (b)
selection conditions involving atoms of the form Li θLj .
Case 1: atoms involving only levels, i.e., of the form Li θLj , L

old
i pLi , L

old
j pLj  or their equivalent ones.

In Lines 11-17 of Algorithm Cube_Usability , we transform the expression φnew at the levels of
the schema of cold , and obtain the expression φn@o. To do so, we modify all the atoms of φnew which
are of the form Li θLj , L

old
i pLi , L

old
j pLj  , to the equivalent form anc

Lold
i

L0
i

(L old
i )θanc

Lold
i

L0
j

(L old
j ) . The

equivalence holds because all the levels occurring in the expression are higher than the respective
levels in the schema of cold .
Line 18. The new selection condition φn@o is equivalent to φnew. Moreover since φnew⊆Sφold , we can
deduce (a) φn@o⊆Sφold , (b) φn@o∧φold ≡φn@o≡φnew. Thus, if we apply φn@o to cold , treating cold  as a
data set, we have

σ
 
φn@o

(c old )=DS1=(DS0
,φn@o∧φold ,[L old

1 ,…,L old
n ,Mold ],agg old (M0)) ≡(DS0

,φnew,[L old
1 ,…,

Lold
n ,Mold ],agg old (M0))=c 1

Line 19-20. Next, we aggregate on the tuples of c1, so that we produce cnew. Note that we use c1 and
cold  as data sets and not as expressions over the detailed data set. The transformation is done in the
following manner:

DS2={x' ∈Tup(L new
1 ,…,L new

n ,Mnew)| ∃x∈c 1: x'[L new
i ]=anc

L
new
i

L
old
i

(x[L old
i ]),1 ≤i ≤n,

x'[M new]=agg({f| ∃g∈c 1,x'[L new
i ]= anc

L
new
i

L
old
i

(g[L old
i ]),1 ≤i ≤n,f=g[M old ]}) ⇔(1)

DS2={x' ∈Tup(L new
1 ,…,L new

n ,Mnew)| ∃y∈φnew(DS0),x ∈c1
, (Note:φn@o∧φold ≡φnew)

x[L old
i ]=anc

L
old
i

L
0
i

(y[L 0
i ]),1 ≤i ≤n, x'[L new

i ]=anc
L

new
i

L
old
i

(x[L old
i ]),1 ≤i ≤n,

x'[M new]= agg({f| ∃g∈c 1,x'[L new
i ]= anc

L
new
i

L
old
i

(g[L old
i ]),1 ≤i ≤n,
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f=agg old ({q| ∃z∈φnew(DS0),x[L old
i ]=anc

L
old
i

L
0
i

(z[L 0
i ]),1 ≤i ≤n,q=z[M 0]})})} ⇔(2)

DS2={x' ∈Tup(L new
1 ,…,L new

n ,Mnew)| ∃y∈φnew(DS0),x ∈c1,

x'[L new
i ]=anc

L
new
i

L
old
i

(anc
L

old
i

L
0
i

(y[L 0
i ])),1 ≤i ≤n,

x'[M new]=agg({f| ∃g∈c 1,z ∈φnew(DS0),

x'[L new
i ]=anc

L
new
i

L
old
i

(anc
L

old
i

L
0
i

(z[L 0
i ])),1 ≤i ≤n,f=agg old (z[M 0])})} ⇔ (3)

DS2={x' ∈Tup(L new
1 ,…,L new

n ,Mnew)| ∃y∈φnew(DS0),

x'[L new
i ]=anc

L
new
i

L
0
i

(y[L 0
i ])),1 ≤i ≤n,x'[M new]=agg({agg old (z[M 0])| ∃z∈φnew(DS0),

x'[L new
i ]=anc

L
new
i

L
0
i

(z[L 0
i ])),1 ≤i ≤n})} ⇔ (4)

DS2 = c new.
Discussion. The first equivalence (1) holds, since we have simply expanded the semantics for c2, by
incorporating the definition of c1 into the formula. The second equivalence (2) obviously holds, since
we just combine the atoms in the formula. The third equivalence (3) holds due to the transitivity of the
ancestor function. The fourth equivalence (4) holds since we can always find a function agg , which
applied over the function agg old  will produce the function agg new. More specifically,

sum°sum=sum,min °min=min,max °max=max,sum°count=count.
Consequently, the rewriting operations do indeed produce the cube cnew.
Case 2: atoms involving levels and values, i.e., of the form Li θl, anc L

L0(L 0
)θl or their equivalent

ones. Let L be the schema of cnew.
Since φnew⊆Lφold  then there exist φ'

new,φ'
old  produced from Algorithm Check_Atoms_Usability

as conjunctions of dimension intervals, such that:
• φ

'
new,φ'

old  are conjunctions of dimension intervals. Let anew
i  be a DI covering dimension Di  and

belonging to φ'
new. The respective notation is also used for the atoms of φ

'
old .

• φ
'
new⊆Lφ

'
old , i.e., for each atom anew

i  there exists an atom aold
i  such that anew

i  ⊆La
old
i  and  of course

anew
i  ⊆aold

i .

• φ
'
new≡φnew and φ'

old≡φold.

The fact that φ'
new⊆Lφ

'
old  means that for each dimension Di  the domain of L0

i  is partitioned with respect
to the level Lnew

i . If we call pnew
ij  each partition created by φ

'
new, with respect to level Lnew

i , we have:

• U j p
new
ij  ⊆dom(L 0

i ) , U kp
old
ik  ⊆dom(L 0

i ) ,

• for each pnew
ij  there exists a pold

ik  such that pnew
ij =pold

ik  and

• finally, if x1,x2 belong to the same pij  then anc
L

new
i

L
0
i

(x 1)=anc
L

new
i

L
0
i

(x 2) . In other words, each

partition is defined by the fact that its elements have a common ancestor at the level of Lnew
i .

