
Preference-Aware Publish/Subscribe Delivery
with Diversity

Marina Drosou
Dept. of Computer Science

University of Ioannina, Greece
mdrosou@cs.uoi.gr

Kostas Stefanidis
Dept. of Computer Science

University of Ioannina, Greece
kstef@cs.uoi.gr

Evaggelia Pitoura
Dept. of Computer Science

University of Ioannina, Greece
pitoura@cs.uoi.gr

ABSTRACT
In publish/subscribe systems, users describe their interests
via subscriptions and are notified whenever new interesting
events become available. Typically, in such systems, all sub-
scriptions are considered equally important. However, due
to the abundance of information, users may receive over-
whelming amounts of events. In this paper, we propose us-
ing a ranking mechanism based on user preferences, so that
only top-ranked events are delivered to each user. Since
many times top-ranked events are similar to each other,
we also propose increasing the diversity of delivered events.
Furthermore, we examine a number of different delivering
policies for forwarding ranked events to users, namely a pe-
riodic, a sliding-window and a history-based one. We have
fully implemented our approach in SIENA, a popular pub-
lish/subscribe middleware system, and report experimental
results of its deployment.

1. INTRODUCTION
With the explosion of the amount of information that is

currently available online, publish/subscribe systems offer
an attractive alternative to searching by providing a proac-
tive model of information supply. In such systems, users
express their interest in specific pieces of data (or events)
via subscriptions. Then, they are notified whenever some
other user generates (or publishes) an event that matches
one of their subscriptions. Typically, all subscriptions are
considered equally important and users are notified when-
ever a published event matches any of their subscriptions.

However, getting notified about all matching events may
lead to overwhelming the users with huge amounts of notifi-
cations, thus hurting the acceptability of publish/subscribe
systems. To control the rate of notifications received by the
subscribers, it would be useful to allow them to rank the im-
portance or relevance of events. Then, they would only re-
ceive notifications for the most important or relevant among
them. For example, take a user Addison that generally likes
drama movies but prefers drama movies directed by T. Bur-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’09, July 6–9, Nashville, TN, USA.
Copyright 2009 ACM X-XXXXX-000-0/00/0004 ...$5.00.

ton to drama movies directed by S. Spielberg. Ideally, Ad-
dison would like to receive notifications about S. Spielberg
drama movies only if there are no, or not enough, notifica-
tions about T. Burton drama movies.

In this paper, we propose extending subscriptions to al-
low users express the fact that some events are more im-
portant or relevant to them than others. To indicate pri-
orities among subscriptions, we introduce preferential sub-
scriptions. In general, there are two basic approaches to
specifying preferences among items: the quantitative and
the qualitative approach. In the quantitative approach (e.g.
[5, 15, 19]), users employ scoring functions that associate
a numeric score with specific data items to indicate their
interest in them. In the qualitative approach (e.g. [7, 13,
14]), preferences between two data items are specified di-
rectly, typically using binary preference relations. We show
how to formulate preferences among subscriptions using each
one of these approaches. Events are ranked so that an event
that matches a highly preferred subscription is ranked higher
than an event that matches a subscription with a lower pref-
erence.

Based on preferential subscriptions, we introduce a top-k
variation of the publish/subscribe paradigm in which users
receive only the matching events having the k highest ranks
as opposed to all events matching their subscriptions. Since
the generation of events is continuous, we also introduce a
number of delivering policies that determine the range of
events over which the top-k computation is performed.

However, the top-k events are often very similar to each
other. Besides pure accuracy achieved by matching the crite-
ria set by the users, diversification, i.e. recommending items
that differ from each other, has been shown to increase user
satisfaction [23]. For instance, our user Addison would prob-
ably like to receive information about different drama movies
by T. Burton as well as a couple of S. Spielberg’s drama
movies once in a while. To this end, we adjust the top-k
computation to take also into account the diversity of the
delivered events. To achieve this, we consider both the im-
portance of each event as specified by the user preferences
as well as its diversity from other top-ranked events.

