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ABSTRACT
Peer-to-Peer (P2P) search requires intelligent decisions for
query routing: selecting the best peers to which a given
query, initiated at some peer, should be forwarded for re-
trieving additional search results. These decisions are based
on statistical summaries for each peer, which are usually or-
ganized on a per-keyword basis and managed in a distributed
directory of routing indices. Such architectures disregard the
possible correlations among keywords. Together with the
coarse granularity of per-peer summaries, which are man-
dated for scalability, this limitation may lead to poor search
result quality.

This paper develops and evaluates two solutions to this
problem, sk-STAT based on single-key statistics only, and
mk-STAT based on additional multi-key statistics. For both
cases, hash sketch synopses are used to compactly represent
a peer’s data items and are efficiently disseminated in the
P2P network to form a decentralized directory. Experimen-
tal studies with Gnutella and Web data demonstrate the
viability and the trade-offs of the approaches.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—selection process, information filter-
ing ; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software—Distributed Systems

General Terms
Algorithms, Design, Experimentation

Keywords
Peer-to-Peer information systems, distributed IR, query rout-
ing, key co-occurrences
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1. INTRODUCTION

1.1 Motivation
Decentralized search on top of peer-to-peer overlay ar-

chitectures is an intriguing research direction which aims to
interconnect many peers, each with its own local data collec-
tion, and to utilize the aggregated resources of the underly-
ing computers for decentralized large-scale search. The goal
is to improve search result quality with unlimited scalability
and better capabilities for exploiting user behavior and rec-
ommendations (e.g., click streams, bookmarks, etc.) [12, 43,
27, 24]. Applications for such a scenario are manifold. While
early research was often driven by file sharing applications,
where the search space typically consists of keywords con-
tained in file names or manually given annotations, today
a huge amount of more challenging application classes are
emerging. Consider a photo sharing community that - free
of commercial interests - wants to pool and search personal
snapshots, e.g., taken at holiday sites. The search space in
this scenario includes the examples given before, but also
high-dimensional space image features, user annotations, or
automatically generated annotations, e.g. GPS coordinates.

As another scenario, we envision P2P Web search engines
with thousands or millions of peers. The data shared by the
data peers may be web pages harvested from Web crawls or
specialized data collections. Here, the search space typically
consists of keywords (or terms in IR jargon). Each peer
autonomously builds and maintains its own topic-specific
or personalized document collection that reflects the user’s
thematic interests; this could be done, for example, by using
a focused crawler with a specifically trained classifier.

When a peer issues a query, it should first be executed
locally on the peer’s own collection. Only when this local
search does not return satisfactory or sufficiently many re-
sults, the system can contact directory peers that - by fully
decentralized means, such as distributed hash tables - main-
tain summaries describing the local data collections of the
data peers. Eventually, the query should be forwarded to
a small number of judiciously chosen data peers that would
have high likelihood of providing highly relevant additional
results. This query routing decision (aka. dynamic peer or
database or resource selection) is the very core of a P2P
search engine.

The selection of the most promising peers for a query with
multiple keywords or attribute-values is driven by statisti-
cal summaries that the P2P system keeps about the peers’
local data collections. These summaries are themselves dis-
tributed across the P2P network and can be managed in a
variety of ways, e.g., in the form of routing indices stored at
each peer [16, 27, 42] or in the form of a P2P directory built



on top of a distributed hash table (DHT) (e.g., [1, 17, 37,
34]) or other kind of overlay network. For scalability, the
summaries have peer granularity, not data item granular-
ity; so they capture, for example, the best peers for certain
keywords, attribute values, or topics, but not the best spe-
cific data items. Moreover, the summaries are usually orga-
nized on a per-keyword (or per-attribute-value) basis, indi-
cating how good a peer’s collection is for a given keyword.
For tractability, there is no information about keyword sets,
phrases, or other forms of correlation between multiple key-
words. This limitation to per-key peer summaries seems
unavoidable, for statistics on all keyword pairs would in-
cur a quadratic explosion and a challenging issue of dis-
tributed parameter estimation over a very-high-dimensional
and extremely sparsely populated feature space, leading to
a breach with the goal of scalability. On the other hand,
completely disregarding correlations among keys is a ma-
jor impediment: together with the restriction to peer rather
than document summaries, it may lead to poor search result
quality in the P2P setting.

In the following we refer to individual keywords or values
as keys and to key combinations that exhibit correlation or
other mutual relationships as key sets. Note that dealing
with key sets in queries and routing indices is different from
distributed search structures for partial-match queries [4,
29], as the latter is limited to low-dimensional spaces with
fixed dimensions, whereas in our setting, arbitrary sets of
keys from a very-high-dimensional feature space may appear
together in a query.

The above dilemma is illustrated by the following exam-
ple. Consider two- or three-keyword queries such as “Anna
Kournikova”, “native American music”, or “PhD admission”.
A standard approach would decompose each query into indi-
vidual keywords such as “native”, “American”, and “music”,
identify the best peers for each of the keywords separately,
and finally combine them (e.g., by intersection or some form
of aggregating the summary scores) in order to derive a can-
didate list of peers to which the query should be forwarded.
This approach may lead to mediocre query results as the
best peers for the entire query may not be among the top
candidates for the individual keywords. In a worst case sce-
nario, these peers might not have a single data item that
matches all keywords at once. Hence, we miss out on the
fact that, for example, “PhD” and “admission” are statisti-
cally correlated in the underlying corpora and that the best
matches for the entire query should exhibit a higher-than-
average frequency of both keywords.

1.2 Contribution
In this paper we develop and evaluate two conceptually

diverse approaches to address the above stated problem: sk-
STAT, using the already existing single-keyword statistics
to estimate a peer’s quality for key sets, and mk-STAT, en-
hancing the distributed directory to explicitly include also
statistical information about judiciously chosen sets of mul-
tiple keys.

Our methods can be used with a large variety of P2P
overlay networks, including DHTs but also arbitrary graph
topologies with requests being routed among peers based on
peer-local routing indices. In the DHT case, the statisti-
cal information that drives our query routing covers the en-
tire P2P network, and is stored in a decentralized directory
that is physically implemented by the DHT. In the routing-
indices case, the statistical information known to one peer
covers the peer’s neighbors or some efficiently reachable sub-
graph of the network (e.g., all peers reachable from the near-
est super-peer), and is stored locally at the peer itself. For
easier presentation, we will restrict ourselves to the DHT
case in the rest of the paper.