Due to the properties of the family of anc  functions (i.e., disjointness of descendants and
monotonicity) and the fact that Lold pLnew we can claim that each partition defined with respect to the
levels of cnew is the union of all the partitions that can be defined for the levels of cold . Notation: We
will use the letter p to denote partitions defined from levels of cnew and q for partitions defined from
levels of cold . The superscript in these symbols denotes the selection condition from which the
partitions are derived.
For each pnew

ij , there exist a set of qnew
il such that

• pnew
ij =U l q

new
il  and

• for each x1,x2 belonging to the same qij  then anc
L

old
i

L
0
i

(x 1)=anc
L

old
i

L
0
i

(x 2) .

Exactly the same relationships hold for all the pold
ik .

For example, the partition of a particular year is the union of all the partitions for its months, if we
consider cold  to be at the month level).
The question arises, then, about the relationship between partitions and dimension intervals. We
introduce the term covers between a DI a and a partition p if
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Check_DI_Usability(p,a,L new)=true , i.e., p is a subset of a and they have the proper
marginal conditions. Consequently, for each anew

i  the following hold

• there exists a set of partitions pnew
ij , such that anew

i =U j p
new
ij ,

• there exists an atom aold
i  such that anew

i  ⊆La
old
i ,

• for each pnew
ij  covered by anew

i  there exists a pold
ij  covered by aold

i  such that pnew
ij =pold

ij ,

• for each qnew
ij  covered by anew

i  there exists a qold
ij  covered by aold

i  such that qnew
ij =qold

ij .
For each dimension interval ai over L0

i  we can construct a corresponding interval bi over Lold
i ,  such that

if ai=(A s,A e) , then bi=(B s,B e)=(anc
L

old
i

L
0
i

(A s),anc
L

old
i

L
0
i

(A e)) . Algorithm Cube_Usability

produces exactly these DI's (remember that the domains of all the levels are isomorphic to the integers,
which means that if x≤l  then x<succ(l)  --transformation employed for <,> when the edge of a
partition is involved). Moreover, if we consider an arbitrary anew

i  and the respective bnew
i  produced by

Algorithm Cube_Usability , and their respective aold
i , b old

i  such that anew
i  ⊆La

old
i  then, bnew

i

⊆Lb
old
i .

Also, the sets of partitions pnew,qnew covered by bnew
i  are a subset of the respective partitions pold,qold

covered by bold
i . This means that if we transform φ

'
new,φ

'
old  at the levels of cold ,  as suggested by

Algorithm Cube_Usability , then for each DI of φ'
new,φ

'
old  there exists the respective DI at the

level of cold  and bnew
i  ⊆Lb

old
i . We will call the result of the transformation of the expressions φ

'
new,φ

'
old

, y '
new,y '

old  respectively. Remember that although φ
'
new,φ

'
old  were defined at the detailed levels, y '

new

,y '
old  are defined at the levels of cold . Obviously, since for all the DI's of y '

new,y '
old , bnew

i  ⊆Lb
old
i , we

can claim that y '
new ⊆y '

old  and  thus y '
new ⊆

 

[L
old
1 ,…,L

old
n ] y

'
old . Using the definition of L-containment, and

based on the fact that the partitions covered are identical, we can deduce that for an arbitrary DS0

σ

 
y '

new
(c old ) ≡(DS0

,φ
'
new∧φ'

old ,[L old
1 ,…,L old

n ,Mold ],agg old (M0))

(although, is φ'
new a subset the detailed equivalent of y '

new and the reverse does not hold)
Then, all we have to show is that what holds for φ

'
new,φ

'
old  holds also for φnew,φold . Yet, this is trivial,

since φ'
new,φ

'
old  are equivalent to φnew,φold . Consequently, if we transform φold  at the levels of cold ,

we obtain the expression φn@o and the following hold

σ
 
φn@o

(c old ) ≡(DS0
,φ

'
new∧φ'

old ,[L old
1 ,…,L old

n ,Mold ],agg old (M0))

≡(DS0
,φnew∧φold ,[L old

1 ,…,L old
n ,Mold ],agg old (M0))

≡(DS0
,φnew,[L old

1 ,…,L old
n ,Mold ],agg old (M0)).

The effect of Lines 19-20 of Algorithm Cube_Usability  has been covered for Case 1. ■

Theorem 4.2 tests for usability, pairs of cubes involving conjunctive selection conditions which do not
involve ≠ and ¬. Cubes involving disjunctive selection conditions can be treated in the usual way
[Ullm89].
Note also, that the inverse ('and only if') of the theorem does not hold. Suppose the case of a particular
dimension D, involving two levels low  and high , where the desc  relationship is a function (meaning
that anc high

low  has an inverse function and the mapping from detailed to ancestor values is 1:1 ). Then,
although condition (b) of Theorem 4.2 is violated, a cube at the level high  can be used to compute a
cube at the level low . Moreover, it is easy to construct an example which shows that the above
techniques cannot be applied to a class of queries containing both atoms involving only levels (i.e.,
L1θL2) and atoms involving levels and values (i.e., Lθl).

Example 4.1. Let cnew and cold  be the cubes over DS0 of Figure 5.16 defined as follows.
cold =(DS0

,φold ,[Month,Country,Type,Salesman,Sum_old],sum(Sales))  and
cnew=(DS0

,φnew,[Month,Country,Categoty,Salesman,Sum_new],sum(Sales))
where φold =18-Feb-97 ≤day ∧ day ≤3-Sep-97 ∧ anc Category

Item (Item)=”Books”  and

φnew=1-Mar-97 ≤day ∧ day ≤3-Sep-97 ∧ “Literature” ≤anc Type
Item (Item)  ∧ anc Type

Item

(Item) ≤”Philosophy” .
To check whether cnew can be computed from cold  we apply Theorem 4.2. The schemata and
aggregation functions of the two cubes are compatible (conditions (a), (b) of Theorem 4.2. Moreover,
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φnew is L-contained from φold  with respect to the levels of cnew. Following Lines 2-10 of Algorithm
Cube_Usability , we transform φnew so that it can be applied to the schema of cube cold . The
transformations of lines 3-8 result in

φn@o=Mar-97 ≤Month ∧ Month ≤Sep-97 ∧ “Literature” ≤Type  ∧
Type ≤”Philosophy” .

