896

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. g,

Data Consistency in Intermittently
Connected Distributed Systems

Evaggelia Pitoura, Member, [EEE Computer Society, and_Bharat Bhargava, Fellow, IEEE

Abstract—Mobile computing introduces a new form of distributed computation in which communication is most often intermittent, low-
bandwidth, or expensive, thus providing only weak connectivity. In this paper, we present a replication scheme tailored for such
environments. Bounded inconsistency is defined by allowing controlled deviation among copies located at weakly connected sites. A
dual database interface is proposed that in addition to read and write operations with the usual semantics supports weak read and write
operations. In contrast to the usual read and write operations that read consistent values and petform permanent updates, weak
operations access only local and potentially inconsistent copies and perform updates that are only conditionally committed. Exploiting
weak operations supports disconnected aperation since mobile clients can employ them to continue 1o operate even while
disconnected. The extended database interface coupled with bounded inconsistency offers a flexible mechanism for adapting replica
consistency to the networking conditions by appropriately balancing the use of weak and normal operations. Adjusting the degree of
divergence among copies provides additional support for adaptivity. We present transaction-criented correctness criteria for the
proposed schemes, introduce corresponding serializability-based methods, and outline protocols for their implementation. Then, some
practical examples of their applicability are provided. The performance of the scheme is evaluated for a range of netwotking conditions

NOVEMBER/DECEMBER 1999

and varying percentages of weak transactions by using an analytical model developed for this purpose.

Index Terms—Mobile computing, concurrency control, replication, consistency, disconnected operation, transaction

management, adaptability.

1 INTRODUCTION

DVANCES In telecommunications and in the develop-

ment of portable computers have provided for wireless
communications that permit users to actively participate in
distributed computing even while relocating from one
support environment to another. The resulting distributed
environment is subject to restrictions imposed by the nature
of the networking environment that provides wvarying,
intermittent, and weak connectivity.

In particular, mobile clients encounter wide variations in
connectivity ranging from high-bandwidth, low latency
communications through wired networks to total tack of
connectivity [7], [13], [27]. Between these two extremes,
connectivity is frequently provided by wireless networks
characterized by low bandwidth, excessive latency, or high
cost. To overcome availability and latency barriers and
reduce cost and power consumption, mobile clients most
often deliberately avoid use of the network and thus
operate switching between connected and disconnected
modes of operation. To support such behavior, disconnected
operation, that is the ability to operate disconnected, is
essential for mobile clients [13], [14], [30], [25]. In addition to
disconnected operation, operation that exploits weak con-
nectivity, that is connectivity provided by intermittent, low-
bandwidth, or.expensive networks, is also desirable [20],
[12]. Besides mobile computing, weak and intermittent

e L. Pitourn is with the Department of Computer Science, University of
Toannina, GR 45110 loanuina, Greece. E-mall: pitcura@cs.uolgr.

e B. Bhargaua is with the Depariment of Computer Sciences, Purdue
Universify, West Lafayette, IN 47907. E-mail: bb@cs purdve.cin,

Manuscript received 2 July 1996; revised 19 May 1997, accepled 22 Jan. 1998,
For information on oblaining reprints of this article, please send e-mnil to:
tkde@eompuier.org, and reference IEEECS Log Nuntber 104369.

connectivity also applies to computing using portable
laptops. In this paradigm, clients operate disconnected
most of the time and occasionally connect through a wired
telephone line or upon returning to their working
environment,

Private or corporate databases will be stored at mobile as
well as static hosts and mobile users will query and update
these databases over wired and wireless networks. These
databases, for reasons of reliability, performance, and cost
will be distributed and replicated over many sites. In this
paper, we propose a replication scheme that supports weak
conmnectivity and disconnected operation by balancing
network availability against consistency guarantees.

In the proposed scheme, data located at strongly
conmected sites are grouped together to form clusters.
Mutual consistency is required for copies located at the
same cluster, while degrees of inconsistency are tolerated
for copies at different clusters. The interface offered by the
database management system is enhanced with operations
providing weaker consistency guarantees. Such weak
operations allow access to locally, i.e., in a cluster,
available data. Weak reads access bounded inconsistent
copies and weak writes make conditional updates. The
usual operations, called strict in this paper, are also
supported. They offer access to consistent data and
perform permanent updates.

The scheme supports disconnected operation since users
can operate even when disconnected by using only weak
operations. In cases of weak connectivity, a balanced use of
both weak and strict operations provides for better
bandwidth utilization, latency and cost. In cases of strong
connectivity, using only strict operations makes the scheme
reduce to the usual one-copy semantics. Additional support

1041-4347/99/$10.00 © 1999 |EEE

mailto:bb@'cs.piirdue.edu

PITOURA AND BHARGAVA: DATA CONSISTENCY IN INTERMITTENTLY CONNECTED DISTRIBUTED SYSTEMS 897

for adaptability is possible by tuning the degree of

inconsistency among copies based on the networking

conditions.

In a sense, weak operations offer a form of application-
aware adaptation [21]. Application-aware adaptation char-
acterizes the design space between two extreme ways of
providing adaptability. At one extreme, adaptivity is
entirely the responsibility of the application, that is therc
is no system support or any standard way of providing
adaptivity. At the other extreme, adaptivity is subsumed by
the system, here the database management system. Since, in
general, the system is not aware of the application
semantics, it cannot provide a single adequate form of
adaptation. Weak and strict operations lie in an intermedi-
ate point between these two extremes, serving as middleware
between a database system and an application. They are
tools offered by the database system to applications. The
application can at its discretion use weak or strict transac-
tions based on its semantics. The implementation, consis-
tency control, and the underlying transactional support is
the job of the database management system.

The remainder of this paper is organized as follows. In
Section 2, we introduce the replication model along with an
outline of a possible implementation that is based on
distinguishing data copies into core and quasi. In Sections 3
and 4, we define correctness criteria, prove corresponding
serializability-based theorems, and present protocols for
maintaining weak consistency under the concurrent execu-
tion of weak and strict transactions and for reconciling
divergent copics, respectively. Examples of how the
scheme can be used are outlined in Section 5. In Section 6,
we develop an analytical model to evaluate the perfor-
mance of the scheme and the interplay among its various
parameters. The model is used to demonstrate how the
percentage of weak transactions can be effectively tuned to
attain the desired performance. The performance para-
meters considered are the system throughput, the number
of messages, and the response time. The study is performed
for a range of networking conditions, that is for different
values of bandwidth and for varying disconnection inter-
vals. In Section 7, we provide an estimation of the
reconciliation cost. This estimation can be used for instance
to determine an appropriate frequency for the reconciliation
events. In Section 8, we compare our work with related
research, and we conclude the paper in Section 9 by
summarizing.

2 THe CONSISTENCY MODEL

The sites of a distributed system are grouped together in
sets called physical clusters (or p-clusters) so that sites that
are strongly connected with each other belong to the same
p-cluster, while sites that are weakly connected with each
other belong to different p-clusters. Strong connectivity
refers to connectivity achieved through high-bandwidth
and low-latency communications. Weak connectivity in-
cludes connectivity that is intermittent or low bandwidth.
The goal is to support autonomous operation at each
physical cluster, thus eliminating the need for communica-
tion among p-clusters since such intercluster communica-
tion may be expensive, prohibitively slow, and occasionalty

unavailable. To this end, weak transactions are defined as
access copies at a single p-cluster. At the same time, the
usual atomic, consistent, durable, and isolated distributed
transactions, called strict, are also supported.

2.1 The Extended Database Operation Interface

To increase availability and reduce intercluster commu-
nication, direct access to locally, c.g., in a p-cluster, available
copies is achieved through wenk read (W R) and weak write
{(WW) operations. Weak operations are local at a p-cluster,
i.e., they access copies that reside at a single p-cluster. We
say that a copy or item is locally available at a p-cluster if
there exists a copy of that item at the p-cluster. We call the
standard read and write operations strict read (S12) and strict
wrife (SW) operations. To implement this dual database
interface, we distinguish the copies of each data item as core
and quasi. Core copies are copies that have permanent
values, while guasi copies are copies that have only
conditionally committed values. When connectivity is
restored, the values of core and quasi copies of each data
item are reconciled to attain a system-wide consistent vatue.

To process the operations of a transaction, the databasc
management system translates operations on data items
into operations on copies of these data items. This
procedure is formalized by a translation function h.
Function & maps each read operation on a data item x into
a number of read operations on copies of x and returns one
value (e.g., the most up-to-date value) as the value read by
the operation. That is, we assume that 4 when applied to a
read operation returns one value rather than a set of values.
In particular, maps each S7i[z] operation into a number of
read operations on core copies of & and returns one from
these values as the value read by the operation. Depending
on how each weak read operation is translated, we define
two types of translation functions: a best-gffort translation
function that maps each WR[z] operation into a number of
read operations on locally available core or quasi copies of =
and returns the most up-to-date such value, and a
conservative translation function that maps each weak
readl operation into a number of read operations only on
locally available quasi copies and returns the most up-to-
date such value.

Based on the time of propagation of updates of core
copies to quasi copies, we define two types of translation
functions: an eventual translation function that maps an
SWix] into writes of core copies only and an immediate
translation function that in addition updates the quasi
coptes that reside at the same p-cluster with the core copies
written. For an immediate h, conservative and best-effort
have the same result. Bach WW(z] operation is translated
by h into a number of write operations of local quasi copies
of z. Table 1 summarizes the semantics of operations.

How many and which core or quasi copies are actually
read or written when a database operation is issued on a
data item depends on the coherency algorithm used, e.g,
quorum consensus or ROWA [3].

Users interact with the database system through transac-
tions, that is, through the execution of programs that
include database operations:

898 {EEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11,

NQ. 6, NOVEMBER/DECEMBER 1999

TABLE 1
Vartiations of the Transiation Function

Reads local copies and returns as the value read the most recent one

Weak Read (WR)

Best-effort h:

Reads both core and quasi local copies

Variations

Conservative h:

Reads only local guasi copics

Strict Read (SR)

Reads core copies and returns as the value read the most recent one

Weak Write (WW) Writes local quasi copies

Eventual h;

Wriles only ¢ore copics

Strict Write (SW) Variations

Immediate h:

Writes both corc and quasi copies at the
corregponding p-clusters

Definition 1. A transaction (1} is a partial order (OF, <),
where OP is the set of operations executed by the transaction,
and < represents their execution ovder. The operations include
the following data operations: weak (W R) or strict reads (SR)
and weak (WW) or strict writes (SW), as well as abort (A)
and commit (C) operations. The partial order must specify the
order of conflicting data operations and confains exactly one
abort or commit eperation which is the last in the order, Twe
weak or strict dala operations conflict if they access the same
copy of a data item and at least one of them is a weak or strict
write operation.

Two types of transactions are supported, weak and strict.
A strict transaction {ST) is a transaction whete OP does not
include any weak operations. Strict transactions are atomic,
consistent, isolated and durable. A weak transaction (WT) is
a transaction where OF does not include any strict
operations. Weak transactions access data copies that reside
at the same physical cluster and thus are executed locally at
this p-cluster. Weak transactions are locally committed at
the p-cluster at which they are executed. After local
commitment, their updates are visible only to wecak
transactions in the same p-cluster; other transactions are
not aware of these updates. Local commitment of weak
transactions is conditional in the sense that their updates
might become permanent only after reconciliation when
local transactions may become globally committed. Thus,
there are two commit events associated with each weak
transaction, a local conditional commit in its associated
cluster and an implicit global commit at reconciliation.