While mk-STAT in principle is the more powerful method,

it faces the necessity to identify those valuable key sets that
are most likely to enable improvements, as it is practically
infeasible to build and disseminate statistics for all possible
key sets for combinatorial complexity. Instead, the discovery
of interesting key sets is initiated by mining locally gathered
query logs, to improve the performance of frequently queried
key combinations. This discovery phase can optionally trig-
ger an in-depth statistical analysis of the correlations within
the peers’ data collections. One of the paper’s novel key con-
tributions is how to make this analysis efficient and scalable.

We show that our approach is highly scalable by piggy-
backing all network communication for gathering and dis-
seminating statistical information on messages that need to
be sent between peers anyway (for their regular query traf-
fic).

sk-STAT, on the other hand, can readily deal with all pos-
sible key sets, as it only relies on combinatorial operations
on the existing single-key statistics. However, it has higher
bandwidth requirements at query time, as larger amounts
of these single-keyword statistics have to be shipped to es-
timate the statistics for key sets.

For both approaches, we employ hash sketches (HS) [20] as
compact synopses for capturing key- and key-set-specific col-
lection quality, that we combine efficiently for different keys
and from different peers in a distributed setting. The in-
formation gained is harnessed by the query routing process,
utilizing the DHT infrastructure for efficiency, and leads to
significantly better peer selection decisions for subsequent
queries.

The complete procedure is fully implemented in the P2P
search prototype system Minerva [7], and our experimen-
tal studies demonstrate the viability of the method and its
performance improvements over the prior state of the art.

The rest of the paper is organized as follows. We con-
clude the introduction with a brief overview of related work.
Section 2 introduces background information on distributed
hash tables and hash sketches, major building blocks in both
of our approaches. Section 3 presents the system architec-
ture for our correlation-aware P2P search network. Section
4 discusses measures of key correlations. Sections 5 and 6
present our algorithms, sk-STAT and mk-STAT, for utilizing
statistics on key sets to improve the query routing process.
Section 7 discusses the scalability properties of our meth-
ods. Section 8 presents experimental results with two major
setups: one based on Gnutella-style file sharing data, one
based on Web data. Section 9 concludes this paper.

1.3 Related Work
In contrast to the early forms of unstructured P2P net-

works based on message flooding and other forms of epi-
demic dissemination, all structured P2P systems, e.g., for
file sharing or sensor data management, build on some form
of routing indices or directories that are either kept locally
at each peer or at designated peers [42, 24].

The latter can be chosen randomly, hash-based, or based
on attribute range partitioning, and can be replicated if
needed. The indices or directories contain peer lists with
the best peers for individual keywords or attribute values,
known to the local peer or directory peer. If the network
topology can be influenced, some of these best peers may
be chosen as the local peer’s neighbors. A variant of this
predominant approach is that peers are classified into topics
(e.g., Jazz music or Alpine climbing) and thematic related
peers form neighbors of a “semantic overlay network” [16,
39, 14, 40, 36, 2]. Recent work has addressed performance
trade-offs and optimization issues for building and maintain-
ing routing indices [42, 24, 27, 16].

Recent work on P2P IR is related to earlier research on
distributed IR and metasearch engines [12, 32], but older
work assumed a small and static set of collections among



which a query had to choose. In contrast, P2P systems
consider a much larger scale and also face high dynamics,
which rules out comprehensive and complex statistical mod-
els for query routing. The most important routing methods
in the literature are CORI [13], simple forms of statistical
language models [35, 30], the decision-theoretic framework
(DTF) [21], and the overlap-aware method [6, 33].

All of the above methods organize the statistics about
peers, which drive the query routing decisions, on a per-
term basis and thus disregard term correlations. The only
recent works that consider term correlations in the context
of P2P search are [8] and [3]. [8] only considers frequent key
combinations in query logs, does not consider data statistics,
and uses simple techniques for disseminating statistics in
the network, with a very preliminary performance study. [3]
proposes a framework for discriminative keys, which includes
correlated term combinations; however, it does not give any
algorithms for managing the corresponding statistics in a
distributed setting and for correlation-aware query routing.

Synopses for compact approximation of sets, multisets,
and their statistical properties have recently received atten-
tion in the context of sensor networks, data streams, content
delivery, and estimation issues in structured databases [15].
The methods under consideration include Bloom filters [9],
hash sketches [20], and min-wise independent permutations
[11], all of which are hash-based but differ in their strengths
and limitations of representing various kinds of properties.
The latter include set membership testing, set cardinality
estimation, estimating the number of distinct elements in
a multiset, forming intersections, unions, differences, etc.
Overlap-awareness in P2P IR has long been overlooked, with
the exceptions of [23] and the recent work in [33], which fo-
cuses on utilizing such synopses for estimating the overlap
of the data collections at different peers.

2. BACKGROUND

2.1 Distributed Hash Tables
Distributed Hash Tables, DHTs, (such as Chord [37], CAN

[34], Pastry [17], etc.) have emerged as the preferred family
of structured architectures for overlay P2P networks. The
main advantage of DHTs compared to unstructured P2P
networks stems from the performance guarantees that they
can offer regarding the routing efficiency and ultimately the
network scalability, even in the presence of high network
dynamics (such as high rates of node arrivals/departures
and failures/recoveries). DHTs offer two basic primitives:
insert(key, value) and lookup(key). DHT nodes and data
items are assigned unique IDs. The node IDs dictate the
place occupied by the node in the overlay topology. Each
node is responsible for a well-defined subspace of the items’
ID space. Each item is stored at the node responsible for the
subspace containing the item’s ID. To facilitate efficient and
scalable routing, each node in an N -node DHT maintains
the IP addresses (aka fingers) to O(log(N))1 other nodes in
appropriate positions in the overlay. With this O(log(N))
routing state at each node, DHTs guarantee that routing be-
tween any two nodes requires an expected O(log(N)) mes-
sages.

