
Distrib Parallel Databases (2010) 27: 95–137
DOI 10.1007/s10619-009-7057-4

Maintenance of top-k materialized views

Eftychia Baikousi · Panos Vassiliadis

Published online: 15 October 2009
© Springer Science+Business Media, LLC 2009

Abstract In this paper we present results on the problem of maintaining material-
ized top-k views and provide results in two directions. The first problem we tackle
concerns the maintenance of top-k views in the presence of high deletion rates. We
provide a principled method that complements the inefficiency of the state of the art
independently of the statistical properties of the data and the characteristics of the
update streams. The second problem we have been concerned with has to do with the
efficient maintenance of multiple top-k views in the presence of updates to their base
relation. To this end, we provide theoretical guarantees for the nucleation (practically,
inclusion) of a view with respect to another view and the reflection of this property to
the management of updates. We also provide algorithmic results towards the mainte-
nance of a large number of views, via their appropriate structuring in hierarchies of
views.

Keywords Top-k views · View refreshment

1 Introduction

The top-k querying problem concerns the retrieval of the top-k results of a ranked
query over a database. Specifically, given a relation R(tid,A1,A2, . . . ,Am) and a
query Q over R retrieves the top-k tuples from R having the k highest values accord-
ing to a scoring function f that accompanies Q. Typically, f is a monotone ranking
function of the form: f : dom(A1) × · · · × dom(Am) → �.

Communicated by Ihab F. Ilyas.

E. Baikousi (�) · P. Vassiliadis
Dept. of Computer Science, Univ. of Ioannina, 45110 Ioannina, Greece
e-mail: ebaikou@cs.uoi.gr

P. Vassiliadis
e-mail: pvassil@cs.uoi.gr

mailto:ebaikou@cs.uoi.gr
mailto:pvassil@cs.uoi.gr


96 Distrib Parallel Databases (2010) 27: 95–137

Related work has extensively dealt with the problem of efficiently computing the
top-k results of a query. The first algorithms that occurred in this context are FA [4, 5]
and TA [6], with various extensions that followed them for specific contexts (e.g.,
parallel or distributed computation, etc.). In recent years, in an attempt to achieve
improved performance, researchers solve the problem of answering top-k queries via
materialized views [2, 9, 10]. In this setting, results of previous top-k queries are
stored in the form of materialized views. Then, a new top-k query may be answered
through materialized views resulting in better performance than making use only of
the base relation from the database. As typically happens with materialized views,
though, when the source relation is updated, we need to refresh the contents of all the
materialized views in order to reflect the most recent data.

The two main problems that pertain to the maintenance of materialized views are
(a) the correct and efficient maintenance of a single view when updates occur to
the base relation, and (b) the generalization of the maintenance problem for a large
number of materialized views.

Maintaining a single top-k materialized view Concerning the problem of maintain-
ing a single view, the first—and only—attempt that we are aware of is [19]. To sustain
the update rate at the source relation without having to fully re-compute the materi-
alized views, [19] maintain kmax tuples (instead of the necessary k) and perform refill
queries whenever the contents of the materialized views fall below the threshold of k

tuples. Yet, the approach of [19] suffers from the following problems: (a) the method
is theoretically guaranteed to work well only when insertions and deletions are of the
same probability (in fact, the authors deal with updates in their experiments), (b) there
is no quality-of-service guarantee when deletions are more probable than insertions.
In this paper, we compensate for these shortcomings by providing a method that is
able to provide quality guarantees when the deletion rate is higher than the inser-
tion rate. The case is not so rare if one considers that the number of persons logged
in a web server or a portal presents anticipated high peaks and valleys at specific
time points or dates. The first contribution of our work in this paper is to deal with
these phenomena efficiently. The solution to the problem is not obvious for the fol-
lowing reasons. First, even if the value distributions of the attributes that participate
in the computation of the score are known individually, it is not possible to com-
pute the distribution of their linear combination (i.e., the score) unless they are stable
probabilities—e.g., Normal, Cauchy. Second, even if we extend k with extra tuples to
sustain the incoming stream of updates that eventually affects the top-k materialized
view, the extra tuples increase the possibility that an incoming source update might
affect the view, thus resulting in the need to recursively compute this extension. Fi-
nally, we need to accommodate statistical fluctuations from the expected values. To
resolve all the above, we provide a principled method that operates independently of
the statistical properties of the data and the characteristics of the update streams. The
method comprises the following steps: (a) a computation of the rate that actually af-
fects the materialized view, (b) a computation of the necessary extension to k in order
to handle the augmented number of deletions that occur and (c) a fine tuning part that
adjusts this value to take the fluctuation of the statistical properties of this value into
consideration.



Distrib Parallel Databases (2010) 27: 95–137 97

Maintaining a set of top-k materialized views The problem of maintaining multiple
materialized views is quite important. Its most prominent occurrence has to do with
the situation where incoming queries are cached and treated as materialized views
to efficiently support the answering of subsequent queries. The application of such
a technique can be large, for example one can refer to [20] with an example over a
real-estate agency and to [12] for an example of a web server that helps users dis-
cover restaurants. The problem is hard if we require all the materialized views to
be refreshed every time the source relation undergoes a change. A first workaround
concerns the typical warehouse solution of collecting individual updates to larger
batches that can be processed much more efficiently than treating each update one
tuple at a time. Still, even in this setting, we would like to avoid visiting every view
for every tuple. Two extra problems that occur are (a) it is not sufficient to simply
include the appropriate tuples in the extent of a materialized view, but we need to
compute their score and position them appropriately in this extent (so, the sharing of
tuples between views does not relieve us a lot from the overheads) and (b) we cannot
solve the problem by sorting the tuples by their value over a single attribute, since
the scoring function takes several attributes into consideration. Still, it is possible to
prune data from the batch when we can infer that they need not be checked against a
certain view. Therefore, in this paper, we develop mathematical guarantees that can
decide whenever the current contents of a view need to be updated from a certain
batch of modifications, when we know that another view has been affected by this
same batch. We assume that the tuples in the extent of our views include (a) the tuple
identifier of the tuple in the base relation, (b) the scoring attributes (needed for the
management of updates), and, (c) its score in the view. In our method, we introduce
the idea of nucleation between views, which is quite similar to inclusion: a view V2
nucleates another view V1, whenever all tuples of the former belong to the extent of
the latter, with the exception of their scores. The decision for this kind of inclusion
is not straightforward; to avoid checking all the extents of two views we employ a
geometric representation of the score function and the tuples of the two views and
decide on the nucleation on the basis of this representation. Then, we structure views
in a set of hierarchies, where each ancestor view nucleates its descendants. Updates
can be pruned from a hierarchy, or a part of it, when a certain view in the hierarchy is
unaffected from a modification; in this case, all its ancestor views avoid the test, too.
At the same time, nucleation hierarchies come with a price: they are instance depen-
dent and thus they need to be rechecked after the modifications of the view extents
take place.

Roadmap The structure of this paper is as follows. In Sect. 2, we review related
work. We present our method for the fine-tuning of the actual size of a top-k materi-
alized view in Sect. 3. In Sect. 4 we provide a generalization of the results of Sect. 3
with respect to (a) the treatment of views with more than two attributes and (b) the
usage of a monotone scoring function (instead of simply a linear function). In Sect. 5,
we deal with the problem of maintaining more than one view; to this end, we intro-
duce the notion of nucleation along with a set of algorithms for the management of
multiple views structured in a hierarchy. In Sect. 6 we present experimental results
and in Sect. 7 we conclude our results and present topics for future research. A first
version of this paper has appeared in [1].



98 Distrib Parallel Databases (2010) 27: 95–137

2 Related work and background

2.1 Efficient maintenance of materialized top-k views [19]

[19] deal with the following problem: Given a base table R(id, val) containing N

tuples, where val is the score of the tuple according to a scoring function and a mate-
rialized view V (id, val) containing the top-k tuples from R according to their values,
compute a kmax that is adjusted at runtime such that a refill query, that re-computes the
view V from scratch for the missing part, is rarely needed. Assume an update of the
form 〈id, val〉 occurs and let valk′ the tuple with the lowest value in V . Then the up-
date can be classified as ignorable, neutral, good or bad. Ignorable is an update when
its id is not in V and val < valk′ and thus there is no effect in V . A neutral update
occurs when its id is in V and val > valk′ . Then the tuple id is updated with value val.
An update is categorized as good update when its id is not in V and val > valk′ . Then
this tuple is inserted in V and k′ (where k′ denotes the current size of the view) is
increased by one. If k′ exceeds kmax then the lowest tuple in V is deleted. A bad
update describes an update whose id is in V and val < valk′ . The tuple id is then
deleted from V and k′ is decreased by one. If k′ drops below k, a refill operation is
performed. A refill operation queries the base table R and returns all tuples ranked
between k and kmax. [19] formulated the problem through a random walk model. The
values of k′ between two refill operations are represented through a 1-dimensional
random walk model. The points are represented as {0, . . . , n} where 0 denotes the
starting point (kmax) and n (kmax − k + 1) the absorbing point at which a refill op-
eration is needed. Assume that the random walk is currently in position i and a bad
update moves the random walk to position i + 1 with probability pi , whereas a good
update moves the random walk to position i − 1 with probability qi . In any other
case the update is ignorable or neutral with probability 1 − pi − qi . The problem is
focused on analyzing the number of steps needed for the random walk model to go
from 0 to n. In other words the analysis is conducted in order to find the probabilistic
properties of the refill interval Z.

According to the assumptions that each step is independent of all previous choices
and the probabilities of bad and good updates remain constant as updates occur in
the view (p0 = p1 = · · · = pn−1 = p and q0 = q1 = · · · = qn−1 = q) the following

occur. When p = q then if n = N
1
2 +ε the refill integral Z is greater than N with

high probability being Pr[Z > N ] ≥ 1 − 4e−N2ε/2, for any positive constant ε. When
p < q , if n = c lnN the refill integral Z is greater than N with high probability being
Pr[Z > N ] > 1 − o(1), for constant c big enough depending only on p and q . When
p > q , then, if n = N the refill integral Z is on the order of n. An adaptive algorithm
chooses kmax at runtime without using the probabilities of good and bad updates. The
algorithm is trying to keep the refill interval Z around the value Z0 = Crefill/Cupdate

(where Crefill is the observed cost of a refill query and Cupdate is the observed cost of
a base table update). The algorithm counts the number of base table updates occurred
from the last refill operation. If the updates are less than Z0/a then kmax is increased
whereas if the number of updates is greater than aZ0 then kmax is decreased, where a

is a constant parameter.



Distrib Parallel Databases (2010) 27: 95–137 99

2.2 Algorithms for answering top-k queries over databases

In this section, we give a brief overview of the basic algorithms that answer a top-k
query over a relation R. Firstly we describe the algorithms that provide an answer
to a top-k query. Secondly, we describe the algorithms that make use of materialized
views in order to answer a top-k query. Thirdly, we describe frameworks that make
use of previously posed queries in order to answer new ones, mainly by caching
previous results.

Fagin’s algorithm (FA) [4, 5] Given a relation R(tid,A1,A2, . . . ,Am), from which
a set of sorted lists L = {(tid,Ai)|tid,Ai ∈ R}∀Ai ∈ R is formed and a query scoring
function g(X) such that g(X) is a monotone aggregation function, Fagin’s algorithm
FA retrieves the top-k tuples of R. This is achieved by a three-step process. First do
sorted access to each of the m sorted lists, until there are at least k tuples seen in each
of the m lists. Secondly, for each tuple X seen, do random accesses to each of the lists
to find the ith attribute of that tuple, which is xi . Thirdly for each X seen, compute
its score g(X) = g(x1, x2, . . . , xm). The output is the ordered set {(X,g(X)|X ∈ Y }
where Y contains the k tuples with the highest scores.