We apply the transformed selection condition to cold  (depicted in Figure 5.16a) and derive a new data
set DS1 (depicted in Figure 5.16b). Then, we replace all the values of DS1 with their ancestor values at
the levels of cnew (Line 19), resulting in a new data set DS2 (depicted in Figure 5.16c). Finally, we
aggregate the tuples of DS2 and we produce cnew (depicted in Figure 5.16d). 

Month Type Salesman Country Sum_old Month Type Salesman Country Sum_1

Feb-97 Literature Netz USA 5 Sep-97 Philosophy Netz Japan 50
Sep-97 Philosophy Netz Japan 50 Sep-97 Literature Netz Japan 30
Sep-97 Literature Netz Japan 30

(a) (b)

Month Category Salesman Country Sum_2 Month Category Salesman Country Sum_new

Sep-97 Book Netz Japan 50 Sep-97 Book Netz Japan 80
Sep-97 Book Netz Japan 30

(c) (d)

Figure 5.16: Calculating cnew from cold .

5. SUMMARY
In this chapter we provided a categorization of the work in the area of OLAP logical models by
surveying some major efforts, including commercial tools, benchmarks and standards, and academic
efforts.  We have also attempted a comparison of the various models along several dimensions,
including representation and querying aspects. Then, we presented a logical model for cubes based on
the key observation that a cube is not a self-existing entity, but rather a view over an underlying data
set. The proposed model is powerful enough to capture all the commonly encountered OLAP
operations such as selection, roll-up and drill-down, through a sound and complete algebra. We have
showed how this model can be used as the basis for processing cube operations and have provided
syntactic characterisations for the problems of cube usability. Theorem 3.2, which provides these
syntactic characterisations, is very important for the usual operations of the model. Two of the most
eminent cases are: (a) navigation from a certain cube c  to a cube having all its levels higher (or equal)
than the respective levels of c  and (b) selection over a certain cube c  where all the levels acting as
variables are higher (or equal) than the levels of c .
Of course, the applicability of Theorem 4.2 is not restricted in these two simple cases. Normally, an
OLAP screen contains more than one cubes [Micr98]. Thus, an interactive OLAP session produces
many cubes which possibly overlap. Computing a new set of cubes can possibly be achieved by using
already computed and cached cubes (provided that they fulfil the criteria of Theorem 4.2.
Consequently, the results on the problem of cube usability can be used both for the query optimisation
and the caching processes. The cube usability results can also be applied in the problem of data
warehouse / data mart design [ThLS99], where the optimal set of views (with respect to query and
maintenance cost) has to be derived. Testing for cube usability can avoid redundancy in the final data
warehouse schema and optimise the run-time of the design algorithm [LSTV99].
As future work, we plan to incorporate our results in a system under construction in NTUA. The
modelling parts could be extended to take into account aspects of the hierarchy structure (partial
ancestor functions, hierarchies that are not well captured as lattices [LeSh97], etc.). The theoretical
results over query processing can be extended to handle optimisation issues for a broader set of
selection conditions, partial rewritings and optimisation of the physical execution for cube operations.
Finally, a challenging issue is how to devise smarter algorithms for the cube usability problems.
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Chapter 6
Iktinos: an OLAP tool

1. INTRODUCTION
Iktinos is a prototype OLAP tool developed in the Knowledge and Database Systems Laboratory
(KDBSL) of the National Technical University of Athens (NTUA). Iktinos implements the logical cube
model of [Vass98], which is a direct ancestor of the cube model presented in Chapter 5. The basic
differences of the two models are more in terms of formalism rather than in terms of functionality.

Figure 1. A screenshot from Iktinos

The logical model of Iktinos is based on the idea of cubes, i.e., aggregations/summarizations of data
with respect to specific attributes. In this model, cubes are views defined over a detailed data set, called
basic cube. Each dimension of the data is organized as a hierarchy of aggregation levels, modeled as a
lattice. All the cube operations aim to track the sequence of operations that the user has performed in
the past –i.e., they retain the history of the user’s navigations. The model captures the most common
OLAP operations (roll-up, drill-down, selection, slicing).
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Architecture: Iktinos uses a relational mapping of the model, implemented in Informix Universal
Server. The Iktinos server listens to requests performed by the client software, through a perl program
that implements this communcation. The server maps the generic OLAP (like roll-up, drill-down etc.)
requests to relational operations (group-by’s, selections, etc.) and returns the result to the user.

Perl listener Iktinos Server

Web Client

Informix

Figure 2. The architecture Iktinos

Iktinos can be accessed at http://www.dbnet.ece.ntua.gr/~dwq/iktinos/ The requirements from a web
client are Netscape 4.x or Internet Explorer 4.x, with the Java plug-in installed (which is available from
http://java.sun.com/cgi-bin/plugin-download.sh?).

2. IKTINOS’ MODEL OF MULTIDIMENSIONAL SPACE AND
CUBES
In the model of [Vass98], the existence of a cube at the lowest level of detail is assumed. In the
terminology of [Vass98], this cube is called the basic cube. The application of any of the algebraic
operations of the model upon the basic cube produces a new cube, possibly aggregated. The operations
can continue over any of the cubes (basic or not) producing new cubes. Each of these cubes, apart from
a schema and an instance, is also characterized by a mapping of its tuples to the tuples of the detailed
basic cube, which ultimately produce them. The set of these detailed tuples is called the base cube of
the aggregated cube.

