
HECATAEUS: Regulating Schema Evolution
George Papastefanatos#1, Panos Vassiliadis*2, Alkis Simitsis3, Yannis Vassiliou#4

National Technical University of Athens, Greece
1gpapas@dblab.ntua.gr 4yv@cs.ntua.gr

* University of Ioannina, Greece
2pvassil@cs.uoi.gr

 HP Labs, USA
3alkis@hp.com

Abstract— HECATAEUS is an open-source software tool for
enabling impact prediction, what-if analysis, and regulation of
relational database schema evolution. We follow a graph theo-
retic approach and represent database schemas and database
constructs, like queries and views, as graphs. Our tool enables
the user to create hypothetical evolution events and examine
their impact over the overall graph before these are actually en-
forced on it. It also allows definition of rules for regulating the
impact of evolution via (a) default values for all the nodes of the
graph and (b) simple annotations for nodes deviating from the
default behavior. Finally, HECATAEUS includes a metric suite
for evaluating the impact of evolution events and detecting cru-
cial and vulnerable parts of the system.

I. MOTIVATION

Database-centric systems are continuously evolving envi-
ronments, where design constructs are added, removed or up-
dated due to changes to system specifications and initial re-
quirements. Hence, database schema evolution imposes many
challenges to all development phases of a data-centric system.
Apart from their schema, database centric environments com-
prise a large number of applications and data stores related to
such systems, which are also affected by evolution events. For
example, any change in the database schema may affect que-
ries embedded in procedures, views, software modules, com-
plex workflows, and so on. In doing so, queries and data entry
forms can be invalidated and application programs may crash.

In our research, we have identified three fundamental needs
of the developer, administrator, and designer of a database.

A developer having constructed a large set of modules, re-
ports, scripts, and so on, is affected by changes in the database
schema. Each change possibly makes the developer’s artifacts
syntactically inconsistent (in which case they crash) or seman-
tically dubious (in which case they return the wrong results to
the users). The developers would enjoy a facility that predicts
and evaluates the effect of a schema evolution event and high-
lights places where the code must be maintained.

It is possible that predicting the effect of a change in a da-
tabase may cover a large part of the deployed code, whereas in
practice this could be constrained via an ‘API-like’ set of
views. Interestingly, a view can act as an airbag to evolution
events, masking them from the developer and transferring the
need for compensation to the database administrator. In this
case, the administrator would need a means (i.e., an effect
prediction system) to control the flooding of the event’s im-
pact to the affected constructs.

At the same time, the designer should consider evolution
during the database design. The fundamental question need to
be addressed is “is design A better than design B when it
comes to the effort that will be required for maintaining them
in the presence of evolution events?” The designer can highly
benefit from a set of objective metrics that report the design
quality with respect to the vulnerability to evolution events.

Currently, little or even no support is provided from current
RDBMSs for analysing the impact and furthermore, adjusting
semantic and syntactical inconsistencies as results of evolu-
tion events. To the best of our knowledge, problems related to
evolution are handled manually by administrators and devel-
opers. On the other hand, research efforts have focused mainly
on the adaptation of internal database objects to schema
changes, without giving proper attention to existing queries
and views and their role as integral parts of the environment.

To handle evolution events, we have developed novel
methods to this problem [1, 2], which are implemented in our
tool named HECATAEUS. HECATAEUS provides the user with
the means for executing evolution scenarios and predicting the
impact of a potential change to the system. In a nutshell, first
we extract from a RDBMS relational schemas along with de-
pendent constructs like queries and views and then, we repre-
sent them as directed graphs. Working with such graphs,
HECATAEUS enables the user to create hypothetical evolution
events and examine their impact over a graph. It also allows
the definition of rules for regulating the evolution impact to
the system and automates its adaptation to evolution events. In
addition, Hecataeus supports an extensible suite of design
metrics, which can be used for detecting crucial and vulner-
able parts of the system regarding potential evolution events.

Motivating Example. Next, we present HECATAEUS using
the example configuration of Figure 1, which involves 3 rela-
tions holding data for employees and the projects they work
for. Assume that in the application layer, data entry forms are
used for inserting and updating records in the database, while
a report module is also used for analytical purposes. This
module interacts with the database through a view layer. The
view layer comprises a view, namely Emps_Prjs, which re-
lates employees to their projects. On top of this view, the re-
port module involves an aggregate query that calculates the
monthly expenses of each project by summing up the salaries
of all employees working for it and compares these salaries
with the project budget. In the data entry forms, an INSERT
statement adds records in EMP relation.