FA is correct when g is a monotone aggregation function. This is important in the
sense that it assures that all tuples not seen under sorted access do not participate in
the top-k tuples.

Threshold algorithm (TA) [6, 8, 14] FA is optimal in high probability sense whereas,
the threshold algorithm is instance optimal. Similar to FA, TA can be applied over a
database having m attributes. TA is expressed through a three-step process: First do
sorted access in parallel to each of the m sorted lists. For each tuple X seen under a
list, do random accesses to all the other lists to find the scores xi of X. Compute the
score g(X) = g(x1, x2, . . . , xm) of the tuple X and remember X and its score if it is
one of the k highest. Secondly, define the threshold value τ as g(x1, x2 . . . xm) where
xi is the score of the last tuple seen under sorted access to each of the lists. Halt when
at least k tuples have been seen with score at least equal to τ . The output is then the
ordered set {(X,g(X)|X ∈ Y } where Y contains the k tuples that have been seen with
the highest grades. TA is correct when g is a monotone aggregation function.

[6] have been proved that TA is instance optimal. An algorithm B is instance
optimal over a class of algorithms A and a class of legal inputs D to the al-
gorithms when B ∈ A and if for every A ∈ A and for every D ∈ D, we have
cost(B,D) = O(cost(A,D)), where cost(B,D) is the middleware cost incurring by
running algorithm B over database D.

Prefer [9, 10] PREFER is a system with a core algorithm that answers top-k queries
using materialized views in a pipelined way. PREFER consists of two algorithms
called (i) ViewSelection algorithm and (ii) PipelineResults algorithm. The ViewSelec-
tion algorithm decides which views should be materialized according to the system’s
performance requirements and a given relation. The goal of the PipelineResults algo-
rithm is to rank the tuples of a relation R(A1, . . . ,An) of n attributes, according to a
query q . The query q is characterized by a preference vector. A preference vector is



100 Distrib Parallel Databases (2010) 27: 95–137

of the form (w1,w2, . . . ,wn) where each coordinate wi denotes the preferred weight
of the i-th attribute. Therefore, the scoring function of q becomes

∑n
i=1 wi · Ai . Al-

gorithm PipelineResults employs a view Rv(tid, scorev) that contains the tuples of R,
ranked by another preference vector v. The algorithm computes a prefix R1

v from Rv

that ensures that the first tuple t1
q of the sequence Rq is in R1

v . Then, it computes the

second prefix R2
v in order to retrieve the second tuple t2

q and so on until the first k tu-
ples of the query are retrieved. The key concept of this algorithm is the computation
of a watermark value, which works as a stopping condition in each iteration of the
PipelineResults algorithm. The watermark value is a score with respect to the ranking
function of the materialized view rather than the query that actually determines how
deep in the ranked materialized view we should go in order to output the top result
tuple of the query. The watermark value of the first iteration is the maximum value
T 1

v,q with the property ∀t ∈ R,fv(t) < T 1
v,q ⇒ fq(t) < fq(t1

v ).

Linear programming adaptation of the threshold algorithm LPTA [2] LPTA is
based on the TA algorithm. LPTA is applied on a set of materialized views in order to
answer top-k queries. LPTA is implemented through a two-step procedure. Assume
a set of materialized views V = (V1, . . . , Vr ) that contain the base views. For a rela-
tion R containing an attribute Ai , a base view Vi is a materialized view of the form
(id,Ai) ordered over all the tuples of relation R. The first procedure of LPTA is the
SelectViews algorithm. Algorithm SelectViews(V ,Q) determines the most efficient
subset U ⊆ V over a set of materialized views V , in order to execute a given query Q.
The set U is the most efficient subset of V in the sense that it produces the answer
to the top-k query most efficiently among all possible subsets of V . The SelectViews
algorithm is based on a simple greedy heuristic procedure that selects the subset U

that has the cheapest cost. Secondly, the LPTA algorithm obtains an answer to Q

combining all the information conveyed by the views in U . Each view V (tid, scorev)

is a set of pairs of the form (tuple identifier, score of that tuple) using the view’s scor-
ing function. LPTA starts with an empty top-k buffer and proceeds in the following
four steps. Firstly, it does sorted accesses in parallel to each of the views. Secondly,
for each tuple X read from a view, random accesses are done on relation R in order
to find the scores xi of X. Thirdly, the score t (X) = t (x1, x2, . . . , xm) of the tuple
X in regards to the query Q is computed and the top-k buffer is updated. Fourthly,
the stopping condition is checked. In order to check the stopping condition, a linear
program is solved. Assume that the last tuple read from each view Vi has score scorei

in regards to its scoring function SFi . The objective function of the linear program is
the query’s score function. The constraints for the linear program are the inequalities
SFi ≤ scorei . The stopping condition holds when the solution of the linear program
is at least equal to the minimum value of the top-k buffer. In case the set of views U

is equal to the set of base views then LPTA becomes the TA algorithm.

K-Skyband [13, 15, 18] Top-k queries are closely related to the notions of skyline
and K-skyband. The notion of K-skyband was first introduced by Papadias et al.
in [15]. A K-skyband query returns the set of points which are dominated by at
most K − 1 other ones. Therefore, when K = 1, the K-skyband corresponds to the
conventional skyline. Since the K-skyband contains the set of points that are dom-
inated by at most K − 1 other ones, any top-k query can accurately be answered



Distrib Parallel Databases (2010) 27: 95–137 101

from the points belonging in a K-skyband, as long as K > k. In [13], the authors
study continuous monitoring top-k queries over sliding windows, by making use of
K-skyband. Moreover, Vlachou et al. in [18], have studied the problem of answering
top-k queries over a distributed environment. Vlachou et al. in [18] propose a system
called SPEERTO that supports top-k query processing over horizontally partitioned
data stored on peers organized in a super-peer network. Each super-peer is respon-
sible for collecting and caching the K-skyband of its peers and producing its own
K-skyband. Super-peers exchange a summary of their K-skybands. Therefore, when
a top-k query is posed over a super-peer, the latter transmits the query to the appro-
priate super-peers and collects the results in order to accurately answer the query.

K-skybands are powerful enough to answer any top-k query with k < K . How-
ever, the applicability of K-skybands is not universal as the benefits of this good prop-
erty are balanced by severe disadvantages. The two main problems with K-skybands
are their size and the inability to regulate this size. The size of a K-skyband depends
upon the distribution of the dataset [15] (something that our proposed method of
maintaining top-k views is independent of) as well as the dimensionality [18] (i.e.,
number of attributes in the dataset). The size of the K-skybands is a dominating fac-
tor: (a) the system must have the space to store it in main-memory (if there is no room
for the whole skyband then this caching is useless) and (b) the volume of updates that
must be served is proportional to this size. These two factors make it quite hard to
control the size of the stored tuples and therefore obviously difficult to monitor the
updates that will occur and affect the K-skyband. Materialized views are indepen-
dent from these two aspects and this makes the management of materialized views
worth. Our proposed method stores for a top-k materialized view a slighter increased
size of k tuples instead of k, in order to maintain the view (see experimental method
in Sect. 6). We believe that the idea of maintaining a K-skyband instead of multiple
cviews seems more ineffective (considerably greater overhead) when taking into con-
sideration the small overhead of points materialized in each view and the advantages
of constructing the hierarchy path among views.

View caching [7, 11, 18, 20] The exploitation of the result set of a previous query
for the answering of a subsequent query is frequently encountered in the research
literature (see for example [11] and [7]) under the name of query or view caching.
Once a query is maintained in main memory for this purpose, it practically becomes
a materialized view (and as such, (a) it can be used for query answering, and (b) it
needs to be maintained in the presence of changes). Concerning the case of top-k
queries, in [20], the authors describe a system called BRANCA that answers top-k
queries over an acyclic network of servers. The main idea of this system is based
on the rationale of caching the results and information from previously posed top-k
queries in order to make use of them for future ones. This technique results in less
communication cost over the network when a new top-k query arrives. As already
mentioned, [VDNV08] propose a system called SPEERTO that supports top-k query
processing in a distributed environment making use of caching techniques through
K-skybands.



102 Distrib Parallel Databases (2010) 27: 95–137

3 Fine-tuning of views to sustain high update rates

In this section we present our method for the fine tuning of materialized views defined
over a relation that goes through updates in high rates. First, we formally define the
problem. Second, we sketch our method and then, we move on to further detail the
individual steps of the method.

Before proceeding, we present a couple of motivating examples to contextualize
our discussion. Assume an online news web site where people can create profiles, post
announcements, recommend URLs or other on-line material, and get informed on
postings made by other users. There are several such sites like digg (www.digg.com),
reddit (www.reddit.com) or Google groups (groups.google.com). In all these sites,
subscribers have a profile that ranks postings according to certain characteristics of
each posting. Assume a base table Postings(P_ID, contents, topic,publisher,date)
that contains all the postings. The profile of subscriber is practically a formula that
assigns a score to every posting according to matching of the profile to the person who
published the posting, the topics and the age of the posting; all these matchings can
be computed by appropriate distance functions. Therefore, with respect to the settings
of this paper, (a) there is a base table containing all the postings where additions are
made by individuals by inserting new material and (b) a very large set of views, with
each user profile acting as a ranking view over the base table. The consistency of
the views with respect to their content and the efficiency of the maintenance process
are the two main desiderata by this system. Moreover, a third desideratum is the
smooth scale up of the efficiency of the process when the number of views (i.e.,
online subscribers) rises. On a typical situation, additions are quite more frequent
than deletions or updates since users upload new postings about interesting sites or
on-line resources. Still, there are situations where heavy deletion rates come up. Take
for example cases of spam attack, or jokes (like for example April fool’s day) that
completely destroy the coherence and contents of a topic (and consequently, of all the
contents of all the user views that get informed on the contents of one or more topics).
In case the site is moderated, the moderator can intervene and massively delete the
offending postings. This can be either an ad-hoc intervention due to a heavy load
of unwanted activity to a specific topic, or a scheduled, regular cleanup activity that
removes noise from the lists of topics. In this kind of situation, it is quite helpful to
adjust the views extents by taking the increased deletion rate into consideration,

The above situation is one of possible situations taking place in the Internet today.
Lately, administrators seem to observe quite a large number of irregularities in the
behavior of on-line users. Peaks and valleys in the load of servers are too far from the
40% rule-of-thumb for the excessive load of a server—sometimes in the area of 100%
to 1000% [16]. Dealing with this kind of excessive loads via hardware is unrealistic
(even if cloud computing is employed); thus the need for algorithmic solutions is
evident. Assuming that a site monitors the hits made by readers and creates views to
expose the top-viewed material to the administrator, we have a situation where system
catalogues the characteristics of clients accessing the material of a site. Then, a re-
lation CurrentlyLoggedUsers(IP, ip-geo, start-of -session, estimated-end-of -session,

pages-accessed-so-far) can be derived over these statistics. Advertisers might cre-
ate a view for each product and assess the top-k candidates to see the advertisement

http://www.digg.com
http://www.reddit.com
http://groups.google.com


Distrib Parallel Databases (2010) 27: 95–137 103

on the basis of their geographical characteristics and navigation history—again these
views employ a set of distance functions to obtain the matching of a session to the
profile of a product. Again the effectiveness and the efficiency of the maintenance
process are the two important factors. A subtle but interesting point, however, is the
fact that whereas peaks in the load are the main problem of the administrator, valleys
present a problem for the advertisers: Since users leave the site massively, it is im-
portant to retain in each view the ones that actually stay in the site, without having to
recompute the view from scratch (especially if the number of views is large).

