
Dynamic Diversification of Continuous Data

Marina Drosou
Computer Science Department
University of Ioannina, Greece

mdrosou@cs.uoi.gr

Evaggelia Pitoura
Computer Science Department
University of Ioannina, Greece

pitoura@cs.uoi.gr

ABSTRACT

Result diversification has recently attracted considerable attention
as a means of increasing user satisfaction in recommender systems,
as well as in web and database search. In this paper, we focus on
the problem of selecting the k-most diverse items from a result set.
Whereas previous research has mainly considered the static ver-
sion of the problem, in this paper, we exploit the dynamic case in
which the result set changes over time, as for example, in the case of
notification services. We define the CONTINUOUS k-DIVERSITY

PROBLEM along with appropriate constraints that enforce continu-
ity requirements on the diversified results. Our proposed approach
is based on cover trees and supports dynamic item insertion and
deletion. The diversification problem is in general NP-complete;
we provide theoretical bounds that characterize the quality of our
solution based on cover trees with respect to the optimal solution.
Finally, we report experimental results concerning the efficiency
and effectiveness of our approach on a variety of real and synthetic
datasets.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Search process, Information filtering

General Terms

Algorithms, Experimentation, Design, Performance

Keywords

Diversity, Continuous, Top-k

1. INTRODUCTION
The abundance of information available online creates the need

for developing methods towards selecting and presenting to the user
representative subsets. To this end, recently, result diversification
has attracted considerable attention as a means of increasing user
satisfaction. Result diversification takes many forms including se-
lecting items so that their novelty, coverage, or content dissimilarity
is maximized [11].

Previous approaches to result diversification can be roughly di-
vided into those employing greedy and interchange heuristics for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00.

computing solutions. Greedy heuristics (e.g., [25, 15]) build a di-
verse set incrementally, selecting one item at a time so that some
distance function is maximized, whereas interchange heuristics (e.g.,
[24, 19]) start from a random initial set and try to improve it. There
are a couple of approaches that propose indexing to assist diversifi-
cation. In [22], a Dewey-based tree is used for structural diversity
based on attribute priorities and in [16], a spatial index is exploited
to locate those nearest neighbors of an item that are the most distant
to each other.

Despite the considerable recent interest in diversification, most
previous research studies the static version of the problem, i.e., the
available items out of which a diverse subset is selected do not
change over time. Among the few attempts to address the dynamic
case, in [10], we have experimented with greedy heuristics, while
recently an interchange heuristic was introduced for incrementally
constructing a diverse set for a stream of items [20].

In this paper, we propose an index-based approach to the dy-

namic diversification problem, where insertions and deletions of
items are allowed and the diverse subset needs to be refreshed to
reflect such updates.

We also consider the continuous version of the problem, where
diversified sets are computed over streams of items. The motiva-
tion for this model emanates from many popular proactive delivery
paradigms, such as news alerts, RSS feeds and notification services
in social networks such as in Twitter [6]. In such applications, users
specify their areas of interest and receive relevant notifications. To
avoid overwhelming the users by forwarding to them all relevant
items, we consider the case in which a representative diverse sub-
set is computed, instead, whose size can be configured by the users
themselves. For example, users may choose to set a budget k on
the number of items they wish to receive whenever they login to
their favorite notification service. For streams, it is important that
the items retrieved be the users during consequent logins exhibit
some continuity properties. For example, the order in which the
diverse items are delivered to the users should follow the order of
their generation. Also, an item should not appear, disappear and
then re-appear in the diverse set.

For the efficient computation of diverse results in a dynamic set-
ting, we propose a solution based on cover trees. Cover trees are
data structures proposed for approximate nearest-neighbor search
[8]. They were recently used to compute medoids [18] and priority
medoids [9] of data.

We focus on the MAXMIN diversity problem defined as the prob-
lem of selecting k out of a set of n items so that the minimum dis-
tance between any two of the selected items is maximized. The
MAXMIN and related problems are known to be NP-hard [13].

We provide theoretical results for the accuracy of the solution
achieved using cover trees. We also introduce a batch construction

that results in a cover tree with accuracy provably equivalent to
that of the greedy heuristic for any k. For the continuous case,
our incremental algorithms produce results of quality comparable
to that achieved by re-applying the greedy heuristics to re-compute
a diverse set, while avoiding the cost of re-computation. Using the
cover tree also allows the efficient enforcement of the continuity
requirements. Furthermore, multiple queries with different values
of k can be supported.

In a nutshell, in this paper, we:

• introduce the dynamic diversification problem along with con-
tinuity requirements appropriate for a streaming scenario,

• propose indexing based on cover trees to address dynamic
diversification,

• prove that the solution achieved by the cover tree for the
MAXMIN problem is a b−1

2b2
-approximation of the optimal

solution, where b is the base of the cover tree,

• provide a construction of a cover tree such that each of its
levels corresponds to a solution of the greedy heuristic for
various k,

• present incremental insertion and deletion algorithms for dy-
namic size cover trees and

• experimentally evaluate the efficiency and effectiveness of
our approach using both real and synthetic datasets.

The rest of this paper is structured as follows. In Section 2, we
present our diversification framework and define the CONTINU-
OUS k-DIVERSITY PROBLEM. Sections 3 and 4 present the cover
tree index structure and introduce algorithms for computing diverse
items in continuous environments and for dynamic insertions and
deletions of items. Section 5 presents our experimental results. In
Section 6, we review related work in the area of item diversification
and show how our work relates with current approaches. Finally,
Section 7 concludes this paper.

2. DIVERSIFICATION MODEL
There have been many proposals for defining diversity. Here, we

focus on content diversity. In particular, given a set P of items we
seek to select a subset S of P with the k most dissimilar items of
P . First, we formally define diverse subsets and then we focus on
special issues that arise when items arrive in streams.

2.1 The k-Diversity Problem
Let P = {p1, . . . , pn} be a set of n items and k be a positive

integer, k ≤ n. Let also d : P×P → R+ be a distance metric indi-
cating the dissimilarity exhibited by two items in P . The diversity

of a set S, S ⊆ P , is measured by a function f : 2|P | × d → R+

which takes into account the dissimilarity of the items in S as in-
dicated by d. Given a budget k on the number of items to select,
the k-DIVERSITY PROBLEM aims at selecting the k items of P

that exhibit the largest diversity among all possible combinations
of items. Formally:

DEFINITION 1 (k-DIVERSITY PROBLEM). Let P be a set of

items, d a distance metric and f a function measuring the diversity

of a set of items. Let also k be a positive integer. The k-DIVERSITY

PROBLEM is to select a subset S∗ of P such that:

S
∗ = argmax

S⊆P
|S|=k

f(S, d)

There are two main variations for content diversity concerning
the choice of the function f : (i) maximizing the minimum distance

(a) MAXMIN. (b) MAXSUM.

Figure 1: MAXMIN vs. MAXSUM solutions for n = 1000 and

k = 200. Diverse items are shown in bold.

among the selected items (MAXMIN) and (ii) maximizing the aver-
age distance among the selected items, which is equivalent to max-
imizing the sum of their distances (MAXSUM). We formally define
the two variations as fMIN and fSUM respectively:

fMIN(S, d) = min
pi,pj∈S

pi 6=pj

d(pi, pj)

and

fSUM(S, d) =
∑

pi,pj∈S

pi 6=pj

d(pi, pj)

For example, Figure 1 depicts the k = 200 most diverse items
selected from a set with n = 1000 items using the corresponding
diversification functions. In the rest of this paper, we will focus
on the MAXMIN problem, since, in general, this version tends to
select items that intuitively provide a better cover of the set P .

In this paper, we further consider the case in which the set P

changes over time and we want to refresh the computed k most di-
verse items to represent the updated set. In general, the insertion (or
deletion) of even a single item may result in a completely different
diverse set. The following simple example demonstrates this. Con-
sider the set P = {(4, 4), (3, 3), (5, 6), (1, 7)} of 2-dimensional
points in the Euclidean space and k = 2. The two most diverse
items of P are (4, 4) and (1, 7). Assume now that the item (0, 0)
is added to P . Now, the two most diverse items of P are (0, 0) and
(5, 6).