978-1-4244-5444-0/10/$26.00 © 2010 IEEE ICDE Conference 20101181

Figure 1: Example system configuration

Which parts of the system are affected and how? As-
sume that due to an evolving business requirement, a new
attribute, e.g., MOB_PHONE, has to be added in the EMP relation.
Should this change be propagated to the view and/or the query
involved in the data entry form? Is actually the query affected
by such an event? Although attribute deletion can be handled
easily since queries become syntactically incorrect, the addi-
tion of information is deferred to a decision of the designer.

Can we predefine the reaction of the system to potential
changes and regulate the impact of evolution? The situation
gets complicated when the attributes added involve primary
keys. Assume we add two attributes to WORK relation, namely
StartDate and EndDate, characterizing the period over which
an employee has worked on a project. In this case, the uncer-
tainty on the correctness of the view definition is increased.
Do we request all employees ever having worked in a project
or only the ones currently involved in some project? Similar
considerations arise in the case where the WHERE clause of the
view is modified. Assume that a field STATUS is added to all
projects and the view definition is modified by incorporating
the extra selection STATUS=’Active’. Can we still use the
view in order to answer the query or not? The answer is not
obvious, since it depends on whether the query employed by
the analysts, uses the view simply as a macro (for avoiding the
extra coding effort) or whether the query is supposed to work
on the view, independently of what the view definition is.

Can we measure the quality of a design with objective
quality metrics, keeping evolution (apart from perform-
ance and space considerations) in mind? Additionally, it is
useful to identify the parts of the overall configuration that are
most prone to be affected by potential schema changes at the
underlying relations. For example, the Emps_Prjs view can be
considered as a sensitive part of the system, since it depends
on all three relations and a report depends on it. Is it safer to
opt for a design without the sensitive view or is it better to
keep it and use it as a change buffering aid for the developer?

Clearly, in real-world settings things are more complicated.
We support a powerful language [3], graph visualization tech-
niques [2], and an extensible metric suite [1] that enable us to
automatically predict and handle evolution events and propa-
gate policies to the full extent of large-scale scenarios, without
imposing significant overhead to the designer. We have tested
our tool in real-world problems and applications and the re-
sults of its use have been proven really helpful for designers
and very encouraging for us. Next, we briefly present the main
functionality provided by HECATAEUS.

Figure 2: Highlighting the impact of deleting attribute EMP.E_SAL

II. THEORETICAL UNDERPINNINGS

We use a graph model, termed Evolution Graph, that mod-
els in a coherent and uniform way: (a) internal structural ele-
ments of databases, such as relations, views, triggers; and (b)
external components accessing databases, such as queries ex-
tracted from procedures, and object modules along with their
significant properties (e.g., attributes and conditions).

When an evolution event is tested, the impact of the event
is automatically computed throughout the subset of the af-
fected graph via a messaging mechanism between the nodes.
We also provide mechanisms to regulate the flooding of the
messages travelling across the evolution graph and block the
propagation of events in places that should prevent further
flooding [3]. Assume that query node Q2 is annotated with a
policy that blocks the inclusion of added attributes in
Emps_Prjs in the query’s select clause:

Q2: SELECT EP.Emp#, EP.Name FROM emps_prjs EP
 WHERE EP.PRJNAME = ‘Olympic Games’
 ON Add Attribute TO emps_prjs THEN block

When the administrators examine what will happen if an at-
tribute is added to the view, the event will not affect the query
Q2, since it is immune to this kind of change. If Q2 was a view
too, queries using it would never be affected by the change,
either. Human interaction is minimized by expressing policies
via (a) default values for all parts of the graph and (b) SQL
extensions for deviations from defaults (as above). Our anno-
tations cover a broad range of additions and deletions to the
graph concerning attributes, constraints, semantics hidden in
the WHERE clause of views, and other similar events [3].