3.1 Formal definition of the problem

Given a base relation R(ID,X,Y ) that originally contains N tuples, a materialized
view V that contains top-k tuples of the form (id, val) where val is the score ac-
cording to a function f (x, y) = ax + by and a, b are constant parameters, the update
ratios �ins, �del and �upd for insertions, deletions and updates respectively over the
base relation R,

Compute kcomp that is of the form kcomp = k + �k.
Such that the view will contain at least k tuples, k ≤ kcomp, with probability p,

after a period T .

Assume a base relation R(ID,X,Y ), that contains N tuples a materialized view V

that contains top-k tuples of the form (id, val) where val is the score according to a
function f (x, y) = a · x + b · y and a, b are constant parameters. Assume that the last
tuple in the view has value valk . Given the aforementioned update rates, insertions,
deletions and updates occur in the base relation R with probabilities PINS, PDEL and
PUPD respectively. These probabilities are expressed as:

PINS = �INS

�INS + �DEL + �UPD
, PDEL = �DEL

�INS + �DEL + �UPD
and

PUPD = �UPD

�INS + �DEL + �UPD
.

In the rest of our deliberations, updates are treated as combinations of deletions
and insertions. This is a quite reasonable treatment, since we are mainly interested in
the statistical properties of the rates of these actions and not in their hidden semantics.
A simple method for the conversion of the involved rates is given in Sect. 3.3.

Our problem is to find a kcomp that will guarantee that the view will be maintained
when insertions and deletions will occur in R. In order to do so, we must estimate
the number of insertions and deletions that might affect the view. In other words, we
need to compute the probability of the view being affected by a tuple inserted in R or
deleted from R.

Assume that a new tuple z(id, x, y) is inserted in R. The probability of this tuple
affecting the view is p(z > valk). Hence, the probability of a new tuple to be inserted
in R affecting the view V is p

aff
ins which is expressed as: p

aff
ins = p(z > valk) ·pins. The

probability of a tuple to be deleted from R affecting the view V is p
aff
del which occurs

as p
aff
del = p(z > valk) · pdel.



104 Distrib Parallel Databases (2010) 27: 95–137

A problem that occurs with the maintenance of kcomp tuples at the view side is
that kcomp incurs extra maintenance overheads, since the tuples of �k can suffer

updates too. Thus, we need to compute p
aff
ins and p

aff
del for the case where kcomp tu-

ples are maintained. Therefore, the view V will contain kcomp tuples instead of k.
Assume that the last tuple of the view containing kcomp tuples is valkcomp . Conse-
quently, the probability of a new tuple z to affect the view V is p(z > valkcomp)

whereas the probability of a new tuple to be inserted in R affecting the view occurs
as: p

aff
ins = p(z > valkcomp) ·pins. Respectively the probability of a tuple z to be deleted

from R affecting the view V can be expressed as: p
aff
del = p(z > valkcomp) · pdel.

3.2 Sketch of the method

The proposed method is focused around three main steps: first, we compute the per-
centage of the incoming source updates that affect a top-k materialized view; second,
we compute a safe value for the additional view tuples that we need in order to sus-
tain high deletion rates; third, we fine tune this value with a safety range of values.
Specifically, the three main steps are:

1. Given �INS, �DEL and �UPD, we can compute λins and λdel, pins and pdel, and
finally, p

aff
ins and p

aff
del as well as λ

aff
ins and λ

aff
del.

pins and pdel denote the probabilities of an insertion and deletion occurring on
the base table R respectively. p

aff
ins and p

aff
del denote the probabilities of insertions

and deletions that affect the view V respectively. These probabilities are expressed
as a function of kcomp. λ

aff
ins and λ

aff
del denote the ratios of insertions and deletions

occurring in the view V in the period of operations T . Updates are treated as
a combination of deletions and insertions thus λins and λdel denote the ratios of
insertions and deletions including those occurring from updates.

2. Compute kcomp as a function of λ
aff
ins, λ

aff
del.

kcomp denotes the number of tuples that the view V should initially contain,
such that after a period of operations T ,V will contain at least k tuples.

3. Fine-tune kcomp by using the variance of the probability that a deletion and inser-
tion action affects the materialized view.

3.3 Handling of updates

Assume the insertion, deletion and update rates �INS, �DEL and �UPD. We can com-
pute the respective rates λins and λdel where updates are treated as combinations of
deletions and insertions, through the following set of equations, where T is an arbi-
trary operation period.

λins = number of insertions including those from updates / T

λdel = number of deletions including those from updates / T

�INS = number of insertions / T

�DEL = number of deletions /T
�UPD = number of updates /T



Distrib Parallel Databases (2010) 27: 95–137 105

Therefore, λins = �INS + �UPD and λdel = �DEL + �UPD. In addition, pins and
pdel can be expressed through the usage of ratios as pins = λins

λins+λdel
and pdel =

λdel
λins+λdel

respectively.

3.4 Computation of the actual rates that affect V

The problem now is to compute the probabilities p
aff
ins and p

aff
del that affect the view V .

These probabilities can be computed as p
aff
ins = pins · p(z > valkcomp) and p

aff
del = pdel ·

p(z > valkcomp) respectively. Actually, p
aff
ins is the number of insertions affecting the

view V divided by the number of insertions and deletions occurring on the base table
R and p

aff
del is the number of deletions affecting the view V divided by the number of

insertions and deletions occurring on the base table R. Now the problem is focused
upon finding the probability p(z > valk).

In order to compute the above probability we will use the Empirical Cumulative
Distribution Function Fn(x) (ECDF). Instead of using a particular parametric cumu-
lative distribution function, we will use ECDF which is a non parametric cumulative
distribution function that adapts itself to the data. ECDF returns the values of a func-
tion F(x) such that Fn(x) represents the proportion of observations in a sample less
than or equal to x. Fn(x) assigns the probability 1/n to each of n observations in the
sample. In other words Fn(x) estimates the true population proportion F(x). ECDF
is formally defined as follows [17]:

Let X1,X2, . . . ,Xn be independent, identically distributed random variables and
let x1 < x2 < · · · < xn denote the values of the order statistics of the sample. Then
the empirical distribution function Fn(x) is defined by the following formula:

Fn(x) =

⎧
⎪⎨

⎪⎩

0, x < x1,

i
n
, xi ≤ x < xi+1,

1, xn ≤ x.

The alternative definition of Fn(x) is:

Fn(x) = number_of _values_in_the_sample_that_are_ ≤ x

n
.

Assume that the base relation R contains N tuples and the view V should contain
kcomp tuples. If we order these tuples according to their values then there are N −
kcomp tuples in R with value less than the value of kcomp. The following theorem
implies that when the sample size n is large, Fn(x) is quite likely to be close to F(x)

over the entire real line.

Glivenko-Cantelli Theorem [3] Let F(x) denote the density function of the distri-
bution from which the random sample X1,X2, . . . ,Xn was drawn. For each given
number x(−∞ < x < ∞) the probability that any particular observation Xi will be
less than or equal to x is F(x). Therefore, it follows from the law of large numbers
that as n → ∞, the proportion Fn(x) of observations in the sample that are less than
or equal to x will converge to F(x) uniformly over all values of x. Let Dn be the



106 Distrib Parallel Databases (2010) 27: 95–137

Fig. 1 Exponential probability
distribution

upper bound of the difference of Fn(x) by F(x),Dn = sup−∞<x<∞ |Fn(x) − F(x)|.
Then, the Glivenko-Cantelli theorem states that Dn

P→ 0.

Therefore, the probability of a tuple z affecting the view V can be expressed as:

p(z > valkcomp) = 1 − p(z ≤ valkcomp) = 1 − FN(kcomp)

p(z > valkcomp) = 1 − N − kcomp

N
= kcomp

N
.

(1)

As a more general example, consider a base relation R where the score of its tuples
according to a function follow an exponential distribution in the interval [0,2] and
that a view V requires the top-k tuples of R according to their score value. In Fig. 1
the probability distribution function of an exponential distribution is illustrated. In
addition, assume that the top-k tuples are the 20% of the relation R and thus the
vertical line top-k shown in Fig. 1 denotes the values of the tuples that participate in
the top-k view. Thus, the values in the view are greater or equal to 0.3. Assume a new
tuple t following the same exponential distribution being inserted in R. For the new
tuple t the probability of its value participating in the top-k ones is again 20%.

Again, consider a similar situation where a view contains the top-k tuples from a
base relation R according to a scoring function. Assume that the score values of R

this time follow a beta distribution in the interval [0,1] with parameters given as 5
and 2. Figure 2 illustrates the probability distribution function of such a distribution.
Similar to the previous example, the vertical line illustrated as top-k in Fig. 2 denotes
that the view contains 20% of R’s tuples where the values participating in the view
are greater or equal to 1.7. Assume a new tuple denoted as t being inserted in R.
The new tuple t will again follow the same beta distribution and the probability of t

having a value greater than 0.8 is 20%.
Therefore, λ

aff
ins and λ

aff
del are computed through the following equations:

λ
aff
ins = p

aff
ins · (λins + λdel) and λ

aff
del = p

aff
del · (λins + λdel).



Distrib Parallel Databases (2010) 27: 95–137 107

Fig. 2 Beta probability
distribution

According to (1), λ
aff
ins and λ

aff
del can be expressed as:

λ
aff
ins = pins · p(z > valkcomp) · (λins + λdel)

λ
aff
ins = pins · kcomp

N
· (λins + λdel) and

(2)

λ
aff
del = pdel · p(z > valkcomp) · (λins + λdel)

λ
aff
del = pdel · kcomp

N
· (λins + λdel).

(3)

3.5 Computation of kcomp

The last step of the method is to compute kcomp, in such a way that it will guarantee
that the view will contain at least k tuples, k ≤ kcomp, with probability p, after a period
of operation T . In other words compute a kcomp that is of the form kcomp = k + �k.
In general, when the ratio of insertions λins is greater than that of deletions λdel it is
clear that V will be maintained. The problem arises when the opposite occurs and the
ratio of deletions is greater than that of insertions. In such a case it is vital to compute
a value for kcomp that can guarantee that V will contain at least k tuples after a period
of operations.

Let us denote the frequency of deletions that affect the view V as λ
aff
del. In a period

of time T , in order to keep the view maintained the following inequality should hold:
kT

comp − λ
aff
del · T ≥ k.

Thus, in case both insertions and deletions occur in a period of time T , in order
to keep the view maintained for kcomp the following inequality should hold kcomp ≥
k + (λ

aff
del − λ

aff
ins) · T . Clearly, to minimize memory consumption, we need to take the

minimum possible kcomp and thus treat the above inequality as the equation kcomp =
k + (λ

aff
del − λ

aff
ins) · T .



108 Distrib Parallel Databases (2010) 27: 95–137

Therefore, by replacing λ
aff
ins and λ

aff
del from (2) and (3) the following equality oc-

curs:

kcomp = k + (pdel − pins) · (λins + λdel) · kcomp

N
· T

⇒ kcomp = k + (λdel − λins) · kcomp

N
· T . (4)

Thus, by solving the above equation according to kcomp we obtain:

kcomp = k · N

N + (λins − λdel) ∗ T
. (5)

Equation (5) has a meaning when N + (λins − λdel) · T > 0. This states that the
size of the base relation R will not fall below 0, after updates occur in a period of
operations T . At the same time, when λins −λdel < 0 (i.e., the case we are particularly
interested in), then the fraction is greater than 1 and thus, kcomp > k.