Other types of transactions thal combine weak and strict
operations can be envisioned; their semantics, however,
become hard to define. Instead, weak and strict transactions
can be seen as transaction units of some advanced
transaction model. In this regard, upon its submission,
cach user transaction is decomposed into a number of weak
and strict subtransaction units according to semantics and
the degree of consistency required by the application.

2.2 Data Correctness

As usual, a database is a set of data items and a database
state is defined as a mapping of every data item to a valuc of
its domain. Data items are related by a number of
restrictions called integrity constraints that express relation-
ships among their values. A database state is consistent if
the integrity constraints are satisfied [22]. In this paper, we
consider integrity constraints to be arithmetic expressions
that have data items as variables, Consistency maintenance
in traditional distributed environments relies on the
assumption that normally all sifes are connected. This
assumption, however, is no longer valid in mobile comput-
ing since the distributed sites are only intermittently
connected. Similar network conmnectivity conditions also
hold in widely distributed systems as well as in computing
with portable laptops. :

To take into account intermittent connectivity, instead of
requiring maintenance of all integrity constraints of a
distributed database, we introduce logical clusters as units
of consistency. A logical cluster, l-cluster, is the set of all
quasi copies that reside at the same p-cluster. In addition,
all core copies constitute a single system-wide logical
cluster independently of the site at which they reside
physically. We relax consistency in the sense that integrity
constraints are ensured only for data copies that belong to
the same logical cluster. An intracluster integrity constraint
is an integrity constraint that can be fully evaluated using
data copies of a single logical cluster. All other integrity
constraints are called intercluster integrity constraints.

Definition 2. A mobile database stale is consistent if all
intracluster integrity constraints arve satisfied and all inter-
cluster integrity constraints are bounded-inconsistent,

In this paper, we focus only on replication intercluster
integrity constraints. For such integrity constraints,
bounded inconsistency means that all copies in the same
logical cluster have the same value while among copies at
different logical clusters there is bounded divergence [31],

PITOURA AND BHARGAVA: DATA CONSISTENCY N INTERMITTENTLY CONNECTED DISTRIBUTED SYSTEMS 899

TABLE 2
Divergence Among Copies

d isthe:

copies of the item

maximum number of transactions that operaic on quasi copies

range of acceptable values that a data itcm can take

maximum number of copies per data item that diverge from a pre-assigned
primary copy of the item, i.c., the core copies

maximum number of dala items that have divergent copics

maximum number of updates per data item that are not reflected at all

[1]. Bounded divergence is quantified by a positive integer
d, called degree of divergence; possible definitions of d are
listed in Table 2. A replication constraint for » thus bounded
_is called d-consistent. The degree of divergence among
copies can be tuned based on the strength of connection
© among physical clusters, by keeping the divergence small in
instances of high bandwidth availability and allowing for
greater deviation in instances of low bandwidth availability.

Immediate Translation and Consistency. To handle integ-
rity constraints besides replication, in the case of an
immediote. translation function h, k should be defined such
that the integrity constraints between quasi copies in the
same logical cluster arc not violated. The following example
is illustrative.

Example 1. For simplicity, consider only one physical
cluster. Assumie two data items ¢ and y, related by the
integrity constraint x> 0= y >0, and a consistent
database state z, = —1, w, = —1, yo =2, and y, = —1,
where the subscripts ¢ and ¢ denote core and quasi
copies, respectively.

Consider the'transaction program;

x = 10
ify <0
theny =10

If the above program is executed as a strict transaction
SWiz) Si(y) C, we get the database state z, =10,
2y =10, y, =2, and y, = —4 in which the integrity
constraint between the quasi copies of x and y is violated.
Note that the quasi copics were updated because we
considered an immediate translation function.

The problem arises from the fact that quasi copies are
updated to the current value of the core copy without
taking into consideration integrity constraints among them.
Similar problems occur when refreshing individual copies
of a cache [1]. Possible solutions include: 1) Each time a
quasi cepy is updated at a physical cluster as a result of a
strict write, the quasi copies of all data in this cluster related
to it by some integrity constraint are also updated either
after or prior to the execution of the transaction. This update

is done following a reconciliation procedure for merging
core and quasi copies (as in Scction 4} In the above
example, the core and quasi copies of z and y should have
been reconciled prior to the execution of the transaction,
producing for instance the database state x, = -1, x, = —1,
Y. = 2, and y, = 2. Then, the exccution of the transaction
would result in the database statc x, = 10, 2, = 10, y. = 2,
and y, = 2, which is consistent, 2) If a strict transaction
updates a quasi copy at a physical cluster, its read
operations are also mapped into reads of quasi copies at
this cluster. In cases of incompatible reads, again, a
reconciliation procedure is initiated having a result similar
to the one above. 3) Updating quasi copies is postponed by
deferring any updates of quasi coples that result from
writes of the corresponding core copies. A log of weak
writes resulting from strict writes is kept. In this scenario,
the execution of the transaction results in the database state
z, =10, z, = -1, y. = 2, and y, = —4, which is consistent.
The first two approaches may force an immediate reconci-
liation among copies, while the third approach defers this
reconciliation and is preferable in cases of low connectivity
among physical clusters.

3 WEAK CoNNECTIVITY OPERATION

In this section, we provide serializability-based criteria,
graph-based tests and a locking protocol for correct
executions that exploit weak connectivity. When o; is an
operation, the subscript j denotes that ¢ belongs to
transaction j, while the subscript on a data copy identifies
the physical cluster at which the copy is located. Without
loss of generality, we assume that there is only one quasi
copy per physical cluster. This assumption can be easily
lifted but with significant complication in notation. Since all
quasi copies in a physical cluster have the same value, this
single copy can be regarded as their representative. Read
and write operations on copies are denoted by resd and
write, respectively.

A complete intracluster schedule (IAS) is an observation
of an interleaved execution of transactions in a given
physical cluster configuration, that includes (locally) com-
mitted weak transactions and (globally) committed strict
transactions. Formally,

900 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 1999

Definition 3 (Intraclusier schedule). Let 1 = {1y, Ty, ..., T,} be
a set of transactions. A (complete) intracluster schedule, TAS,
over 1 is a pair (OP, <,) in which <, Iz a partial ordering
relation such that

OP = WU, 13) for some translation function h.

2. For each I} and all operations opy, opy in 'L, if opy, <
opy, then every operation in h{opy) is related by <, to
every operation in hiopy).

3. All pairs of confiicting operations are relaled by <, ,
where two operations conflict if they gecess the same
copy and one of them is a write operation.

4. Tor all rend operations, read;[x;], there is at lenst one
writeg|;] such thal writey[a;] <, read;[a].

5. If SWile] <; SIy|z] and read;(x;) € h(SR;lz]), then
write) € h{(SW[x]).

6. If writej[xi] € R(SW;l]) for some strict transaction
Ty, then write;ly] € WSWilyl), for all y writien by
T, for wihich there is a y; af physical cluster Cly, where
@; @5 4 quasi copy when L is conservative and any,
quasi or core, copy wher h is best effort.

Condition 1 states that the transaction managers translate
each operation on a data item into appropriate operations
on data coples. Condition 2 states that the intracluster
schedule preserves the ordering <«; stipulated by cach
transaction 77 and Condition 3 that it also records the
execution order of conflicting operations. Condition 4 states
that a transaction cannot read a copy unless it has been
previously initialized. Condition 5 states that, if a transac-
tion writes a data itom z before it reads x, then it must write

to the same copy of = that it subsequently reads. Finally,

Condition 6 indicates that for a strict transaction, if a write
is translated to a writc on a core copy at a physical cluster
Cl; then all other writes of this transaction must also write
any corresponding copies at this cluster, This condition is
necessary for enguring that weak fransactions do not see
partial results of a strict transaction.

A read operation on a data item z reads-x-from a
transaction 7, if it reads (i.e., returns as the value rcad) a
copy of « written by I} and no other transaction writes this
copy in between. We say that a transaction 1} has the same
reads-from relationship in schedule 57 as in schedule S if,
for any data item x, T; reads-z-from T} in 5, then it reads-z-
from 7% in Ss. Given a schedule S, the projection of S on strict
transactions is the schedule obtained from S by deleting all
weak operations, and the projection of S on a physical cluster

2l is the schedule obtained from &S by deleting all
operations that access copies not in Cl. Two schedules
are conflict equivalent if they are defined over the same set of
transactions, have the same set of gperations and order
conflicting operations of committed transactions the same
way [3]. A one-copy schedule is the single-copy interpreta-
tion of an (intracluster) schedule where all operations on
data copies are represented as operations on the corre-
sponding data item.

3.1 Correctness Criterion ‘
A correct concurrent execution of weak and strict transac-
tions must maintain bounded-inconsistency. First, we

consider a weak form of correctness, in which the only
requirement for weak transactions is that they read
consistent data. The requirement for strict transactions is
stronger, because they must produce a system-wide
consistent database state. In particular, the execution of
strict transactions must hide the existence of multiple core
coples per item, i.e., it must be view-equivalent to a one-
copy schedule [3]. A replicated-copy schedule § is view-
equivalent to a one-copy scheduleS: . if 1) S and 51 have the
same reads-from relationship for all data items, and 2} for
each final write WR(x) in 8¢, write;(z;) is a final write in
S for some copy z; of x These requirements for the
execution of strict and weak transactions are expressed in
the following definition:

Definition 4 (IAS weak correctness). An infracluster schedule
Sras 18 weakly correct iff all the following three conditions are
satisfied:

1. All transactions in Srag have a consistent view, i.e., all
infegrity constraints that can be evaluated using the
data read are valid;

2. There is a one copy serial schedule S such that: a) it is
defined on the same sel of strict transactions as Sias,
b) strict transactions in S have the spme reads-from
relationship as in Sras, and c) the set of final writes in
S is the same as the set of final writes on core copies in
Sras; and

3. Bounded divergence among copies at different logical
clusters is maintained.

Next, we discuss how to enforce the first two conditions.
Protocols for bounding the divergence among copies at
different logical clusters are outlined at the end of this
section. A schedule is one-copy serializable if it is equivalent
to a serial one-copy schedule, The following theorem
defines correctness in terms of equivalence to serial
executions.