Finally, we employ graph and information theoretic proper-
ties of the evolution graph and establish a set of measurements
for evaluating the design quality of database centric environ-
ments with respect to its ability to sustain evolution operations
[2]. Specifically, we have provided evidence that metrics like
the degrees (in, out, and total) of a node, the transitive degrees
of a node (i.e., the extent to which other nodes transitively
depend upon it), and the degrees of a summarized variant of a
module (e.g., a view) can be good predictors of the sensitivity
of a database construct with respect to its evolution. We also
consider a module’s entropy that simulates the extent to which
the vulnerability of a node is surprising.

1182

Figure 3: Definition of policy Block on view EMPS_PRJS

III. DEMONSTRATION

This section briefly presents HECATAEUS functionality us-
ing references to Figure 1.

Representation of schema constructs as directed graphs.
HECATAEUS input involves SQL files containing database
schema definitions, queries, and views definitions. Also, it can
automatically retrieve metadata (i.e., tables and views defini-
tion) from various RDBMs. Schema definitions and SQL code
are parsed for creating the Evolution Graph, which may repre-
sent database schemata at the most granular level. Each node
represents a database object (e.g., a relation or an attribute),
and each edge represents a relationship between these objects.
Figure 2 shows an instance of our example evolution graph.

Users can interactively work on the graph. Specifically,
they may apply layout algorithms to transform the way the
graph is displayed, and find, hide, add or remove graph con-
structs or even change their name and type. Additionally, to
tackle the problems of limited screen real-estate and effective
graph navigation, we offer capabilities for zooming on parts of
the graph, isolating modules and creating subgraphs, and dis-
playing the graph at various abstraction levels (i.e., only top
level nodes for relations, views and queries).

Impact prediction of evolution changes. HECATAEUS pro-
vides the user with the ability to simulate the occurrence of
evolution processes on the database schema and experiment
with the impact that these processes have on the system before
these are actually enforced on it. The construction of hypo-
thetical evolution scenarios is one of the major features of the
tool. This has been proven extremely handy in real-world pro-
jects during both their design and deployment phases. Users
can define events on nodes of the graph corresponding to evo-
lution changes on parts of the database schema, such as addi-
tion of attributes, deletion of relations, and so on. The trigger-
ing of a hypothetical event highlights all nodes that are seman-
tically or syntactically affected by this event. That is, nodes
are assigned with a status that describes their reaction to this
event and they are coloured accordingly. Figure 2 shows the
impact of a hypothetical deletion of attribute E_SAL from rela-
tion EMP. The nodes affected by this deletion are coloured ac-
cording to the impact that the event has on them (e.g., the red
nodes are not defined in the absence of EMP.E_SAL attribute
whereas the brown nodes are syntactically affected).

Figure 4: Propagating deletion of EMP_E_SAL is blocked by EMPS_PRJS

Regulating Schema Evolution. Apart from defining and trig-
gering evolution events, HECATAEUS enables the definition of
rules, also called policies, on the nodes of the graph. The crux
of our approach involves annotating the graph constructs (as
relations, attributes, and conditions) that sustain changes (as
addition, deletion, and modification) with policies dictating
the way they will regulate the change. Three policies are de-
fined: (a) propagate the change: the graph must be reshaped
to adjust to the new semantics incurred by the event; (b) block
the change: the old semantics of the graph are retained and the
event is blocked or constrained through some rewriting that
preserves the old semantics; and (c) prompt: the user should
decide what will eventually happen. The combination of
events with policies triggers the execution of actions that ei-
ther block the event or highlight properly the graph to adapt to
the proposed change. Hence, the adaptation of a node to an
evolution event and furthermore, the propagation of the event
towards the rest of the graph are dictated by the rule defined
on the node. Again, default values and policies drastically
reduce the human intervention required in this task.

Figure 3 shows the annotation of EMPS_PRJS view with a
policy for blocking the deletion of attribute E_SAL from its
schema and for propagating the deletion to any dependent
constructs. The highlighting of the graph in the presence of
policies that act as evolution regulators is shown in Figure 4.
The deletion of EMP.E_SAL is blocked (shown as black col-
oured) at the view level and query Q2 is immune to this change.