As a proof-of-concept, we have implemented a prototype,
termed PrefSIENA [3]. PrefSIENA extends SIENA [4], a
popular publish/subscribe middleware system, with prefer-
ential subscriptions, delivering policies and diversity towards
achieving top-k event delivery. We present a number of ex-
perimental results to assess the number of events delivered
by PrefSIENA with respect to the original SIENA system,
as well as their rank and diversity. We also report on the

overheads of supporting diversity-aware top-k delivery.
The rest of the paper is structured as follows. Section 2

presents publish/subscribe preliminaries. Section 3 intro-
duces preferential subscriptions and event ranks. In Sec-
tion 4, we focus on how to diversify the top-ranked events,
while in Section 5, we examine a number of different deliver-
ing policies for forwarding events. In Section 6, we introduce
an algorithm for computing the top-ranked events based on
preferential subscriptions and in Section 7, we present our
evaluation results. Section 8 describes related work and fi-
nally, Section 9 concludes the paper.

2. PUBLISH/SUBSCRIBE PRELIMINARIES
In general, a publish/subscribe system consists of three

parts: (i) the publishers that provide events to the system,
(ii) the subscribers that enter subscriptions and consume
events and (iii) an event-notification service that stores the
various subscriptions, matches the incoming events against
them and delivers the matching events to the appropriate
subscribers ([11]). Publishers can publish events at any
time and these events will be delivered to all interested sub-
scribers at some point in the future.

We use a generic way to form events, similar to the one
used in [6, 12]. In particular, events are sets of typed at-
tributes. Each event consists of an arbitrary number of at-
tributes and each attribute has a type, a name and a value.
Attribute types belong to a predefined set of primitive types,
such as “integer” or “string”. Attribute names are character
strings that take values according to their type. An example
event about a movie is shown in Figure 1a. Formally:

An event e is a set of typed attributes {a1, . . . , ap}, where
each ai, 1 ≤ i ≤ p, is of the form (ai.type ai.name =
ai.value).

Subscriptions are used to specify the kind of events users
are interested in. Each subscription consists of a set of con-
straints on the values of specific attributes. Each attribute
constraint has a type, a name, a binary operator and a value.
Types, names and values have the same form as in events.
Binary operators include common operators, such as, =, 6=,
<, > and substring. An example subscription is depicted
in Figure 1b. Formally:

A subscription s is a set of attribute constraints {b1, . . . , bq},
where each bi, 1 ≤ i ≤ q, is of the form (bi.type bi.name θbi

bi.value), θbi
∈ {=, <, >,≤,≥, 6=, substring, prefix, suffix}.

Intuitively, we can say that an event e matches a sub-
scription s, or alternatively s covers e, if and only if, every
attribute constraint of s is satisfied by some attribute of e.
Formally:

Definition 1 (Cover Relation). Given an event e =
{a1, . . . , ap} and a subscription s = {b1, . . . , bq}, s covers
e (s � e), if and only if, ∀ bj ∈ s, ∃ ai ∈ e, such that,
ai.type = bj .type, ai.name = bj .name and ((ai.value) θbj

(bj .value)) holds, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

An event e is delivered to a user, if and only if, the user has
submitted at least one subscription s, such that s covers e.
For example, the subscription of Figure 1b covers the event
of Figure 1a, and therefore, this event will be delivered to
all users who have submitted this subscription.

(a) (b)

Figure 1: (a) Event and (b) subscription examples.

Figure 2: Qualitative preference example.

3. PREFERENCE MODEL
In this section, we first extend subscriptions to include

preferences. Then, we examine how to compute the impor-
tance of published events for the users.

3.1 Preferential Subscriptions
Our goal is for each subscriber, instead of receiving all

matching events, to receive only the most interesting among
them. To achieve this, we allow users to express prefer-
ences along with their subscriptions. In general, preferences
can be expressed using either a quantitative or a qualitative
approach. Following a quantitative preference model, users
explicitly provide numeric scores to indicate their degree of
interest (e.g. [5, 15, 19]). Following a qualitative model,
users employ binary relations to directly define preferences
between data items (e.g. [7, 13, 14]). We first use a quali-
tative preference model [7], since this model is more general
than the quantitative one and also closer to the user’s intu-
ition. Specifically:

Definition 2 (Preferential Subscription Model).
Let SX be the set of subscriptions of user X. Along with SX ,
X specifies a binary preference relation CX on SX , CX =
{(si ≻ sj) | si, sj ∈ SX}, where si ≻ sj denotes that X
prefers si over sj or considers si more interesting than sj.