Theorem 1. Given that bounded divergence among copies at
different logical clusters is maintained, if the projection of
an intracluster schedule S on strict transactions is one-
capy scrinlizable and each of ifs projections oi a physical
cluster is conflict-equivalent to a serial schedule, then S is
weakly correct., '

Proof. Condition 1 of Definition 4 is guaranteed for strict
transactions from the requircment of one-copy serial-
izability since strict transactions get the same view as in a
one-copy serial schedule and read only core copies. For
weak transactions at a physical cluster, the first condition
is provided from the requirement of serializability of the
projection of the schedule on this cluster given that the
projection of each (weak or strict) transaction on the
cluster satisfies all intracluster integrity constraints when
executed alone. Thus, it suifices to prove that such
projections maintain the intracluster integrity con-
straints. This trivially holds for weak transactions, since
they are local at a physical cluster. The condition also
holds for strict transactions since, if a strict transaction
maintains consistency of all database integrity con-
straints, then its projection on any cluster also maintains
the consistency of intracluster integrity constraints as a

PITOURA AND BHARGAVA: DATA CONSISTENCY IN INTERMITTENTLY CONNECTED DISTRIBUTED SYSTEMS 801

consequence of Condition 6 of Definition 3. Finally, one
copy serializability of the projection of strict transactions
suffices to guarantee Conditions 2b and 2c since strict
transactions read only core copies and weak transactions
do not write core copies, respectively. O

Note, that intercluster integrity constraints other than
replication constraints among quasi copies of data items
at different clusters may be violated. Weak transacticns
however are unaffected by such violations, since they read
only local data. Although, the above correciness criterion
suffices to ensure that each weak transaction gets a
consistent view, it does not suffice to ensure that weak
transactions at different physical clusters get the same view,
even in the absence of intercluster integrity constraints. The
following example is illustrative.

Example 2. Assume two physical clusters Cly = {z,y} and
Cly = {w, 2,I} that have both quasi and core copies of
the corresponding data items, and the following two
strict transactions STy = SWi[z] SWi[w]Cr and 5T =
SWy [y]SWalz)SRa[z]Ch. In addition, at cluster Cli we
have the weak transaction WTy = WhRs|z] WERsly] Cs,
and at cluster Cl; the weak transactions WTy = WRy[7]
WWyjl] C,, and WT; =WRs[w] W[l Cs. For
simplicity, we do not show the transaction that
initializes all data copies. We consider an immediate
and best effort translation function k. For notational
simplicity, we do not use any special notation for the
core and quasi copies, since which copies are read is
inferred by the translation function.

Assume that the execution of the above transactions
produces the following schedule which is weakly correct:

5 =W Ry [w]SW, [z]W Rs[z] SW, [w]|C1.SWaly] SWs 2]

The projection of § on strict transactions is: SW,[x]
SWilw] C1 SWaly] SWa[z] Cy, which is equivalent to the
18R schedule: SWl [.’,L‘] SW1 ['w] 01 SWg[y] SWQ[Z] Og.

The projection of § on Cly: SWhlx] Whs[z] C1 SWaly]
SRylx] WRay| Cs is serializable as ST) — ST — Wi

The projection of § on Cly: W Rs[w] SW)[w] €7 SWo[2]
Cg WR4[Z] WW.«][” 04 WRam 05 is serializable as
STQ - WT] i WT5 - ST[.

Thus, weak correctness does not guarantee that there
is @ serial schedule equivalent to the intracluster schedule
as a whole, that is, including all weak and strict
transactions. The following is a stronger correctness
criterion that ensures that all weak transactions get the
same consistent view. Obviously, strong correctness
implies weak correctness.

Definition 5 (IAS strong correctness). An intracluster schedule
8 is strongly correct iff there is a serial schedule Sg such that

1. 8g is conflict-equivalent with S;
2. There is a one-copy schedule Sio such that a) strict
transactions in Sg have the same regds-from

relationship as in Syo and b) the set of final writes
on core copies in Sg is the same as in Syg; and

3. Bounded divergence among copies af different logical
clusters is maintained.

Lemma 1. Given that bounded divergence among copies at
different logical clusters is maintained if the projection of an
intracluster schedule S ds conflict-equivalent fo a sevial
schedule Sy and its projection on strict transactions is view
equivalent to a one-copy serial schedule S1¢ such that the order
of transactions in Sg is consistent with the order of
transactions in Si¢, S is strongly correct,

Proof. We need to prove that in Sy strict transactions have
the same reads-from and final writes as in S5 which is
straightforward since sirict transaction only read data
produced by strict transactions and core copies are
written only by strict transactions. 0

Since weak transactions do not conflict with weak
transactions at other clusters directly, the following is an
equivalent statement of the above lemma:

Corollary 1. Given that bounded divergence among copies at
different logical clusters is maintained, if the projection of an
intracluster schedule S on sivict transactions is view
equivalent to a one-copy serial schedule Syc, and each of its
projections on a physical cluster Cl; is conflict-cquivalent fo
a serial schedule Ss, such that the ovder of transactions in Ss,
is consistent with the order of transactions in Sic, S is
strongly correct.

If weak IAS correctness is used as the correctness
criterion, then the transaction managers at each physical
cluster must only synchronize projections on their cluster.
Global control is required only for synchronizing strict
transactions. Therefore, no control messages are necessary
between transaction managers at different clusters for
synchronizing weak transactions. The proposed scheme is
flexible, in that any coherency control method that
guarantees one-copy serializability (e.g., quorum consensus
or primary copy} can be used for synchronizing core copies.
The scheme reduces to one-copy serializability when only
strict transactions are used.

3.2 The Serialization Graph

To determine whether an 7AS schedule is correct, we use a
modified serialization graph, that we call the intracluster
seriglization graph (IASG) of the TAS schedule. To construct
the TASG, first a replicated data serialization graph (5G) is
built that includes all strict transactions. An 5G [3] is a
serialization graph augmented with additional edges to
take into account the fact that operations on different copies
of the same data item may also create conflicts. Acyelicity of
the 8G implies one-copy serializability of the corresponding
schedule. Then, the SG is augmented to include weak
transactions as well as edges that represent conflicts
between weak transactions in the same cluster and wealk
and strict transactions. An edge is called a dependency edge if
it represents the fact that a transaction reads a value

02 |IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11,

produced by another transaction. An edge is called a
precedence edge if it represents the fact that a transaction
reads a value that was later changed by another transaction.
1t is easy to see that in the IASG there are no edges between
weak transactions at different clusters since weak transac-
tions at different clusters read different copies of a data
item. In addition:

Property 1. Lei WT; be a weak transaction at cluster Cl; and ST
a strict transaction. The IASG graph induced by an IAS may
include only the following edges between them:

o adependency edge from ST to W1 aml
o g precedence edge from W1 to ST.

Proof. The proof is straightforward since the only conflicts
between weak and strict transactions are due to strict
writes and weak reads of the same copy of a data
item. a

Theorem 2. Let Syag be an intracluster schedule. If S;as has an
acyclic TASG, then 5149 is strongly correct,

Proof. When a graph is acyclic then each of its subgraphs
is acyclic, thus the underlying 5G on which the TASG
was built is acyclic. Aeyclicity of the SG implies one-copy
serializability of strict transactions, since strict transac-
tions only read values produced by strict transactions.
Let 7y,75,...,7, be all transactions in Sy4g. Thus,
T,Ty,...,T, are the nodes of the JASG. Since IASG is
acyclic it can be topologically sorted. Let T3, T3, ..., T5,
be a topological sort of the edges in IASG, then by a
straightforward application of the serializability theo-
rem [3], S7as is conflict equivalent to the serial schedule
Ss¢=T,,T%,..., ;.. This order is consistent with the
partial order induced by a topological sorting of the 8G,
allowing Sy to be the serial schedule corresponding to
this sorting. Thus, the order of transactions in Sy is
consistent with the order of transactions in S\¢. O

3.3 Protocols

Serializability. We distinguish between coherency and
concurrency control protocols. Coherency control ensures
that all copies of a data item have the same value. In the
proposed scheme, we must maintain this property
globally for core and locally for quasi copies. Concur-
rency control ensures the maintenance of the other
integrity constraints, here the intracluster integrity con-
straints. For coherency contrel, we assume a generic
quorum-based scheme [3]. Each strict transaction reads ¢,
core copies and writes g, core copies per strict read and
write operation. The values of g, and ¢, for a data item =
are such that ¢ + ¢, > ng, where ng is the number of
available core copies of 2. For concurrency controi we
use strict two phase locking, where each transaction
releases its locks upon commitment [3]. Weak transac-
tions release their locks upon local commitment and strict
transactions upon global commitment. There are four lock
modes (Wi, WW, SR, SW) corresponding to the four
data operations. Before the execution of each operation,

NOC. 6, NOVEMBER/DECEMBER 1599

WR | Ww | SR | sw WR | WW | SR | Sw
WR X X X WR X X
WW x X Ww X x
SR % x X SR X x X
Sw | x X Sw X

(a) (b)

WR | WW SRO| SW WR | WW SR | 8w
WR X x X WR X X
WW X WW 2
SR x X X SR X % b
SW X SwW

(<) {d)

Fig. 1. Lock compatibility matrices. A X entry indicates that the lock
modes are compatible. (a) Eventual and conservative h. (b) Eventual
and best effort k. {c) Immediate and conservative h. (d) Immediate and
hest effort .

the corresponding Jock is requested. A lock is granted
only if the data copy is not locked in an incompatible
lock mode, Fig. 1 depicts the compatibility of locks for
various types of franslation functions and is presented to
demonstrate the interference between operations on
items. Differences in compatibility stem from the fact
tHe operations access different kinds of copies. The basic
overhead on the performance of weak transactions
imposed by these protocols is caused by other weak
transactions at the same cluster. This overhead is small,
since weak transactions do not access the slow network.
Strict transactions block a weak transaction only when
they access the same quasi copies. This interference is
limited and can be controlled, e.g., by letting in cases of
disconnections, strict transactions access only core copies
and weak transactions access only quasi copies.
Bounding divergence among copies. At each p-cluster,
the degree for each data item expresses the divergence of
the local quasi copy from the value of the core copy. This
difference may result either from globally uncommitted
weak writes or from updates of core copies that have not
yet been reported at the cluster. As a consequence, the
degree may be bounded by either limiting the number of
weak writes pending global commitment or by controlling
the & function. In Table 3, we outline ways of maintaining
d-consistency for different ways of defining d.

4 A CONSISTENCY RESTORATION SCHEMA

After the execution of a number of weak and strict
transactions, for each data item, all its core copies have
the same value, while its quasi copies may have as many
different values as the number of physical clusters.
Approaches to reconciling the various values of a data
item so that a single value is selected vary from purely
syntactic to purely semantic ones [5]. Syntactic ap-
proaches use serializability-based criteria, while semantic
approaches use either the semantics of transactions or the

PITOURA AND BHARGAVA: DATA GONSISTENCY IN INTERMITTENTLY CONNECTED DISTRIBUTED SYSTEMS 203

TABLE 3
Maintaining Bounded Inconsistency

Definition of divergence (d):

Applicable method:

The maximum number of iransactions

that operaic on quasi copics

Appropriately bound the number of weak transactions at
cach physical cluster. In the case of a dynamic cluster
reconfiguration, the distribution of weak transactions at cach

cluster must be re-adjusted.

A range of acceplable values a data item
can lake

Allow only weak writes with values inside the ncceptable range.

The maximmm wmber of diverpent copics
per data item

For cach data item, bound the number of physical clusters that can

have quasi copies.

The maximum mumber of data items that

have divergent copics

Bound the number of dala items that can have quasi copies.

The maximum number of updates per data

item not reflecled at all copies

Deline h so that each sirict wrile modifics the quasi copies at each
physical clusier at least after d updates. Note, that this cannot be
cnsured for disconnected clusters, since there is no way of nolifying

them for remeote updatos.

semantics of data items. We adopt a purely syntactic and
thus application-independent approach. The exact point
when reconciliation is initiated depends on the applica-
tion requirements and the distributed system character-
istics. For instance, reconciliation may be forced to keep
inconsistency inside the required limits. Alternatively, it
may be initiated periodically or on demand upon the
occurrence of specific events, such as the restoration of
network connectivity, for instance when a palmtop is
plugged-back to the stationary network or a mobile host
enters a region with good connectivity.