The MAXMIN Greedy Heuristic.
The k-DIVERSITY PROBLEM has been shown to be NP-hard

[13]. Various heuristics have been proposed, among which a natu-
ral greedy heuristic (Algorithm 1) has been shown experimentally
to outperform the others in most cases [10, 14]. The algorithm
starts by selecting the two items of P that are the furthest apart (line
1). Then, it continues by selecting the items that have the maximum
distance from the items already selected, where the distance of an
item p from a set of items S is defined as:

d(p, S) = min
pi∈S

d(p, pi)

It has been shown (e.g., in [21]) that the solution provided by the
greedy heuristic is a 1

2
-approximation of the optimal solution.

2.2 The Continuous k-Diversity Problem
We consider applications where new items are generated in a

continuous manner and, thus, the set P of available items changes
gradually over time. Since items are continuously generated, we
would like to present to the user a continuous view of the most
diverse items in this stream. For example, consider a user contin-

Algorithm 1 MAXMIN Greedy Heuristic.

Input: A set of items P , an integer k.
Output: A set S with the k most diverse items of P .

1: p∗, q∗ ← argmaxp,q∈P
p 6=q

d(p, q)

2: S ← {p∗, q∗}
3: while |S| < k do
4: p∗ ← argmaxp∈P d(p, S)

5: S ← S ∪ {p∗}
6: end while
7: return S

uously receiving a representative, i.e., most diverse, subset of the
stream of the tweets generated by the users she follows.

We adopt a sliding-window model where the k most diverse
items are computed over sliding windows of length w in the in-
put data. The length of the window w can be defined either in time
units (e.g., “the k most diverse items in the last hour”) or in num-
ber of items (e.g., “the k most diverse items among the 100 most
recent ones”). Without loss of generality, we assume item-based
windows. In this model, an item is selected, if and only if, it is part
of the k most diverse items of the last w items.

We allow windows not only to slide but also to jump, i.e., to
move forward more than one position in the stream of items each
time. Assuming windows of length w and a jump step of length h,
with h ≤ w, consequent windows overlap and share w−h common
items. We call these windows jumping windows (Figure 2). Two
consequent jumping windows correspond, for example, to the view
of the available items between two visits of the user to her RSS
feeder application. Between these two consequent visits, a number
of items cease to be valid, a number of new items have been gener-
ated, while a number of older items are still valid and available to
the user. Note that, for h = 1, jumping windows behave as regular
sliding windows, while for h = w, windows are disjoint and we
get periodic behavior with a period of length w.

Formally, let P be a stream of items. We denote the ith jumping
window of P as Pi and write Pi = (p1, . . . , pw), where p1, . . . , pw

are the items that belong to Pi in order of their generation time. The
UNCONSTRAINED CONTINUOUS k-DIVERSITY PROBLEM is to
select a subset S∗

i of Pi for each Pi, such that:

S
∗
i = argmax

Si⊆Pi
|Si|=k

f(Si, d)

Constrained Continuous k-Diversity Problem.
Since users may expect some continuity in the diverse sets they

see in consequent retrievals, we consider the following additional
requirements on how the items in diverse sets change over time.
First, we want to avoid having diverse items which are still valid in
the current window disappear. This may lead to confusing results,
where an item appears in one window, disappears in the next one
and then appears again. Thus, an item that was chosen as diverse
will continue to be considered as such throughout the rest of its
lifespan. We call this the durability requirement.

Second, we want the order in which items are chosen as diverse
to follow the order they appear in the stream. This means that, once
an item p is selected as diverse, we cannot later on select an item
older than p as diverse. We call this the freshness requirement. This
is a desirable property in case of notification services, such as news
alerts and RSS feeds, since the items selected to be forwarded to the
users follow the chronological order of their publication. Raising
this requirement can result in out-of-order delivery of items which
may seem unnatural to the users.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
... ...

... ...p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Figure 2: A jumping window with w = 7 and h = 4.

Based on the above observations, we formally define the CON-
STRAINED CONTINUOUS k-DIVERSITY PROBLEM as follows:

DEFINITION 2. (CONSTRAINED CONTINUOUS k-DIVERSITY

PROBLEM). Let P be a stream of items and Pi−1, Pi be two con-

sequent jumping windows. Let also d be a distance metric, f a

function measuring the diversity of a set of items and k a positive

integer. The CONSTRAINED CONTINUOUS k-DIVERSITY PROB-
LEM is to select a subset S∗

i of Pi for each Pi, such that:

S
∗
i = argmax

Si⊆Pi
|Si|=k

f(Si, d)

and also, given the diverse subset S∗
i−1 for Pi−1, the following two

constraints hold:

(i) ∀pj ∈ S∗
i−1 ∩ Pi ⇒ pj ∈ S∗

i (durability requirement),

(ii) Let pl be the newest item in S∗
i−1. Then, ∄pj ∈ Pi\S

∗
i−1 with

j < l, such that, pj ∈ S∗
i (freshness requirement).

3. INDEX-BASED DIVERSIFICATION
In this paper, we aim at developing a diversification method that

can be applied to dynamic environments. To this end, we employ
a tree structure to index the available items. Our approach is based
on the cover tree, defined next.

3.1 The Cover Tree
The Cover Tree (CT) [8] for a data set P is a leveled tree where

each level is a “cover” for all levels beneath it. Each level of the
tree is associated with an integer ℓ ∈ (−∞,∞). ℓ decreases as
the tree is descended. Intuitively, the lowest level contains all items
in the set and, as we move up the tree, subsets of the items are
promoted based on their distances. Items at higher levels of the
tree are farther apart from each other than items at lower levels of
the tree. An example is shown in Figure 3. Each node in the tree
is associated with exactly one item p ∈ P , while each item may be
associated with multiple nodes in the tree. However, each item is
associated with at most a single node at each level.

In the following, when clear from context, we will use p to refer
to both the item p and a node in the tree at a specific level that is
associated with p.

Let Cℓ be the set of nodes at level ℓ of a cover tree. The cover
tree of base b, b > 1, obeys the following invariants for all ℓ:

1. Nesting: Cℓ ⊂ Cℓ−1, i.e., once an item p appears in the tree
at some level, then every lower level has a node associated
with p.

2. Covering: For every pi ∈ Cℓ−1, there exists a pj ∈ Cℓ,
such that, d(pi, pj) ≤ bℓ and the node associated with pj is
the parent of the node associated with pi.

3. Separation: For all distinct pi, pj ∈ Cℓ, it holds that, d(pi, pj)
> bℓ.

Figure 3: An example of the 10 first levels of a cover tree for a set of items in the 2-dimensional space. Bold points represent the items

(i.e., nodes) at each level, moving from lower to higher levels, as we move from left to right.

The cover tree was originally proposed with base b = 2. In this
paper, we use a more general base b, b > 1. Generally, larger base
values result in shorter and wider trees, since fewer nodes are able
to “cover” the nodes beneath them. The value of b determines the
granularity with which we move from one level to the next, i.e.,
how many more items become visible when we descend the tree.

Due to the invariants of the cover tree, if an item p appears first
in level ℓ of the tree, then p is a child of itself in all levels below ℓ.
An implicit representation of a cover tree, i.e., storing all nodes, re-
quires space depending not only on the number of items but also on
their pairwise distances, since those distances determine the num-
ber of required levels. However, self-children are not required to
be explicitly stored since we can always deduce their existence in
lower levels. The explicit representation of a cover tree removes
all nodes which have only self-children in their subtrees (or only
self-parents in case of leaf nodes). The explicit representation of a
cover tree for P , with |P | = n, requires O(n) space. While in our
experiments we used the explicit representation, for ease of presen-
tation, we shall use the implicit representation when describing the
algorithms and assume an infinite number of levels, with ℓ = −∞
representing the lowest level that includes all items in P and ℓ =
+∞ representing the root level, unless otherwise specified.

We make the following observation which is important for diver-
sification: items at sibling nodes of higher levels of a cover tree are
further apart from each other than those at lower levels due to the
separation invariant. Thus, by selecting items from higher levels of
the tree, we can retrieve results that exhibit higher diversity.