An example is shown in Figure 2. Given CX , we would
like to rank subscriptions based on interest. To this end,
we use the winnow operator [7]. The intuition is to assign
the highest rank to the most preferred subscriptions, that is,
to those subscriptions for which there is no other subscrip-
tion in SX that is preferable over them. Formally, winnow
at level 1, winX(1), is the set of subscriptions si ∈ SX for
which, ∄ sj ∈ SX with (sj ≻ si) ∈ CX . An additional
application of winnow, winX(2), returns the next most pre-
ferred subscriptions, that is, si ∈ winX(2), if and only if,
∄ sj ∈ (SX − winX(1)) with (sj ≻ si) ∈ CX . Generalizing,
the winnow operator at level l, l > 1, returns a set of sub-
scriptions, winX(l), consisting of the subscriptions si ∈ (SX

− ∪l−1
q=1winX(q)) such that ∀ si ∈ winX(l), ∄sj ∈ (SX −

∪l−1
q=1winX(q)) with (sj ≻ si) ∈ CX . Repeated applications

of winnow result in ranking all subscriptions in SX .
The straightforward way to compute win is to iterate

through all subscriptions in SX . Instead, if the preference re-
lation is acyclic, we can organize subscriptions in a directed
preference graph, where there is one node in the graph for
each subscription in SX and an edge from a node represent-
ing subscription si to a node representing subscription sj ,
if and only if, (si ≻ sj) ∈ CX . Now, a topological sort of

Preference Relation Graph Preference Ranks

s1 ≻ s4 s1, s2, s3: 1
s2 ≻ s4 s4, s5, s6: 2/3
s2 ≻ s5 s7: 1/3
s3 ≻ s6

s5 ≻ s7

Figure 3: Extracting preference ranks.

Figure 4: Quantitative preferences examples.

this graph can be used to compute win. In the first iter-
ation, we output all nodes with no incoming edges. These
nodes correspond to all subscriptions si ∈ winX(1), since
for these, there is no sj ∈ SX with (sj ≻ si) ∈ CX . In
the next iteration of the algorithm, these nodes are removed
from the graph, along with their outgoing edges, and the
nodes without incoming edges are output. Clearly, these
nodes correspond to all subscriptions si ∈ winX(2). The
algorithm stops when all nodes in the preference graph have
been processed.

We associate a preference rank, prefrankX
i with each sub-

scription si based on the winnow level that the subscription
belongs to. Since subscriptions retrieved earlier are of higher
interest to the users, subscriptions returned at level l of the
winnow operator are assigned a preference rank equal to
G(l), where G is a strictly monotonically decreasing function
for which G(l) 7→ [0, 1]. Thus, for each user, we get pairs of
subscriptions and preference ranks.

Definition 3 (Preferential Subscription). A pref-
erential subscription psX

i of user X is a pair of the form
psX

i = (si, prefrankX
i), where si is a subscription and

prefrankX
i is a real number in [0, 1] that expresses the de-

gree of interest of X for si.

For instance, Figure 3 depicts the preference graph for
an example preference relation and the extracted preference
ranks when G(l) = (D + 1 − (l − 1))/(D + 1), where D is
the diameter of the preference graph. The cover relation
(Definition 1) is extended to preferential subscriptions as
follows: Given an event e and a preferential subscription
psX

i = (si, prefrankX
i), psX

i � e, if and only if, si � e.
Alternatively, instead of providing CX , users could explic-

itly provide an interest score prefrankX
i for each of their

subscriptions. This would correspond to a quantitative ap-
proach. A higher preference rank indicates a more important
subscription. Examples are shown in Figure 4.