2.2 Hash Sketches
Flajolet and Martin in [20] proposed Hash Sketches; a

statistical tool for probabilistically estimating the cardinal-
ity of a multiset S (i.e., to count the number of distinct
items in a multiset). Hash sketches rely on the existence
of a pseudo-uniform hash function h() : S → [0, 1, . . . , 2L),
which spreads input values pseudo-uniformly over its output

1All log(·) notation refers to base-2 logarithms.

values. Durand and Flajolet further improved hash sketches
[18] (super-LogLog counting) by reducing the space complex-
ity for maintaining hash sketches and relaxing the require-
ments on the statistical properties of the hash function.

In their essence, hash sketches work as follows. They use
the function ρ(y) : [0, 2L) → [0, L) which designates the
position of the least significant 1-bit in the binary represen-
tation of y; that is,

ρ(y) = min
k≥0

bit(y, k) 6= 0, y > 0 (1)

and ρ(0) = L, where bit(y, k) denotes the k-th bit in the
binary representation of y (bit-position 0 corresponds to the
least significant bit). Estimating n, the number of distinct
elements in a multiset S, proceeds as follows. For all d ∈ S,
apply ρ(h(d)) and record the least-significant 1-bits in a
bitmap vector B[0 . . . L]. Since h() distributes values uni-
formly over [0, 2L), it follows that

P (ρ(h(d)) = k) = 2−k−1 (2)
With the above process, note that in the bit vector B

hosting the hash sketch, B[0] is expected to be set to 1
n/2 times, B[1] n/4 times, etc. From this follows that the
quantity R(S) = maxd∈Sρ(d) constitutes an estimation of
the value of log n. The statistical error can be reduced to
very small quantities by utilizing multiple bit vectors Bi,
recording ρ(h(d)) for some item d ∈ S to only one of the
vectors Bi, producing an Ri estimate for each vector Bi,
and averaging over the Ri estimates; the standard deviation
of this estimation is 1.05√

m
, for m bitmap vectors[18].

2.3 Combining Hash Sketches
A key property of hash sketches with great implications

for the efficiency of large-scale network applications (includ-
ing distributed IR) lies in the ability to combine them. We
can derive the hash sketch of the union of an arbitrary num-
ber of multisets from the hash sketches of each multiset by
taking their bit-wise OR. Thus, given the compact hash-
sketch based synopses of a set of multisets, one can instantly
estimate the number of distinct items in the union of these
multisets.

More formally, we can claim that, if β(S) is the set of
bit positions ρ(h(d)) for all d ∈ S, then β(S1 ∪ S2) =
β(S1)∪β(S2). Notice that, if both original collections carry
a random document, the document will conceptually be
counted only once, effectively providing duplicate-insensitive
(i.e. distinct item) counting for the union of the original
multisets.

Furthermore, hash sketches can be used to estimate the
cardinality of the intersection (overlap) of two sets. First,
recall that

|SA ∩ SB | = |SA|+ |SB | − |SA ∪ SB | (3)
Second, one can derive the hash sketch for SA ∪ SB , and

thus compute the cardinality of |SA ∩ SB | by utilizing the
combination method outlined above,

The above can be generalized to more than two sets, using
the inclusion-exclusion principle and the sieve formula by
Poincaré and Sylvester:

|
n⋃

i=1

Si| =
n∑

k=1

(−1)k+1
∑

I⊆{1,...,n},
|I|=k

|
⋂
i∈I

Si| (4)

3. SYSTEM ARCHITECTURE
Table 1 summarizes the notation we will be using through-

out the rest of this paper.



Symbol Quantity
|X| Number of distinct items in a multi-set X

N Number of nodes in the system
D Set of data items in the system

Di Set of data items on peer i
a, b Individual keys
ab Key set (both of a and b)

D(a) Set of data items in D containing term a
Di(a) Set of data items in Di containing term a
df(a) Frequency of key a in D (= |D(a)|)

dfi(a) Frequency of key a in Di (= |Di(a)|)
HS(a) Hash sketch representing data items in D(a)

HSi(a) Hash sketch representing data items in Di(a)
p(a) Directory peer responsible for key a

Table 1: Summary of Notation

The operational environment is a P2P-based search en-
gine. Every peer builds local collections and local per-key
indexes, (and perhaps also combining data from external
sources), according to the user’s thematic profile. We shall
refer to such peers as the data peers. The local per-key in-
dexes consist of inverted lists of data items relevant to the
corresponding key. Because the peers are functioning in-
dependently, it is expected that there will be considerable
overlap in the data collections (e.g. the set of data items
known to individual peers) and (consequently) in the in-
dexes maintained by different peers.

Directory peers are responsible for maintaining very com-
pact, aggregated meta-information about the peers’ local
indexes (to the extent that the individual data peers are
willing to share). Naturally, each data peer can potentially
also be a directory peer. More specifically, each directory
peer is responsible for the meta-information from all over
the network regarding a random subset of all keys. For per-
formance and fault tolerance reasons, the directory meta-
data for a key may be replicated across multiple directory
peers. A DHT is used to connect all (directory and data)
peers. The DHT’s lookup method can be used to determine
the peer responsible for a particular key, in order to send
information or retrieve information about this keyword.

3.1 Publishing Statistical Summaries
Every data peer publishes per-key summaries describing

its local index to the distributed directory; these summaries
will be referred to as Posts. The DHT’s lookup method de-
termines the directory peer currently responsible for a key,
which maintains a PeerList, i.e., a list of all data peers’ Posts
regarding this key. Posts contain contact information about
the publishing data peer, together with statistics to calcu-
late quality measures for a key (e.g., frequencies or IR-style
scores). Note again that this information does only capture
the overall quality of a peer’s index for a particular key, but
does not represent individual data items. Typically, such
statistics include the length of the inverted list for the key,
the maximum and average score among the key’s inverted
list entries, etc. These statistics are used to support the
query routing process, i.e., determining the most promising
peers for a particular query. Specifically, the size of the in-
verted list for a key – that is, the frequency for key a at
peer i, or dfi(a) – can be maintained in the form of a hash
sketch; for each data item in pi’s collection regarding key a,
the peer inserts an identifier into a local hash sketch for this
key, denoted HSi(a).

Since there is a well-defined directory peer responsible for
each key, the hash sketch synopses representing the index
lists of all peers for a particular key a are all sent to the
same directory peer p(a). Thus, p(a) can compute a moving-
window estimate for the global df value of a – df(a) – by
performing an inexpensive bitwise-OR of all individual hash
sketches HSi(a) sent by every peer i for term a.