Figure 3. A basic cube.

Of course, the multidimensional view of data, imposes the existence of dimensions in the model. Each
dimension is characterized by a set of levels of possible aggregation of the information. These levels
form a lattice, i.e., we impose the existence of a most detailed level for each dimension. This is, of
course, the reason that enables the definition of basic cubes. Each path in the lattice of levels is called a
dimension path. The values belonging to the domain of levels of the same dimension path are related
through an ancestor function, which is a mapping from the lowest level of granularity to the higher
(here: ancestor) one. The measures of the cubes are also considered to be dimension, comprising only
one level.
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Figure 4.Each dimension of the data is organized as a hierarchy of aggregation levels, modeled as
a lattice.

Formally, we can define a Cube C as a 4-tuple <D, L, Cb, R>, where
• D = <D1, D2, ... Dn, M> is a list of dimensions. M is a dimension that represents the measure of the

cube.
• L = <DL1, DL2, ... DLn, *ML> is a list of dimension levels. *ML is the dimension level of the

measure of the cube.
• Cb is a basic_cube. We will call Cb, the base_cube of C (Cb = base_cube(C)). The data of Cb can be

used for the calculation of the contents of C
• R is a set of cell data -i.e. a set of tuples of the form as a tuple x = [x1, x2, ..., xn, *m], where ∀ i in

[1, ..n], xi ∈ dom(DLi) and *m ∈ dom(*ML).

We can define several operations to the cube model, which are implemented all by Iktinos. Roll-up is a
basic operation in OLAP, performing the summarization of data to a higher level of aggregation. In the
Figure 5 we roll-up the data from day to year level, through the use of the navigation algebraic operator
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Figure 5.Roll-up from day to year level.

Another example of the roll-up operation is shown in the following figure, where we roll-up from the
item to the category level, of dimension product.
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Figure 6.Roll-up from item to catogory dimension

Defining the cubes as views over the detailed data set, allows us to track the sequence of operations
that the user has performed. For example, observe Figure 7:

Figure 7.Tracking of user operations
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We can also select subsets of the information, through the use of the dice operator. Observe Figure 8:

Figure 8. Selection (dicing) of information.

Another algebraic operation is slicing, used to ignore one or more dimensions in the aggregation.
Notice that in this example we also change the aggregation function from sum to count, the new cube
retains the previous selection.
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Figure 9. Slicing, i.e., aggregation over a whole dimension

Drilling-down, which is the deaggregation of the information, is also performed efficiently using the
view definition of the cube over the basic cube.

Figure 10. Drill-down, i.e., de-aggregating a cube
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Formally, there are two kinds of operations: first-class operations, like the ones which have already
been mentioned, and auxiliary, which enable the execution of the first-class operations. We proceed to
give a formal definition of these operations.

Level_Climbing. Let d be a set of dimensions belonging to C and dl the set of the corresponding
dimension levels of C. Without loss of generality we assume that d consists of the last k dimensions of
D. Let also dlold be the original dimension levels of C, belonging to d : dlold = {DL n-k+1, …, DLn}. Then,
C' = Level_Climbing(C, d, dl) = LC(C, d, dl) is defined as follows:
D' = D, L ' = L - dlold ∪ dl, Cb' = Cb and
R' ={x | ∃ y ∈ R: dimensions(x)(Di) = dimensions(y)(Di) ∀ Di ∉ d ∧ dimensions(x)(Di) =

ancestor(dimensions(y)(Di), dlj), ∀ Di ∈ d, dlj ∈ dl, dlj ∈ levels(Dj) ∧ measure(x) =  measure(y),
if M ∉ d }

We impose the restrictions that d, dl are consistent with each other and that for all the dimension levels
of dl, the respective dimension levels of dlold belong to the same dimension path and are of lower or
equal level (for example, one cannot perform Level_Climbing between months and weeks). Intuitively,
Level_Climbing is the replacement of all values of a set of dimensions with values of dimension levels
of higher level.

Packing. We define C' = Packing(C) = P(C) as follows:
D' = D, L ' = L, Cb' = Cb and
R' ={x | ∃ y ∈ R: dimensions(x)(Di) = dimensions(y)(Di) ∀ i ∈ 1, …, n ∧ measure(x) =  {l | ∃ t ∈ R,

dimensions(y) = dimensions(t) ∧ l = measure(t)}}
Intuitively, packing is the consolidation of the cube, through the merging of multiple instances having
the same dimension values into one. Packing has bag semantics.

Function_Application. Let f be a function belonging to {sum, avg, count, min, rank(n), no-operation}.
Then, C' = Function_Application(C, f) = F(C, f) is defined as follows:
D' = D, L ' = L, Cb' = Cb and
R' ={x | ∃ y ∈ R: dimensions(x) = dimensions(y) ∧ measure(x) =  f(measure(y)) }
Intuitively, Function_application is the application of a specific function to the measure of a cube.

Projection. Let d be a projected dimension. C' = Projection(C, d) = π(C, d) is then defined, as follows:
D' = D - d, L' = L - DL, DL ∈ levels(d), DL ∈ L,
Cb' =  <Db', Lb', Cb', Rb'>, where,

Db' = Db - d,
Lb' = Lb - levels(d)(1), and
Rb' = {x | ∀ y ∈ Rb, dimensions(x)(Di) = dimensions(y)(Di), ∀ Di ≠d, i ∈ 1, …, n ∧ measure(x)
=  measure(y)}

R' ={x | ∃ y ∈ R: dimensions(x)(Di) = dimensions(y)(Di), ∀ Di ≠d, i ∈ 1, …, n ∧ measure(x) =
measure(y) }

Intuitively, projection is the deletion of a dimension both from the cube and its base_cube.