3.2 Computing Event Ranks
Let P X be the set of preferential subscriptions of user X.

We use these preferential subscriptions to rank the published
events and deliver to the user only the highest ranked ones.
We define the rank of an event to be a function F of the
preference ranks of the subscriptions that cover it.

Instead of using the preference ranks of all covering sub-
scriptions, we use only the preference ranks of the most spe-

cific ones. A subscription s is a most specific one if no other
subscription in P X is covered by it, where:

Definition 4 (Cover between Subscriptions). Gi-
ven two subscriptions si and sj, si covers sj, if and only if,
for each event e such that sj � e, it holds that si � e.

For example, assume the event of Figure 1a and the pref-
erential subscriptions ({genre = drama}, 0.7) and ({genre
= drama, director = T. Burton}, 0.9) by Addison and
({genre = drama}, 0.7) and ({genre = drama, director
= T. Burton}, 0.5) by another user Carson (for ease of pre-
sentation, we omit the type of each attribute). Both sub-
scriptions of each user cover the event. Between the two,
for each user, the latter subscription is more specific than
the former one, in the sense that in the latter subscription
the user imposes an additional, more specific requirement to
movies (Addison prefers T. Burton’s dramas over the rest,
while Carson thinks that T. Burton’s dramas are worse than
other dramas). Thus, intuitively, the preference rank of the
latter subscription should superimpose that of the former
one, whenever an event matches both of them.

The event rank is formally defined as follows:

Definition 5 (Event Rank). Given an event e, a user
X, the set P X of the user’s preferential subscriptions and
the set P X

e = {(s1, prefrankX
1), . . . , (sm, prefrankX

m)},
P X

e ⊆ P X , such that si � e, 1 ≤ i ≤ m, of the most specific
subscriptions that cover e, the event rank of e for X is equal
to rank(e, X) =F(prefrankX

1 , . . . , prefrankX
m), where F

is a monotonically increasing function.

User X prefers an event ei over the event ej , if and only
if, rank(ei, X) > rank(ej , X). As the aggregation function
F for computing the rank of an event, we may use the max-
imum, mean, minimum or a weighted sum of the preference
ranks of its covering subscriptions.

Now, we can formally define preferential top-k delivery:

Definition 6 (Preferential Top-k Delivery). Gi-
ven a set M of n matching events for a user X, deliver a
subset L, L ⊆ M , with cardinality k, such that, rank(ei, X)
≥ rank(ej , X), ∀ ei ∈ L, ej ∈ M\L.

4. EVENT DIVERSITY
Many times, the events that eventually reach the user are

very similar to each other. However, it is often desirable
that these events exhibit some diversity. In this section, we
examine how to reduce the similarity of the matching events
forwarded to the users. First, we introduce diversity-aware
delivery and then describe how to integrate preferences and
diversity towards improving the information quality of the
delivered events.

4.1 Diversity-Aware Matching
Instead of overwhelming users with matching events that

are all very similar to each other, we opt to select a rep-
resentative set of events according to their diversity. To
measure the diversity of events, i.e. how different they are,
we first define the distance between two events. Without
loss of generality, we assume that the events have the same
number of attributes. Otherwise, we can simply append a
sufficient number of “dummy”attributes to the event having
the smaller number of attributes.

Ranking of events: e1(comedy), e2(drama), e3(drama), e4(drama), e5(horror), e6(sci-fi)
Top-4 events based on their ranks: e1, e2, e3, e4

Diverse Top-4 events:
divrank(e1, X) divrank(e2, X) divrank(e3, X) divrank(e4, X) divrank(e5, X) divrank(e5, X) LX = ∅
- - - - - - LX = (e1, e4)
- - 0.4 0.4 0.85 0.8 LX = (e1, e4, e5)
- - 0.4 0.4 - 0.8 LX = (e1, e4, e5, e6)

Figure 5: Computing top-4 diverse events.