To deal with the high dynamics in a P2P network, each
Post is assigned a Time-to-Live (TTL) value. If the orig-
inator peer has not updated (refreshed) its Post after this
time interval, it is discarded. On the other hand, if a peer’s
metadata has not changed in the meantime, it can refresh its
metadata by simple means, without resending it completely.

3.2 Execution of Multi-Key Queries
Given the above, in general, query routing for a single-key

query a proceeds as follows. First, the query initiator issues
a request for the Posts regarding the query key a to the
underlying overlay network, thus contacting the directory
peer for the key, p(a). After the retrieval of this PeerList
and its associated information, the query initiator uses the
per-key statistical summary to identify a set of promising
data peers for the given query and forwards the query ac-
cordingly. Eventually, the query initiator merges the query
results individually returned by the selected data peers.

The state-of-the-art idea to deal with multi-key queries is
to consider the intersection of the PeerLists for the query
keys, i.e., to send the query only to (a subset of) data peers
that indeed published statistics for all queried keys. How-
ever, this approach may fail miserably. A peer appearing in
both PeerLists for a and b and, thus, in the intersection of
Posts for the keys a and b, is only guaranteed to have data
items regarding a or b separately, but not necessarily data
items regarding both a and b simultaneously. To illustrate
this point, consider the following extreme scenario. Assume
peer p1 containing a large number of data items for each
of the two keys a and b separately, but none that contains
both a and b together. Judging only by the posted single-
key statistics for a and b, we might reach the conclusion that
p1 is a good candidate peer for the query ab, whereas the
actual result set would be empty!

Sections 5 and 6 present two different approaches to over-
come this problem, striking different compromises: while
sk-STAT tries to estimate the desired multi-key statistics
from the existing single-key statistics with additional com-
putational efforts and at higher networking costs, mk-STAT
enhances the distributed directory by adding explicit statis-
tics for judiciously selected key sets, namely, those that ex-
hibit particularly high correlation or other forms of strong
association among the individual keys in the key set. The
choice of an appropriate correlation measure is the topic of
the next section.

4. MEASURES OF KEY CORRELATION
In this section we introduce the measure for capturing

relatedness among the keys of a key set, co-occurring either
in a query or in a data item, and we develop the correlation
model that will drive the extended synopses construction
and query routing as explained in the subsequent sections.
We will restrict ourselves to key pairs, as we expect the
major benefit when we move from single keys to correlated
pairs.

The obvious choice for standard measures like the corre-
lation coefficient has the drawback that its estimation re-
quires knowledge (or an estimate) of the total number of
data items in the network. Moreover, we may encounter
situations where it is important to capture that key b is re-
lated to key a, but the reverse direction is uninteresting. For
example, in popular Web queries the term “soccer” often im-
plies that the same query contains also the term “Germany”
(because of the soccer world championship taking place in
Germany), but the reverse direction has a much weaker as-
sociation from a user viewpoint. This discussion motivates
considering the conditional probability that a random data
item contains key a given that it contains b, an asymmet-
ric measure of relatedness, for which we have the following



Key A Key B P(A|B) P(B|A)
andy roddick 0.5106 0.0216
anna kournikova 0.9613 0.0655
berlin marathon 0.0611 0.0126

Table 2: Selected Conditional Probabilities

estimator:

P̂ (A|B) =
df(ab)/|D|
df(b)/|D| =

df(ab)

df(b)
(5)

where

df(ab) = df(a) + df(b)− df(a ∪ b) (6)

and df(a ∪ b) can be estimated by taking the bitwise OR
of HS(a) and HS(b) (see Section 2.3). Obviously, a nice
property of this measure is that we can estimate it without
knowing (or estimating) |D|.

A design dimension orthogonal to the issue of which cor-
relation measure we choose is the consideration of key sets in
queries vs. data items. Both queries and data are sources of
interesting correlations. For queries we can collect, either lo-
cally at each peer or globally partitioned based on the DHT,
comprehensive query logs and apply frequent itemset mining
techniques [5, 19] so as to extract statistically significant key
sets that exhibit a high degree of mutual association among
their keys. We will show in Section 6 that such techniques
are feasible within our P2P architecture without incurring
extra communication costs. For data items, a similar ap-
proach is conceivable but it may be more difficult to imple-
ment without incurring extra messages. Moreover and most
importantly, we are not really interested in correlated keys
within data items per se, unless there are actually queries
about these keys. Thus, we pursue a two-stage approach:
1. we discover correlated key pairs in queries as an indica-

tion that special support for such key pairs may be needed
and justified;

2. we assess the identified key pairs as to their relatedness
in the data items and take special action only if both the
discovery and the assessment step are positive for some
candidate key pair.
In the discovery step, a key pair is of interest if it is suffi-

ciently frequent and its correlation is high in the query logs.
Using the conditional probability estimator of Equation 5,
we identify the key pair (a, b) as interesting if either one of
P̂ (A|B) or P̂ (B|A) is above some specified threshold α.

In the assessment step the question is when a key pair,
identified in the discovery step, deserves special action for
posting statistical summaries to the distributed directory.
At first glance, it may seem that we can use the same prin-
ciple as in the discovery step: select key pairs for which the
conditional-probability estimate is above some threshold -
with the estimate based on data, not on queries. However,
this intuition is flawed. Suppose that for keys a and b the es-
timate P̂ (A|B) is close to one; so the keys are very strongly,
positively correlated. Then the best peers for b alone are
likely to contain key a, too. For high recall on these good
matches for ab we do not need any special Posts; we can use
the statistics for b alone. It is just the opposite situation
where we need additional information to find the best peers
for a multi-key query: when the keys are either uncorrelated
or exhibit strong negative correlation. The latter situation
is the most interesting one: when the two keys in a pair ab
have negative correlation close to minus one, there are only
few data items in the network that contain both a and b,
and we cannot find them by selecting and combining the
best peers for a and the best peers for b alone.