3.2 Computing Diverse Subsets
Next, we show how we can exploit the cover tree to retrieve the

k most diverse items of a set P . Let S be a solution for the k-
DIVERSITY PROBLEM and ℓ be the highest level in which all items
in S appear in the cover tree (this condition must hold at some level
due to the nesting invariant). Then, the diversity of S is larger than
bℓ, due to the separation invariant. Therefore, we aim at selecting a
subset S of the nodes of the tree that appear as high as possible in
the tree.

Algorithm 2 selects the k most diverse items using a cover tree.
We start from the root of the tree and descend until we reach the
first level ℓ such that |Cℓ| ≤ k and |Cℓ−1| > k. At each level,
we add to the solution all items found. Note that, due to nesting, an
item that appears in any level m of the tree also appears in all levels
below m. The remaining k − |Cℓ| items are selected from Cℓ−1.
The selection is done in a greedy manner so that the most diverse
amongst the items of Cℓ−1 are selected (lines 7-11).

The two requirements of Definition 2 can be easily enforced us-
ing the cover tree. For the durability requirement, items that are
selected as diverse are marked so and remain part of the diverse set
until they expire. Let r be the number of such items. In this case,
Algorithm 2 just selects k − r additional items from the tree. For
the freshness requirement, non-diverse items that are older than the
newest diverse item in the current diverse set are marked as “in-
valid” in the cover tree. These items are not considered further as
candidates for inclusion.

Algorithm 2 Diverse Item Computation Using a Cover Tree.

Input: A cover tree T , an integer k.
Output: A set S with the k most diverse items in T .

1: ℓ← +∞
2: while |T.Cℓ−1| ≤ k do
3: ℓ← ℓ− 1
4: end while

5: S ← T.Cℓ

6: Candidates← T.Cℓ−1

7: while |S| < k do
8: p∗ ← argmaxp∈Candidates d(p, S)

9: S ← S ∪ {p∗}
10: Candidates← Candidates\{p∗}
11: end while
12: return S

3.3 Approximation Bound
The next theorem characterizes the quality of the solution of the

diversity algorithm that selects items from the top levels of any
cover tree.

THEOREM 1. Let P be a set of items, k ≥ 2, dOPT (P, k) be the

optimal minimum distance for the MAXMIN problem and dCT (P, k)
be the minimum distance of the diverse set computed by the diver-

sity algorithm on a cover tree for P (Algorithm 2). It holds that

dCT (P, k) ≥ α dOPT (P, k), where α = b−1
2b2

.

PROOF. Let SOPT (P, k) be an optimal set of k diverse items.
To prove Theorem 1, we shall bound the level where the least com-
mon ancestor (LCA) of any pair of items p1, p2 ∈ SOPT (P, k)
appears in the cover tree. Assume that the LCA of any two items
p1, p2 in the optimal solution appears for the first time at level m.
That is, m is the lowest (furthest from the root) level that such an
LCA appears.

Let us now compute a bound on m. Assume that the LCA of
any two items p1, p2 ∈ SOPT (P, k) appears at level m. Let p be
this ancestor. From the triangle inequality, d(p1, p) + d(p2, p) ≥
d(p1, p2). Since p1, p2 ∈ SOPT (P, k), it holds that, d(p1, p2) ≥
dOPT (P, k). Thus:

d(p1, p) + d(p2, p) ≥ d
OPT (P, k) (1)

From the covering invariant of the cover tree, it holds that, d(p1, p)

≤
∑m

j=−∞ bj ≤ bm+1

b−1
. Similarly, d(p2, p) ≤ bm+1

b−1
. Substituting

in (1), we get that 2 bm+1

b−1
≥ dOPT (P, k). Solving for m, we have

m ≥ logb

(

b−1
2

dOPT (P, k)
)

− 1.
Since m is the first level that the LCA of any two items in the

optimal solution appears, from the covering property, it holds that
at level m − 1, there are at least k items, i.e., the distinct ancestors
of the k items in the optimal solution. Thus, there are at least k

items at level

m − 1 = logb

(

b − 1

2
d

OPT (P, k)

)

− 2 (2)

This means that the cover tree algorithm will select items from this

or a higher level. From the separation invariant of the cover tree,
we have dCT (P, k) ≥ bm−1. Using (2), we get that dCT (P, k)

≥ blogb(b−1

2
dOP T (P,k))−2 ⇒ dCT (P, k) ≥ b−1

2
dOPT (P, k) b−2,

which proves the theorem.

Note that the approximation bound holds independently of how
the items at the lower level are selected. In Algorithm 2, this se-
lection is done greedily (lines 7-11), but this does not affect the
theoretical bound.

3.4 Changing k
The cover tree can be used to provide results for multiple queries

with different k. Thus, each user can individually tune the amount
of diverse items she wishes to receive. Furthermore, the cover tree
supports a “zooming” type of functionality. Assume that a user
selects a specific value for k. After receiving the k most diverse
items, she can request a larger number of closer to each other items
by choosing a larger k (“zoom-in”) or a smaller number of further
apart items by choosing a smaller k (“zoom-out”).

We can exploit the nesting invariant to achieve a sense of conti-
nuity in the following sense. Let S be the set of the k most diverse
items and let ℓ be the highest level of the cover tree at which all
items of S appear. For k′ > k, to construct the set S′ with the
k′ most diverse items, we select items from level ℓ or lower (Al-
gorithm 2), thus, we can enforce the condition S′ ⊃ S, since the
items in S appear in all levels m ≤ ℓ. For k′ < k, to construct the
set S′ with the k′ most diverse items, and also enforce S′ ⊂ S, we
may select those items of S that appear at levels higher than ℓ.

4. COVER TREE CONSTRUCTION
Given a set of items P , there may be many different cover trees

that maintain the three invariants. In this section, we first present an
algorithm for a batch construction of a cover tree for P appropriate
for the MAXMIN problem and then consider dynamic insertions
and deletions.

4.1 Batch Construction
In the batch construction of a cover tree, the tree is built bottom-

up. The algorithm proceeds greedily by promoting to higher levels
the items with the largest possible distance from the already se-
lected ones as long as the cover tree invariants are not violated.

This process is shown in Algorithm 3. First, the lowest level
ℓ of the cover tree is formed by adding to it all items in P (lines
1-5). Then, we select items from the lowest level whose distance
is more than bℓ+1, i.e., they cannot be a child of each other at the
new level ℓ + 1 due to the separation invariant (lines 7-17). The
selected items form the new level ℓ+1 and the remaining items are
distributed among them so that the covering invariant holds (lines
18-21). The nesting invariant clearly holds as well since every item
is either promoted or assigned to some parent in the new level.

In order to construct the cover tree in a way that maximizes the
diversity of the items in the higher nodes of the tree, we employ
the following heuristic. When selecting which items from Cℓ to
promote to the next level Cℓ+1 , we follow a greedy approach; we
start by promoting the two items that are the furthest apart and then
add in rounds the item that has the largest minimum distance from
the already promoted ones (line 14). We refer to the cover tree
constructed using the above heuristic as the Batch Cover Tree (or
BCT) for P and b.

To further improve the tree, when distributing the remaining items
of Cℓ to the nodes of Cℓ+1, we assign each of them to its closest
candidate parent (line 19). We call this step nearest parent heuris-

Algorithm 3 Batch Cover Tree Construction.
Input: A set of items P , a base b.
Output: A cover tree T of base b for P .

1: ℓ←
⌊

logb

(

minp,q∈P d(p, q)
)⌋

2: Qℓ ← ∅
3: for all p ∈ P do
4: Qℓ ← Qℓ ∪ {p}
5: end for

6: while |T.Cℓ| > 1 do
7: T.Cℓ+1 ← ∅
8: Candidates← T.Cℓ

9: p∗, q∗ ← argmaxp,q∈Candidates d(p, q)

10: T.Cℓ+1 ← T.Cℓ+1 ∪ {p
∗, q∗}

11: Candidates← Candidates\{p∗, q∗}
12: while Candidates 6= ∅ do
13: Candidates ← Candidates\{p : ∃q ∈ T.Cℓ+1 with

d(p, q) ≤ bℓ+1}
14: p∗ ← argmaxp∈Candidates d(p, T.Cℓ+1)

15: T.Cℓ+1 ← T.Cℓ+1 ∪ {p
∗}

16: Candidates← Candidates\{p∗}
17: end while
18: for all p ∈ T.Cℓ do
19: q∗ ← argminq∈T.Cℓ+1

d(p, T.Cℓ+1)

20: make q parent of p
21: end for
22: T.Cℓ ← T.Cℓ+1

23: ℓ← ℓ + 1
24: end while
25: return T.Cℓ

tic. The motivation for this heuristic is to reduce the overlap among
the areas covered by sibling nodes.