4.1 Correctness Criterion

Our approach for reconciliation is based on the following
rule: A weak transaction becomes globally commited if
the inclusion of its write operations in the schedule does
not violate the one-copy serializability of strict transac-
tions. That is, we assume that weak transactions at
different clusters do not interfere with each other even
after reconciliation, that is weak operations of transac-
tions at different clusters never conflict. A (complete)
intercluster schedule, IES, models execution after reconci-
liation, where strict transactions become aware of weak
writes, i.e., weak transactions become globally committed.
Thus, in addition to the conflicts reported in the
intracluster schedule, the intercluster schedule reports
all relevant conflicts between weak and strict operations.
In particular:

Definition 6 (Infercluster schedule). An intercluster schedule
(IES) Srre bosed on an intracluster schedule Syag = (OF,
<,) is a pair (OP', <,) where:

I. OP' =0OP, and for any op, and op, e OP', if
op; <q 0p; i Sias, then op; <, opy in Sius, n
addition:

2. For each pair of weak write op; = WW[x] and
strict read op; = SIy[al operations, either for all
pairs of operations, cop; € hiop;) and cop; € hiop;),
cop; <, COpy OF COpy <, COPy;

3. For each pair of weak write op; = WWlx] and
strict write op; = SWjlx] operations, cither for all
pairs of operations, cop; € h{op;) and cop; € hop;),
cop; <, €Op; OF COPy <o COP;.

We extend the reads-from relationship for strict
transactions so that weak writes are taken into account.
A strict read operation on a data item x reads-z-from a
transaction 7} in an IES schedule, if it reads a copy of =
and T, has written this or any quasi copy of x and no
other transaction wrote this or any quasi copy of 2 in
between. A weak write is acceptable as long as the
extended reads-from relationship for strict transactions is
not affected, that is strict transactions still read wvalues
produced by strict transactions. In addition, correctness
of the underlying 1AS schedule implies one-copy serial-
izability of strict transactions and consistency of weak
transactions.

904 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11,

NQ. 6, NOVEMBER/DEGEMBER 1999

Per dara item

else

Until there are no cyeles in the IRSG

rollback a weak transaction W1 in the cycle
rollback all exact trapsactions related with a dependency edge to W1

If'the final write is on a core copy
propagate this valie to all guast copies

chonse avalue af a guasi copy
prapagate this value to il core and quast coples

Fig. 2. The reconciliation steps.

Definition 7 (IES correciness). An intercluster schedule is
correct iff

1. It is based on a correct TAS schedule Srag, and

2. The reads-from relationship for strict transactions is
the sawe with their reads-from relationship in the
Sias.

4.2 The Serialization Graph

To determine correct 115 schedules, we define a modified
serialization graph that we call the intercluster serialization
graph (IESG). To construct the IESG, we augment the
serialization graph IASG of the underlying intracluster
schedule. To force conflicts among weak and strict
transactions that access different copies of the same data
item, we induce

e First, a write order as follows: If 7; weak writes and
Ty strict writes any copy of an item z then either
Ti—Tyor T, — T ; and ‘

e then, a strict read order as follows: if a strict
transaction 57} reads-x-from ST; in S;45 and a weak
transaction WT' follows ST;, we add an edge
ST; — W

Theorem 3. Let Sigs be an IES schedule based on an IAS
schedule Syas. If Srrs has an acyclic TESG, then Sigs
is correct, ‘

Proof. Clearly, if the IESG graph is acyclic, the corre-
sponding graph for the IAS is acyclic (since to get the
IESG we only add edges to the IASG) and thus the IAS
schedule is correct. We shall show that if the graph is
acyclic, then the reads-from relationship for strict
transactions in the intercluster schedule Srgg is the
same as in the underlying intracluster schedule Sp4s.
Assume that ST} reads-x-from ST, in Srig. Then
ST; — ST;. Assume for the purposes of contradiction,
that ST} reads-x-from a weak transaction W7T. Then WT'
writes x in Sipg and since S7; also writes x either a)
ST, - WT, or b) WT — 8T;. In case a, from the
definition of the TESG, we get §T; — WT, which is a
contradiction since 57; reads-x-from WT. In case b,
WT — 8T, that is WT precedes 51; which precedes
5T, which again contradicts the assumption that S7;
reads-x-from WT. O

4.3 Protocol :

To get a correct schedule we need to break potential cycles
in the IES graph. Since to construct the IESG, we start from
an acyclic graph and add edges between a weak and a strict
transaction, there is always at least one weak transaction in
each cycle. We rollback such weak transactions. Undoing a
transaction 7' may result in cascading aborts of transactions
that have read the values written by T that is, transactions
that are related to 7' through a dependency edge. Since
weak transactions write only quasi copies in a single
physical cluster and since only weak transactions in the
same cluster can read these quasi copies, we get the
following lemma:

Lemma 2. Only weak transactions in the same physical cluster
read values written by weak transactions in that cluster.

The above lemma ensures that when a weak transaction
is aborted to resolve conflicts in an intercluster schedule,
only weak transactions in the same p-cluster are affected. In
practice, fewer transactions ever need to be aborted. In
particular, we need to abort only weak transactions whose
output depends on the exact values of the data items they
read. We call these transactions exact, Most weak transac-
tions are not exact since by definition, weak transactions are
transactions that read local d-consistent data. Thus, even if
the value they read was produced by a transaction that was
later aborted, this value was inside an acceptable range of
inconsistency and this is probably sufficient to guarantee
their correctness.

Detecting cycles in the IESG can be hard. The difficulties

arise from the fact that between transactions that wrote a
data item an edge can have any direction, thus resulting in
polygraphs [22]. Polynomial tests for acyclicity are possible,
if we make the assumption that transactions read a data
item before writing it. Then, to get the IES graph from the
IAS graph, we need only:

e Induce a read order as follows: If a strict
transaction $T reads an item that was written by
a weak transaction W7, we add a precedence
edge S1'— W7
Fig. 2 outlines the reconciliation steps.

PITOURA AND BHARGAVA: DATA CONSISTENCY IN INTERMITTENTLY CONNECTED DISTRIBUTED SYSTEMS

5 DISCUSSION

In the proposed hybrid scheme, weak and strict transactions
coexist. Weak transactions let users process local data thus
avoiding the overhead of long network accesses. Strict
transactions nced access to the network to guarantee
permanence of their updates. Weak reads provide users
with the choice of reading an approximately accurate value
of a datum in particular in cases of total or partial
disconnections. This value is appropriate for a variety of
applications that do not require exact values. Such applica-
tions include gathering information for statistical purposes
or making high-level decisions and reascning in expert
systems that can tolerate bounded uncertainty in input data.
Weak writes allow users to update local data without
confirming these updates immediately. Update validation
is delayed until the physical clusters are connected. Delayed
updates can be performed during periods of low network
activity to reduce demand on the peaks. Furthermore,
grouping together weak updates and transmitting them as a
block rather than one at a time can improve bandwidth
usage. lor example, a salesperson can locally update many
data items, till these updates are finally confirmed, when
the machine is plugged back to the network at the end of the
day. However, since weak writes may not be finally
accepted, they must be used ounly when compensating
transactions are available, or when the likelihood of
conflicts is very low. For example, users can employ weak
transactions to update mostly private data and strict
transactions to update frequently used, heavily shared data.

The cluster configuration is dynamic. Physical clusters
may be explicitly created or merged upon a forthcoming
disconnection or connection of the asscciated mobile clients.
To accommaodate migrating locality, a mobile host may join
a different p-clustér upon entering a new support environ-
ment. Besides defining clusters based on the physical location
of data, other definitions arc also possible. Clusters may be
defined based on the semantics of data or applications.
Information about access palterns, for instance in the form
of a user’s profile that includes data describing the user’s
typical behavior, may be utilized in determining clusters.
Some examples follow.

Example 1 (Cooperative environment). Consider the case of
users working on a common project using mobile hosts.
Groups are formed that consist of users who work on
similar topics of the project. Physical clusters correspond
to data used by people in the same group who need to
maintain consistency among their interactions. We
consider data that are most frequently accessed by a
group as data belonging to this group. At each physical
cluster (group), the copies of data items belonging to the
group are core copies, while the copies of data items
belonging to other groups are quasi. A data item may
belong to more than one group, if more than one group
frequently accesses it. In this case, core copies of that
data item exist in all such physical clusters. In cach
physical cluster, operations on items that do not belong
to the group are wecak, while operations on data that
belong to the group are strict. Weak updates on a data

905

item are accepted only when they do not conflict with
updates by the owners of that data item,

" Example 2 (Caching). Clustering can be used to model
caching in a client/server architecture, In such a setting,
a mobile host acts as a client interacting with a server at a
fixed host. Data are cached at the client for performance
and availability. The cached data are considered quasi
copies. The data at the fixed host are core copies.
Transactions initiated by the server are always strict.
Transactions initiated by the client that invoke updates
are always weak, while read-only client transactions can
be strict when strict consistency is required and weak
otherwise. At reconciliation, weak writes are accepted
only if they do not conflict with strict transactions at
the server. The frequency of reconciliation depends on
the user consistency requirements and on networking
conditions.

Example 3 (Caching Location Data). In mobile computing,
data representing the location of a mobile user are fast-
changing. Such data are frequently accessed to locate a
host. Thus, location data must be replicated at many sites
to reduce the overhead of scarching. Most of the location
copies should be considered quasi. Only a few core
copies are always updated to reflect changes in location.

6 QUANTITATIVE EVALUATION OF WEAK
CONSISTENCY

To quantify the improvement in perfermance attained by
sacrificing strict consistency in weakly connected environ-
ments and understand the interplay among the various
parameters, we have developed an analytical model. The
analysis follows an iteration-based methodology for cou-
pling standard hardware resource and data contention as in
[39]. Data contention is the result of concurrency and
coherency control. Resources include the network and the
processing units. We generalize previous results to take into
account a) nonuniform access of data, that takes into
consideration hotspots and the changing locality, b} weak
and strict transaction types, and c) various forms of data
access, as indicated by the compatibility matrix of Fig. 1. An
innovative feature of the analysis is the employment of a
vacation system to model disconnections of the wireless
medium. The performance parameters under consideration
are the system throughput, the number of messages sent,
and the response time of weak and strict transactions. The
study is performed for a range of networking conditions,
that is, for different values of bandwidth and varying
disconnection intervals.