3.6 Fine-tuning of kcomp

Although we now have a formula to compute the value of kcomp, we have expressed
the probability of a new tuple z(id, x, y) affecting the top-kcomp tuples of the view as
p(z > valkcomp). Assume that a new tuple z is inserted in R. The probability of this
tuple to affect the view is p(z > valkcomp) whereas, the probability of this tuple not
affecting the view is 1 − p(z > valkcomp). The above can be expressed as a Bernoulli
experiment with two possible events. These are (a) the new tuple being inserted in V

with probability of success p(z > valkcomp) and (b) the exact opposite where the new
tuple is not inserted in V with probability 1−p(z > valkcomp). When the ratio of inser-
tions occurring in the base relation R are λins, a Bernoulli experiment is occurring λins

times where the probability of success is p(z > valkcomp) and the number of successes
follows a Binomial distribution. The probability of having Yins affected insertions in
the view follows a Binomial distribution of the form Binomial(λins,p(z > valkcomp)).
The variance of the above distribution can be expressed as:

Var(Yins) = λins · p(z > valkcomp) · (1 − p(z > valkcomp)).

The above formula indicates that insertions expected to affect the view may vary
by Var(Yins). Correspondingly, if there are λdel deletions occurring in the base rela-
tion R, then the variance of these deletions expected to affect the view is Var(Ydel) =
λdel · p(z > valkcomp) · (1 − p(z > valkcomp)). This occurs as the variance of the Bino-
mial distribution B(λdel,p(z > valkcomp)), which is similar to the one used for inser-
tions.

Therefore in the worst case, in order to guarantee that the view will contain at least
k tuples with confidence 95%, where k ≤ kcomp, (4) becomes as stated below:

kcomp = k + (λdel − λins) · kcomp

N
· T + 2 · Var(Ydel) + 2 Var(Yins). (6)



Distrib Parallel Databases (2010) 27: 95–137 109

The confidence rate of 95% occurs from statistical properties concerning the vari-
ance factor appearing in formula (6). In case another confidence percentage is needed,
formula (6) can be adjusted according to typical statistical methods [3].

3.7 Discussion

The problem of maintaining a view when updates occur in a base relation R, mainly
lies in the problem of estimating the number of updates that will affect the view.
Statisticians have contributed in this by providing formulas that compute the value of
a probability of the form p(z > valkcomp). However, the formula of such a probability
depends on the distribution that the variable z follows. In our context, the variable z

is a linear combination of the form a · x + b · y where x and y are values from the
attributes X and Y of the base relation. Even if the distributions that X and Y follow
are known, the distribution of the score Z can not be computed unless X and Y follow
a stable distribution. A stable distribution (e.g., Normal, Cauchy) has the property of
stability. This property states that if a number of independent identically distributed
(iid) random variables have a stable distribution, then a linear combination of these
variables will have the same distribution. Therefore, the distribution of the variable
Z can only be known in few cases. However, even if the distribution of the score was
known, the probability p(z > valkcomp) could be computed only with respect to the
valk instead of the value valkcomp . This is because the valkcomp could not been know
in advance. Therefore, an iterative procedure would be needed. This occurs from the
fact that we could compute the effect top-k tuples could have but not the effect the
extra tuples would arise. Thus, a recursive procedure would be required.

3.8 Example

As an example, consider the base relation R(ID,X,Y ) initially containing N tuples
with N = 20 where attributes X and Y follow a uniform distribution over the in-
terval [0,100]. In addition, consider a materialized view V that contains the top-3
tuples (k = 3) of the form (id, val) where val = 3 · x + 7 · y is the score according to
a function f (x, y) = a · x + b · y and a = 3, b = 7. The base relation R and the initial
state of V are shown in Fig. 3. Finally, the update ratios are �ins = 5, �del = 15 and
�upd = 0. We will compute kcomp such that the view would contain kcomp tuples in-
stead of k in order to be kept maintained when insertions, deletions and updates will
occur in the base relation R. Moreover, let the period of operations occurring set as
T = 1.

According to the method of Sect. 3.2, the ratios λins and λdel are 5 and 15 respec-
tively. Therefore, pins = 0.25 and pdel = 0.75. The probability p(z ≥ valkcomp) can be
calculated according to the following:

p(z ≤ valkcomp) = FN(valkcomp)

p(z ≤ valkcomp) = (number of elements in sample with score ≤ valkcomp)/N

p(z > valkcomp) = kcomp/20.



110 Distrib Parallel Databases (2010) 27: 95–137

Fig. 3 Base relation R

In consequence, the probabilities p
aff
ins and p

aff
del can be calculated as:

p
aff
ins = pins · p(z ≥ valkcomp) = 0.25 · kcomp

20
and

p
aff
del = pdel · p(z ≥ valkcomp) = 0.75 · kcomp

20
.

Given the previous probabilities, the effective update ratios for the view V are
then:

λ
aff
ins = p

aff
ins · (λins + λdel) = 0.25 · kcomp

20
· (5 + 15)

λ
aff
del = p

aff
del · (λins + λdel) = 0.75 · kcomp

20
· (5 + 15).

The above formulas state that if 5 insertions will occur in the base relation R, λ
aff
ins

will affect the view and if 15 deletions occur then λ
aff
del will affect the view respec-

tively. To be more specific the ceiling function is applied on λ
aff
ins and λ

aff
del. Therefore,

for kcomp the following inequality holds:

kcomp ≥ k + (λ
aff
del − λ

aff
ins) · T ⇒ kcomp ≥ 6

where actually kcomp = 6. Thus, kcomp should be 6 in order to keep the view main-
tained after insertions, deletions and updates will occur in the base relation R. Sup-
pose that insertions and deletions, shown in Fig. 4, occur in the base relation R. The
view V contains initially top-6 tuples and after updates the view will contain top-3
tuples. These are shown in Fig. 5 where the dark shading denotes the initial top-3



Distrib Parallel Databases (2010) 27: 95–137 111

Fig. 4 Insertions and deletions
occurring in base relation R

Fig. 5 The view V prior and
subsequent to updates

tuples of V whereas the light shading denotes the extra top-3 tuples in order to have
top-kcomp tuples.

4 Generalization of the problem

The above problem can be generalized for a relation R containing more than 2 at-
tributes. Assume that the relation is of the form R(ID,X1,X2, . . . ,Xn) and the scor-
ing function of the view includes all the attributes Xi or a number of them. The
problem then can be generalized as:

4.1 Formal definition of the problem generalized for more than two attributes

Given a base relation R(ID,X1,X2, . . . ,Xn) that originally contains N tuples, a ma-
terialized view V that contains top-k tuples of the form (id, val) where val is the
score according to a function f (x1, x2, . . . , xn) = a1 · x1 + a2 · x2 + · · · + an · xn

and a1, a2, . . . , an are constant parameters, the update ratios �ins, �del and �upd for
insertions, deletions and updates respectively over the base relation R,

Compute kcomp that is of the form kcomp = k + �k.
Such that the view will contain at least k tuples, k ≤ kcomp, with probability p,

after a period T .



112 Distrib Parallel Databases (2010) 27: 95–137

The solution to the problem is similar to the previous three-step method which
leads to the computation of (5). This is because the computation of kcomp from (5) is
independent of the attributes that participate in the scoring function of V .

4.2 Formal definition of the problem generalized for non-linear monotonic functions

Given a base relation R(ID,X1,X2, . . . ,Xn) that originally contains N tuples, a ma-
terialized view V that contains top-k tuples of the form (id, val) where val is the score
according to a monotone function f (x1, x2, . . . , xn), the update ratios �ins, �del and
�upd for insertions, deletions and updates respectively over the base relation R,

Compute kcomp that is of the form kcomp = k + �k.
Such that the view will contain at least k tuples, k ≤ kcomp, with probability p,

after a period T .

In general, the scoring function of the view can be any monotonic function and not
obligatory a linear function. The monotonic property is important in order to make
use of the ECDF distribution function. Remember that ECDF returns the values of a
function F(x) such that Fn(x) represents the proportion of observations in a sample
less than or equal to x. Therefore, it is necessary that the values among a sample have
an order. In other words, for the setting of our problem, the values of the sample are
the tuples and their score according to the scoring function of V .

5 Multiple view updates

So far, our deliberations have been focused on the fine tuning of the size of a materi-
alized view in order to sustain high update rates. The next step in our investigation of
the field of top-k materialized view refreshment is to consider the case where more
than one views need to be materialized. We will split the overall problem in two parts:

The first problem that we consider concerns the dominance of a view over another
and how this reflects to the view refreshment problem. In other words, we investigate
whether we can efficiently infer when the updates over a view directly affect the
materialized contents of another view. Formally, assume a relation R(ID,X,Y, . . .)

and two materialized views V1(ID,X,Y, s1) and V2(ID,X,Y, s2) that contain k1 and
k2 tuples respectively. The score s1 of V1 is defined as s1 = a1 · x + b1 · y and the
score s2 of V2 is defined as s2 = a2 · x + b2 · y(a1, a2, b1, b2 are positive parameters).
Assume that updates occur at the relation R, and one of the views is affected by
them (i.e., its extent has to be updated). Then, the question that arises is whether it
is possible to know a-priori if the impact of these updates deterministically results in
the necessity to update the other view too. We provide guarantees for this case via a
geometrical representation of the views and their scoring equations and we can safely
determine the effect of an update on a view on the basis of its effect on another view.

The second problem that we consider involves the design of an efficient structure
for a large set of top-k materialized views in order to speed up their maintenance. The
constructed structure is based on the abovementioned dominance relationship among
the views. We introduce hierarchies for the views and test batches of updates over



Distrib Parallel Databases (2010) 27: 95–137 113

the bottom of the hierarchies. If the updates affect the bottom view, its immediate
ancestors are candidates for being affected by the updates; otherwise, we can surely
alleviate them from the burden of being tested against the update under examination.
Obviously, the same pattern recursively propagates throughout all the hierarchy as
long as a member of the hierarchy is affected.

The structure of this section is as follows. First, we start with preliminary ideas
coming from the related literature and subsequently, we expand these results to dis-
cuss the case of view dominance. The third part of the section involves the discussion
of view maintenance for large sets of views.

5.1 Preliminaries & background

In this subsection, we provide some background from the related literature on the
problem. Our results build upon the findings of [2] and the LPTA method.

The key intuition of the LPTA algorithm can be visualized through a geometric
representation. Assume a relation R(id,X,Y ) where the domains of X and Y are
normalized over the interval [0,1]. Apart form the base views Vx and Vy , assume
two materialized views Vu(id,Score1) and Vd(id,Score2). Scores Score1 and Score2
are defined as linear functions over the attributes of the relation R. In addition, as-
sume a query Q with a linear scoring function as well. The scoring functions of the
views and the query can be depicted as lines. In particular, the line of a linear scoring
function of the form w(a · x + y) = score is depicted as: y = a−1 · x. Since the line
is perpendicular to the scoring function, the product of their slopes should be equal
to −1. The linear scoring function is depicted as its perpendicular line for the reason
that the score of a tuple t (id, x, y) in regards to the scoring function can be found by
projecting that point over the corresponding line. In Fig. 6a we depict a view Vu and
a query Q via the corresponding lines. Assume that the tuple with the k-th largest
score according to Q is denoted as M . In addition, AB denotes the line that passes
through M and is perpendicular to the line Q. Then, the top-k tuples according to Q

belong in the region of the triangle ABR. This is due to the fact that top-k tuples will
have a score higher than the score of the k-th tuple. The only possible points that can
have a higher score than the point M are contained in the triangle ABR.