Definition 7 (Event Distance). Given two events e1

= {a1, . . . , ap} and e2 = {a′
1, . . . , a

′
p}, the distance between

e1 and e2 is defined as:

d(e1, e2) = 1 −

∑p

i=1 δiwi
∑p

i=1 wi

, where δi =

{

1 if ai = a′
i

0 otherwise

and each wi is an attribute specific weight, 1 ≤ i ≤ p.

Based on the above definition, the distance of any two
events decreases as the number of their common attributes
increases. Weights express the importance of an attribute
for a specific application or user. In lack of such application-
dependent information, we can assign equal weights to all
attributes.

A number of different definitions of set diversity have been
proposed in the context of recommender systems; here we
model diversity as the aggregate or, equivalently, average
distance of all pairs of events in the set [22]. We use the
term “set” loosely to denote a set with bag semantics or a
multi-set, where the same event may appear more than once
in the set.

Definition 8 (Set Diversity). Given a set of m e-
vents L = {e1, . . . , em}, the set diversity of L is:

div(L) =

∑m

i=1

∑m

j>i
d(ei, ej)

(m − 1)m/2
.

Now, the diversity-aware delivery problem can be defined
as follows:

Definition 9 (Diverse Top-k Delivery). Given a
set M of n matching events, |M | = n, deliver a subset L,
L ⊆ M , with cardinality k, such that,

div(L) = max
L′⊆M,|L′|=k

{div(L′)}.

The problem of selecting the k items having the maximum
average pair-wise distance out of n items is similar to the
p-dispersion-sum problem. This problem as well as other
variations of the general p-dispersion problem (i.e. select p
out of n points so that the minimum distance between any
two pairs is maximized) have been extensively studied in
operations research and are in general known to be NP-hard
[9, 10].

A brute-force method to identify the k most diverse events
in M is to first produce all

(

n

k

)

possible combinations of k
events, and then pick the one with the maximum set diver-
sity. The complexity of this process in terms of the required

event distance computations is equal to n!
k!·(n−k)!

· n·(n−1)
2

and therefore, the computational cost is too high even for
relatively small values of n and k.

Instead, we use the following intuitive heuristic. We in-
crementally construct a diverse subset of events by selecting
at each step an event e that is furthest apart from the set

of events already selected. The distance of an event e from
a set of events L = {e1, . . . , em} is defined as:

dis(e, L) = min
1≤i≤m

d(e, ei).

In particular, let M = {e1, . . . , en} be the input set of
n matching events and L be the set we want to construct.
Initially, L is empty. We first add to L the two furthest apart
elements of M . Then, we compute the distances dis(ei, L),
∀ei, such that ei ∈ M\L and add to L the event with the
maximum corresponding distance. This process is repeated
until k events have been added to L. With this method, the
required number of event distance operations are equal to
n·(n−1)

2
+ [2 · (n − 2) + . . . + (k − 1) · (n − k + 1)]. We can

further reduce the number of performed operations based
on the observation that after the insertion of an event e to
L, the distances of all other events that have not yet entered
the diverse events from L′, L′ = L ∪ {e}, are affected only
by the presence of e.

Proposition 1. Given an event e and two sets L and
L′ = L ∪ {e}, the distance of an event e′ from L′ is:

dis(e′, L′) = min{dis(e′, L), d(e′, e)}.

Using Proposition 1, the required event distance opera-

tions are equal to n·(n−1)
2

+ 2 · (n − 2)+ (n − 3) + . . . +
(n− k + 1). Algorithm 1 summarizes the above procedure.

Algorithm 1 Diverse Events Algorithm

Input: A set M of matching events for user X.
Output: A subset L of k diverse events.