Navigation. Let d be the dimension over which we navigate, dl the target level of the navigation and f
the applied aggregate function. Suppose that the dimension d is the i-th element of D. Then, we define
C' = Navigation(C, d, dl, f) as follows:

C' = Navigation(C, d, dl, f) = F(P(LC(Cb, {D1, D2, ..., d, ..., Dn}, {DL1, DL2, ..., dl, ..., DLn} )),f)
The purpose of the navigation operator is to take a cube from a specific state, change the level of  a
specific dimension, pack the result and produce a new cube with a new state, through the use of an
aggregate function. The dimensions of the new cube are the dimensions of the old one. The dimension
levels are also the same, except for the one of the dimension where we change level. Notice that the
restrictions imposed by Level_Climbing, regarding the position of the respective dimension levels in
the dimension lattice, still hold. Furthermore, the base_cube remains the same. The Navigation is
performed at the level of the base_cube. Roll-up and dril-down are uniformely expressed as navigations
over the base cube of a cube.

Dicing. Let d be the dimension over which we perform the dicing, σ a formula consisting of a
dimension, an operator and a value v. We assume that v belongs to the values of the dimension level of
d in C and that σ is applicable to d (in the sense presented in [15]) -i.e. that {<, =} are applied to atomic
dimension levels and {≡, ⊂, ∈} to multi-valued ones). Let σ(v) be of the form d op v. Then, C' =
Dicing(C, d, σ(v)) is defined as follows:
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D' = D, L = L ',
Cb' = <Db', Lb', Cb', Rb'>, where

Db' = Cb.Db, Lb' = Cb.Lb, and
Rb' = {x | x ∈ Cb.Rb, x[d] op y = true, y ∈ descendants(v, levels(d)(1))}

R' = {x | ∃ x ∈ R, x[d] op v = true}
Intuitively, dicing is a simple form of selection. Yet, it has its impact both on the cube itself and its
base_cube. We are allowed to check for descendants of v in the base_cube, since each dimension path
ends at a dimension level of the lowest granularity and the base_cube is in the lowest possible
granularity for all levels.

Slicing. Let d be the dimension which we slice and f  the applied aggregate function. We define Slicing
as follows:
C' = Slicing(C, d, f) = F(P(π(LC(Cb, {D1, D2, ..., d, ..., Dn}, {DL1, DL2, ..., dl, ..., DLn} ), d)),f)
The purpose of the slicing operator is to take a cube from a specific state, cut out a specified dimension
and aggregate over the rest of the dimensions, using an aggregation function. Notice that all the
restrictions of Level_Climbing implicitly hold, without realy affecting the Slicing operation.

3. SQL MAPPING OF THE MULTIDIMENSIONAL MODEL
In this section we map multidimensional cubes, defined in Section 3, to relational SQL statements. The
motivation for the relational mapping is double: on the one hand, Iktinos, being and engine performing
Relational OLAP must be able to map multidimensional to relational entities and on the other hand, the
data warehouse administrator can be helped to check out whether a relational database fulfills the
requirements to model a cube (and vice versa -what kind of database one needs to construct in order to
be able to map a cube to relational tables). At the end of the section a mapping of our multidimensional
model to multidimensional arrays (used as logical structures in engines performing MOLAP) is also
presented. A detailed presentation of the formal aspects of these mappings is found in [AnPa98,
Vass98a] and is outside the scope of this document.

SQL mapping for level_climbing(C, d, dl). Let (a) d be the list of dimensions; (b) dl the list of the
levels, given as arguments at the algebraic operation and old_dl be the list of the respective levels at
which C is already found; (c) n be the size of this list; (d) rem_dl be the list of rest of the levels of C;
(e) _temp[i] be a temporary table created by projecting the useful columns from the i-th dimension
table (for each of the elements of d).We suppose the schema of _temp[i] to be (_temp[i].from_dl,
_temp[i].to_dl), where the former belongs to old_dl and the latter to dl. Then, the SQL-command
performing level_climbing(C, d, dl) is as follows:

SELECT  <dl>, <rem_dl>
FROM    C, ∀ i ∈ {0,…,n-1} <_temp[i]>
WHERE  ∀ i ∈ {0,…,n-1}  <C.old_dl[i]=_temp[i].from_dl >

The terms of the WHERE clause, are, of course, connected by "AND" connectives.

SQL mapping for aggregate(C,f). Let (a) m_dim be the dimension of the measure of the cube and
m_dl the respective level; (b) d be the list of dimensions; (b) dl the list of the levels at which C is
already found; (c) n be the size of this list and (d) Cb the base cube of C. Then the SQL program
performing aggregate(C, f) is as follows:
1. level_climbing(C b, d,  dl );
2. one of the following SQL statements, based on the aggregate function:
if agg in {sum, avg, count, min}

SELECT  < dl >, agg (< m_dl >)
FROM    CL

GROUP BY <dl >
else, if the aggregate function is rank(n) (i.e. the first n rows, according to an ordering criterion)
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  SELECT < dl >, < m_dl >
  FROM   CL a
  WHERE  ranking > ( SELECT count(*)
                 FROM   CL b

                 WHERE  ∀ i ∈ {0,…n-1} a.dl[i]=b.dl[i]
                 AND    b.m_dl in ( SELECT c.m_dl
                                   FROM   CL c

                                   WHERE ∀ i ∈ {0,…n-1}
                                         c.dl[i]=b.dl[i]
                                      AND
                                     c.m_dl > a.m_dl))

SQL mapping for navigation(C, d, dl, f), rollup(C, d, dl) and drilldown(C, d, dl). Let (a) m_dim be
the dimension of the measure of the cube and m_dl the respective level; (b) dl the target level of the
operation and d the respective dimension; (c) d_array is the list of the dimensions of the cube, except
for d, and dl_array the respective array for levels; (d) n be the size of this array. Then the SQL program
performing navigation(C, d, dl, f) is as follows:
1.  CL=level_climbing(C, d, dl );
2. aggregate(C L,f).
Rollup and drill-down implicitly use the sum function. Their difference, is, of course, the direction in
the level hierarchy: the former moves to coarser and the latter to finer granularities.