Assume now we want to answer the query Q by using the tuples stored in a mate-
rialized view V . The way LPTA proceeds, is by performing sorted accesses over the
tuples of V . In the geometric representation, this can be visualized as sweeping a line
perpendicular to the line of the view towards the point O(0,0). The order of tuples
read by LPTA through sorted accesses over V is identical to the order of the points
met by sweeping the line towards O .

In case only Vu is available, the stopping condition for the algorithm is reached
when the sweeping line crosses position A1B . This occurs because, the view should
encounter all tuples whose score in respect to Q are at least equal to the score of
the point B . Remember that points M and B have the same score in regards to Q

and therefore, the region below the line A1B does not contain any tuples with score
greater than the score of M . Similarly, in case only view Vd is available, the stopping
condition is reached when the sweeping line crosses position AB2. In case both views
Vu and Vd are available, the stopping condition is reached when the sweeping lines
intersect in a point that lies on the line AB where in Fig. 6c is denoted as S.



114 Distrib Parallel Databases (2010) 27: 95–137

Fig. 6 Visual demonstration of the LPTA technique for query answering top-k via views

In the first case, where only Vu is used for answering Q, the number of sorted
accesses performed through LPTA is the number of points that belong in the region
of the triangle A1BR. Correspondingly, if only Vd is used, the number of points that
belong in the region of the triangle AB2R is the number of sorted accesses LPTA will
perform.

The best choice of the set of views that will answer Q depends upon the number
of points that will be accessed, since the points accessed is identical to the number of
sorted accesses LPTA will perform. Assume that the number of tuples visited when
only Vu is used (i.e., the number of points that belong in the triangle A1BR) is T1.
The number of tuples visited when only Vd is used (i.e., the number of points that
belong in the triangle AB2R) is denoted as T2. The number of tuples visited when
both views Vu and Vd are used (i.e., the number of points in the region A1SB2R

which is the grayed area in Fig. 6c) is denoted as T3. Then, Vu will be preferred in
case T1 is less than T2 and less than T3. Respectively, view Vd will be preferred when
T2 is less than T1 and less than T3. Finally, both views would be preferred in case T3

is less than T1 and T2.



Distrib Parallel Databases (2010) 27: 95–137 115

5.2 View nucleation

Assume a relation R(ID,X,Y, . . .) and a materialized view V (ID,X,Y, s) that con-
tains k tuples, scored via s which is defined as s = wx · x + wy · y = w · (a · x + y).
The parameters wx , wy , w, a are positive numbers. To simplify notation, we will
often denote the view as V (a, k). Assume now a relation R(ID,X,Y, . . .) and two
materialized views V1(ID,X,Y, s1) and V2(ID,X,Y, s2) that contain k1 and k2 tu-
ples respectively, with the score s1 of V1 defined as s1 = a1 · x + b1 · y and the score
s2 of V2 defined as s2 = a2 · x + b2 · y. All a1, a2, b1, b2 are positive numbers. As-
sume now that updates occur to the base relation and they must be propagated to the
views. In a typical relational situation with SPJ queries, we would say that a view V1
is contained within view V2, if the extent (i.e., the materialized tuples) of view V1 is
always a subset of the extent of view V2. In our case, due to the fact that the scores of
the materialized tuples are different, we slightly tweak the terminology and instead
of the ‘containment’ terms we employ a terminology around the notion of ‘nucleus’.

Definition Assume a relation R(ID,X,Y, . . .) and two materialized views V1(a1, k1)

and V2(a2, k2). A view V2 nucleates a view V1 if for each tuple t (t.id, t.x, t.y, . . .) ∈
R that belongs to the extent of V2 as a tuple t2(t.id, t.x, t.y, s2(t)) ∈ V2 (i.e., with
a score s2(t)), a respective tuple t1(t.id, t.x, t.y, s1(t)) obligatorily belongs to the
extent of V1. We denote this nucleation as V2 ⊆ V1.

Definition Two views V1(a1, k1) and V2(a2, k2) are nucleus equivalent if both V2
nucleates V1 and V1 nucleates V2.

Clearly, the main idea behind nucleation is that despite the difference in scores,
the ‘nucleus’ of a tuple (i.e., the tuple identifier and the scoring attributes) are the
same in the respective materialized tuples.

5.3 Updates for nucleated views

Can we efficiently decide when a view V1 is nucleated by another view V2? In this
subsection, we will deal with this problem based on an analysis conducted via a
geometric representation. Remember that the treatment of Das et al. [2] results in
characterizing each view via a line that is laid in the space X,Y and starts from
the beginning of the two axes. Specifically, assume the views V1 and V2 defined as
V1(ID,X,Y, s1) and V2(ID,X,Y, s2) that contain k1 and k2 tuples respectively, with
the score s1 of V1 defined as s1 = a1 · x + b1 · y and the score s2 of V2 defined as
s2 = a2 ·x +b2 ·y. These two views are characterized by the lines y = b1 ·a−1

1 ·x and
y = b2 · a−1

2 · x respectively. There are two cases depending on the scoring functions
of V1 and V2 and, consequently, on the slopes of their characteristic lines. The first
case is trivial in the sense that the two views are practically characterized by the same
line. The second case concerns the typical situation when the lines of the two views
are different. In the sequel, we discuss these cases in more detail.

Case 1: a1
b1

= a2
b2

In this situation, the equation of V1 is proportional to the equation of V2. Without
loss of generality assume that the equation of V1 is s1 = a1 ·x +b1 ·y and the equation



116 Distrib Parallel Databases (2010) 27: 95–137

of V2 is s2 = λ(a1 · x + b1 · y) where λ ∈ �+. Then, the line that characterizes both
views is y = b1 · a−1

1 · x. There are two sub-cases in this situation.
Case 1.1: k1 = k2. In addition, assume that both views contain the same number of

tuples, i.e., k1 = k2. In this case, any update affecting V1 will definitely affect V2 and
vice versa. The only difference between the results of the two views will be the score
of their tuples. Obviously, if V1 contains a tuple t with score s1(t) then the same tuple
will belong in V2 but with score s2(t) = λ · s1(t).

Lemma If the equation of a view V1 is proportional to the equation of a view V2 with
the same extent size k of materialized tuples, then they both contain the exact same
tuples (i.e., they are nucleus equivalent) with the same ordering.

Proof Assume that the equation of V1 is s1 = a1 · x + b1 · y and the equation of V2 is
s2 = λ(a1 · x + b1 · y) where λ ∈ �+. In addition, assume tk(xk, yk) is the last tuple
in V1. Then for any tuple t (xt , yt ) from V1, obviously by definition s1(t) ≥ s1(tk).
In other words, a1 · xt + b1 · yt ≥ a1 · xtk + b1 · ytk . Multiplying this inequality with
the proportion λ, we get λ(a1 · xt + b1 · yt ) ≥ λ(a1 · xtk + b1 · ytk). This states that
s2(t) ≥ s2(tk) for every tuple t from V1. However, the last inequality is the definition
of the top-k tuples of V2. Therefore, any tuple in V1 will be in V2 as well. In addition,
if for two tuples t1 and t2 from V1 we know that s1(t1) ≥ s1(t2) then by multiplying
the inequality with the parameter λ we get s2(t1) ≥ s2(t2). This proves that tuples t1
and t2 appear with the same ordering in V2 as well. �

Corollary If the equation of a view V1 is proportional to the equation of a view
V2 with the same extent size k of materialized tuples, whenever V1 is affected by an
update, V2 will be affected as well and vice versa.

Proof Assume a tuple t (xt , yt ) being updated (inserted or deleted) in R and t affects
V1 with score s1(t). This means that s1(t) = a1 · xt + b1 · yt and s1(t) ≥ s1(tk), where
tk is the last tuple materialized in V1. Multiplying the above inequality by the pa-
rameter λ we get λ · s1(t) ≥ λ · s1(tk) which can be written as s2(t) ≥ s2(tk). From
the above lemma tk is also the last materialized tuple in V2. Therefore, tuple t has a
higher score than tk for V2 as well. Therefore, tuple will also affect V2. �

Case 1.2: k1 < k2. Consider now the case where the equations of the two views V1
and V2 are still proportional, but k1 < k2 (which means that V1 contains less tuples
than V2). In this case, V1 nucleates V2 and any update affecting V1 will definitely
affect V2 as well.

Corollary If the equation of a view V1(a, k1) is proportional to the equation of a
view V2(a, k2) and k1 < k2,V1 nucleates V2.

Proof According to the above lemma, the top-k1 tuples are exactly the same for both
views. The inverse however, does not always hold. This is because an update oc-
curring in V2 might be affecting the tuples that are ranked below k1 and thus, the
k1 tuples of V1 will not suffer any change. Obviously, if an update occurring in V2
affects the top-k1 tuples then it will affect V1 as well. �



Distrib Parallel Databases (2010) 27: 95–137 117

Fig. 7 Both views are of
proportional equations

Case 2: a1
b1

�= a2
b2

In this situation, the equations of the two views are completely different. In this
case, since the equations of the two views are not proportional, the only piece of in-
formation that can be used in order to conduct a conclusion with respect to the nucle-
ation of the two views is the position of the last tuple of each view. Again, assume two
views V1(ID,X,Y, s1) and V2(ID,X,Y, s2) with k1 and k2 tuples respectively where
score s1 is defined as s1 = a1 · x + b1 · y and s2 is defined as s2 = a2 · x + b2 · y. The
lines that characterize the two views are V1: y = b1 · a−1

1 · x and V2: y = b2 · a−1
2 · x

respectively (see Fig. 8 or Fig. 9). Let tk1 be the last tuple materialized in V1 with
score s1(tk1) and L1 be the line which is vertical to the line of V1 and passes from
point tk1 . The area above the line L1 contains the top-k1 tuples with respect to V1.
Now, take the line L2, which is vertical to V2 and passes through the point tk2 , where
tk2 is the last tuple materialized in V2. The area above line L2 contains points that
belong to V2. In addition, let I denote the point where L1 and L2 intersect.

The position of the intersection point I is critical in regards to the knowledge of
whether updates affecting one view will affect the other view or not. Assume that the
active domains of attributes X and Y are X ∈ [xmin, xmax] and Y ∈ [ymin, ymax]. We
will employ the term active area to refer to the region in which any tuple from relation
R belongs. This is constrained within a rectangle defined by the points (xmin, ymin)

and (xmax, ymax). Checking whether point I lies inside the active area or not can
be easily done when the last tuple of each view is known. Line L1 is expressed as:
a1 ·x +b1 ·y = s1(tk1) and line L2 is expressed as: a2 ·x +b2 ·y = s2(tk2). Therefore,
the coordinates of point I (xI , yI ) can be found by solving the linear system of L1
and L2. Specifically,

xI = (a1 · b2 − a2 · b1)
−1 · (b2 · s1(tk1) − b1 · s2(tk2)) and

yI = (a1 · b2 − a2 · b1)
−1 · (a1 · s2(tk2) − a2 · s1(tk1)).

Depending on the position of where point I lies we have the following cases:
Case 2.1: Point I lies outside of the active area. Point I lies outside of the active

area if at least one of its coordinates xI , yI does not belong in the active domains of X



118 Distrib Parallel Databases (2010) 27: 95–137

Fig. 8 Intersection of two
views outside the active area

Fig. 9 Intersection of two
views inside the active area

and Y respectively. In fact, in case point I lies outside the active area (see Fig. 8), then
all tuples materialized in one view are also materialized in the other view as well. This
situation indicates that whenever an update occurs in V2, this will definitely affect V1

as well. The inverse however is not always true.
In Fig. 8, tuples of V2 also belong in V1 and V2 nucleates V1. In other words, V2 is

a subset of V1 in the sense that any tuple in V2 will be part of V1 but with a different
ranking and score.