Evaluation of Design Metrics. HECATAEUS offers a set of
design metrics, which act as predictors for the vulnerability of
graph constructs to future evolution changes. They also assess
the quality of design alternatives with respect to their ability to
seamlessly sustain evolution changes. Figure 5 reports on the
results of the entropy metric for all TPC-DS queries targeting
two alternative schemas regarding the Web-Sales part of TPC-
DS benchmark [7]. Figure 5a concerns the original schema,
and Figure 5b concerns an alternative design having an inter-
mediate view layer defined on top of the TPC-DS schema,
placed between queries and the underlying relations. Potential
events occurring at the view layer increase the overall vulner-
ability of the queries to future changes, and this fact results in
higher entropy values for the alternative design.

1183

(a)

(b)

Figure 5: Output of Entropy metric for all queries targeting (a) TPC-DS,
(b) TPC-DS variant with views

Figure 6: System Architecture

IV. ARCHITECTURE

HECATAEUS architecture comprises five main components:
the Parser, the Evolution Manager, the Graph Viewer, the
Metric Manager, and the Catalog (Figure 6).

The Parser parses the input files (i.e., DDL and workload
definitions) and sends each command to the database Catalog
and to the Evolution Manager. It also parses language exten-
sions for policy definitions on the graph.

The Catalog keeps track of the relation schemata and vali-
dates the syntax of the parsed workload (i.e., activity defini-
tions, queries, views), before Evolution Manager models them.

The Evolution Manager represents the underlying database
schemata and the parsed queries in the proposed graph model.
It holds the semantics of nodes and edges, and assigns nodes
and edges to their respective classes. It communicates with the
Catalog and the Parser and constructs the node and edge ob-
jects for each class of nodes and edges (i.e., relation nodes,
query nodes, etc.). It retains all evolution semantics for each
graph construct (e.g., events, policies) and methods for per-
forming evolution scenarios. Finally, it contains methods for
transforming the database graph from/to an XML format.

The Metric Manager maintains the metrics definition and
applies them to the graph. Each metric is implemented as a
separate function. Therefore, our design and implementation
are extensible in that they allow the smooth incorporation of
additional design metrics.

The Graph Viewer is responsible for the visualization of the
graph and the interaction with the user. It communicates with
the Evolution Manager, which holds all evolution semantics

Figure 7: Example workflow representing the population of a data warehouse

and methods. In addition, evolution scenarios can be imported
or exported to XML format and saved to image formats (as
jpeg). Finally, we provide several graph manipulation opera-
tions (e.g., zooming in/out) to improve the readability and
usability of our approach.

HECATAEUS is an open source project implemented in Java
[4]. The parser and database engine have been built on top of
HSQLDB, an open source SQL relational database engine [5].
For the graph visualization, we have used the Java Universal
Network/Graph Framework (JUNG), a software library for the
management of graphs and networks [6]. JDBC connections
are used for communicating with the most popular RDBMSs.

V. EVALUATION

We have evaluated the effectiveness and scalability of
HECATAEUS in several real-world applications. A particular
case study concerned the reverse engineering of integration
workflows maintaining farming and agricultural statistics,
which were extracted from an application of the Greek public
domain. The integration scenarios comprised a total number
of 59 jobs which extract information out of a set of 7 source
schemata and load it to a data warehouse. Figure 7 shows a
high level representation of a particular integration workflow
involving 16 jobs. In that application, we used HECATAEUS for
handling a total number of 374 evolution events occurred at
the source schemata over a period of 6 months. The in-situ
demo will demonstrate abstracted cases from the above appli-
cation and also, representative scenarios based on the TPC-DS
benchmark, which will show how our tool can conveniently
accommodate large-scale graphs.

REFERENCES
[1] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou. Design

Metrics for Data Warehouse Evolution. In ER, 2008.
[2] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou. Policy-

Regulated Management of ETL Evolution. In Springer Journal on Data
Semantics, vol. XIII, pp. 146–176, 2009.

[3] G. Papastefanatos, P. Vassiliadis, A. Simitsis, K. Aggistalis, F. Pechli-
vani, Y. Vassiliou. Language Extensions for the Automation of Data-
base Schema Evolution. In ICEIS, 2008.

[4] Hecataeus. http://www.cs.uoi.gr/~pvassil/projects/hecataeus/
[5] HSQL Database Engine: http://hsqldb.org
[6] Java Universal Network/Graph Framework (JUNG):

http://jung.sourceforge.net/index.html
[7] TPC-DS Benchmark. http://www.tpc.org/tpcds/default.asp

1184

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Alkis Simitsis