SQL mapping for projection(C, d). Let (a) d be the projected dimension of the cube, (b) rem _d be
the remaining dimensions and rem_dl be the respective levels of the cube; (c) rem_dl be the same list
for the base cube of C, Cb. Then the SQL-command for projection(C,d), with respect to the new cube
C' is

SELECT  < rem_dl >
FROM    C

and with respect to the new base cube Cb':
SELECT  < rem_dl_bc >
FROM    Cb

SQL mapping for slicing(C, d, f). The program for slicing(C,d,f) is simple:
1. Cp=projection(C,d) , resulting also to new base cube Cpb

2. Aggregate(C p,f) .

SQL mapping for dicing(C, φ). The SQL-command for dicing(C,φ), with respect to the new cube C'
is

SELECT  *
FROM    C
WHERE φ

and with respect to the new base cube Cb':
SELECT  < rem_dl_bc >
FROM    Cb

WHERE φ'
where φ' is the equivalent of φ, reduced at the base cube level.

SQL mapping for union(C1, C2) and difference(C1, C2). The respective SQL statements for the
new cube C' and its base cube C'b are:

SQL statement for C’ SQL statement for C’ b

SELECT   *
FROM     C1
UNION [MINUS]
SELECT   *
FROM     C2

SELECT   *
FROM     C1b

UNION [MINUS]
SELECT   *
FROM     C2b
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A mapping of the multidimensional model to multidimensional arrays. The multidimensional
model can trivially be mapped to multidimensional arrays, practically in the same way it is done in
[CaTo98]. We assume that there exists a mapping function enum(d) between a value d of a dimension
level l and the set of integers. In other words, for each dimension level, we assign a unique integer to
each one of its values. The assignment is done in a contiguous fashion. As a result, each value x = [x1,
x2, ..., xn, *m], belonging to the cell data of a cube can be considered to be as the conjunction of
coordinates [enum(x1), enum(x2), ..., enum(xn)]  with value *m.

4. CONCLUSIONS
In this chapter we have presented Iktinos, a prototype OLAP tool developed in the Knowledge and
Database Systems Laboratory (KDBSL) of the National Technical University of Athens (NTUA).
Iktinos implements the logical cube model of [Vass98], which is a direct ancestor of the cube model
presented in Chapter 5. The logical model of Iktinos is based on the idea of cubes, i.e.,
aggregations/summarizations of data with respect to specific attributes. In this model, cubes are views
defined over a detailed data set, called basic cube. In this chapter we have presented the functionality of
the tool, its theoretical background and the mapping of thetheoretical background to physical data
structures. Several people have worked for the implementation of Iktinos, namely A. Papagianni, P.
Andritsos, V. Papadimos and M. Hadjieleftheriou.
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Chapter 7
Conclusions

This document presented a set of results towards the effective modeling and management of data
warehouse metadata with special treatment to data warehouse quality. The first major result that we
presented was a general framework for the treatment of data warehouse metadata in a metadata
repository. The framework requires the classification of metadata in at least two instantiation layers and
three perspectives. The metamodel layer constitutes the schema of the metadata repository and the
metadata layer the actual meta-information for a particular data warehouse.

We linked this framework to a well-defined approach for the architecture of the data warehouse
[JJQV99]. Then, we presented our proposal for a quality metamodel, which builds on the widely
accepted Goal-Question-Metric approach for the quality management of information systems.
Moreover, we enriched the generic metamodel layer with patterns concerning the linkage of (a) quality
metrics to data warehouse objects and (b) of data warehouse stakeholders to template quality goals.
The exploitation of the quality model can be performed in versatile ways. It is important to note that as
far as the lifecycle of the data warehouse is concerned, this usage can be done in a dual fashion. Ex-
post, the metadata repository can be used as a log for the management of quality. All the steps of the
GQM process are, thus, traced in the metadata repository and can be re-used for further evaluation.
Notice, that not only do we provide an initial specialization of the quality metamodel for common data
warehouse processes, but the data warehouse stakeholder can further detail this provision with his own
templates for the quality management of his specific data warehouse, in a similar fashion. Secondly,
the use of the ConceptBase metadata repository can be exploited, due to its querying facilities. Third,
the quality metamodel is coherent with the generic metadata framework for data warehouses that we
previously introduced. Thus, every new data warehouse object can be linked to metrics and
measurements for its quality gracefully, without any change to the schema of the repository.