6.1 Performance Mode!

We assume a cluster configuration with » physical clusters
and a Poisson arrival rate for both queries and updates. Let
Aq and A, respectively, be the average arrival rate of queries
and updates on data items initiated at each physical cluster.
- We assume fixed length transactions with N operations on
data items, N, = [A,/ (A, 4+ A)]N of which are queries and
N, = [A /(A + AN are updates. Thus the transaction rate,
i.e., the rate of transactions initiated at cach p-cluster, is
Ay = Auf Ny

906 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11,

Let ¢ be the consistency factor of the application under
consideration, that is, ¢ is the fraction of the arrived
operations that are strict. To model hotspots, we divide
data at each p-cluster into hot and cold data sets. Let D be
the number of data items per p-cluster, [J, of which are cold
and 7, hot. To capture locality, we assume that a fraction o
of transactions exhibit locality, that is they access data from
the hot set with probability & and data from the cold set
with probability 1 — h. The remaining transactions access
hot and cold data uniformly. Due to mobility, a transaction
may move to a different physical cluster and thus the data it
accesses may no longer belong to the hot data of the new
cluster. This can be modeled by letting v diminish. Locality
is taken advantage of by the replication scheme by
assuming that the probability that a hot data has a core
copy at a p-cluster is /, and that a cold data has a core copy
is I, where normally I < {. Let g be the probability that an
operation at a cluster accesses a data item for which there is
a core copy at the cluster:

(1 =a)(I DY/ D+ () /D).

For-simplicity, we assume that there is one quasi copy of
each data item at each p-cluster. Let g, be the read and g,
the write quorum and Nz be the mean number of
operations on data copics per strict transaction. The
transaction model consists of n; + 2 states, where 1y, is
the random variable of items accessed by the transaction
and N, its mean. Without loss of generality, we assume that
Ny is equal to the number of operations. The transaction has
an initial setup phase, state 0. Then, it progress to states
1,2,..., ny in that order. If successful, at the end of state ny,
the transaction enters into the commit phase at state n;41.
The transaction response time 7., can be expressed as

pr=ofhl+ (1 =W+

Tl

Tirans = Tinpd, -+ T+ Truyg + tmmﬂ_’it,
g=1

(A)

where n,, is the number of lock waits during the run of the
transaction, r,, is the waiting time for the jth lock
contention, rp is the sum of the execution times in states
L,2,...,n;, excluding lock waiting times, rijyrp is the
execution time in state 0, and ¢y, 15 the commit time to
reflect the updates in the database.

6.1.1 Resotrce Contention Analysis

We model clusters as M/G/1 systems. The average service
time for the various types of requests, all exponentially
distributed, can be determined from the following para-
meters: the processing time, ,, of a query on a data copy,
the time #, to install an update on a data copy, and the
overhead time, #,, to propagate an update or query to
another cluster. In each M/G/1 server, all requests arc
processed with the same priority on a first-come, first-
served basis. Clusters become disconnected and recon-
nected. To capture disconnections, we model each connec-
tion among two clusters as an M/M/1 system with
vacations. A vacation system is a system in which the
server becomes unavailable for occasional intervals of time.
If W is the available bandwidth between two clusters and if
we assume exponentially distributed packet lengths for

NO. 8, NOVEMBER/DEGEMBER 1999

messages with average size m then the service rate s, is
equal to W/m. Let t, be the network transmission time.

Number of Messages, The total number of messages
transmitted per second among clusters is:

M = 2ne[A(pilgr — 1) + (1 — pr)a.)
+ A:L(pl(q'm - J—) + (1 7pl)(1w)]-

The first term corresponds to query traffic; the second, to
update traffic.

Execution Time. For simplicity, we ignore the commu-
nication overhead inside a cluster, assuming either that
edch cluster consists of a single node or that the commu-
nication among the nodes inside a cluster is relatively fast.
Without taking into account data contention, the average
response time for a weak read on a data item is R = w + 1,
and for a weak update RY = w + ¢,, where w is the average
wait time at each cluster. Tet b, be 0 if ¢.=1 and 1
otherwise, and b, be 0 if ¢, = 1 and 1 otherwise. Then for a
strict read on a data item

Ry = il g + (@ = 1)ty + b (26 + £, + w)]
0 o v)

and for a strict write

Ri = [’LU + it + (Q!H -]-)tb + bu'(Qtr + .+ w)]
+ (] - pl)(%utb + 26+, + ‘LU).

The computation of w is given in the Appendix,

Average Transmission Time. The average transmission
time ¢, equals the scrvice time plus the wait time w, at each
network link, ¢, = 1/s,. + w,. The arrival rate). at each link
is Poisson with mean M/(n(n — 1)). The computation of w,
is given in the Appendix.

Throughput. The transaction throughput, i.e., input rate,
is bounded by: a) the processing time at each cluster (since
A < E[z], where A is the arrival rate of all requests at
each cluster and /7[x] is the mean service time); b) the
available bandwidth (since A, <1{.); and ¢) the disconnec-
tion intervals (since A, < Efv], where E[y] is the mean
duration of a disconnection).

6.1.2 Data Contention Analysis

We assume an eventual and best effort /2. In the following,
op stands for one of WR, WW, SR, SW. Using (A) the
response time for strict and weak transactions is:

Rupici—iransaction = Rivpr + R - Nely Rgn + N2 Rgwy
+ Tmnmu’!
waz‘(1.‘\:—1,1’1”:5(11‘[12011 = -HAINPL -+ }f'E‘.W;\ + diI)i‘VR‘H’ufR
w W LW ot
+ NoPoww By + T,

where I, is the probability that a transaction contents for
an op operation on a data copy, and R, is the average
time spenf waiting to get an op lock given that lock
contention occurs. P, and I, are, respectively, the
probability that at least one operation on a data copy
per strict read or write conflicts. Specifically, F, =
1—(1—Psp)* and B, =1 — (1 — Pep)™. An outline of the
estimation of 17, and R, is given in the Appendix.

PITOURA AND BHARGAVA. DATA CONSISTENGY IN INTERMITEENTLY CONNECTED DISTRIBUTED SYSTEMS 907

TABLE 4
Input Parameters
1 Parameter | Description | Value
. number of physical clusters 5
Ag query arrival rate 12 queries/sec
A update arrival rate 3 updates/sec
¢ congistency factor ranges from 0 to 1
g read quorum ranges from 1 to n
G write quorum ranges from 1 to n
) local transactions aceessing hot data ranges from () to 1
h probability that a local transaction access hot data ranges from 0 to 1
probability a hot data has a core copy at a given cluster | ranges from 0 to 1
r probability a cold data has a core copy at a given cluster | ranges from 0 to 1
u processing time for an update 0.02 sec
tq processing time for a query 0.005 sec
ty propagation overhead 0.00007 sec
V vacation interval ranges
w available bandwidth ranges
m average size of a message 512 bits
D, number of cold data items per p-cluster 800
Dy, number of hot data items per p-cluster 200
N average number of operations per transaction 10
18 “
% \\ 4
v’éi N ; ,,g‘ " ‘\ W= U bps
. N E Y \V—/‘SEX)UI)Q
:%22 h . g om \ / _f; W 6D s
Ba N % / /
o L i s / ’/ w20
F - § = /
g S . -
§ A ;,v
P Ay . .
o b5 5 p'o'a“ gk ' 1
) o ey FETT e g 3 Comsisteney Betor

o
Consislesey factor

(a}

()

Fig. 3. Maximum allowable input rate of updates for various values of the consistency factor. (a) Limits imposed by the processing rate at each

cluster { A < Fja]). {b} Limits imposed bandwidth restrictions (A, < ¢,).
6.2 Performance Evaluation

The following performance results show how the percen-
tage of weak and strict transactions can be effectively tuned
based on the prevailing networking conditions such as the
available bandwidth and the duration of disconnections to
attain the desired throughput and latency. Table 4 depicts
some realistic values for the input parameters. The
bandwidth depends on the type of technology used, for
infrared a typical value is 1 Mbps, for packet radio 2 Mbps,
and for cellular phone 9-14 Kbps [7].

6.2.1 System Throughput

Fig. 3a, Fig. 3b, Fig. 4a, and Fig. 4b show how the maximum
transaction input, or system throughput, is bounded by the
processing time, the available bandwidth, and the discon-
nection intervals, respectively. We assume that queries are
four times more common than updates A; = 4 A,. As shown
in Fig. 3a, the allowable input rate when all transactions are
weak {¢ = () is almost double the rate when all transactions
are strict (¢ = 1). This is the result of the increase in the
workload with ¢ caused by the fact that strict operations on
data items may be translated into more than one operation
on data copies. The percentage of weak transactions can be
effectively tuned to attain the desired throughput based on

908 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11,

501

.
=1

9
=1

T i Eiv] = /5 sec

f E.[v]/:-- 14 sec

Maximunm aliowable rate for updates

ol / /
TN RN / /G = 143 sc

. . / ; ;

. . / {0 Bfv] =112 suc

/
10 ! BJv] = 1sec
P
b g gt T

Consistency Faclor

(a}

NO. 6, NOVEMBER/DECEMBER 1999

&
ol

2

E[v]= 15 min

o vl 30 min
A P 4 /Hl"i'“ 43 min
. / R 'E[V] = G} min
TS A EN] =75 min
R . 4 ‘.‘//

2
=

Maximum allowable rate for spdates

]

R
G
Consisteney factor
(b}

Fig. 4. Maximum allowable input rate for updaies for vatious values of the consistency factor. Limits imposed by disconnections and their duration
{A, < E[x]). (a) Disconnections lasting from 1/5 to 1 seconds and (b) lenger disconnections lasting from 15 to 75 minutes.

RO
10
Y

80

QR

30
60

n

Nymher of messiges
Nunther of nwessages

20

0 02 o 0.4 0.4 I U} 02 04

Lonsislency fetor (o

(a)

. 120

el '
Jey 1o
o=),
s z 100
£
3 9
é o0)
S 8 -
p T
£
g 6011
St
i 40
!
0.4 0 | 0 02 nd 16 1% 1
Laocabiiy (o} Radieation of hoteapies 0
(b} e}

Fig. 5. Number of messages. (a) For various values of ¢, (b) With lecality. (¢) For different replication of hot core copies. Unless stated otherwise:

6=0.6,1=09,F =04, k=09 and e¢=0.7.

the networking conditions such as the duration of dis-
connections and the available bandwidth. As indicated in
Fig. 3b, to get, for instance, the same throughput with
200 bps as with 1,000 bps and ¢ =1 we must lower the
consistency factor below 0.1. The duration of disconnections
may vary from seconds when they are caused by hand offs
[19] to minutes, for instance when they are voluntary. Fig, 4
depicts the effect of the duration of a disconnection on the
system throughput for short (Fig. 4a) and long disconnec-
tions (Fig. 4b). For long disconnections, only a very small
percentage of strict transactions can be initiated at dis-
connected sites (Fig. 4a). To keep the throughput compar-
able to that for shorter disconnections (Fig. 4b), the
consistency factor must drop at around three orders of
magnitude.

6.2.2 Communication Cost

We estimate the communication cost by the number of
messages sent. The number of messages depends on the
following parameters of the replication scheme: 1) the
consistency factor ¢, 2) the data distribution ! for hot and ¥
for cold data, 3) the locality factor o, and 4) the quorums, g,
and g,, of the coherency scheme. We assume a ROWA
scheme (g, = 1, ¢, = ng), if not stated otherwise. As shown
in Fig. Ba, the number of messages increases linearly with

the consistency factor. As expected the number of messages
decreases with the percentage of transactions that access hot
data, since then local copies are more frequently available.
To balance the increase in the communication cost caused
by diminishing locality, there may be a need to appro-
priately decrease the consistency factor (Fig. 5b). The
number of messages decreases, when the replication factor
of hot core copies increases (Fig. 5c). The decrease is more
evident since most operations are queries and the coherency
scheme is ROWA, thus for most operations no messages are
sent. The decrease is more rapid when transactions exhibit
locality, that is, when they access hot data more frequently.
On the contrary, the number of messages increases with the
replication factor of cold core copies because of additional
writes caused by coherency control (Fig. 6a). Finally, the
relationship between the read quorum and the number of
messages depends on the relative number of queries and
updates {Fig. 6b).