We shall prove that the items at each level ℓ of a BCT are the
result of applying the greedy heuristic (Algorithm 1) on P when k

is set equal to the number of items of this level (i.e., for k = |Cℓ|.
To do so, we shall use the following observation for the greedy
algorithm.

OBSERVATION 1. Let SGR(P, k) be the result of the greedy

heuristic for k and P . For any k > 2, it holds that, SGR(P, k + 1)
⊃ SGR(P, k).

THEOREM 2. For any batch cover tree T for a set of items P ,

it holds that,

∀ level ℓ of T, Cℓ = S
GR(P, |Cℓ|)

where Cℓ is the set of items at level ℓ of T .

PROOF. We shall prove the theorem by induction on the level
ℓ. The theorem holds trivially for ℓ equal to the lowest level of the
tree, since this level includes all items in P . Assume that it holds
for level ℓ. We shall show that it also holds for level ℓ + 1.

Consider the construction of level ℓ+1. From the induction step,
it holds that, Cℓ = SGR(P, |Cℓ|).

Let p be the first item in Cℓ such that p is the best candidate,
i.e., has the maximum minimum distance from the items already
selected, but cannot be moved to Cℓ+1 because it is covered by an
item already selected to be included in Cℓ+1. Let C′, C′ ⊂ Cℓ, be
the set of items already selected to be included in Cℓ+1. This means
that, for p, it holds: minq′∈C′ d(p, q′)≥ minq′∈C′ d(p′, q′), for all
p′ ∈ Cℓ\C

′ (1) and, also, ∃ q ∈ C′ such that d(p, q) ≤ bℓ+1 (2).
From (1) and (2), we get that for all p′ ∈ Cℓ\C

′, ∃ q ∈ C′ such
that d(p′, q) ≤ bℓ+1, that is, all remaining items are also already
covered by items in C′.

Thus, p is the last item that is considered for inclusion in Cℓ+1,
since all other remaining items in Cℓ are already covered. There-

fore, to construct Cℓ+1, the items from Cℓ to be included in level
ℓ + 1 are considered in the same order as in the greedy heuristic,
until one item that violates the separation criterion (it is covered by
the selected items) is encountered. When this happens the selection
stops. By the induction step and Observation 1, this concludes the
proof.

Note that, we have made an implicit assumption that no ties are
present when selecting items. In the absence of ties, both the greedy
heuristic and the cover tree algorithm select items deterministically.
We can raise this assumption, by considering that if ties exist, these
are resolved in a specific order that may vary depending on the
nature of the items, for instance, by selecting the most recent among
the items.

Regarding the complexity of Algorithm 3, most computational
steps are shared among levels. Each level Cℓ+1 is a subset of Cℓ

and, more specifically, it consists of the items of Cℓ in the order
that they were inserted into Cℓ until the first item whose minimum
distance from the already selected items of Cℓ at the point of its
insertion is smaller than bℓ+1. Therefore, it suffices to perform
these computational steps only once (at the lower level) and just
maintain the order at which each item was selected from the lowest
level for promotion to the next one.

Finally, from Theorem 2, we get that:

COROLLARY 1. Let P be a set of items, k ≥ 2, dGR(P, k) be

the minimum distance of the diverse set computed by the greedy

heuristic (Algorithm 1) and dBCT (P, k) be the minimum distance

of the diverse set computed by the cover tree algorithm (Algorithm 2)

when applied on a batch cover tree for P . It holds that dGR(P, k)
= dBCT (P, k).

As a final remark, another way to view the batch cover tree is as
caching the results of the greedy heuristic for all k and indexing
them for efficient retrieval.

4.2 Dynamic Construction
In dynamic environments, it is not efficient to re-construct a

batch cover tree whenever an item is inserted or deleted. Thus, we
construct a cover tree for P incrementally as new items arrive and
old ones expire. Next, we present insertion and deletion algorithms
for a cover tree of base b. We refer to such trees as Incremental
Cover Trees.

Incremental Insertion.
The procedure for inserting a new item p into a cover tree is

shown in Algorithm 4. Algorithm 4 is based on the insertion algo-
rithm in [8] and subsequent corrections in [17]. We have extended
the original algorithms to work for any b > 1. The algorithm takes
as input the new item p and a set of candidate nodes Qℓ at level ℓ

under which the new item could be inserted. The tree is descended
until a level is found in which p is separated from all other items
(lines 2-4). Each time the tree is descended, only the nodes that
cover p are considered (line 5). When the first level in which p is
separated from all other items is located, the node that covers p and
is closest to it is selected as its parent (lines 8-9).

Next, we prove the correctness of the algorithm for any b > 1.

THEOREM 3. Algorithm 4 with input an item p and the root

level C∞ at level ∞ of a cover tree T of base b for P returns a

cover tree of base b for P ∪ {p}.

PROOF. Assuming that p is not already in the tree, since ℓ can
range from +∞ to −∞, there is always a (sufficiently low) level

Algorithm 4 Insertion.
Input: An item p, a set of nodes T.Qℓ of a cover tree T at level ℓ.
Output: A cover tree T .

1: C ← {children(q) : q ∈ T.Qℓ}
2: if d(p, C) > bℓ then
3: return true
4: else

5: T.Qℓ−1 ← {q ∈ C : d(p, q) ≤ bℓ

b−1
}

6: flag ← Insertion(p, T.Qℓ−1, ℓ− 1)

7: if flag and d(p, T.Qℓ) ≤ bℓ then
8: q∗ ← argminq∈T.Qℓ,d(p,q)≤bℓ d(p, q)

9: make p a child of q∗

10: return false
11: else
12: return flag
13: end if

14: end if

Algorithm 5 Deletion.

Input: An item p, sets of nodes {T.Qℓ, T.Qℓ+1, . . . , T.Q∞} of a cover
tree T at level ℓ.

Output: A cover tree T .

1: C ← {children(q) : q ∈ T.Qℓ}

2: T.Qℓ−1 ← {q ∈ C : d(p, q) ≤ bℓ

b−1
}

3: Deletion(p, {T.Qℓ−1, T.Qℓ, . . . , T.Q∞}, ℓ− 1)
4: if d(p, C) = 0 then
5: delete p from level ℓ− 1 and from Children(Parent(p))
6: for q ∈ Children(p) in greedy order do
7: ℓ′ ← ℓ− 1
8: while d(q, T.Qℓ′) > bℓ′ do
9: add q into level ℓ′

10: T.Qℓ′ ← T.Qℓ′ ∪ {p}
11: ℓ′ ← ℓ′ + 1
12: end while
13: q∗ ← argminq′∈T.Qℓ′

d(p′, q)

14: make q a child of q∗

15: end for
16: end if

of the tree where the condition of line 2 first holds. Let ℓ − 1
be that level. Since ℓ − 1 is the highest level that the condition
holds, then it must hold that d(p, Qℓ) ≤ bℓ. Therefore, the second
condition of line 7 always holds and we can always find a parent
for the new node that was inserted, thus maintaining the covering
invariant. Whenever a new node is added at some level, it is also
added in all lower levers as a child of itself, thus maintaining the
nesting invariant. It remains to prove that this does not violate the
separation invariant. To do this, consider some other item q in level
ℓ − 1. If q ∈ C, then d(p, q) > bℓ−1. If not, then there is a
higher level ℓ′ > ℓ where some ancestor of q, say q′ was eliminated

by line 5, i.e., d(p, q′) > bℓ

b−1
. Using the triangle inequality, we

have that d(p, q) ≥ d(p, q′) − d(q, q′) = d(p, q′) −
∑ℓ′−1

j=ℓ
bj =

d(p, q′) −
(

bℓ−bℓ′

1−b

)

> bℓ

b−1
+ bℓ−bℓ′

b−1
= bℓ

b−1
> bℓ−1. Thus, the

separation invariant is maintained as well.