Then, we went on to describe a metamodel for data warehouse operational processes. This metamodel
enables data warehouse management, design and evolution based on a high level conceptual
perspective, which can be linked to the actual structural and physical aspects of the data warehouse
architecture. This metamodel is capable of modeling complex activities, their interrelationships, the
relationship of activities with data sources and execution details. Finally, the metamodel complements
proposed architecture and quality models in a coherent fashion, resulting in a full framework for data
warehouse metamodeling. We have implemented this metamodel using the language Telos and the
metadata repository system ConceptBase.
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The ex ante treatment of the metadata repository is enabled by a full set of steps, i.e., quality question,
which constitute our methodology for data warehouse quality management and the quality-oriented
evolution of a data warehouse based on the architecture, process and quality metamodels. Our
approach extends GQM, based on the idea that a goal is operationally defined over a set of questions.
Thus, we provide specific “questions” for the full lifecycle of a goal: this way the data warehouse
metadata repository is not simply defined statically, but it can be actually exploited in a systematic
manner. These questions are expressed as a set of steps aiming, in one hand, to map a high-level
subjective quality goal into the measurement of a set of interrelated quality factors, and, in the other
hand, to propose improvement actions which may help in achieving the target quality goal. These steps
involve the design of the quality goal, the evaluation of the current status, the analysis and
improvement of this situation, and finally, the re-evaluation of the achieved plan. Specific products
stem out of each case: a quality scenario is the outcome of the design phase, capturing the problem at
the type level. This reusable component is instantiated in the second step resulting in the specific map
of the problem. The third step modifies this map, so that the user receives an acceptable value for his
quality goal. The benefit from the use of the methodology is not only the obtained solution to a specific
problem. Maybe of greater importance is the fact that the involved stakeholder gets a more clear view
of the data warehouse interdependencies. This is achieved through the systematic application of the
methodological steps, which convert a subjective problem, expressed in a high-level vocabulary, to
specific measurable factors that affect the solution to the problem. The application of our GQM-like
methodology also helps us to design and maintain the knowledge about the data warehouse evolution
efficiently. We make extensive use of our metadata repository, so that the information is obtained in a
controlled, efficient fashion. We have elaborated on our quality metamodel, in order to track the basic
primitives of the interrelationships between data warehouse components and quality factors. Our GQM
extension gives us the advantage of exploiting the interrelationships of components and tracks the full
lifecycle of a requirement of a stakeholder. We have verified our methodology in a set of case studies,
one of which has also been presented in this chapter as an example of the partial application of the
methodology.

Special attention was paid to a particular part of the architecture metamodel, the modeling of OLAP
databases. To this end, we first provided a categorization of the work in the area of OLAP logical
models by surveying some major efforts, including commercial tools, benchmarks and standards, and
academic efforts.  We have also attempted a comparison of the various models along several
dimensions, including representation and querying aspects. Our contribution lies in the introduction a
logical model for cubes based on the key observation that a cube is not a self-existing entity, but rather
a view over an underlying data set. The proposed model is powerful enough to capture all the
commonly encountered OLAP operations such as selection, roll-up and drill-down, through a sound
and complete algebra. We have also showed how this model can be used as the basis for processing
cube operations and have provided syntactic characterisations for the problems of cube usability.
These syntactic characterisations, are very important for the usual operations of the model. Two of the
most eminent cases are: (a) navigation from a certain cube c  to a cube having all its levels higher (or
equal) than the respective levels of c  and (b) selection over a certain cube c  where all the levels acting
as variables are higher (or equal) than the levels of c . Of course, the applicability of our results is not
restricted in these two simple cases. Since an OLAP screen contains more than one cubes, an
interactive OLAP session produces many cubes which possibly overlap. Computing a new set of cubes
can possibly be achieved by using already computed and cached cubes. Consequently, the results on
the problem of cube usability can be used both for the query optimisation and the caching processes.
The cube usability results can also be applied in the problem of data warehouse / data mart design,
where the optimal set of views (with respect to query and maintenance cost) has to be derived. Testing
for cube usability can avoid redundancy in the final data warehouse schema and optimise the run-time
of the design algorithm. An implementation prototype, based on an earlier version of our metamodel
has also been demonstrated.

Research can continue in several ways using our results. As far as the process metamodel is concerned,
we have dealt only with the operational processes of a data warehouse environment. Yet, there are also
design processes in such an environment, which do not seem to fit this model so smoothly. It is in our
future plans to investigate the modeling of design processes and to capture the trace of evolution in a
data warehouse. Also, we have used the global-as-view approach for the data warehouse definition, i.e.,
we reduce the definition of the data warehouse materialized views to the data sources. We plan to
investigate the possibility of using the local-as-view approach (which means reducing both the view
definitions and the data sources to a global enterprise model), as it appears to provide several benefits
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that the global-as-view approach lacks. As far as the proposed methodology is concerned, we believe
that its full application in a wider extent in the future will provide the academic community with the
insight for further tuning.
As far as the modeling and optimization of OLAP operations is concerned, several extensions could be
persued. The modelling parts could be extended to take into account aspects of the hierarchy structure
(partial ancestor functions, hierarchies that are not well captured as lattices, etc.). The theoretical
results over query processing can be extended to handle optimisation issues for a broader set of
selection conditions, partial rewritings and optimisation of the physical execution for cube operations.
Finally, a challenging issue is how to devise smarter algorithms for the cube usability problems. We
plan to explore all these open issues in the context of the European IST EDITH.
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Appendix A- ISO Standards for
Information Quality