6.2.3 Transaction Response Time

The response time for weak and strict transactions is
depicted in Fig. 7 for various values of ¢. The larger values
of response times are for 200bps bandwidth, while faster
response times are the result of higher network availability
set at 2Mbps. The values for the other input parameters are

PITOURA AND BHARGAVA: DATA CONSISTENCY IN INTERMITTENTLY CONNECTED DISTRIBUTED SYSTEMS 909

130 -
120

110
100
90 - e
80 :
70

Number of messages

60

504

0 0.2 4 0.6
Replicaton of ¢cold core data (11

{a)

():8 13
)

cqual raleg -
. 4 times shote gueries

00 4 times more updateg -
g
2 150 -
=
5
] o
8
k4

50
0 ey . ; o
0 0.3 | .3 2 2.5
Read quorar
{b)

Fig. 8. Number of messages. (a) For different replication of cold core copies. (b) For different values of the read quorum. Unless stated ctherwise:

0=061=09F=04,5=09 and c =07

as indicated in Table 4. The additional parameters are set as
follows: 1) the locality parameters are o = (.9 and & = 0.9, 2)
the data replication parameters are I' = 0.2 and { = (.8, 3)
the disconnection parameters are p = (.1 and the vacation
intervals are exponentially distributed with Efv] = 1/5 sec,
to model disconnection intervals that correspond to short
involuntary disconnections such as those caused by hand-
offs '[19], and 4) the ccherency control scheme is ROWA.
The latency of weak transactions is about 50 times greater
than that of strict transactions. However, there is a trade-off
involved in using weak transactions, since weak updates
may be aborted later. The time to propagate updates during
reconciliation is not counted. As ¢ increases, the response
time for both weak and strict transactions increases, since
more conflicts occur. The increase is more dramatic for
smaller values of bandwidth, Fig. 8a and Fig. 8b show the
response time distribution, respectively, for strict and weak
transactions and 2Mbps bandwidth. For strict transactions,
the most important overhead is due to network transmis-
sion. All times increase, as ¢ increases. For weak transac-
tions, the increase in the response time is the result of longer
waits for acquiring locks, since weak transactions that want

woak - 200hps -

veak - SMhns

strict - 200bps - 7
sliict 2Mbis

Fesponse e (in secs)

u R it T T T ! T

o1 ag 0.3 0.7 o8 0.9

a4 5 06
Consistency factor ¢

Fig. 7. Comparison of the response times for weak and strict

transactions for various values of the consistency factor,

to read up-to-date data conflict with strict transactions that
write them.

7 ReconciLATION COST

We provide an estimation of the cost of restoring
consistency in terms of the number of weak transactions
that need to be rolled back. We focus on conflicts among
strict and weak transactions for which we have outlined a
reconciliation protocol and do not consider conflicts among
weak transactions at different clusters. A similar analysis is
applicable to this case also.

A weak transaction WT is rolled back, if its writes
conflict with a read operation of a strict transaction ST that
follows it in the TASG. Let P, be the probability that a weak
transaction W7 writes a data item read by a strict
transaction ST and P; be the probability that 57" follows
WT in the serialization graph. Then, I’ =P, is the
probability that a weak transaction is rolled back. Assume
that reconciliation occurs after N, transactions of which
k=cN, are strict and k¥ ={(1—¢JN, are weak. For
simplicity, we assume uniform access distribution.
Although it is reasonable to assume that granule access
requests from different transactions are independent,
independence cannot hold within a transaction, if a
transaction’s granule accesses are distinct. However, if the
probability of accessing any particular granule is small, e.g.,
when the number of granules is large and the access
distribution is uniform, this approximation should be very
accurate. Then, P, ~1- (1 - M(/D)M’.

Let pgy, be the probability that, in the TASG, there is an
edge from a given transaction of type K to a given
transaction of type I, where the type of a transaction is
either wealk or strict. Let pi, (m,m") be the probability that
in an TASG with m strict and m’ weak transactions there is
an edge from a given hansaction of type K to any
transaction of type L. The formulas for pg; and
phr(m,m') are given in the Appendix. Let p(m,m/',i) be
the probability that there is an acyclic path of length i, i.e, a
path with 7 4 1 distinct nodes, from a given weak transac-

910 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VCL. 11, NO. 8, NOVEMBER/DECEMBER 1999
7 0,30}
i W Response Lime & Response Linw
“ % IEE Transmission tinie . B procussing iime
‘ g 5 Processing time 028 W 1ok wail
i
. 1 H u 1ack wail %‘,
\ i 0.20 3
o~ 5 3 ~~ £
g 4 ‘ . i : g z
& 7 % A i ! Z E
a EE R : > IS i H
EFEL : E . o0
= EEE t = . B i
| é % i < 010 PR %2 ;
2 F B : v w Ly fw i :
g 4 H] P 53 L & &
: : B £} LR B i |
EE 3 oos i £ RN |
ELEE i o Rl R -
EEE : R : 3
E LE_E 1] i i #
o B B B EL ! [ULE - -
0y 02 03 04 035 06 07 09 41 02 03 04 03 08 07 08 04

Consistency factor

(a)

Consistency factor

(b)

Fig. 8. (a) Response time distribution for strict transactions. (b) Response time distribution for weak transactions.

0.0045

20 trans
40 trns
60 trms -
Bt
100-tang. - -
G004+
8
w
£ 00038
T
H
Gl
B
£ oo
5 0
5
L
a
000854+
0,007 - . r . . . - o]
A 0.2 0.3 0.4 D5 [aX -] o7 o5 0g
Gonsistency faslor &
(a)

Fig. 9. Probability of abort for 3,000 data items.

tion to a given strict transaction in an 1ASG with m strict

and ' weak transactions, Then,

H 1 —plk, K, 9.

i—1
The values of p(k, ¥,) can be computed from the following

recutsive relations:

p(m,m', 1) = pws, forallm>0,m >0
p(m,m’,0) = 0 forallm > 0,m’ > 0,
n(m. 0, 7) fovallm > 0.i >0, and
p(0,m, 1) = 0 forallm’ > 0,i>0

pll, K i1y=1~ [(1 —p'{.yw(k Kp(k, K — 1,1))

(Hl-—puqhk Hpq k-1 K ~1)

Ptk — i1 5, K — Dpl— i +j— LI - 2,j))

i—1

(1 = plys(k ¥) prss(k' - LK - 1)pss)],
11

0.0048- U
g=0.1
=05
=08
0.004
g
2
£ oooasd
:
k3
B
= 0O03-
2
8
I
B.0025.
0.002 P T—— S . S
0 g a0 ey 80 i 40 S0 1
MNumber of transacticns

{b)

where the first term is the probability of a path whose first
edge is between weak transactions, the second of a path
whose first edge is between a weak and a strict transaction
and includes at least one more weak transaction and the last
of a path whose first edge is between a weak and a strict
transaction and does not include any other weak transac-
tions, Thus, the actual number of weak transactions that
need to be undone or compensated for because their writes
cannoet become permanent is Ny, = P, We also need to
roll back all exact weak transactions that read a value
written by a transaction that is aborted. Let e be the
percentage of weak transactions that are exact, then
Nooit = L{] — (N”/JD) "}k’fvﬂbmt

Fig. 9 depicts the probability that a weak transaction
cannot be accepted because of a conflict with a strict
transaction for reconciliation events occurring after vary-
ing number of transactions and for different values of the
consistency factor, Fig. 10 shows the same probability for
varying database sizes. More accurate estimations can be
achieved for specific applications for which the access
patterns of transactions are known. These results can be
used to determine an appropriate reconciliation point that
balances the cost of initiating reconciliations against the
number of weak transactions that need to be aborted. For

PITOURA AND BHARGAVA: DATA CONSISTENGY IN INTERMITTENTLY CONNECTED DISTRIBUTED SYSTEMS 911

Q7
000 itams .
2600 iloms -
%.:lems
= L4000 tems
ou - G000 e
PO i1+ 1}
8
w
£
= O
€
a
£
il
k]
> 08
g
* oo
0.01-
e G LRI S . o
09 Q02 03 o7 oi} (o3

g a8 26
Congistenay lactor o

(a)
Fig. 10. Probability of abort for 60 transactions.

mstance, for a given ¢=0.5, to keep the probability
below a threshold of say 0.00003, reconciliation events
must take place as often as every 85 transactions (Fig. 9b),

8 RELATED WORK

One-copy serializability [3] hides from the user the fact that
there can be multiple copics of a data item and ensures
strict consistency. Whereas one-copy serializability may be
an acceptable criterion for strict transactions, it is too
restrictive for applications that tolerate bounded inconsis-
tency and also causes unbearable overheads in cases of
weak connectivity. The weak transaction model described
in this paper was first infroduced in [26], while preliminary
performance results were presented in [24].

8.1 Network Partitioning

The partitioning of a databasc into clusters resembles the
network parfition problem [5], where site or link failures
fragment a network of database sites into isclated subnet-
works called partitions. Clustering is conceptually different
than partitioning in that it is electively done to increase
performance, Whereas all partitions are isolated, clusters
may be weskly connected. Thus, clients may operate as
physically disconnected even while remaining physically
connected, Strategics for network partition face similar
competing goals of availability and correctness as cluster-
ing. These strategies vange from optimistic, where any
transaction is allowed to be executed in any partition, to
pessimistic, where transactions in a partition are restricted by
making worst-case assumptions about what transactions at
other partitions are doing. Our model offers a hybrid
approach, Strict transactions may be performed only if one-
copy scrializability is ensured (in a pessimistic manner).
Weak transactions may be performed locally (in an
optimistic manner). To merge updates performed by weak
transactions we adopt a purely syntactic approach.

8.2 Read-Only Transactions

Read-only transactions do not modify the database state,
thus their execution cannot lead to inconsistent database
states. In our scheme, read-only transactions with weaker

(%]
=l
. LEek]
068
. 005
g
=3
@ X
£
= 004
%
3
= oo
}
~ oopd -
G0
o ‘ ‘ ‘ . e
1000 1500 2000 2500 3900 3500 4000 4506 e

" Musnbar of data itoms

(b}

consistency requirements are considered a special case of
weak transactions thal have no write operations.

Two requirements for read-only transactions were
introduced in [8]: consistency and currency requirements.
Consistency requirements specify the degree of consistency
needed by a rcad-only transaction. In this framework, a read-
only transaction may have: a) o consistency requirements; b)
weak consistency requirements, if it requires a consistent view
{that is, if all integrity constraints that can be fully evaluated
with the data read by the transaction must be true); or ¢} sfrong
consistency requirements, if the schedule of all update
transactions together with all other strong consistency
queries must be consistent. While our strict read-only
transactions always have strong consistency requirements,
weak read-only transactions can be tailored to have any of the
above degrees based on the criterion used for IAS correctness.