Note that, in selecting a parent for p we use a nearest parent

heuristic (as in the batch construction) to assign p to its closest
parent (line 8). This step is not necessary for the correctness of the
insertion. Instead, we could select any node for which d(p, q) ≤ bℓ

as a parent of p. We choose q∗ to better separate the items of each
tree level.

For clarity of presentation, Algorithm 4 assumes that the new
item p can be inserted in some existing level of the tree. In case

Table 1: Computational cost of GR and BCT.

b
Uniform (1000 items) Clustered (1000 items) Cities (1000 items)

step (i) (GR) step (ii) - np step (ii) step (i) (GR) step (ii) - np step (ii) step (i) (GR) step (ii) - np step (ii)

1.3 166827666 0.57% 0.40% 166730842 0.58% 0.42% 165827166 0.58% 0.41%

1.5 166347120 0.56% 0.40% 166416457 0.56% 0.42% 165827166 0.56% 0.41%

1.7 166347120 0.55% 0.39% 165943822 0.55% 0.41% 167101212 0.55% 0.40%

b
Forest (1000 items) Faces (300 items) Flickr (400 items)

step (i) (GR) step (ii) - np step (ii) step (i) (GR) step (ii) - np step (ii) step (i) (GR) step (ii) - np step (ii)

1.3 167020404 0.57% 0.43% 4499652 1.94% 1.49% 10684011 1.25% 1.00%

1.5 167020404 0.56% 0.43% 4499652 1.92% 1.47% 10737077 1.11% 0.92%

1.7 166565859 0.54% 0.42% 4499652 1.91% 1.47% 10448280 1.04% 0.89%

of static data, where we have the prior knowledge of the distances
among the items, we are able to determine the maximum and mini-
mum levels of the tree beforehand. However, when the indexed data
change dynamically, this is not the case. We have modified our al-
gorithm to meet this extra challenge. More specifically, whenever a
new item arrives that has a larger distance from the root node than
bℓmax , where ℓmax is the maximum level of the tree, we promote
both the root node and p to a new higher level and repeat this pro-
cess until one of the two nodes can cover the other. Also, whenever
a new item p must be indexed in some lever lower than ℓmin, where
ℓmin is the minimum level of the tree, we copy all nodes of Cℓmin

to a new level Cℓmin−1 until the new item p is separated from all
other items in the new level. Note that, since the explicit represen-
tation of the tree is stored, this duplication of levels is only virtual
and can be performed very efficiently.

Incremental Deletion.
The procedure for deleting items from a cover tree is shown in

Algorithm 5. The procedure descends the tree searching for the
item p to be removed, keeping note of the candidate nodes of each
level that may have p as a descendant. After p is located, it is
removed from the tree. In addition, all its children are reassigned
to some of the candidate nodes.

Algorithm 5 includes two heuristics for improving the quality of
the resulting cover tree. One is the usual nearest parent heuristic
shown in line 13: we assign each child of p to the closest among the
candidate parents. The other heuristic refers to the order in which
the children of p are examined in line 6. We examine them in a
greedy manner starting from the one furthest apart from the items
in level ℓ′ and continue to process them in decreasing order of their
distance to the items currently in ℓ′. These heuristics also do not
affect the correctness of the algorithm.

THEOREM 4. Algorithm 5 with input an item p and the root

level C∞ at level ∞ of a cover tree T of base b for P returns a

cover tree of base b for P \ {p}.

PROOF. The item p is removed from all levels that include it,
thus the nesting invariant is maintained. For each child q of p,
we move up the tree, until a parent for q is located, inserting q

in all intermediate levels ℓ′ to ensure that the nesting invariant is
not violated. Such a parent is guaranteed to be found (at least at the
level of the root). Adding q under its new parent does not violate the
separation invariant in any of the intermediate levels since d(q, q′)

> bℓ′ , for all q′ in Qℓ′ . The covering constraint also holds for the
parent of q.

As in the case of insertions, we also adjust ℓmax for the tree after
each deletion (ℓmin does not require adjustment in case the explicit
representation is stored). Whenever the root node is deleted, we

Table 2: Characteristics of Datasets.
Dataset Cardinality Dimensions Distance metric

Uniform 10000 2 Euclidean

Clustered 10000 2 Euclidean

Cities 5922 2 Euclidean

Forest 5000 10 Cosine

Faces 300 256 Cosine

Flickr 18245 - Jaccard

must select a new root. Note that, it is possible that none of the
children of the old root are able to cover all of its siblings. In this
case, we promote those of the siblings that continue to be separated
from each other in a new (higher) level and continue to do so until
we reach a level that is high enough so that a single root node can
be selected.

5. EVALUATION
In this section, we experimentally evaluate the performance of

the cover tree when employed for selecting diverse results. This
evaluation is performed both in terms of the achieved diversity of
the selected items, as well as, the computational cost of maintaining
a cover tree in the case of dynamic insertions and deletions. The
second aspect of our evaluation is itself interesting, since, to the
best of our knowledge, there is no evaluation of the behavior of the
cover tree in the case of dynamic data changes.

5.1 Setup
In our evaluation, we use a variety of datasets, both real and syn-

thetic. Our synthetic datasets consist of 10000 multi-dimensional
items in the Euclidean space, where each dimension takes values
in [0, 1]. Items are either uniformly distributed (“Uniform”) or
form (hyper)spherical clusters of different sizes (“Clustered”). We
also employ a number of real datasets. The first one is a collec-
tion of 2-dimensional points representing geographical information
about 5922 cities and villages of Greece (“Cities”) [5]. Due to the
geography of Greece, which includes a large number of islands,
this dataset provides us with both dense and sparse areas of points
which makes it suitable for evaluating diversification methods. The
second real dataset (“Forest”) contains forest cover information for
areas in the United States, such as elevation and distance to hy-
drology [4]. 10 features are present for 5000 locations. The third
dataset (“Faces”) consists of 256 features extracted from each of
300 human face images with the eigenfaces method [1]. Finally, for
our last real dataset (“Flickr”), we used data from [3] which con-
sists of tags assigned by users to photographs uploaded to the Flickr
photo service [2] from January 2004 to December 2005. Since the
available descriptions span over an extremely large space due to the
great variety of available photographs, we concentrated on a subset
of them by extracting all tags for photographs that were tagged with

 n*5% n*10% n*15%
0

2

4

6

8

10

12
x 10

6 uniform

k

O
pe

ra
ti

on
s

GR
BCT−1.3

BCT−1.5

BCT−1.7

(a) Uniform.

 n*5% n*10% n*15%
0

2

4

6

8

10

12
x 10

6 clustered

k

O
p

er
at

io
n

s

GR

BCT−1.3

BCT−1.5

BCT−1.7

(b) Clustered.

 n*5% n*10% n*15%
0

2

4

6

8

10

12
x 10

6 cities

k

O
p

er
at

io
n

s

GR

BCT−1.3

BCT−1.5

BCT−1.7

(c) Cities.

 n*5% n*10% n*15%
0

2

4

6

8

10

12
x 10

6 forest

k

O
p

er
at

io
n

s

GR

BCT−1.3

BCT−1.5

BCT−1.7

(d) Forest.

 n*5% n*10% n*15%
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5 faces

k

O
p

er
at

io
n

s

GR

BCT−1.3

BCT−1.5

BCT−1.7

(e) Faces.

 n*5% n*10% n*15%
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5 flickr

k

O
p

er
at

io
n

s

GR

BCT−1.3

BCT−1.5

BCT−1.7

(f) Flickr.

Figure 4: Total number of operations for retrieving the k most

diverse items for GR and BCTs with base values of 1.3, 1.5 and

1.7.

a specific keyword, namely the keyword “holiday”. Throughout
our evaluation, we used different distance metrics for our datasets.
We used the Euclidean distance for “Uniform”, “Clustered” and
“Cities”, while for “Faces” and “Forest”, we employed the Cosine
distance. Finally, for “Flickr”, we used the Jaccard distance among
the sets of tags describing each photograph. The characteristics of
our datasets are summarized in Table 2.