Case 2.2: Point I lies inside the active area. Point I lies inside the active area if
both of its coordinates xI , yI belong in the active domains of X and Y respectively.
In case point I lies within the active area, there is no clear guarantee of the way the
views are affected when updates occur. However, there is a sub-area which we refer
to as safe area, where both views will be affected in the same way. Observe Fig. 9,
where the safe area is the convex defined by the points y2, I , x1, R. This area contains
points that both belong in V1 and V2. If an update occurs within this safe area then if
one view is affected then obviously the other view will be affected.



Distrib Parallel Databases (2010) 27: 95–137 119

On the other hand, there are two critical areas where an update might occur and
affect one view but not the other. These two critical areas are the two triangles tr1:
y1y2I and tr2: x1x2I . Assume the relation R is updated with a tuple t that falls within
the triangle tr1. This means that either t is inserted in R and its representation lies
within tr1, or t belonging in tr1 is deleted from R. Then, t will affect V1, but will
leave V2 unaffected. Similarly, if tuple t falls within the triangle tr2, then V2 will
suffer changes whereas V1 will remain unchanged.

Case 2.3: Special case. Assume two views V1(a1, k1) and V2(a2, k2) as the ones
depicted in Fig. 9, where point I is within the active area. The safe area of these two
views is the convex defined by the points: y2, I , x1, R. The main observation that
can be made is that the tuples in the safe area are common and therefore, the two
views share the same set of top-k tuples, k ≤ k1, k2 (although, possibly with different
ordering for each view, since each point in the safe area has a different score for each
of the two views). The areas outside the safe area contain k1 − k and k2 − k tuples for
each view, respectively.

In addition, assume now that both (i) k1 = k2 and (ii) the two critical regions tr1:
y1y2I and tr2: x1x2I are void of tuples. In such a case when an update occurs, a
conclusion can be conducted depending on the type of the update (i.e., insertion or
deletion):

– If the update is a deletion and affects one of the views, then it will definitely affect
the other view.

– However, if an insertion occurs and affects one of the views, then depending on
the position of the insertion the other view might be or not affected. This depends
on whether the insertion lies within the safe area or in one of the non-common
triangles.

5.3.1 Discussion & summary

It is important to stress that the nucleation relationship of the two views is typically
dependent on the specific instances (expect for special cases) and has to be reevalu-
ated each time that updates occur.

Whenever an update occurs that affects at least one of the views, the position of
its respective line (L1 and/or L2) is altered. In fact, when an insertion occurs in at
least one of the views, the position of its respective line is moved towards the upper
right part of the active area (or, infinity, if one chooses to think without active areas).
Similarly, when a deletion occurs in a view, its respective line is moved towards the
beginning of the axes. Therefore, lines L1 and/or L2 should be recomputed after
every update that affects at least one of the views. Consequently, point I should be
recomputed, too. This might also cause the change from the situation where I is
outside the active area to the situation where I is inside the active area and vice
versa.

Combining the above cases the following theorem occurs (the proof is obvious by
referring to the lemmas and discussions of this section).

Theorem Assume two views V1(ID,X,Y, s1) and V2(ID,X,Y, s2) that contain k1
and k2 tuples and have their scores defined as s1 = a1 · x + b1 · y and s2 = a2 · x +



120 Distrib Parallel Databases (2010) 27: 95–137

b2 · y, respectively. In addition, without loss of generality, assume for the slopes of
the lines L1 and L2 that a1

b1
≤ a2

b2
. When updates occur in the relation R and the view

V1 is affected, then, the view V2 will be affected if one of the following holds:

(i) The scoring function of V1 is proportional to the scoring function of V2 and
k1 ≤ k2

(ii) The intersection point I of L1 and L2 lies outside the active area, and L2 is
above L1

(iii) The intersection point I lies inside the active area, critical areas tr1 and tr2 are
void of tuples and updates are only deletions.

(iv) The intersection point I lies inside the active area, critical areas tr1 and tr2 are
void of tuples and insertions occur only within the safe area.

5.4 Updating multiple nucleated views

Assume a relation R(ID,X,Y, . . .) containing initially n tuples. In addition, assume
that our user requirements allow us to structure the updates that occur in R in a batch
way, with �R+,�R− denoting the insertions and deletions of a batch respectively.
Assume a set of m materialized views V = {Vi(ID,X,Y, si)|1 ≤ i ≤ m} where each
view Vi contains ki tuples with score si defined as si = ai · x + bi · y. When updates
occur in R, the set of views V should be maintained appropriately. In a naïve manner,
�R+ and �R− would be checked over each view of the set V. However, if there
are nucleation relationships among them, the update process can be done more effi-
ciently. In this section we describe an algorithm that updates a set of views by taking
advantage of the nucleation relationships among them.

Representation of nucleation relationships as hierarchy paths Assume that there
exist several nucleation relationships among the set of views V. Taking into consid-
eration the nucleation between views, we can construct a number of hierarchy paths
among them. Each hierarchy path will contain the views that are related by nucleation
relationships. As a simple example, assume that V1 nucleates V2 and V2 nucleates V3.
This can be depicted as a hierarchy shown in Fig. 10 where the nucleation relationship
is represented as an ancestor-descendant relationship (i.e., the fact that V1 nucleates
V2 is depicted as V1 being the ancestor of V2). In other words, when a view Vi is an
ancestor of a view Vj in a hierarchy path, all tuple ids of Vi are also contained in the
materialized tuples of Vj at this specific point in time. Following the same example,
the hierarchy path H1 from Fig. 10 indicates that all the tuples materialized in V1
are also materialized in V2 and all tuples materialized in V2 are materialized in V3.
Since, tuples materialized in V1 are also in V2 and all tuples from V2 are materialized
in V3, by induction, all tuples in V1 are also part of the materialized tuples in V3 as
well. Therefore, when an update affects a view that is part of a hierarchy path, then
all its descendants will be affected by this update. On the other hand, if an update is
not affecting the lowest view from a hierarchy path, then it will definitely not affect
any of its ancestors. According to this, we propose a procedure for updating a num-
ber of views based on their nucleation. We need to stress that the relationships are
instance-dependent, i.e., they depend on the contents of the views at a specific time
point and they need to be reevaluated after each update occurs. Also, this explains



Distrib Parallel Databases (2010) 27: 95–137 121

Fig. 10 Hierarchies for efficient
view updates

why we structure our discussion around batches of updates (as opposed to individ-
ual modifications). From the theoretical point of view, individual modifications are a
special case of batch updates; at the same, tuple-at-a-time updates can be an overkill
when compared to the processing of batches.

Before proceeding to the algorithms that update the views of a set V we need
to construct the algorithm that creates the hierarchy paths. Firstly, we describe the
algorithm that constructs the hierarchy paths among the views from set V.

Algorithms How can we create a number of hierarchy paths according to the nucle-
ation relationships for a set of m views V?

First of all, in order to create the hierarchy paths we need to find out whether two
views are connected through a nucleation relationship. Thus, we need to find whether
the intersection point I between two views lies inside or outside of the active area.
The algorithm Check Intersection Point has as input: (a) the characteristics of two ma-
terialized views V1(ID,X,Y, s1)

k1 , with s1 = w1(a1 · x + y) and V2(ID,X,Y, s2)
k2 ,

with s2 = w2(a2 · x + y) where k1 and k2 denote the number of materialized tuples
in V1 and V2 respectively, (b) tk1 and tk2 denoting the last tuple in V1 with score
s1(tk1) and the last tuple in V2 with score s2(tk2) respectively, and, (c) the maximum
and minimum values of attributes X and Y in R. The output of the algorithm is a
distinctive value according to one of the following cases: (a) there is not a nucleation
relationship, (b) V2 nucleates V1, (c) V1 nucleates V2 and (d) V1 and V2 are nucleus
equivalent.

The algorithm first checks whether the intersection point I lies within the active
area or not. In case the point I lies outside of the active area (i.e., there exists a
nucleation relationship between V1 and V2), it calculates which view nucleates which.
In order to decide upon this, we make use of the relative position of the lines L1:
w1(a1 · x + y) = s1(tk1) and L2: w2(a2 · x + y) = s2(tk2) by comparing their slopes.
In case intersection point I lies outside of the active area, the output of the algorithm
is one of the following:

(a) Slope of L1 is smaller than slope of L2
a. Intersection point I lies above and/or left outside of the active area, then V2

nucleates V1
b. Intersection point I lies below and/or right outside of the active area, then V1

nucleates V2



122 Distrib Parallel Databases (2010) 27: 95–137

Fig. 11 Algorithm Check Intersection Point

(b) Slope of L1 is greater than slope of L2

a. Intersection point I lies above and/or left outside of the active area, then V1

nucleates V2

b. Intersection point I lies below and/or right outside of the active area, then V2

nucleates V1

(c) Slopes of L1 and L2 are equal, then V1 and V2 are nucleus equivalent.



Distrib Parallel Databases (2010) 27: 95–137 123

Fig. 12 Algorithm Create Hierarchy paths

Having described the algorithm Check Intersection Point, we can now proceed
with the algorithm that constructs the hierarchy paths among the views. Let the set of
hierarchy paths be denoted as H = {Hj |1 ≤ j ≤ l} where l ≤ m. Each hierarchy path
Hj is a partial order (denoted as ≺) among the views. Consider the hierarchy path H1
depicted in Fig. 10. Then, for views V1,V2, and V3, their partial orders are defined
as: V1 ≺ V2 ≺ V3. The algorithm Create Hierarchy paths initially treats each view
of the set V as a hierarchy path of its own. Then, in an iterative manner, it checks if
nucleation relationships exist among views of hierarchy paths starting from the root
and proceeding top-down. In case there is a partial order between a view of a hierar-
chy path and a view of another hierarchy path (i.e., a view from one hierarchy path
nucleates a view from another hierarchy path), the two hierarchy paths are merged
into a new hierarchy path via the addition of an edge. The algorithm proceeds until
all nucleation relationships are considered.

Now, once the hierarchy paths have been constructed, we can update the views
by taking into consideration the fact that any update not affecting a lower view in a
hierarchy path will not affect any of its ancestors. In fact, the algorithm works in a
bottom up way for every hierarchy path constructed. Initially, we check if the updated
tuples �R+ and �R− of R, affect the lowest views from each hierarchy path. Then,
the set of �R+ tuples are split into two sets: (a) an Ignorable set that contains all the



124 Distrib Parallel Databases (2010) 27: 95–137

Fig. 13 Algorithm Maintain View Updates

tuples from �R+ that do not affect the view, and, (b) an Affecting set that contains all
the rest. In the next step, the algorithm proceeds by checking which updates affect the
immediate ancestor of the previous view. However, there is no need to check every
update from the set �R+. Instead, only updates contained in the Affecting set are
checked. Similarly to the previous step, the Affecting set is now recursively split into
two new sets (a) Ignorable and (b) Affecting. The same procedure is conducted for the
set �R−, where in each step the set of possible updates are split into (a) Ignorable
set and (b) Affecting set. This procedure is repeated for every hierarchy path, until the



Distrib Parallel Databases (2010) 27: 95–137 125

root of the path is reached. In addition, every time a view V is checked and the sets
of Ignorable and Affecting tuples are created, V is updated in regards to the Affecting
set of tuples.

Notice that in the Create Hierarchy Paths algorithm, if a view does not participate
in any hierarchy path, then it creates a hierarchy path of its own. Therefore, there all
views will be eventually refreshed. In other words, in the worst case where no view
nucleates another one, the algorithm is simplified to the naïve algorithm where every
view is checked and maintained.