- Weak read-only transactions may have: no consistency

requirement, if ignored from the IAS schedule; weak
consistency, if part of a weakly correct TAS schedule; and
strong consistency, ¥ part of a strongly correct schedule.
Currency requirements specify what update transactions
should be reflected by the data read. In terms of currency
requirements, strict read-only transactions read the most-up-
to-date data item available (i.e., committed). Weak read-only
transactions may read older versions of data, depending on
the definition of the d-degree.

Epsilon-seriglizability (ESR} [28], [29] allows temporary
and bounded inconsistencies in copies to be seen by querics
during the period among the asynchronous updates of the
various copies of a data item. Read-only transactions in this
framework are similar to weak read-only transactions with
no consistency requirements. ESR bounds inconsistency
directly by bounding the number of updates. In [38], a
generalization of ESR was proposed for high-level type
specific operations on abstract data types. In contrast, out
approach deals with low-level read and write operations.

In an N-ignorant system, a transaction need not see the
results of at most ¥ prior transactions that it would have
seen if the execution had been serial [15]. Strict transactions
are (O-ignorant and weak transactions are O-ignorant of other

" weak transactions at the same cluster. Weak transactions

912 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11,

are ignorant of strict and weak transactions at other clusters,
The techniques of supporting N-ignorance can be incorpo-
rated in the proposed model to define d as the ignorance
factor ¥V of weak transactions,

8.3 Mobile Database Systems

The effect of mobility on replication schemes is discussed in
[2]. The need for the management of cached copies to be
tuned according to the available bandwidth and the
currency requirements of the applications is stressed. In
this respect, d-degree consistency and weak transactions
realize both the above requirements. The restrictive nature
of one-copy serializability for mobile applications is also
pointed out in [16] and a more relaxed criterion is proposed.
This criterion although sufficient for aggregate data is not
apprapriate for general applications and distinguishable
data. Furthermore, the criterion does not support any form
of adaptability to the current network conditions.

The Bayou system [35], [6], [23] is a platiorm of replicated
highly available, variable-consistency, mobile databases on
which to build collaborative applications. A read-any/
write-any weakly-consistent replication scheme is em-
ployed. Bach Bayou database has one distinguished server,
the primary, which is responsible for committing writes.
The other secondary servers tentatively accept writes and
propagate them towards the primary. Each server main-
tains two views of the database: a copy that only reflects
committed data and another full copy that also reflects
tentative writes currently known to the server. Applications
may choose between committed and tentative data.
Tentative data are similar to our quasi data, and committed
data similar to core data, Correctness is defined in terms of
session, rather than on serializability as in the proposed
model. A session is an abstraction for the sequence of read
and writes of an application. Four types of guarantees can
be requested per session: a} read your writes, b) monotonic
reads (successive reads reflect a nondecreasing set of
writes), ¢} writes follow read (writes are propagated after
reads on which they depend), and d) monctonic writes
(writes are propagated after writes that logically precede
them). To reconcile copies, Bayou adopts an application-
based approach as opposed to the syntactic based proce-
dure used here. The detection mechanism is based on
dependency checks, and the per-write conflict resolution
method is based on client-provided merge procedures [36].

In the fwo-tier replication scheme [9], replicated data have
two versions at mobile nodes: master and tentative
versions, A master version records the most recent value
received while the site was connected. A tentative version
records local updates. There are two types of transactions
somewhat analogous to our weak and strict transactions:
tentative and base transactions. A tentative fransaction works
on local tentative data and produces tentative data. A fase
transaction works only on master data and produces master
data. Base transactions involve only connected sites, Upon
reconnection, tentative transactions are reprocessed as base
transactions. If they fail to meet some application-specific
acceptance criteria, they are aborted and a message is
refurned to the mobile node. Qur scheme extends two-ticr
replication in thal weak connectivity is supported by
employing a combination of weak and strict transactions.

NQO. 6, NOVEMBER/DECEMBER 1999

We have provided the foundations for the correctness of
the proposed scheme as well as an evaluation of its
performance. '

8.4 Mobile File Systems

Coda [14] treats disconnections as network partitions and
follows an optimistic strategy. An elaborate reconciliation
algorithm is used for merging file updates after the sites are
connected to the fixed network. No degrees of consistency
are defined and no transaction support is provided.
Isolation-only transactions (IOTs) [17], [18] extend Coda
with a new transaction service, I0Ts are sequences of file
accesses that unlike traditional transactions have only the
isolation property. [OTs do not guarantee faiture atomicity
and only conditionally guarantee permanence. IOTs are
similar to weak transactions.

Methods for refining consistency semantics of cached
files to allow a mobile client to select a mode appropriate
for the current networking conditions are discussed in [10].
The proposed techniques are delayed writes, optimistic
replication and failing instead of fetching data in cases of
cache misses.

The idea of using different kinds of operations to access
data is also adopted in [32], [33], where a weak read
operation was added to a file service interface. The
semantics of file operations are different in that no weak
write is provided and since there is no transaction
support, the correctness criterion is not based on one-copy
serializability.

9 SUMMARY

To overcome bandwidth, cost, and latency barricrs, clients
of mobile information systems switch between connected
and disconnected modes of operation. In this paper, we
propose a replication scheme appropriate for such opera-
tion. Data located at strongly connected sites are grouped in
clusters. Bounded inconsistency is defined by requiring
mutual consistency among copies located at the same
cluster and controlled deviation among copies at different
clusters. The database interface is extended with weak
operations, Weak operations query local, potentially incon-
sistent copies and perform ftentative updates. The usual
operations, called strict in this framework in contradistinc-
tion to weak, are also supported. Strict operations access
consistent data and perform permanent updates.

Clients may operate disconnected by employing only
weak operations. To accommodate weak connectivity, a
mabile client selects an appropriate combination of weak
and strict transactions based on the consistency require-
ments of its applications and on the prevailing networking
conditions, Adjusting the degree of divergence provides an
additional support for adaptability. The idea of providing
weak operations can be applied to other types of inter-
cluster integrity constraints besides replication. Such con-
straints can be vertical and horizontal partitions or
arithmetic constraints [31]. Another way of defining the
semantics of weak operations is by exploiting the semantics
of data. In [37], data are fragmented and later merged based
on their object semantics. :

PITOURA AND BHARGAVA: DATA CONSISTENCY N INTERMITTENTLY CONNECTED DISTRIBUTED SYSTEMS 913

APPENDIX

A. COMPUTATION OF RESOURCE WAITING TIMES

Processor waiting time. At each cluster there are the following
types of requests: Queries are initiated at a rate of A, From
the locally initiated queries, As = (1 — ¢)A, are weak and are
serviced locally with an average service time 6; = 1,. Then,
from the remaining e, strict queries Ay = xch, have service
time Ay = (g — 1)t -+ ¢, and the rest Ay == (1 — x)cd, have
service time 03 = g,4). Queties are also propagated from
other clusters at a rate Ay = [z{g, — 1) + (1 — x)g|ch, and
have service time ¢; = ¢,. Analogous formulas hold for the
arrival rates and service times of updates. The combined
flow of request forms a Poisson process with arvival rate,

8
A= N

o=
The service time of the combined flow, =, is no longer
exponentially distributed but its means and second mo-
ments are:

Ele] = i (%)6&

i=1

8
L M\
B =" (F>265.

=l
Then, the wait time by using the Pollaczek-Khinchin (P-K
formula) [4] is:

_ AE[Y
TSV

Note that the above analysis as well as the following
analysis on network links arc worst cases. In practice,
when a locking method is used for concurrency control, a
number of transactions is waiting to acquire locks and
not competing for system resources. Thus the rate of
arrival of operations at the resource queues and the
waiting time at each queue may be less than the valuc
assumed in this section.

Transmission waiting time. We consider a nonexhaustive
vacation system where after the end of each service the
server takes a vacation with probability 1 — p or continues
service with probability p. This is called a queue system
with Bernoulli scheduling [34]. In this case:

B Mg (- p) (201]+ B}
" 2R 2{1—p-- (1 —p)A R} '

where 5% is the second moment of the service rate and v the
vacation interval, that is the duration of a disconnection.

B. DATA CONTENTION ANALYSIS
From the resource contention analysis,

By = Ny + NI
and
RF:}.HW - N’IR:;’ + N R:5J~

We divide the state ¢ of each weak transaction into two
substates, a lock state iy, and an execution state i,. In
substate 4, the fransaction holds i — 1 locks and is waiting
for the ith lock. In substate i; it holds i locks and is
executing. Similarly, we divide each state of a strict
transaction into three substates iy, 4, and i,. Let
dr = (N,/N)gr + (Nu/ N)qo. In substate 4o, a transaction is
at its initiating cluster, holds (¢ —1)g, locks and sends
messages to other clusters. In substate i;, the transaction
holds (i — 1)q, locks and is waiting for the ith set of locks. In
substate ¢, it holds (i —)¢, 4 ¢ (¢ — 1), + g,,) locks and is
executing. The probability that a transaction enters substate
i) upon leaving state i — 1 or 4 is Pwa, Pyw, I and 1,
respectively, for W, WW, SR, and SW lock requests. The
mean time ¢, spent at substate 45 is computed from the
resource contention analysis; for instance, awg = w + ;. Let
oy for a strict op be the mean time spent at state 4, for
instance, cgr=w-+ (1 — o)ty +) + (e — 1k + bt}
The time spent at state ¢; is I, and the unconditional
mean time spent in substate ¢ is b, for instance,
bww = Pww Ry

Let d (d;) be the mean number of hot (cold) copies
written by an op operation and I, the mean number of
op operations per copy. For instance, for op=WR and
hot copies,

1—0)Dy
dh, — of (
wi = Ot

and

f
e L= Aediyy
fiyp = .

Dh,

Given a mean lock holding time of Ty (7} for weak (strict)
transactions and assuming that the lock request times are a
Poisson process, the probability of contention on a lock
request for a copy equals the lock utilization. Let Py s
stand. for the probability that an op;-lock request conflicts
with an ops-lock request; then, for exampie,

_ e ' . e)
Py pww = dyplpwTw + dy pIpw Tw
and
i Tt g) : f T
Pwr = dyyp (T s + Ty Tiw) + g (L5 Ts + Ly Tw).

Let Gy (Gg) be the sum of the mean lock holding times over
all N copics accessed by a weak (strict) transaction,

N
N, /. L
Gw = Z {Wq (@ ap + (8 — J)bwn,)

i=1
Nuof. . -
+ 7\}‘ (Z aww + (?, - I)Z)Ww)] + NT,,

where 7, is the mean time to commit. Then Ty = Gw/N.
Similar formulas hold for Gg and .