The conclusion from this discussion is that the assessment
step considers a pair ab as interesting if both P̂ (A|B) and
P̂ (B|A) are below some threshold β (e.g., β = 0.1) within the
data items. Table 2 shows some conditional probability es-
timates for popular Google queries2, based on a large collec-
tion that we have crawled recently. If we set β, for example,
to 0.1 we would identify ("Berlin", "Marathon") as a valu-
able key pair, but would dismiss ("Anna", "Kournikova") as
not sufficiently valuable, as the Post for Kournikova alone
would suffice.

We see that the discovery step and the assessment step
have different and complementary goals: finding highly cor-
related keys to identify demand for special support in the
discovery step; finding uncorrelated keys or negatively corre-
lated keys in the data as such key sets would be very poorly
supported by the standard single-key statistical metadata
and established methods for query routing. Note that, of
course, the selection in the assessment step refers only to
the candidates that were identified in the discovery step.

5. SK-STAT: SINGLE-KEY STATISTICS
Recall that the Post for the index content of a peer pi re-

garding a key a contains the hash sketch HSi(a), represent-
ing the peer’s set of local data items Di(a). By the nature
of the hash sketch synopses, the knowledge of HSi(a) and
HSi(b) for two keys a and b provides a means for estimating
the cardinality of the number of data items with at least one
of the keys a or b, i.e., |Di(a) ∪Di(b)|.

Moreover, using Equation 3 from Section 2.3, we can also
estimate df(ab) = |{d|a ∈ d ∧ b ∈ d}|, and this generalizes
to key sets with more than two keys using the sieve for-
mula. So we can indeed derive vital information for multi-
key query routing from the existing single-key statistics in
the distributed directory.

Consider a peer pinit initiating a query ab. In the sk-
STAT approach, fully relying on the existing single-keyword
statistics, pinit then can proceed as follows:

1. it contacts p(a) and p(b) to retrieve the statistical sum-
maries published individually for the keys a and b, includ-
ing all hash sketch synopses produced by the data peers,

2. for each remote peer pi appearing in both PeerLists, pinit

computes an estimation of dfi(ab), indicating pi’s possible
contribution to the query,

3. pinit possibly combines this measure with other indicators
of pi’s result quality and novelty, and

4. pinit forwards the query ab to these selected peers and
eventually merges their local results.

A major advantage of sk-STAT, compared to producing
additional explicit multi-key statistics (as in the mk-STAT
approach) is that the estimations can readily be performed
for all possible key sets in the directory, and not only to judi-
ciously selected valuable key sets, because sk-STAT only re-
lies on the existing single-key synopses. On the other hand,
some disadvantages of sk-STAT also become apparent:
• In order to find the truly best peers for ab from the ex-

isting single-key Posts for a and b, a peer probably has
to retrieve and inspect the PeerLists for a and b at much
higher depth, compared a multi-key approach where the
prefix of a potentially very long list would quickly give
you (with high probability) the best peers. The reason is
exactly the fact that there is often no strong correlation
between keys in the data and thus no correlation between
between the “rank” of a peer p in the PeerLists for a and b
separately; so to identify with high confidence the ranking
of some peer p for ab requires longer prefixes of PeerLists
if not the entire lists including the hash sketches for every

2http://www.google.com/zeitgeist



peer in each list. This effect leads to much higher network
load on the directory peers and the query initiator. If, like
in mk-STAT, there readily exist Posts for combined key
sets like ab, effective pruning becomes easy by fetching
only the top entries from the PeerList for ab.

• While it is possible to estimate df(ab) from the existing
Posts (i.e., an integer value estimating the cardinality of
the combined set), it is not possible to derive the hash
sketch synopsis actually describing the data items of a
peer pi for ab, as we are not aware of a way to meaningfully
intersect hash sketches. Applying the sieve formula, on
the other hand, may well degrade the accuracy of the
estimated cardinality (i.e., increase the variance of the
estimator).

• In order to properly aggregate the hash sketches, in partic-
ular for queries with more than 3 or 4 keywords, combining
the hash sketches by the sieve formula requires nontrivial
local data structures and entails non-negligible computa-
tional costs for the query initiator.

Our experiments have shown that the resource consump-
tion of sk-STAT becomes a significant cost factor under high
arrival rates of queries.

6. MK-STAT: KEY SET STATISTICS
The obvious idea to overcome the problems of sk-STAT

is to learn valuable key sets that frequently co-occur (e.g.,
in the data items or in user queries), create and disseminate
statistical summaries for those key sets explicitly, and har-
ness this information in order to improve the query routing
process. The core idea of mk-STAT is, thus, given a query
ab, we find pre-prepared statistics describing the peers’ local
index quality for ab.

To this end we need to explore: 1) how to discover can-
didate key sets, 2) how to assess whether the key-set cor-
relation in the data justifies the additional investment of
multi-key Posts, 3) how to notify data peers about these
key sets, so they can start to create and disseminate ap-
propriate statistics, and 4) how to leverage the additional
multi-key statistics to improve the query routing process.

6.1 Query-Driven Key Set Discovery
The motivation for discovering key sets that frequently

co-occur in query logs is to improve the search experience
of actual users. Thus, it would be a waste of resources to
create, disseminate, and store summaries for a key set that
is never queried by a user. Consequently, we can limit our
efforts for discovering key sets with strongly related keys
to the key sets in actual queries. In real-world search en-
gines, the distribution of queries is highly skewed (i.e., a
small fraction of distinct queries makes up a large fraction
of the complete query load); so a careful choice of frequently
queried key sets allow us to remarkably improve the search
experience for many users with manageable effort.

The query routing process outlined earlier turns directory
peers into “rendezvous” points for key combinations of the
keys they are responsible for, making query-driven discovery
of frequently co-occurring key sets very efficient:

• When retrieving the Post for each query key qi from p(qi),
have the query initiator also send the actual query, i.e.,
all query keys, to p(qi).

• Have the directory peers p(qi) keep a log of queries they
receive. The size of the query logs that need to be kept
can be bounded by periodically applying frequent-itemset
mining techniques [5, 19, 22] and truncating the logs.

For example, a request for all Posts regarding the query
“Michael Jordan” would be sent to the two directory peers
p(Michael) and p(Jordan). Each of these would return its

respective PeerList for the key it is responsible for and simul-
taneously log the query locally. Analyzing these logs (e.g.,
by frequent itemset mining), each directory peer can iden-
tify key sets that appear in queries with a frequency that is
above some support threshold and/or that appear together
above some confidence threshold.