After each batch of updates has been checked and performed over the views, the
hierarchy paths must be reconstructed. This is due to the fact that when updates occur
in views then their relative positions and therefore, their nucleation relationships, are
altered. In other words, before a new batch of updates is processed, the hierarchy
paths should be appropriately reconstructed. To this end, we execute algorithm Create
Hierarchy Paths.

6 Experiments

In this section, we report on the experimental assessment of (a) the estimation of
the essential view size in order to sustain a high rate of updates and (b) updating
multiple views by making use of the nucleation relationship among them. We start
with presenting the experimental methodology and discuss our findings over the first
set of experiments and then continue by describing the experimental methodology
and results over the second set of experiments.

6.1 Experimental study of sustaining high rate of deletions

Throughout this section we describe the experimental methodology and conclusions
over the proposed method of sustaining a materialized view in the presence of high
deletion rates. Our experimental study has been conducted towards assuring the fol-
lowing two goals:

1. Effectiveness. The first desideratum of the experimental study has been the veri-
fication of the fact that the proposed method can accurately sustain intervals with
high deletion activity in the workload. In other words, the experimental goal was
to verify that a top-k materialized view contains at least k items, in at least 95%
of the cases.

2. Efficiency. The second desideratum of the experimental study has been the estab-
lishment of the fact that the computation of the exact number of auxiliary view
tuples is faster than the computation of refill queries as proposed in the related
literature. As well as the number of auxiliary view tuples is less than the number
proposed in [19].

To achieve the first goal we have estimated kcomp via two methods: (a) without
the fine tuning that uses the rates’ variances (i.e., through formula (5)) and (b) with
this fine tuning (i.e., through formula (6)). For both methods, we have computed the
number of tuples that were deleted from the view, below the threshold of k.



126 Distrib Parallel Databases (2010) 27: 95–137

Table 1 Experimental
parameters Size of source table R

(tuples)
|R| 1 × 105, 5 × 105, 1 × 106, 2 × 106

Size of mat. view
(tuples)

k 5, 10, 100, 1000

Size of update stream
(pct over |R|)

λ 1/1000, 1/100

Deletion rate over
insertion rate (ratio)

D/I 1.0, 1.5, 2.0

In the context of the second goal, we have measured three metrics: (a) the memory
overhead for kcomp and kcomp with tuning, measured as the number of extra tuples that
we need to keep in the view, (b) the time overhead for computing kcomp and kcomp

with tuning as compared to the necessary time to compute the refill queries of [19]
and (c) the time needed to compute the formula for kcomp. Again, we have evaluated
these metrics using both the aforementioned methods.

In all our experiments we have used one relation R(RID,X,Y ) and one view
V (RID, score) with a formula score = 3X + 7Y . The parameters that we have tested
for their effect over the aforementioned measures are: (a) the number of relation tu-
ples, (b) the number of materialized top-k results, (c) the fraction of the delete rate,
over the insertion rate and (d) the percentage of the update stream over the relation
size. We have not altered the time window T in our experiments; nevertheless, this is
equivalent to varying the last parameter (denoted as λ), which measures the amount
of modifications that take place as a percentage of the size of R. In other words, it is
equivalent to increase the modifications number instead of reducing the window size.

We have tested the method over data whose attributes X and Y followed the
Gaussian (with mean μ = 50 and variance σ = 10 for both X, Y ), negative expo-
nential (with a = 1.5 for X and a = 2.0 for Y ) and Zipf distributions (with a = 2.1
for both X, Y ). The notation for the parameters and the specific values that we have
used are listed in Table 1. All the experiments were conducted on a 2.8 GHz Pentium4
PC with 1 GB of memory.

6.1.1 Effectiveness of the method

The effectiveness of the method is demonstrated in Fig. 14 and Fig. 15. We present
results organized by the data distribution of the attributes and compare two methods
for computing kcomp, (a) the method including the fine-tuning part and (b) the method
simply based on formula (5). We have conducted the full range of combinations of
the values listed in Table 1.

In Fig. 14, we fix D/I to 1.5 and k to 1000 (the largest possible value) and vary
the size of R (in the X-axis) and the update stream size (in different lines in the
Figure). Each experiment has been conducted 5 times. We measure both the average
and the maximum number of misses. In Fig. 15 we report only the maximum number
of misses, as it appears to be in analogy with the average in almost all the cases, and
we vary k and D/I , while keeping R fixed to 1M rows and λ to 1%. The findings are
as follows:



Distrib Parallel Databases (2010) 27: 95–137 127

F
ig

.1
4

M
ax

im
um

an
d

av
er

ag
e

m
is

se
s

as
a

fu
nc

tio
n

of
|R

|a
nd

λ



128 Distrib Parallel Databases (2010) 27: 95–137

F
ig

.1
5

M
ax

im
um

m
is

se
s

as
a

fu
nc

tio
n

of
k

an
d

D
/
I



Distrib Parallel Databases (2010) 27: 95–137 129

Fig. 16 Comparison of k, kcomp , and kcomp with tuning

Fig. 17 Comparison of kcomp with tuning and [19]

– The fine tuning method gives 0 losses, and thus describes the bold line lying on top
of the X-axis in Figs. 14 and 15.

– If the fine tuning was not included, misses would have been encountered. In cases
where insertions are close to deletions, the underestimation of the value of kcomp
would lead to potentially important errors (in the Zipf case, errors have come up
to 9 misses which is almost 1% of the top-k view size). The 5% misses that could
be expected after the fine tuning due to the 95% confidence can be attributed to the
size of the update streams; had the update stream been larger, misses would have
occurred.

– It is also interesting how the distribution of data affects the stability of the error
(Gaussian seems to converge, as expected, whereas the Zipf drops when the per-
centage of k is small over R, as the hot values are rather fixed).

Our experimental study has also explored the case of larger workloads of updates
that may occur in the base relation. Specifically, the experiments were conducted by
making use of three different scenarios of possible update workloads. All the scenar-
ios were applied over a database of 1 million records with attributes x and y following
the Gaussian distribution (in any case, the distribution of data does not have an effect
to the effectiveness of the method as our aforementioned experiments have demon-
strated). Every experiment was conducted 100 times in order to eliminate cases where
the actual values of the tuples inserted or the tuples deleted contribute significantly to



130 Distrib Parallel Databases (2010) 27: 95–137

Fig. 18 Size of relation R (|R|) over time as insertions and deletions take place for workload W1 having
a ratio of deletion rate over insertion rate D/I = 1.0

Fig. 19 Size of relation R (|R|) over time as insertions and deletions take place for workload W2 having
a ratio of deletion rate over insertion rate D/I ≈ 2.0

Fig. 20 Size of relation R (|R|) over time as insertions and deletions take place for workload W3 having
a ratio of deletion rate over insertion rate D/I ≈ 0.5

the experimental results. All three workloads contain 91 thousand updates occurring
in the base relation and in all three of them the insertions and deletions do not occur
uniformly. There are peaks and valleys of high insertion and deletion rates throughout
all three scenarios. The first workload (denoted as W1), depicted in Fig. 18, contains
updates where insertions and deletions are of the same size (specifically, 45500 in-
sertions and 45500 deletions). The two other workloads are constructed in order to
test the method to extreme cases. In the second workload (denoted as W2), shown
in Fig. 19, deletions are approximately twice as many as the insertions (specifically,
60700 deletions and 30300 insertions). The third workload (denoted as W3), shown
in Fig. 20, is the inverse of workload W2. Specifically, W3 occurred by replacing in



Distrib Parallel Databases (2010) 27: 95–137 131

Fig. 21 Memory overhead
expressed as the number of
tuples stored in the view

Fig. 22 Average number of
Insertions and Deletions that
affect the top-k tuples in the
view

workload W2 deletions with insertions and vice versa. Thus, W3 constitutes of 60700
insertions and 30300 deletions, having a ratio of deletion rate over insertion rate ap-
proximately equal to 0.5.

In order to assure that a large number of updates will affect the top-k view results,
we have set the parameter k to 1000 tuples. The resulting numbers of tuples that are
either inserted or deleted in the extent of the top-k view are depicted in Fig. 22 for all
the workloads.

For all these three workloads, we have counted the number of misses that occurred
(as a measure of how often we would have to run refill queries) as well as the memory
overhead for kcomp and kcomp with tuning, measured as the number of extra tuples that
we need to keep in the view. Our findings are as follows:

– Concerning the number of misses, the number of missed tuples was exactly zero
for all the three workloads and in each one of the 100 runs of every workload.

– Concerning the memory overheads, the extra tuples that we had to store for the
top-1000 view of our experiments was quite low. The results for kcomp and kcomp
with tuning are shown in Fig. 21 for all three workloads. Observe that in all three
scenarios the number of extra tuples materialized over 1000 tuples, due to the extra
tuning (i.e., the difference of k and kcomp with tuning) does not exceed 188 tuples.
Specifically, the mixed workload W1 requires 137 extra tuples (i.e., a 13.7% in-
crease over k). Workload W2 that is heavy on deletions (and therefore requires a



132 Distrib Parallel Databases (2010) 27: 95–137

provision for a larger kcomp, in order to sustain the high deletion rate) requires an
increase of 18.8% (although the deletion rate is twice as high as the insertion rate).
Workload W3 which is heavy on insertions only requires an increase of 0.89%
over k. In particular, in workload W3, formula (5) gives for kcomp the value of 971
tuples instead of 1000 tuples, due to the high insertion rate in regards to the dele-
tion rate. However, in the experimental setup we have used as kcomp the maximum
value between k and the computed value of kcomp from formula (5).

6.1.2 Efficiency of the method

We compared the values of kcomp without the fine tuning (i.e., through formula (5))
and kcomp tuning with this fine tuning. The comparison of the above values was con-
ducted for all three distributions as well as for all parameters listed in Table 1. Due
to the fact that our formula is independent of the distribution the tuples follow we
only present some indicative results. In Fig. 16, we compare kcomp and kcomp tuning,
(a) as a function of k, where the size of R is 100000 tuples, and, (b) as a function
of the size of R where we have fixed k = 1000. For both of them and for all possi-
ble values of D/I the size of the update stream λ is 1% and the distribution is the
Negative exponential. In Fig. 16(a), the Y -axis denotes the percentage of extra tuples
materialized in regards to the value of k. For instance, when the size of R is set to
100 thousand tuples, the deletion rate over the insertion rate D/I is 1, and k is 1000
tuples, the percentage of extra tuples materialized through kcomp tuning is 3% of k,
i.e., only 30 extra tuples. From both graphs in Fig. 16 we observe that kcomp is slightly
greater than k and kcomp tuning is slightly greater than kcomp in all cases. The number
of the auxiliary tuples in the view (i.e., kcomp and kcomp tuning) in the maximum case
is approximately 1% and 6% respectively. Thus, the number of the auxiliary tuples
does not cause a great extra memory cost.

In Fig. 17, we compare the value of kcomp tuning with the one proposed by [19].
Again, we compare the above (a) as a function of k where the size of R is set to 2M
(the largest possible value) and (b) as a function of R where k is fixed to 100. In both
graphs the distribution is the negative exponential. The parameter D/I = 1, since it is
the only value that can be compared with the proposed method in [19]. We notice that
the number of tuples proposed by [19] is significantly larger than the one proposed in
our method. Thus the memory cost in our method is considerably less.

The second part of our experimental results had to do with the comparison of
the time needed to compute the value of kcomp as compared to the time needed to
re-compute the view as part of a refill query. The method using kcomp results in a
single overhead, the computation of kcomp, and no extra refill queries. We measured
the time necessary to perform the computation of kcomp which has consistently been
negligible (practically 0 in all occasions). On the contrary, refill queries for the view
computation (i.e., without kcomp) incur some extra overhead, depicted in Fig. 23, that
measures the computation time needed for the view computation for a value of k in
microseconds. Based on these measurements we can argue that the benefits from the
computation of kcomp are evident.