1: begin
2: L← ∅;
3: find the events e1, e2 ∈M s.t.

d(e1, e2) = max{d(ei, ej)|ei, ej ∈M, i 6= j};
4: L← L ∪ {e1, e2};
5: for all ei ∈M\L do
6: disi ← dis(ei, L);
7: end for
8: find the event eadd s.t. disadd = max{disi|ei ∈M\L};
9: L← L ∪ {eadd};
10: while |L| < k do
11: for all ei ∈M\L do
12: disi ← min{disi, d(ei, eadd)};
13: end for
14: find the event eadd s.t. disadd = max{disi|ei ∈M\L};
15: L← L ∪ {eadd};
16: end while
17: return L;
18: end

4.2 Diverse Top-k Preference Ranking
We would like to combine both diversity and preference

ranking when selecting which events to forward, so that the
delivered events are both highly preferred as well as diverse

e1 (20:00) e2 (20:15) e3 (20:22) e4 (20:25) e5 (20:40)

title = The Apartment
genre =

showing time
comedy

= 21:10

title = The Godfather
genre = drama

= 21:25showing time

title = Jaws
genre =

= 20:55showing time
horror

title = Psycho
genre =

showing time = 21:50
horror

title = Vertigo
genre = horror

showing time = 21:45

title = Forrest Gump
genre =

showing time
romance

= 21:10

e6 (20:45) e7 (20:50)

title = Pulp Fiction
genre = drama

= 21:25showing time

title = Psycho
genre =

= 21:50
horror

showing time

e7

title = Pulp Fiction
genre = drama

showing time = 21:25

e8

T1

title = The Apartment
genre =

showing time
comedy

= 21:10

e2

title = Forrest Gump
genre =

showing time
romance

= 21:10

e4

T2

title = The Big Parade
genre =

showing time
romance

= 21:00

e8 (20:55)

20:00 20:30 21:00

Figure 6: Periodic top-2 events for Addison (T = 30 min, σ = 0.5).

with each other, i.e. we want to select k out of n events so
that both the average of their preference ranks and their
diversity are as good as possible. To this end, we combine
the two measures to produce a combined ranking:

Definition 10 (Diversity-Aware Set Rank). Let X
be a user. Given a set of m events L = {e1, . . . , em}, the
diversity-aware rank of L for X is

divrank(L, X) = σ ·

∑m

i=1 rank(ei, X)

m
+ (1 − σ) · div(L).

where σ ∈ [0, 1]. When σ = 0 (resp. σ = 1), events are
chosen based only on diversity (resp. preference rank).

Now the problem becomes:

Definition 11. (Top-k Preferred Diversity-Aware
Delivery) Given a set M of n matching events for a user
X, deliver a subset L, L ⊆ M , with cardinality k, such that,

divrank(L, X) = max
L′⊆M,|L′|=k

{divrank(L′, X)}.

To locate the k events with the maximum divrank, we
use Algorithm 1, where we replace the d(e1, e2) and disi

functions with the corresponding divrank versions.
In the following example, we apply Algorithm 1 to six

events e1, e2 . . ., e6. To simplify our example, we assume
that all events have only the attribute genre with value equal
to comedy, drama, drama, drama, horror, sci-fi and event
ranks 0.9, 0.8, 0.8, 0.8, 0.7, 0.6 respectively for a given user
X. The distance between two events with the same genre
is 0, while the distance between two events with different
genres is 1. Figure 5 shows the trace of the heuristic applied
on our example when k = 4 and σ = 0.5. We resolve ties in
the case of events with the same divrank values by selecting
the most recently published events.

5. DELIVERY MODES
Publish/subscribe systems offer an asynchronous mode of

communication between publishers and subscribers by de-
coupling event publication from event delivery. In general,
each event e is associated with a number of time instants:

1. The time e is published (tpube)
2. The time e reaches the event-notification service (tserve)
3. The time e is matched against subscriptions (tmatche)
4. The time e is forwarded to the user (tforwe) and
5. The time e is actually received by the user (trecve)

Since events are continuously published and matched, we
need to define over which sets of this stream of matching
events we apply preference ranking and diversification. In
the following, we use tpube as the time instant associated
with each event, since this is the time that characterizes
best its freshness. However, note that, in general, events

may reach the event-notification service and be matched in
an order different from their publication order. Although
out-of-order delivery does not invalidate our definitions, it
may, however, complicate their implementation. Note that,
alternatively, one could replace tpube with tmatche in all
our definitions. This makes their implementation easier, but
complicates semantics especially in the case of a distributed
notification service.