We first compare the performance of the Batch Cover Tree (BCT)
and the Incremental Cover Tree (ICT) against the greedy heuristic
(GR). For comparison, we also report results of randomly selecting
k of the available items (RA). Then, we concentrate on the behav-
ior of ICT in a streaming scenario and also report on the quality
of the achieved solutions for the CONSTRAINED CONTINUOUS k-
DIVERSITY PROBLEM.

All approaches are implemented in Java using JDK 1.6. Our
experiments were executed on an Intel Pentium Core2 2.4GHz PC
with 2GB of RAM.

5.2 Comparison of BCT, ICT and GR
First, we compare BCT against GR. Diversity-wise, as shown in

Corollary 1, the solutions provided by BCT are identical to those
of GR, which is generally one of the best performing heuristics
for computing diverse results [10]. Due to the NP-hardness of the
k-DIVERSITY PROBLEM, it is not possible to compute optimal so-
lutions in reasonable time even for moderate values of n and k, and
therefore, such values are not reported here. However, we know

Table 3: Height of produced BCTs and ICTs (in parentheses).
Maximum level

b Uniform Clustered Cities Forest Faces Flickr

1.3 2 (1) 7 (6) -6 (-7) -1 (-2) 0 0

1.5 1 4 -4 -1 0 0

1.7 1 4 (3) -3 0 (-1) 0 0

Minimum level

b uniform clustered cities forest faces flickr

1.3 -26 -25 -35 -45 -45 -8

1.5 -17 -16 -23 -29 -29 -6

1.7 -13 -12 -18 -22 -22 -4

Table 4: Computational cost of ICT as compared to BCT.

b
Uniform (1000 items) Clustered (1000 items) Cities (1000 items)

ICT - np ICT ICT - np ICT ICT - np ICT

1.3 0.16% 0.16% 0.16% 0.16% 0.15% 0.15%

1.5 0.08% 0.08% 0.08% 0.08% 0.07% 0.07%

1.7 0.05% 0.05% 0.06% 0.06% 0.05% 0.05%

b
Forest (1000 items) Faces (300 items) Flickr (400 items)

ICT - np ICT ICT - np ICT ICT - np ICT

1.3 0.13% 0.13% 0.78% 0.79% 3.83% 3.84%

1.5 0.07% 0.07% 0.41% 0.41% 2.10% 2.10%

1.7 0.05% 0.05% 0.28% 0.28% 1.36% 1.36%

that GR, and thus BCT, provide a 1
2

-approximation of the optimal
solution.

We focus our evaluation on the computational cost of building a
BCT compared to that of employing GR. We measure this cost in
terms of operations, i.e., distance computations required to be cal-
culated, instead of other measures, such as time. The reason for this
is that the cost of a single distance computation varies a lot depend-
ing on the distance metric used. For example, computing Jaccard
distances between sets of items is more expensive than comput-
ing Euclidean distances. To evaluate this computational cost, we
use 1000 random items for all datasets except from “Faces” where
there are only 300 available items and “Flickr” where the distance
computations are much more time-consuming.

The cost of building a BCT consists of: (i) performing opera-
tions at the lowest (leaf) level among the n available items in order
to build the first non-leaf level and then (ii) performing a number of
operations to assign nodes to the most suitable parent as the upper
levels of the tree are constructed. We measure the operations per-
formed at steps (i) and (ii) separately. Operations required by step
(i) are also the operations required by GR. Therefore, the actual ex-
tra cost of building a BCT is reflected by the operations of step (ii).
The amount of these operations differs depending on whether our
nearest-parent heuristic (denoted “np”) is employed or not.

Table 1 shows the required operations to build BCTs for different
values of base b. For clarity, we report the absolute number of op-
erations required by step (i) and the additional operations required
by step (ii) as a percentage of the operations required by step (i).
For example, for b = 1.3 and the “Uniform” dataset, step (ii) of
BCT with the nearest-parent heuristic requires only an additional
0.57% of the operations of step (i). When we just need to com-
pute the k most diverse items only once, employing GR would be
preferable. However, building a BCT comes at little extra cost and
can be used to answer queries for multiple values of k and for the
case of dynamic insertions and deletions of items.

Next, we show the cost of retrieving the k most diverse items
from a BCT as opposed to retrieving them employing GR with var-

 n*5% n*10% n*15%
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
uniform

k

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(a) Uniform.

 n*5% n*10% n*15%
0

0.05

0.1

0.15

0.2

0.25
clustered

k

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(b) Clustered.

 n*5% n*10% n*15%
0

1

2

3

4

5

6

7

8
x 10

−3 cities

k

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(c) Cities.

 n*5% n*10% n*15%
0

1

2

3

4

5

6
x 10

−3 forest

k

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(d) Forest.

 n*5% n*10% n*15%
0

0.02

0.04

0.06

0.08

0.1

0.12
faces

k

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(e) Faces.

 n*5% n*10% n*15%
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
flickr

k

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(f) Flickr.

Figure 5: Achieved diversity of ICT and GR.

ious values of k expressed as a percentage of the total number of
available items n (Figure 4). We see that retrieving diverse items
from an already constructed BCT has much smaller cost than ex-
ecuting GR from scratch, even for small values of k. The cost is
higher for the “Flickr” dataset because the constructed tree is short
and wide, which results in more operations performed by lines 8-12
of Algorithm 2. The heights of the produced BCTs for our different
datasets can be seen in Table 3 where we report the ℓ values for the
highest and lowest levels. The BCTs for the “Flickr” dataset are
considerably shorter because the average distance among the items
of this dataset is larger than those of the other datasets. Another
interesting observation is that the trees constructed for the “Faces”
and “Forest” datasets are almost of the same height, even though
the size of the “Faces” dataset is around one third of the size of the
“Forest” dataset.

We also report the cost of building an ICT as compared to the
cost of building a BCT (Table 4). To construct such trees, we used
our dynamic version of Insertion to insert all items of the corre-
sponding datasets to the trees. The cost is shown as a percentage
of the total cost (step (i) and step (ii)) of constructing the BCT tree
for each dataset. Clearly, building ICTs has a much lower cost than
their BCT counterparts. Figure 5 reports the quality of the solu-
tions produced by GR, and thus BCT, and ICT for our datasets.
ICTs achieve very good solutions, while their cost is very small
compared to that of GR and BCTs. In general, the produced ICT
for a dataset is different than the BCT for this dataset. However,
in most cases they both have the same height. Table 3 reports in
parentheses the height of the ICT, for the cases in which, this is
different from the height of the corresponding BCT.

To give some intuition concerning actual execution times, per-
forming the greedy step to execute GR, and also construct the lower
level of a BCT, requires, with our current implementation, around 7
seconds for our Euclidean datasets and the reported b values. Build-
ing the corresponding ICTs is much more efficient, requiring under
0.5 seconds on average.

5.3 Continuous Data
Next, we concentrate on how our approach performs with stream-

ing. To simulate the order in which data arrives, we used the photo
upload time for our “Flickr” dataset and, for the rest of our datasets,
we randomly permuted the items so that they enter the stream in a
random order. Due to space constraints, in this section, we omit the
“Clustered” and “Forest” datasets. The results are similar to the
other cases.

Figures 6, 7 and 8 show results for different values of the num-
ber of required items k, the length of the jumping window w and
the jumping step of the window h respectively. w is selected as a
percentage of the total number of available items n, while k and h

are selected as a percentage of w. We report averages over compu-
tations performed for all windows while the window slides along
the stream of items.

The top rows of Figures 6, 7 and 8 report the achieved diver-
sity of GR (and equivalently BCT) and the dynamically constructed
ICTs for different base values. Again, we also report the diversity
achieved by RA. We observe that, even though the cover trees are
dynamically constructed, and thus may differ from the correspond-
ing BCTs for the same set of items, the achieved diversity is very
close to that of GR in all cases. This means that, in practice, the
performance of ICTs is better than its theoretical bound of Theo-
rem 1.