Let Ny (Ng’) be the mean number of weak (strict)
transactions per cluster in substate 7, and C’P{Z’)L foms be the
conditional probability that an op-lock request contents’
with a transaction in substate 4, that holds an incompatible
opp-lock given that lock contention occurs. Now, we can

approximate R,,, for instance,

914

IEEE TRANSACTIONS ON KNOWELEDGE AND DATA ENGINEERING, VOL. 11,

N
; By
Rin =3 {CP Www (—-JT_ eww + Sw;

i=1

i aww
+CR xii.gfn,/ww(2 + SWx)

; caw :
+Ch &’/R/SW (f + Row + agw + 33;‘)

; Rsw
+ CP:'{’R/SLV (7 + agw + 85,

¥l
) ’ NT, (¢
+CP2 (M{»S“) +4(ﬁ),
WR/SW fo Si Gw \ f

where the faclors f; express the mean remaining times at
the corresponding substate and depend on the distribution
of times at each substate. Finally, sy, (s5,) is the mean time
for a weak (strict) transaction from acquiring the ith lock till
the end of commit, for instance;

Y N,
sw, = (N — i} [ﬁﬁq (awn + bwg) + ~ (aww + bww) | + T

C. RECONCILIATION
The probabilities of edges in the serialization graphs are

given below:

N,
Pww = [1 ~-(1- ﬁq)ﬂ Pe

e (mum’) =1~ {1 — P)Y

N {Muaw)
=1 (1"
s (n(iDy, +ID,))

Parg(m,m’) =1 — (1 —pwg)"

PSW = Pws

m'

pfgw(ﬂb, ’fﬁ’) =1~ (1 “psvwf)

] -N-t N
pss=1— (1 —31)

]J‘;,*S(m, m") =1 (1 _ pSS)(m—d)

1

where p. = 1/n? is the probability that two given transac-
tions are initiated at the same cluster.

ACKNOWLEDGMENTS

Bharat Bhargava was supported, in part, by the US.
National Science Foundation Grant No. 9405931.

REFERENCES

[1]

2

(3]

[4]
B3]

R. Alonso, D. Barbara, and . Garcia-Molina, “Data Caching
Issues in an Tnformation Retrieval System,” ACM Trans. Database
Systeins, vol. 15, no, 3, pp. 359-384, Sept. 1990

D. Barbara and T1. Garcia-Molina, “Replicated Data Management
in Mobile Environments: Anything New under the Sun?” Proc.
IFIP Conf. Applications in Parallel and Distribuied Computing, Apr.
1994,

P.A. Berpnstein, V. Hadjilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systerns, Addisson-Wesley, 1987.
D. Bertsekas and R. Gallager, Data Nefworks. Prentice Hall, 1987
5.B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in
Partitioned Networks,” ACM Coimnputing Swrveys, vol. 17, no, 3,
pp. 341-370, Sept. 1985,

[l

gl

(8]

9

[10]

[
(121

(3]

[14]

(5]

[t6]

(17

[18]

(15

[20]

[21]

[22]

(23]

241

(23]

[26)

(27

[28]

[29]

3]

[31]

NO. 8, NOVEMBER/DECEMBER 1999

A, Demers, K. Petersen, M. Spreitzer, D. Terry, M, Theimer, and B.
Welch, “The Bayou Architecture: Support for Data Sharing among
Mobile Users,” Proc, IEEE Workskhop Mobile Computing Systems and
Applications, pp. 2-7, Dec. 1994.

G.H. Forman and]. Zahorjan, “The Challenges of Mabile
Computing,” Computer, vol: 27, no, 6, pp. 38-47, June 1994.

H. Garcia-Molina and G. Wiederhold, “Read-Only Transactions in
a Distributed Database,” ACM Trans. Database Systems, vol. 7, o, 2,
pp- 209-234, June 1982.

J. Gray, P. Helland, P, (*Neil, and D. Shasha, “The Dangers of
Replication and a Selution,” Proc. ACM SIGMOD Conf., pp. 173-
182, 1996.

P. Honeyman and LB, Huston, “Communication and Consistency
in Mobile File Systems,” JEEE Personal Cownm., vol. 2, no. 6, Dec.
1995

Y. Huang, P. Sistla, and O. Welfsen, “Data Replication for Mabile
Computers,” Proc. 1994 SIGMOD Conf., pp. 13-24, May 1994.
L.B. Huston and P. Honeyman, “Partially Connected Opceration,”
Computing Systems, vol, 4, no. 8, Fall 1995,

T. Imielinksi and B. R. Badrinath, “Wireless Mobile Computing:
Challenges in Data Management,” Connn. ACM, vol. 37, no. 10,
Oct. 1994,

J.J. Kistler and M. Satyanarayanan, “Disconnected Operation in
the Coda File System,” ACM Trans. Computer Systems, vol. 10, no. 1,
pp. 213-225, Feb, 1992, .
N. Krinshnakumar and A.J. Bernstein, “Bounded Ingnorance: A
Technique for Increasing Concurrency in a Replicated System,”
ACM Trans. Database Systemns, vol. 19, no, 4, pp. 586-625, Dec. 1994,
N. Krishnakumar and R. Jain, “Protocols for Maintaining
Inventory Databases and User Profiles in Mobile Sales Applica-
tions,” Proc. Mobidata Workshop, Oct, 1994,

Q. Lu and M. Satyanarayanan, “Improving Data Consistency in
Mobile Computing Using Isolation-Only Transactions,” Prec. Fifth
Workshep Hot Topics in Operating Systems, May 1995

Q. Lu and M. Satyanarayanan, “Resource Conservation in a
Mobile Transaction System,” IEEE Trans, Computers, vol, 46, no, 3,
pp. 299-311, Mar. 1997.

K. Miller, “Cellular Essentials for Wireless Data Transmission,”
Data Comtn., vol. 23, no. 5, pp. 61-67, Mar. 1994.

L.B. Mummert, M.R. Ebling, and M. Satyanarayanan, “Exploiting
Weak Connectivity for Mobile File Access,” Proc, 15th ACM Symp.
Operating Systems Principles, Dec. 1995,

B.D. Noble, M. Price, and M. Satyanarayanan, “A Programming
Interface for Application-Aware Adaptation in Mobile Comput-
ing," Computing Systems, vol. §, no. 4, Winter 1996,

C. Papadimitriou, The Theory of Database Concurvency Control,
Computer Science Press, 1986.

K. Petersen, M. Spreitzer, IM.B. Terry, M. Theimer, and A.J.
Demers, “Flexible Update Propagation for Weakly Consistent
Replication,” Proc, 17th ACM Symp. Operating Systems Principles,
pp. 288-301, 1997,

E. Pitoura, “A Replication Schema to Supporl Weak Connectivity
in Mobile Information Systems,” Proc. Seventi Int'l Conf. Database
and Expert Systems Applications (DEXA '96), pp. 510-520, Sept.
1996,

E. Pitoura and B. Bhargava, “Building Information Systems for
Mobile Environments,” Proc, Third Int’l Counf. Information and
Knowledge Monagement, pp. 371-378, Nov. 1994

E. Pitoura and B. Bhargava, “Maintaining Consistency of Data in
Mobile Distributed Environments,” Proc. 15l IEEE Int'l Conf.
Distributed Computing Systems, pp. 404-413, May 1995.

E. Pitoura and G. Samaras, Data Management for Mobile Computing.
Kluwer, 1998.

C. Pu and A. Leff, “Replica Centrol in Distributed Systems: An
Asynchrenous Approach,” Proc. ACM SIGMOD, pp. 377-386,
1991.

K. Ramamritham and C. Pu, “A Formal Characterization of
Epsilon Serializability,” IEEE Trans. Knowledge and Datn Eng.,
vol. 7, no. 6, pp. 997-1,007, 1995.

M. Satyanarayanan,].J. Kistler, L.B. Mummert, M.R. Ebling, P.
Kumar, and Q. Lu, “Experience with Disconnected Operation ina
Mobile Comp uting Environment,” Proe. 1993 Usenix Symp. Mobile
and Location-Independent Computing, Aug. 1993,

A. Sheth and M. Rusinkiewicz, Management of Interdependent
Data: Specifying Dependency and Consistency Requirements,
Proc. Workshop Management of Replicated Data, pp. 133-136, Nov.
1990. :

PITQURA AND BHARGAVA: DATA CONSISTENCY IN INTERMITTENTLY CONNECTED DISTRIBUTED SYSTEMS

[32

(3]

B4

[36]

71

[38]

[39]

C.D. Tait and D. Duchamp, “Service Interface and Replica
Management Algorithm for Mobile File System Clients,” Proc.
First Int'{ Conf. Pavallel and Distributed Informalion Systems, pp. 190-
197, 1991,

C.D. Tait and D. Duchamp, “An Efficient Variable-Consistoncy
Replicated File Service,” Proc. Usenix File Systems Worksfiop,
pp. 111-126, May 1992,

I, Takagi, Queneing Annlysis, Vol. 1: Vacation and Priority Systems.
North-Holland, 1991.

D. Terry, A. Demers, K. Petersen, M. Spreitzer, M, Theimer, and B.
Welch, “Session Guarantees for Weakly Consistent Replicated
Data,” Proc. Int"t Conf. Paraliel and Distributed Informmtion Systems,
pp. 140-149, Sept. 1994,

.B. Terry, MM Theimer, K. Petersen, A.]. Demers, M.]. Spreitzer,
and CH., Hauser, “Managing Update Conflicts in Bayou, A
Weakly Connected Replicated Storage Systemn,” Proe. 15t ACM
Symip. Operating Systems Principies, Dec. 1995,

G, Walborn and P. K. Chrysanthis, “Supporting Semantics-Based
Transaction Processing in Mobile Database Applications,” Proe.
14tk Symp. Relible Distribufed Systems, Sept, 1995,

M.H. Wong and D. Agrawal, “Tolerating Bounded Inconsistency
for Increasing Concurrency in Database Systems,” Proc. 11th ACM
Syp. Principles of Database Systems (PODS), pp. 236-245, 1992,
P.5 Yu, DM. Dias, and S5 Lavenberg, “On the Analytical
Modeling of Database Concutrency Control,” | ACM vol. 40,
no. 4, pp. 831-872, Sept. 1993.

915

Evaggelia Pitoura received her diploma from
the Department of Computer Science and
Engineering of the University of Patras, Greece,
in 1990; and her MSc and PhD degrees in
computer science from Purdue University in
1993 and 1995, respectively. Since September
1995, she has been with the Depariment of
Computer Science at the University of loannina,
Greecs. Her research interests include database
issues in mobile computing, heterogeneous
databases, and distributed systems. Her publications in the above
areas include several journal and conference proceedings articles, plus
a recently published book on mobile computing. She is a member of the
|EEE Computer Society.

2% Bharat Bhargava is currently a professor in the
Department of Computer Science at Purdue
University, His research involves both theoreti-
cal and experimental studies in distribuled
systems. His research group has impiemented
a robust and adaptable distributed database
system, called BAID, to conduct experiments in
replication control, checkpointing, and commu-
nications. He has conducted experiments in
Iarge -scale distributed systems, communica-
tlons and overheads in implementing object support on top of the
relational model. He has recently developed an adaptable video
conferencing system using the NV system from Xerox PARC. He is
conducting experiments with research issues in large-scale commu-
nication networks to support emerging applications such as digital
libraries and multimedia databases. He chaired the IEEE Symposium on
Reliable and Distributed Systems that was held at Purdue in 1998, and
he is on the editorial board of three international journals. At the 1988
|IEEE Data Engineering Conference, he and John Riedl received the
hest paper award for their work on “A Model for Adaptabte Systems for
Transaction Processing.” He is a fellow of the IEEE and Institute of
Electronics and Telecommunication Engineers. He has been awarded
the Gold Core member distinction by the IEEE Computer Society for his
distinguished service. He received the Outstanding Instructor award
from the Purdue chapter of the ACM.