We consider three fundamental modes of forwarding events,
namely: (i) periodic, (ii) sliding-window and (iii) history-
based filtering delivery. With periodic delivery, the top-k
events are computed over disjoint periods of length T and
forwarded to the subscribers once at the end of each period.
With sliding-window delivery, the top-k events are computed
over sliding windows of length w, so that an event is for-
warded, if and only if, it belongs to the top-k events in the
current window. Finally, history-based filtering continuously
forwards new events as they are matched, if and only if, they
are better than the top-k events recently delivered.

The lengths T and w can be defined either in time units
(e.g. as “the top-10 events matched per hour” and respec-
tively, “the top-10 events matched in the last hour”) or in
number of events (e.g. as“the top-10 events per 100 matched
ones” and respectively, “the top-10 events among the 100
most recently matched ones”). For clarity, in the following,
we define T in terms of time units and w in terms of events,
since this seems to fit better with the corresponding delivery
modes. Next, we describe the three delivery modes in detail.

5.1 Periodic Delivery
Periodic delivery is appropriate for subscribers who wish

to receive a list of important events regularly, for exam-
ple, every morning when they reach their office or once in
an hour. In this case, time is divided into disjoint periods
of duration T and top-ranked events are computed within
each period. Whenever a period ends, the k highest ranked
matching events published within this period are forwarded
to the users. To improve the freshness of events, ties are
resolved by choosing to forward the most recent among the
tied events. Formally:

Definition 12 (Periodic Top-k). Let X be a user and
M be the set of matching events published during a period
starting at time instant t, i.e. an event ei ∈ M , if and only
if, t ≤ tpubei

< t + T . Let L be a subset of M with k events
that has the maximum divrank(L, X) among all subsets of
M with the same cardinality. If there are more than one
such subsets, let L′ be one with the maximum

∑

ei∈L′ tpubei

among them. If again, there are more such sets, we ran-
domly select one of them, say LP . An event e with publica-
tion time tpube, t ≤ tpube < t + T , is forwarded, if and only
if, e ∈ LP .

e1 (20:00) e2 (20:15) e3 (20:20) e4 (20:25) e5 (20:40)

title = The Apartment
genre =

showing time
comedy

= 21:10

title = The Godfather
genre = drama

= 21:25showing time

title = Jaws
genre =

= 20:55showing time
horror

title = Psycho
genre =

showing time = 21:50
horror

title = Vertigo
genre = horror

showing time = 21:45

title = Forrest Gump
genre = romance

showing time = 21:10

e6 (20:45) e7 (20:50)

title = Pulp Fiction
genre = drama

= 21:25showing time

title = The Apartment
genre =

showing time
comedy

= 21:10

e2

title = Forrest Gump
genre = romance

showing time = 21:10

e4

title = The Big Parade
genre = romance

showing time = 21:00

e8 (20:55)

W1

W3 W4

W2

W5

W7

title = The Big Parade
genre = romance

showing time = 21:00

e1

title = Pulp Fiction
genre = drama

= 21:25showing time

e8

title = Psycho
genre =

showing time = 21:50
horror

e7

title = The Godfather
genre = drama

= 21:25showing time

e3

W8

W6

(no results) (no results)

Figure 7: Sliding-window top-2 events for Addison (w = 4, σ = 0.5).

The number of events forwarded using periodic delivery
is fixed and depends only on k and T . Thus, we achieve a
constant event delivery rate of k · ⌊c/T ⌋ events in every time
interval of duration c.

As an example, assume a single user, say Addison, who is
interested in receiving events about movies showing in the-
aters. Addison has defined the following preferential sub-
scriptions for movies: ({genre = comedy}, 0.9), ({genre =
romance}, 0.9), ({genre = drama}, 0.8), ({genre = horror},
0.6). She has also expressed her interest in receiving the top-
2 events per period and that each period lasts 30 minutes.
Assume further that the movie theaters which use the service
publish the events e1, e2, . . . , e8 of Figure 6 in that order,
at the time shown on top of each event. Figure 6 also shows
the events that will be delivered to Addison for σ = 0.5.
For the time period that begins at 20:00 and ends at 20:30,
the top-2 results are the events e2 and e4 because comedies
and romances are ranked higher that drama movies and e1

is older than e4, while from 20:30 to 21.00 the top-2 results
are the events e7 and e8 because e5 and e6 are older than
e7.