The computational cost for using the cover trees, depicted in the
bottom rows of Figures 6, 7 and 8, is the sum of two factors: (i) the
cost for computing the k most diverse items at each window and
(ii) the cost of removing (resp. inserting) from the cover tree the
items that have exited (resp. entered) the window. We see that, in
most cases, this cost is substantially smaller than the cost of com-
puting the diverse items using GR at each window. Also, this cost
increases as b decreases, since a smaller base value corresponds to
taller trees, something that has an impact on the cost of insertions
and deletions. In this experiment, we used the nearest-parent vari-
ations of Insertion and Deletion, as explained in Section 4. We
also experimented with the non-nearest-parent alternatives and no-
ticed that the decrease in the quality of the solution was less than
8%. The savings in computational cost were not that important for
insertions as for deletions. The cost of insertions remained roughly
the same, while deletions required only around 55% of the opera-

w*10% w*15% w*20%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
uniform

k

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(a) Uniform.

w*10% w*15% w*20%
0

0.005

0.01

0.015

0.02

0.025
cities

k

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(b) Cities.

w*10% w*15% w*20%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
faces

k

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(c) Faces.

w*10% w*15% w*20%

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
flickr

k

D
iv

er
si

ty

GR

ICT−1.7

ICT−1.9

ICT−2.1

RA

(d) Flickr.

w*10% w*15% w*20%
0

0.5

1

1.5

2
x 10

5 uniform

k

O
p

er
at

io
n

s

GR

ICT−1.3

ICT−1.5

ICT−1.7

(e) Uniform.

w*10% w*15% w*20%
0

0.5

1

1.5

2
x 10

5 cities

k

O
p

er
at

io
n

s

GR

ICT−1.3

ICT−1.5

ICT−1.7

(f) Cities.

w*10% w*15% w*20%
1000

2000

3000

4000

5000

6000
faces

k

O
p
er

at
io

n
s

GR

ICT−1.3

ICT−1.5

ICT−1.7

(g) Faces.

w*10% w*15% w*20%
4000

6000

8000

10000

12000

14000
flickr

k

O
p
er

at
io

n
s

GR

ICT−1.7

ICT−1.9

ICT−2.1

(h) Flickr.

Figure 6: Achieved diversity (top row) and operations (bottom row) for w = n · 20% and h = w · 20%.

n*10% n*20% n*30%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
uniform

w

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(a) Uniform.

n*10% n*20% n*30%
0

0.005

0.01

0.015

0.02

0.025

0.03
cities

w

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(b) Cities.

n*10% n*20% n*30%
0

0.2

0.4

0.6

0.8

1
faces

w

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(c) Faces.

n*10% n*20% n*30%

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
flickr

w

D
iv

er
si

ty

GR

ICT−1.7

ICT−1.9

ICT−2.1

RA

(d) Flickr.

n*10% n*20% n*30%
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5 uniform

w

O
p
er

at
io

n
s

GR

ICT−1.3

ICT−1.5

ICT−1.7

(e) Uniform.

n*10% n*20% n*30%
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5 cities

w

O
p
er

at
io

n
s

GR

ICT−1.3

ICT−1.5

ICT−1.7

(f) Cities.

n*10% n*20% n*30%
0

2000

4000

6000

8000

10000

12000
faces

w

O
p
er

at
io

n
s

GR

ICT−1.3

ICT−1.5

ICT−1.7

(g) Faces.

n*10% n*20% n*30%
0

0.5

1

1.5

2

2.5

3
x 10

4 flickr

w

O
p
er

at
io

n
s

GR

ICT−1.7

ICT−1.9

ICT−2.1

(h) Flickr.

Figure 7: Achieved diversity (top row) and operations (bottom row) for k = w · 15% and h = w · 20%.

w*10% w*20% w*30%
0

0.1

0.2

0.3

0.4
uniform

h

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(a) Uniform.

w*10% w*20% w*30%
0

0.005

0.01

0.015

0.02
cities

h

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(b) Cities.

w*10% w*20% w*30%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
faces

h

D
iv

er
si

ty

GR

ICT−1.3

ICT−1.5

ICT−1.7

RA

(c) Faces.

w*10% w*20% w*30%
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
flickr

h

D
iv

er
si

ty

GR

ICT−1.7

ICT−1.9

ICT−2.1

RA

(d) Flickr.

w*10% w*20% w*30%
0

2

4

6

8

10
x 10

4 uniform

h

O
p
er

at
io

n
s

GR

ICT−1.3

ICT−1.5

ICT−1.7

(e) Uniform.

w*10% w*20% w*30%
0

2

4

6

8

10
x 10

4 cities

h

O
p
er

at
io

n
s

GR

ICT−1.3

ICT−1.5

ICT−1.7

(f) Cities.

w*10% w*20% w*30%
0

1000

2000

3000

4000

5000
faces

h

O
p
er

at
io

n
s

GR

ICT−1.3

ICT−1.5

ICT−1.7

(g) Faces.

w*10% w*20% w*30%
6000

7000

8000

9000

10000

11000

12000
flickr

h

O
p
er

at
io

n
s

GR

ICT−1.7

ICT−1.9

ICT−2.1

(h) Flickr.

Figure 8: Achieved diversity (top row) and operations (bottom row) for k = w · 15% and w = n · 20%.

w*10% w*15% w*20%
0

0.005

0.01

0.015

0.02

0.025
cities

k

D
iv

er
si

ty

GR

SGR

ICT−1.3

SCT−1.3

ICT−1.5

SCT−1.5

ICT−1.7

SCT−1.7

RA

(a) Cities.

w*10% w*15% w*20%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
faces

k

D
iv

er
si

ty

GR

SGR

ICT−1.3

SCT−1.3

ICT−1.5

SCT−1.5

ICT−1.7

SCT−1.7

RA

(b) Faces.

n*10% n*20% n*30%
0

0.005

0.01

0.015

0.02

0.025

0.03
cities

w

D
iv

er
si

ty

GR

SGR

ICT−1.3

SCT−1.3

ICT−1.5

SCT−1.5

ICT−1.7

SCT−1.7

RA

(c) Cities.

n*10% n*20% n*30%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
faces

w

D
iv

er
si

ty

GR

SGR

ICT−1.3

SCT−1.3

ICT−1.5

SCT−1.5

ICT−1.7

SCT−1.7

RA

(d) Faces.

w*10% w*20% w*30%
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
cities

h

D
iv

er
si

ty

GR

SGR

ICT−1.3

SCT−1.3

ICT−1.5

SCT−1.5

ICT−1.7

SCT−1.7

RA

(e) Cities.

w*10% w*20% w*30%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
faces

h

D
iv

er
si

ty

GR

SGR

ICT−1.3

SCT−1.3

ICT−1.5

SCT−1.5

ICT−1.7

SCT−1.7

RA

(f) Faces.

Figure 9: Achieved diversity for w = n · 20% and h = w · 20% ((a), (b)), k = w · 15% and h = w · 20% ((c), (d)) and k = w · 15%
and w = n · 20% ((e), (f)).

tions required by the nearest-parent variations. This makes the use
of the simple alternatives attractive when we are willing to trade a
small reduction in quality for smaller computational cost.

Concerning real time, for our Euclidean datasets and the reported
b values, insertions require less than 1 millisecond for trees with
1000 items, around 2 milliseconds for trees with 5000 items and up
to 2.6 milliseconds for trees with 10000 items. The corresponding
times for deletions are around 1, 4 and 10 milliseconds respectively.

Finally, we perform a series of experiments to see the relation
between the solutions of the UNCONSTRAINED CONTINUOUS k-
DIVERSITY PROBLEM and the CONSTRAINED CONTINUOUS k-
DIVERSITY PROBLEM. To this end, we adapt GR following our
previous work in [10]. After each window jump, we initialize the
solution for the new window with the remaining items from the
previous window that were determined to be diverse, thus enforc-
ing the durability requirement. Let S be this set of items. Then, we
use GR to select k − |S| other items from the new window, ignor-
ing items that have been generated previously than the newest item
in S, according to the freshness requirement. We denote this vari-
ation as Streaming Greedy (SGR) heuristic. We also modify our
diverse item retrieval from the Cover Tree as discussed in Section 3
(denoted SCT).