6.2 Data-Driven Assessment
Discovery of key correlations on the basis of query logs

alone is fully sufficient; after all, if there exist correlations
among keys which are not (frequently) queried, they are of
little consequence and the production and dissemination of
appropriate multi-key statistics is of no (immediate) use.
However, mining query logs and maintaining previously dis-
covered key correlations in this way depends on a number
of hard-to-tune thresholds (such as the support level of oc-
currences of keyword tuples in order to be deemed as “truly
correlated”) and requires non-negligible local computations.
Furthermore, only a subset of the correlated keys discovered
in queries may significantly benefit from additional multi-
key statistics: as we discussed in Section 4, it is exactly
the uncorrelated or negatively correlated keys that mandate
multi-key statistics, whereas the keys with high positive cor-
relation also in the data do not really need these additional
Posts.

Assume the directory peer p(a) wants to assess the relat-
edness between a and b based on the data items in the P2P
network. For this purpose, peer p(a) proceeds as follows:

1. First, p(a) contacts p(b) to retrieve the overall hash sketch
HS(b) for key b. This step requires O(logN) message hops
in an N -node P2P network, while the bandwidth con-
sumption is minimal by the following technique: instead
of shipping the individual hash sketch synopses HSi(b) of
each peer pi, the directory peer p(b) locally computes the
union of these hash sketches by bit-wise OR and transfers
only one combined hash sketch representing dfb.

2. Then, p(a) can compute the hash sketch representing the
union of Da and Db by a simple bit-wise OR over the hash
sketch synopses HS(a) and HS(b), yielding an estimator
for the cardinality of the set consisting of all data items
in the system that contain either a or b (i.e., D(a ∨ b)).

3. The cardinality of D(ab) (i.e. df(ab), the set of documents
that contain both keywords) can now easily be derived
using equation 6.

4. From this, p(a) can finally compute the conditional prob-
abilities P (A|B) and P (B|A) using equation 5.

The conditional probabilities (cf. Section 4) provide us
with a means to quantify the relatedness between two keys
in the data and assess the utility of explicit key-set statistics.
As discussed in Section 4, the query routing process bene-
fits mostly from explicit knowledge of statistical summaries
for uncorrelated or negatively correlated keys. On the other
hand, if a key set shows high conditional probabilities of
co-occurrence within the data items, e.g., P (A|B) > α, the
single-key statistics readily available for b alone already yield
promising peers also for the key set ab exactly because the
existence of b in a data item strongly suggests the existence
of a. In other words, a high P (A|B) value is a heuristic to
base query routing decisions on the statistics for b alone, the
expected benefits from additional summaries for the multi-
key set is small. Small P (A|B) values, in contrast, show
that the occurrences of a and b in the data items is largely
independent or even negatively related, so that query rout-
ing decisions can highly benefit from the existence of pre-
computed multi-key statistics for ab. Thus, we initiate the
creation of a multi-key summary for a key pair ab if both
P (A|B) and P (B|A) are below some threshold β (set, e.g.,
to 0.1).



Note that the quantitative degree of relatedness is not
vital to mk-STAT. However, applying the thresholding can
decrease the load on the data peers and the directory by
limiting the number of key sets identified as valuable for the
query routing process even beyond our initial approach to
learn the sets from query logs.

6.3 Creating and Disseminating Summaries
When a key set has been identified to be a valuable can-

didate to produce multi-key statistics, the data peers need
to learn this fact in order to produce the appropriate multi-
key statistics. The easiest way of doing so is to use the con-
tinuous process of Post refreshment, i.e., peers periodically
updating their summaries in the distributed directory: For
any key a, when contacting p(a) in order to update the Post,
a data peer retrieves information about such valuable multi-
key sets containing a. Remember from Section 6.1 that all
applicable key sets containing a have been identified at p(a)
and, thus, are available there. The data peer can subse-
quently start to produce multi-key statistics for those key
sets and publish it during the next round of updating the
Post. This procedure has the salient property that it does
not incur any additional messages compared to the standard
single-key-based P2P system: both the notifications of data
peers about interesting key sets and the postings of multi-
key statistics can be piggybacked on messages that need to
be sent anyway.

Regarding the placement of multi-key statistics within the
directory, a similar consideration suggests that the Post for
the key set ab should be stored at one of the directory peers
responsible for one of the keys in the set, or alternatively, all
or at least multiple of these directory peers for higher avail-
ability. If we choose exactly one of the directory peers, i.e.,
either p(a) or p(b) for the two-keys case, a simple strategy
is to pick the peer that is responsible for the smaller key-
word in lexicographic order (i.e., p(a) if we assume a <lex b).
Again, this has the nice advantage that no additional mes-
sages are needed, for any data peer publishing a summary
for ab would also post a summary for a alone and p(a) would
be contacted anyway. The approach also simplifies the re-
trieval of the summaries for query routing purposes, as we
will see in the next subsection.

“Giving preference” to the lexicographically smaller key-
word does not lead to any critical load imbalances, as all keys
are hashed and thus pseudo-randomly assigned anyway.

6.4 Enhanced Query Routing
Now that the summaries for ab are contained in the dis-

tributed directory at peer p(a), a peer pinit initiating a
multi-key query containing the keys a and b can proceed
as usual by issuing requests for summaries to p(a) and p(b).
Recall that these requests carry the full query ab. Because
the summaries for ab are kept at peer p(a), p(a) can easily
check whether multi-key summaries for the full query (or
any multi-key subset containing more than one query key)
are available and deliver the appropriate summaries back to
the requestor. Note that, if no summaries for any multi-key
subset regarding have been published, every directory peer
ships the single keyword summaries, so that baseline query
routing can proceed as usual. So falling back to the single-
key case in those situations when no multi-key posts exist
does not need additional messages either.