Distrib Parallel Databases (2010) 27: 95–137 133

Fig. 23 Time to build the top-k
view (microseconds)

6.2 Experimental study for multiple views updates

In this section we describe the experimental study and findings of maintaining mul-
tiple views by making use of the nucleation relationship among them. The experi-
mental study has focused on proving the correctness and efficiency of the proposed
method. We have implemented the algorithms described in Sect. 5.4 and compared
them with a base method which we refer to as naïve method. The naïve method checks
a batch of updates over each view independently and applies them appropriately. In
order to test the correctness of the proposed nucleation method we have compared
the results of the updated views with the results of applying the updates over each
view independently and the outcome has been absolute identical. Having secured the
correctness of our algorithms’ implementation the rest of the experimental study fo-
cused on proving the efficiency of the proposed method in terms of the time needed
to apply updates over multiple views. Our experiments have demonstrated that, in-
deed when batches of updates are applied to a multitude of top-k views, using the
nucleation relationships is faster than the naïve method. Under the context of prov-
ing the efficiency of the nucleation method, we have measured the time needed to
maintain multiple views in the presence of updates over the base relation, for both
the nucleation and naïve method.

In all our experiments we have used a relation R(RID,X,Y ) where the attribute
values of X and Y were generated randomly from the interval [0,10000]. All the
views needed to be maintained are of the form V (RID,X,Y, score) where score is a
weighted sum over the attributes X and Y . Particularly, the scoring function of the
views is of the form score = wx · X + wy · Y , with the parameters wx and wy being
randomly generated from the interval [0,1]. The parameters that we have tested for
their effect on the efficiency of the view refreshment are: (a) the number of relation
tuples, (b) the maximum number of materialized top-k results within a set of views
expressed as a percentage over the relation size, (c) the number of materialized views



134 Distrib Parallel Databases (2010) 27: 95–137

Table 2 Experimental
parameters Size of source table R

(tuples)
|R| 2 × 105, 3 × 105, 4 × 105

Max size of mat. tuples
(pct over |R|)

max_k 1/100, 1/1000

Number of views M 100, 1000

Size of insertion stream
(pct over |R|)

λ 1/10, 1/100, 1/1000

needed to be maintained and (d) the percentage of the insertion stream over the rela-
tion size. We have kept the fraction of the delete rate, over the insertion rate constant
and equal to 0.5.

The notation for the parameters and the specific values that we have used are listed
in Table 2. All of the experiments were conducted on a 2.53 GHz Core Duo PC with
3.12 GB of memory.

In all the experiments the measure for time is expressed as number of seconds.
The comparison of the time needed for the two methods has been conducted for all
possible combinations of the above parameters listed in Table 2. We run every exper-
iment five times and the results presented here are the average time. In all charts of
Fig. 24 the Y -axis indicates the time needed for the two methods to apply the updates.
The X-axis shows (a) the size of the source table R and (b) the size of the insertion
stream. Specifically, for each possible value of |R| (i.e., 200, 300 and 400 thousand
tuples) X-axis also indicates the stream of insertions for all three possible values (i.e.,
1/10, 1/100 and 1/1000 percentage of |R|). Since, the fraction of the deletion rate
over the insertion rate is set to be 0.5 the number of updates occurring can be cal-
culated as 1.5 times the value of parameter λ, times the value of parameter |R|. The
naïve method is denoted with the darker grey color, whereas the nucleation method
is presented with the lighter grey color. In all charts we can notice that the nucleation
method is faster than the naïve. The title of each chart also clarifies the fixed value of
the parameters M and max_k.

Graphs (a) and (b) in Fig. 24 demonstrate the time needed for applying updates
over a set of 100 views. In these two graphs the maximum number of tuples mate-
rialized in each view expressed as a rate over |R| is 0.1% and 1% respectively. In
graph (a) of Fig. 24 the ratio time between the two methods is not that significant but
still the nucleation method is faster than the naïve method. In graph (b) of Fig. 24
we observe that time needed for nucleation method is approximately half the time
needed for the naïve method. This is due to the fact that the number of views is 100
and in each view the maximum number of tuples materialized is only 200, 300 and
400 respectively for each size of R. In other words, the larger the extent of the views
(due to the size of k), the larger the benefits from the nucleation method are.

In graphs (c) and (d) of Fig. 24 we see the time needed for the two methods over
a set of 1000 views (as opposed to 100 views for the cases of (a) and (b)). The max-
imum value of tuples materialized in each view is set to 0.1% and 1% respectively.
In graph (c) the ratio time between the two methods ranges approximately between
2 and 4. In graph (d), the time needed for the nucleation method is approximately
4 times faster than the naïve method. Again, nucleation scales up much better than
the naïve method. Moreover, if one reads Fig. 24 vertically, one can observe that the



Distrib Parallel Databases (2010) 27: 95–137 135

Fig. 24 Comparison between naive and nucleation method. All graphs show the time of applying updates
as a function of insertion size and |R|

scaling capabilities involve both the extend of the view and the number of materi-
alized views; in fact, the improvements in cases (c) and (d) where a larger number
of views is maintained are significantly higher than the improvements of cases (a)
and (b) where a smaller number of views is maintained.

In all the graphs of Fig. 24 we can observe that the time needed for the naïve
method scales up linearly with respect to the number of updates occurring in the
base relation. Considering the nucleation method the time scales up almost linearly
as well.

7 Conclusions

In this paper we handle the problem of maintaining materialized top-k views and pro-
vide results in two directions. The first problem we have been concerned with has to
do with the maintenance of top-k views in the presence of high deletion rates. We
have provided a principled method that complements the inefficiency of the state of
the art independently of the statistical properties of the data and the characteristics of
the update streams. The method comprises the following steps: (a) a computation of



136 Distrib Parallel Databases (2010) 27: 95–137

the rate that actually affects the materialized view, (b) a computation of the necessary
extension to k in order to handle the augmented number of deletions that occur and
(c) a fine tuning part that adjusts this value to take the fluctuation of the statistical
properties of this value into consideration. The second problem we have been con-
cerned with concerns the case of multiple top-k views and their efficient maintenance
in the presence of updates to their base relation. We have provided theoretical guar-
antees for the establishment of the effect of updates to a certain view, whenever we
know that another view has been updated. We have also provided algorithmic results
towards the maintenance of a large number of views, via their appropriate structur-
ing in a hierarchy of views. Our experimental results demonstrate that the proposed
methods outperform the state-of-the-art and behave well when the problem parame-
ters scale up.

Acknowledgements We would like to thank the anonymous reviewers of the paper for constructive
comments concerning the intuition and the experimental validation of our approach.

References

1. Baikousi, E., Vassiliadis, P.: Tuning the top-k view update process. In: 3rd Multidisciplinary Work-
shop on Advances in Preference Handling (M-Pref 2007), held in conjunction with VLDB 2007,
Vienna, Austria, 23 September 2007

2. Das, G., Gunopulos, D., Koudas, N., Tsirogiannis, D.: Answering top-k queries using views. In: Proc.
of the 32nd VLDB Conference, pp. 451–462, Seoul, Korea, 2006

3. DeGroot, M.H., Schervish, M.J.: Probability and Statistics. Addison-Wesley, Reading (2002)
4. Fagin, R.: Combining fuzzy information from multiple systems. In: Proc. of the 15th ACM Sympo-

sium on Principles of Database Systems, pp. 216–226, Montreal, Canada, 1996
5. Fagin, R.: Fuzzy queries in multimedia database systems. In: Proc. of the 17th ACM Symposium on

Principles of Database Systems, pp. 1–10, Seattle, USA, 1998
6. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci.

66(4), 614–656 (2003)
7. Graefe, G.: Dynamic query evalutation plans: Some course corrections. Bull. Tech. Comm. Data Eng.

23(2), 3–6 (2000)
8. Güntzer, U., Balke, W.-T., Kießling, W.: Optimizing multi-feature queries for image databases. In:

Proc. of the 26th VLDB Conference, pp. 419–428, Cairo, Egypt, 2000
9. Hristidis, V., Papakonstantinou, Y.: Algorithms and applications for answering ranked queries using

ranked views. VLDB J. 13(1), 49–70 (2004)
10. Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER a system for the efficient execution of multi-

parametric ranked queries. In: Proc. of the ACM Special Interest Group on Management of Data
Conference (SIGMOD), pp. 259–270, Santa Barbara, USA, 2001

11. Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32(4), 422–
469 (2000)

12. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible databases. ACM
Trans. Database Syst. (TODS) 29(2), 319–362 (2004)

13. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries over sliding win-
dows. In: Proc. of the ACM Special Interest Group on Management of Data Conference (SIGMOD),
pp. 635–646, Chicago, Illinois, USA, 2006

14. Nepal, S., Ramakrishna, M.V.: Query processing issues in image (multimedia) databases. In: Proc. of
the 15th International Conference on Data Engineering (ICDE), pp. 22–29, Sydney, Australia, 1999

15. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM
Trans. Database Syst. (TODS) 30(1), 41–82 (2005)

16. Schlossnagle, T.: Dissecting today’s Internet traffic spikes. Posted on 15 January 2009 at http://
omniti.com/seeds/dissecting-todays-internet-traffic-spikes

17. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer Science Applications.
Wiley, New York (2002)

http://omniti.com/seeds/dissecting-todays-internet-traffic-spikes
http://omniti.com/seeds/dissecting-todays-internet-traffic-spikes


Distrib Parallel Databases (2010) 27: 95–137 137

18. Vlachou, A., Doulkeridis, C., Norvag, K., Vazirgiannis, M.: On efficient top-k query processing in
highly distributed environments. In: Proc. of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2008, Vancouver, BC, Canada, June 2008

19. Yi, K., Yu, H., Yang, J., Xia, G., Chen, Y.: Efficient maintenance of materialized top-k views. In: Pro-
ceedings of the 19th International Conference on Data Engineering (ICDE), pp. 189–200, Bangalore,
India, 2003

20. Zhao, K., Tao, Y., Zhou, S.: Efficient top-k processing in large-scaled distributed environments. Data
Knowl. Eng. 63, 315–335 (2007)


	Maintenance of top-k materialized views
	Abstract
	Introduction
	Maintaining a single top-k materialized view
	Maintaining a set of top-k materialized views
	Roadmap

	Related work and background
	Efficient maintenance of materialized top-k views YYY-03
	Algorithms for answering top-k queries over databases
	Fagin's algorithm (FA) Fagi96,Fagi98
	Threshold algorithm (TA) FaLN03,GuBK00,NeRa99
	Prefer HrKP01,HrPa04
	Linear programming adaptation of the threshold algorithm LPTA DGKT06
	K-Skyband PTFS05,MoBP06,VDNV08
	View caching Grae00,Koss00,ZhTZ07,VDNV08


	Fine-tuning of views to sustain high update rates
	Formal definition of the problem
	Sketch of the method
	Handling of updates
	Computation of the actual rates that affect V
	Computation of kcomp
	Fine-tuning of kcomp
	Discussion
	Example

	Generalization of the problem
	Formal definition of the problem generalized for more than two attributes
	Formal definition of the problem generalized for non-linear monotonic functions

	Multiple view updates
	Preliminaries & background
	View nucleation
	Updates for nucleated views
	Discussion & summary

	Updating multiple nucleated views
	Representation of nucleation relationships as hierarchy paths
	Algorithms


	Experiments
	Experimental study of sustaining high rate of deletions
	Effectiveness of the method
	Efficiency of the method

	Experimental study for multiple views updates

	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