Figure 9 shows the behavior of SGR and SCT for different base
values when we vary k, w and h for “Cities” and “Faces”. We
omit the respective figures for the remaining datasets due to space
restrictions. We notice that enforcing the durability and freshness
requirements does not have a considerable impact on the achieved
diversity. Both SGR and SCT achieve lower diversity than their
unconstrained streaming counterparts, however, this is something
we expect since the durability requirement enforces the inclusion
of specific items in the solution. Concerning time, to provide some
insight, retrieving the top-100 most diverse results from a cover
tree with 1.3 ≤ b ≤ 1.7 containing from 1000 up to 10000 items
requires around 16 milliseconds, while executing GR in this case
requires up to 3.2 seconds for 5000 items and more than 15 seconds
for 10000 items.

6. RELATED WORK
Due to the NP-hard complexity of the k-DIVERSITY PROBLEM,

a number of heuristics have been proposed in the related literature
for selecting diverse subsets of items. There are plenty different fla-
vors of diversification techniques (e.g., [23, 7, 24]). However, most
works consider that the available items do not change over time
and, thus, a diverse subset of items is computed once and does not
evolve. Recently, a couple of works ([10, 20]) considered continu-
ous flows of items and proposed initial approaches on incremental
diversification. The authors of [22] also propose an index-based
approach to diversification, which imposes certain restrictions on
the form of the data and the function f .

In this section, we first present an overview of the most widely
used heuristics for the static version of the problem, then exist-
ing approaches for the continuous case and, finally, existing index-
based approaches.

Static Data: A number of heuristics have been proposed in the lit-
erature for solving the k-DIVERSITY PROBLEM [11], ranging from
applying exhaustive algorithms to adapting traditional optimization
techniques. Most heuristics that locate good solutions at a reason-
able time fall in one of the following two families: greedy heuristics
and interchange (or swap) heuristics.

Greedy heuristics make use of two sets: the initial set P of n

available items and a set S which will eventually contain the se-
lected items. Items are iteratively moved from P to S and vice
versa until |S| = k and |P | = n − k. In the most widely used
variation, first, the two furthest apart items of P are added to S.
Then, at each iteration, one more item is added to S. The item that
is added is the one that has the maximum distance from S. The
complexity in terms of computed distances is O(n2).

Interchange heuristics are initialized with a random solution S of
size k and then iteratively attempt to improve that solution by in-
terchanging an item in the solution with another item that is not in
the solution. The item that is eliminated from the solution at each
iteration is one of the two closest items in it. There are two main
variations: either perform at each iteration the first interchange that
improves the solution or consider all possible interchanges and per-
form the one that improves the solution the most. None of the
two variations clearly outperforms the other, while their worst case
complexity is O(nk). Even though there is no clear winner in terms

of complexity, the first variation usually locates better solutions
[14]. Recently, [23] introduced randomization steps in interchange
heuristics by allowing interchanges that mat not improve the solu-
tion at the current step but may lead to allowing better interchanges
in the future.

Continuous Data: In our previous work [10], we considered adapt-
ing the greedy heuristic to the continuous case. After each window
jump, we initialize the solution with any valid items that were se-
lected as diverse in the previous window and then we allow the
greedy heuristic to select the remaining items to “fill in” the new
solution. As other greedy approaches, this heuristic still requires
many distances to be computed in order to locate a solution for the
problem.

Recently, the authors of [20] considered an incremental solution
based on interchange heuristics. Upon the arrival of a new item
p, all possible interchanges between p and the items in the current
diverse subset are performed. If there exists some interchange that
increases diversity, then the corresponding two items are swapped
and p enters the diverse result. A similar technique was also pro-
posed in [12]. Two possible drawbacks of this approach is that old
items may never leave the diverse results in case no swaps are per-
formed and also that a new object can enter the diverse set only
upon its arrival and not later in time.

Indices for Diversification: The only existing works to the best
of our knowledge that make use of indices to assist result diver-
sification are [22] and [18]. [22] aims at selecting diverse tuples
of a structured relation, where the attributes of the relation follow
a total order of importance concerning diversity. That means that
two tuples that differ in a highly important attribute are considered
very different from each other, even if they share common values
in other less important attributes. This distance measure allows the
exploitation of a Dewey encoding of the tuples that enables them
to be organized in a tree structure which is later exploited to se-
lect the k most diverse of them. We also employ tree structures in
our approach. However, our definition of diversity is more general
and does not demand structured data or a specific ordering of some
features. In [18], the authors employ cover trees for solving the
k-medoids problem. While selecting k representative medoids is a
form of diversification, that work focuses on the clustering of data
rather than their diversification. Recently, cover trees were also
employed in [9] for computing priority medoids, i.e., medoids that
are associated with some high relevance factor. Our work differs in
the aspect that priority medoid computation cannot be employed in
dynamic environments, since it depends on the order of item inser-
tions in the trees.

7. SUMMARY
Recently, result diversification has attracted considerable atten-

tion. However, most current research addresses the static version of
the problem. In this paper, we have studied the diversification prob-
lem in a dynamic setting where the items to be diversified change
over time. We have proposed an index-based approach that allows
the incremental evaluation of the diversified sets to reflect item up-
dates. Our solution is based on cover trees. We have provided
theoretical and experimental results regarding the quality of our so-
lution.

Acknowledgments

The first author is supported by the research program “HRAK-
LEITOS II”, co-funded by the European Union and the Hellenic
Ministry of Education, Life Long Learning and Religious Affairs.

We would like to thank the authors of [23] for providing us with
their version of the “Faces” dataset.

8. REFERENCES
[1] Faces dataset. http://www.informedia.cs.cmu.edu.
[2] Flickr. http://www.flickr.com/.
[3] Flickr dataset. Available at http://www.tagora-project.eu.
[4] Forest cover dataset. Available at http://kdd.ics.uci.edu.
[5] Greek cities dataset. Available at http://www.rtreeportal.org.
[6] Twitter. http://www.twitter.com.
[7] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.

Diversifying search results. In WSDM, 2009.
[8] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for

nearest neighbor. In ICML, 2006.
[9] R. Boim, T. Milo, and S. Novgorodov. Diversification and

refinement in collaborative filtering recommender. In CIKM,
2011.

[10] M. Drosou and E. Pitoura. Diversity over continuous data.
IEEE Data Eng. Bull., 32(4):49–56, 2009.

[11] M. Drosou and E. Pitoura. Search result diversification.
SIGMOD Record, 39(1):41–47, 2010.

[12] M. Drosou, K. Stefanidis, and E. Pitoura. Preference-aware
publish/subscribe delivery with diversity. In DEBS, 2009.

[13] E. Erkut. The discrete p-dispersion problem. European

Journal of Operational Research, 46(1), 1990.
[14] E. Erkut, Y. Ülküsal, and O. Yeniçerioglu. A comparison of

p-dispersion heuristics. Computers & OR, 21(10), 1994.
[15] S. Gollapudi and A. Sharma. An axiomatic approach for

result diversification. In WWW, 2009.
[16] J. R. Haritsa. The kndn problem: A quest for unity in

diversity. IEEE Data Eng. Bull., 32(4):15–22, 2009.
[17] T. Kollar. Fast Nearest Neighbors.

http://nicksgroup.csail.mit.edu/TK/Technical_Reports/
covertrees.pdf.

[18] B. Liu and H. V. Jagadish. Using trees to depict a forest.
PVLDB, 2(1):133–144, 2009.

[19] Z. Liu, P. Sun, and Y. Chen. Structured search result
differentiation. PVLDB, 2(1), 2009.

[20] E. Minack, W. Siberski, and W. Nejdl. Incremental
diversification for very large sets: a streaming-based
approach. In SIGIR, 2011.

[21] A. Tamir. Obnoxious facility location on graphs. SIAM J.

Discrete Math., 4(4):550–567, 1991.
[22] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and

S. Amer-Yahia. Efficient computation of diverse query
results. In ICDE, 2008.

[23] M. R. Vieira, H. L. Razente, M. C. N. Barioni,
M. Hadjieleftheriou, D. Srivastava, C. T. Jr., and V. J.
Tsotras. On query result diversification. In ICDE, 2011.

[24] C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia. It takes
variety to make a world: diversification in recommender
systems. In EDBT, 2009.

[25] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. In WWW, 2005.