For queries with more than two keys, there is an addi-
tional complication: it could happen that there is no Post
for the full key set Q of the query (either because this query
was not discovered from the query log or the assessment step
did not consider the full key set as sufficiently useful), but
there are several subsets of Q that have explicit multi-key
Posts. The situation is easy when there is a clear dominance
among subsets, i.e., when one subset is a superset of another

one. In this case, we would always prefer the Post with the
highest number of keys. If, however, there are incompa-
rable subsets, say abc and bcd for a five-key query abcde,
we have more options at hand. Currently, we resort to the
simple heuristics that we select all maximal subsets among
the available multi-key Posts. This is efficient in terms of
network costs because the entire query will be sent to all
single-key directory peers anyway. So both p(a) and p(b)
are contacted for the query routing decision and can return
the Posts for abc and bcd to the query initiator with no extra
costs in communication. But this consideration opens up a
space of optimization strategies; this issue is left for future
work. Combining such incomparable but mutually related
multi-key statistics is reminiscent of the recent work on mul-
tidimensional histograms with incomplete information [31],
but our setting has the additional complexity of very-high-
dimensional key space (e.g., keywords over text documents).

6.5 Adding Overlap-Awareness
The recently proposed methods for making query routing

overlap-aware [33, 6] can be easily applied to mk-STAT, if
the statistical summaries published by the data peers con-
tain appropriate data set synopses, e.g., hash sketches or
min-wise independent permutations [11]. In our approach,
the multi-key Posts include per-peer hash sketches for the
interesting key sets anyway. These are kept at the corre-
sponding directory peers, and these directory peers also pre-
compute the union of all peers’ hash sketches for the given
key set.

Query routing decisions based on mk-STAT usually only
need to fetch the PeerList for a key set, but not the hash
sketches for the individual peers in the list (recall that this
is one of the advantages that mk-STAT has over sk-STAT,
for sk-STAT does indeed need the per-peer hash sketches).
However, it we also want to estimate the overlap in the re-
sult sets that we would obtain from different peers in the
same PeerList, or equivalently estimate the novelty of re-
sults obtained by adding a particular peer to the targets for
forwarding the query, then it is necessary to fetch the in-
dividual peers’ hash sketches, too. Note that this does not
require any additional messages, but the size of the reply
messages from the directory peers to the query initiator in-
creases substantially. Other than this, it is straightforward
to incorporate the overlap-aware techniques from [33, 6] in
order to combine it with our new methods for correlation
awareness.

7. SCALABILITY
Among the two suggested methods, sk-STAT is more light-

weight when maintaining the P2P directory, but pays higher
cost at query run-time, whereas mk-STAT has little over-
head at query run-time but appears to be more costly at
posting time. In this section we briefly discuss to what ex-
tent these tradeoffs affect the scalability of our methods.
The critical question to address is whether the methods work
well as the number of peers in the network grows (to say mil-
lions of peers) while the data volume per peer and the rate
of query generation per peer remain constant.

The DHT-based distributed directory provides a scalable
lookup infrastructure for queries in the P2P network. A
query with m keywords triggers directory lookups at ex-
actly m directory peers. This holds for both sk-STAT and
mk-STAT. When a single keyword becomes a bottleneck for
the responsible directory peer (by being very frequent in
a highly skewed query workload), we can simply replicate
the directory peer and use random selection among replicas;
this is well supported by DHTs and also other kinds of over-
lay networks. So there is no scalability bottleneck at query
run-time, regarding the network traffic.



When a data peer wants to post correlation information
about two or more keys, it will actually send it only to the
directory peer that is responsible for the lexicographically
smallest key (unless we introduce replication). Moreover,
there is no need to send this statistical piece of informa-
tion eagerly; rather the data peer can postpone the posting
until it needs to contact the same directory peer for a query-
routing lookup anyway (for the same or a different key). So
all posting messages can effectively be piggybacked on mes-
sages that are sent on behalf of queries anyway. The mes-
sages become slighly bigger, but the added information is
compact so that the message size stays small. In this setting,
the number of messages and the network latency are the
critical factors in the overall network performance. Thus,
mk-STAT is scalable also from a networking cost viewpoint.
The sk-STAT method, on the other hand, may indeed re-
quire more messages for accurate estimates at query-routing
time, but is as efficient as mk-STAT at posting time.

The only situation where the posting cost may become
critical is when a data peer wants to post statistics at a
high rate, but has a much lower query-generation rate. In
this situation, piggybacking postings on directory lookups
for query routing would not be practical. But this situation
is very unlikely for two reasons. First, most P2P appli-
cations exhibit many more queries than updates. Second
and most importantly, the postings that mk-STAT newly
introduces in addition to the data-update postings capture
query key correlations and are thus triggered by locally is-
sued queries; therefore, a peer with few queries will not issue
many postings of this kind either.

8. EXPERIMENTAL EVALUATION
We evaluate the performance of sk-STAT and mk-STAT

on two different datasets. We consider a dataset derived
from an April 2003 crawl of a portion of the Gnutella net-
work3. As an IR text retrieval scenario, we use real-world
web data from a TREC[38] benchmark.

For both datasets, we compare the query result quality ob-
tained by using a state-of-the-art CORI-style query routing
approach [13] based on single-key frequencies4 versus both
of our approaches.

CORI is a probabilistic IR model that ranks peers for a
given key based on the key frequency at a peer (i.e., the
number of files that contain this key) and the key’s inverse
peer frequency (i.e., the number of peers that have at least
one file with this key). For our experimental comparison,
we have created hypothetical combined collections over all
peers’ local data collections and identified all globally rele-
vant items for each query on this collection. We report on
relative recall w.r.t. this reference collection, as a function of
the number of peers involved in the queries, i.e., the fraction
of results that the reference collection would yield.

8.1 Gnutella Data
This dataset is derived from a crawl of a portion of the

Gnutella network performed in April 2003, containing in-
formation about almost 850,000 music (and other media)
files shared by more than 4,000 users, and more than 11,000
queries issued during that time period. As related studies
have shown that the users’ interests in such a network closely
follow the chart trends, we use the US top-40 single charts
of the week Apr 12, 2003 to identify key pairs and triplets
that can be expected to appear frequently in user queries.
For these key sets, all peers published additional, explicit
metadata (mk-STAT).

3Available at http://www.comp.nus.edu.sg/∼p2p/
4We denote this approach as standard in all upcoming fig-
ures

Each user was viewed as a separate peer, so our P2P net-
work contained about 4,000 peers, with the original assign-
ment of files to peers (including many duplicates at different
peers).