The International Organization for Standardization (ISO) was founded in Geneva, Switzerland, in
1946. Its goal is to promote the development of international standards to facilitate the exchange of
goods and services worldwide.
The original ISO 9000 [ISO92], [ISO97] standards were a series of international standards (ISO 9000,
ISO 9001, ISO 9002, ISO 9003, ISO 9004), developed by ISO Technical Committee 176 (TC176) to
provide guidance on the selection of an appropriate quality management program (system) for a
supplier's operations. The series of standards serves the purpose of common terminology definition and
demonstration of a supplier's capability of controlling its processes. The content of the 1994 edition of
the ISO 9000 series is described in the following paragraphs.
ISO 9000 -1, Quality Management and Quality Assurance Standards - Guidelines for Selection and
Use. This standard explains fundamental quality concepts, defines key terms and provides guidance on
selecting, using and tailoring series. Furthermore, it helps in the selection and use of the standards in
the ISO 9000 family.
ISO 9001-1, Quality Systems - Model for Quality Assurance in Design/ Development, Production,
Installation and Servicing. This is the most comprehensive standard. It addresses all elements including
design. The 1994 edition improved the consistency of the terminology and clarified or expanded the
meaning of some of the clauses. Several new requirements, such as that for quality planning, were
added. The standard contains 20 elements describing the quality parameters, from the receipt of a
contract through the design/delivery stage, until the service required after delivery.
ISO 9002, Quality Systems - Model for Quality Assurance in Production and Installation and
Servicing. Identical to ISO 9001 except for design requirements. Consequently, it addresses
organizations not involved in the design process.
ISO 9003, Quality Systems - Model for Quality Assurance in Final Inspection and Test. This is the least
comprehensive standard. It addresses the detection and control of problems during final inspection and
testing. Thus, it is not a quality control system. The 1994 edition added additional requirements
including: contract review, control of customer supplied product, corrective actions, and internal
quality audits.
ISO 9004 -1, Quality Management and Quality System Elements - Guidelines. This standard provides
guidance in developing and implementing an internal quality system and in determining the extent to
which each quality system element is applicable. The guidance in ISO 9004-1 exceeds the requirements
contained in ISO 9001, ISO 9002 and ISO 9003. ISO 9004-1 is intended to assist a supplier in
improving internal quality management procedures and practices. Yet, it is not intended for use in
contractual, regulatory or registration applications.
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Out of them, there is just one, ” ISO/DIS 9000-3 Quality management and quality assurance standards
– Part 3: Guidelines for the application of ISO 9001:1994 to the development, supply, installation and
maintenance of computer software (Revision of ISO 9000-3:1991)” specifically intended for use in the
computer software industry. Furthermore, there are several standards developed from ISO, concerned
with the achievement of quality in the development and evaluation of software. Yet, these standards are
not directly concerned with ISO 9000.
The interested reader can find a lot of other standards developed from ISO and IEEE in the field of
software quality. A list of them is following. Note that standards are constantly being added and
revised, so this list can quickly become out of date.

IEEE Standards on Information Technology [IEEE 97]
730-1989 IEEE Standard for Software Quality Assurance Plans (ANSI).
1061-1992 IEEE Standard for a Software Quality Metrics Methodology .
730.1-1995 IEEE Standard for Software Quality Assurance Plans. (Revision and redesignation of IEEE
Std 938-1986).
1074-1995 IEEE Standard for Developing Software Life Cycle Processes; together with
1074.1-1995 IEEE Guide for Developing Software Life Cycle Processes.

ISO REFERENCES [ISO 97]
ISO/DIS 9000-3 Quality management and quality assurance standards – Part 3: Guidelines for the
application of ISO 9001:1994 to the development, supply, installation and maintenance of computer
software.
ISO/IEC 12119:1994 Information technology – Software packages – Quality requirements and testing.
ISO/IEC 9126:1991 Information technology – Software product evaluation – Quality characteristics
and guidelines for their use.
ISO/IEC DIS 13236 Information technology – Quality of service – Framework.
ISO/IEC DTR 15504-2 Software Process Assessment – Part 2: A reference model for processes and
process capability (normative).
ISO/IEC DTR 15504-3 Software Process Assessment – Part 3: Performing an assessment (normative).

ISO 9000 family
ISO 9000-1: 1994 Quality management and quality assurance standards-Part 1: Guidelines for
selection and use.
ISO 9000-2: 1993 Quality management and quality assurance standards-Part 2: Generic guidelines for
the application of ISO 9001, ISO 9002 and ISO 9003.
ISO/FDIS 9000-2 Quality management and quality assurance standards – Part 2: Generic guidelines
for the application of ISO 9001, ISO 9002 and ISO 9003 (Revision of ISO 9000-2:1993).
ISO 9000-3: 1991 Quality management and quality assurance standards-Part 3: Guidelines for the
application of ISO 9001 to the development, supply and maintenance of software.
ISO/DIS 9000-3 Quality management and quality assurance standards – Part 3: Guidelines for the
application of ISO 9001:1994 to the development, supply, installation and maintenance of computer
software (Revision of ISO 9000-3:1991).
ISO 9000-4: 1993 Quality management and quality assurance standards – Part 4: Guide to
dependability program management.
ISO 9001: 1994 Quality system-model for quality assurance in design, development, production,
installation and servicing.
ISO 9002: 1994 Quality system-model for quality assurance in production, installation and servicing.
ISO 9003: 1993 Quality Systems-Model for quality assurance in final inspection and test.
ISO 9004-1: 1994 Quality management and quality system elements – Part 1: Guidelines.
ISO 9004-2: 1991 Quality management and quality system elements – Part 2: Guidelines for services.
ISO 9004-3: 1993 Quality management and quality system elements – Part 3: Guidelines for processed
materials.
ISO 9004-4: 1993 Quality management and quality system elements – Part 4: Guidelines for quality
improvement.
ISO 10005: 1995 Quality management – Guidelines for quality plans (formerly ISO/DIS 9004-5).
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ISO/FDIS 10006 Quality management – Guidelines to quality in project management (Formerly CD
9004-6).
ISO 10007: 1995 Quality management – Guidelines for configuration management.
ISO 10011-1: 1990 Guidelines for auditing quality systems. Part 1: Auditing.
ISO 10011-2: 1991 Guidelines for auditing quality systems. Part 2: Qualification criteria for quality
systems auditors.
ISO 10011-3: 1991 Guidelines of auditing quality systems. Part 3: Management of audit programs.
ISO 10012-1: 1992 Quality assurance requirements for measuring equipment-Part 1: Metrological
confirmation system for measuring equipment.
ISO 10013 Guidelines for developing quality manuals.
ISO/TR 13425 Guidelines for the selection of statistical methods in standardization and specification.
ISO 8402: 1994 Quality management and quality assurance-Vocabulary.