As a benchmark query load, we took the original, ob-
served user queries from the dataset, eliminating all queries
that were obviously not related to music (but typically to
“adult content”). A file was assumed relevant to a query if
its filename contained all query terms. The quality measure
used is relative recall, based on the number of distinct rele-
vant files returned by the peers (thus, eliminating duplicates
returned by more than one peer).

Figure 1 shows the results averaged over all remaining dis-
tinct queries for standard CORI-based query routing vs. sk-
STAT and mk-STAT. Figure 2 considers only those queries
that use at least one key pair or triplet from the chart-
based “training queries”. Figure 3, finally, only considers
those queries that can benefit from triplets derived from the
charts. Additionally, all plots show a theoretic recall opti-
mum that could be obtained from complete knowledge of all
collections, which is of course infeasible in a large-scale P2P
network.

The results clearly show the recall improvements obtained
by our novel methods. The number of peers that need to be
queried in order to reach a relative recall of 50 % decreases
from about 50 (CORI-style query routing) to about 25 peers
in our approaches.

mk-STAT outperforms sk-STAT, because it offers more
accurate, explicit statistics for the term pairs. The fact that
sk-STAT is able to estimate cardinalities for all key combi-
nations cannot compensate for that.

The relative recall figures may appear low for an MP3 file-
sharing network. Note, however, that the workload queries
were not very selective; on average, 40 distinct files quali-
fied for a query result, and in a few cases there were hun-
dreds of results. With the original placement of files on
peers, all results for a query are distributed across 135 peers
on average (i.e., averaged over all queries). These include
many duplicates, however. The minimum number of peers
that together hold all distinct matches for a query was 30
peers, averaged over all queries, and sometimes more than
100 peers for some less selective queries. Thus, to achieve a
relative recall of 100 % would require contacting at least 30
peers on average and in the order of 100 peers for the most
expensive queries. However, this is a theoretical minimum
and could be efficiently achieved only with a centralized or
nearly-centralized super-peer directory structure, neither of
which fits with an ultra-scalable P2P architecture. With
a Gnutella-style overlay network where search requests are
epidemically disseminated to neighbors, messages would be
sent to many more peers, in fact, even more than the total
number of peers that hold at least one match (i.e., 135 peers
on average).

In practice, the user-perceived improvements can be even
higher than shown in the figures, because the distribution of
queries observed in the real-world query logs of the Gnutella
dataset are highly skewed. A small portion of distinct queries
makes up a substantial fraction of the query load. As those
frequent queries are typically exactly the queries that will
actually benefit from the additional statistics (because the
query-log analysis can identify them and trigger the produc-
tion of appropriate statistics), our novel method has benefits
for an over-proportional fraction of the queries and, thus, of
the users.

8.2 Web Data
As Web data, we consider the GOV document collection

[38] with roughly 1.2 million documents compiled by a Web
crawl of the .gov internet domain and used in TREC bench-
marks. To evaluate the distributed behavior, we created 750
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Figure 1: All queries
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Figure 2: Queries with applicable triplet or pair
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Figure 3: Queries with applicable triplet

peers by randomly assigning documents to them. The ran-
dom placement was chosen as a stress test for the query rout-
ing methods. With thematic clustering, we could achieve
much higher relative recall with fewer peers, but that would
have simplified the query routing decisions for all methods,
whereas we wanted to obtain insights into performance dif-
ferences under stress conditions. This explains why the re-
sults given below show fairly small recall numbers. Note,
however, that in Web search, users are typically satisfied
with low recall as long as they have acceptable precision
among the top-10 or top-20 ranks.

For the query workload we used queries from the topic-
distillation track of the TREC 2003 Web Track benchmark,
eliminating the single term queries, because we wanted to
focus on the improvements for multi-keyword queries. The

children’s literature book novel kid
forest fires dry flames

homelessness home prevalence
anthrax prevention quarantine
coin collecting numismatics

North Korea communist
Asbestos asbestosis

deafness in children youngsters
Cybercrime, internet fraud, and cyber fraud detection

legalization of marijuana reality
Lewis and Clark expedition historic
computer viruses software trojan

arctic exploration pole
Agricultural biotechnology cultivation

mining gold silver coal metal

Table 3: Extended queries

remaining queries, expanded to increase the document re-
call, are shown in Table 3.
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Figure 4: Relative recall for extended queries

For each query we obtained the top-20 results from the
peers that were chosen by the query routing method and
merged them into a global result list based on their locally
computed scores. The relative recall measure was computed
for the top-50 of the global result lists (averaged over all
queries). That is, we report the overlap between the top-
50 results of the P2P search engine and the top-50 results
that a centralized engine would yield. We believe that is a
reasonable measure of query routing effectiveness.

Figure 4 shows that mk-STAT clearly outperforms the
other methods and is very close to the optimum. sk-STAT’s
performance degrades quickly. This is because, due to the
small size of the data peers and the random placement of the
data items, only very few peers have a reasonable number
of relevant documents for a query, for which sk-STAT’s esti-
mation of multi-key statistics is sensitive enough. Typically,
after 4 or 5 peers, each additional peer has only one or two
relevant documents to add. In this situation, the estimation
accuracy of sk-STAT’s combinatorial computation degrades
significantly. In contrast, mk-STAT with its explicit multi-
key statistics performed very well also for the peers with a
very small number of relevant documents. Note that the
low recall values reported are due to the random placement
of documents on 750 data peers. As the estimated number
of relevant documents for a query is evenly distributed over
all peers, there is no single peer that can contribute a large
fraction of the relevant documents. Nevertheless, mk-STAT
manages to yield a recall of almost 20% for 100 out of these
750 peers. Our novel mk-STAT method in this scenario de-
creases the number of peers involved in a query necessary to
reach a relative recall of 10% from 125 to less than 30.



9. CONCLUSIONS
We have developed efficient methods for capturing, dis-

seminating, and exploiting statistics about correlated key
sets in a P2P network. Our experimental studies have shown
significant gains in terms of the benefit/cost ratio with ben-
efit defined in terms of query recall and cost proportional to
the number of peers that participate in executing a query.

Among the strategic issues that are left for future work is
query optimization beyond the query routing decision. We
plan to address adaptive run-time adjustments to execution
plans and other aspects of dynamic query optimization in
P2P systems.
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