5.2 Sliding-Window Delivery
With periodic delivery, top-k computation starts anew at

the beginning of each period. In contrast, with sliding win-
dow, top-k computation starts anew, each time a new event
is published. In particular, we call window of length w an
ordered list of w events, denoted W = (e1, e2, . . . , ew) where
ei precedes ei+1 in the window, if and only if, no other event
was published between them, that is, ∄ e, such that tpubei

<
tpube < tpubei+1

. Let Wf be the window that includes the
first w events published. If Wi = (ei1 , ei2 , . . . , eiw), i ≥ f ,
then Wi+1 = (ei2 , . . . , eiw , e), where e is the first event pub-
lished after eiw . As a special case, before the first w events
are published, the corresponding w-1 windows include only
the events published so far and have length shorter than w.
At the end of each window Wi, the k highest ranked match-
ing events published within this window are forwarded to
the users. Formally:

Definition 13 (Sliding-Window Top-k). Let X be a
user. Let WSe = {Wm | e ∈ Wm} be the set of w windows
an event e belongs to. For each window Wm, let WSm be the
set of events in Wm. Let LWm be a subset of WSm with k
events that has the maximum divrank(LWm , X) among all
subsets of Wm with the same cardinality. If there are more
than one such subsets, let L′

Wm
be one with the maximum

∑

ei∈L′

Wm

tpubei
among them. If again, there are more than

one such sets, we randomly select one of them. Event e is
forwarded, if and only if, e ∈ L′

Wm
for some Wm ∈ WSe.

In our example, assume a window of length w = 4 and
the published events of Figure 7. As shown in the figure, if
Addison is again interested in the top-2 results with σ = 0.5,
the first window W1 returns its single event, i.e. e1. The top-
2 events of W2 are e1 and e2 and since e1 has already been
sent to Addison, the only new result is e2. W3 contains no
new results because dramas are less preferred than comedies
and romances. The top-2 events of W4 are e2 and e4, so e4

is sent to Addison and so on.
In contrast to periodic delivery, the delivery rate is not

constant, but depends on the relative order of the published
events. When top-ranked events are computed based only
on user preferences (σ = 1.0), we deliver at most one new
event at each new window, as shown next.

Proposition 2. When diversity is not used, between two
consequent event-windows, at most one new event enters the
top-k results.

Proof. Assume a window Wq and its following window
Wq+1, both of length w, and the two sets LWq , LWq+1

with the top-k events for Wq and Wq+1 respectively. Since
Wq and Wq+1 have (w − 1) common events, let Wq =
(e1, e2, . . . , ew) and Wq+1 = (e2, e3, . . . , ew+1). When ew+1

is published, e1 leaves the window and one of the following
holds:

• e1 ∈ LWq , then LWq+1
= (LWq −{e1})∪{e′}, where e′

is either ew+1 or e′ was published in Wq and e′ /∈ LWq ,
or

• e1 /∈ LWq , then LWq+1
= LWq or LWq+1

= LWq −
{e′}) ∪ {ew+1}, where e′ was published in Wq.

In any case, at most one event enters the set LWq+1
.

However, when diversifying events, the top-k events over
Wq+1 are not necessarily related with the top-k over Wq,
since divranks are computed based not only on the (fixed)
user preferences but also on the distances among the vari-
ous candidate events. For example, a new highly preferable
event may now disqualify more than one top-k events be-
cause it is very similar to them. This observation leads us
to the following property:

Proposition 3. When diversity is used, between two con-
sequent event-windows, more than one new event can enter
the top-k results.

Proof. To illustrate this, let e1, . . . , e5 be a series of
events. e1 is a comedy directed by W. Allen with rank 0.9,
e2 is a thriller directed by T. Burton with rank 0.9, e3 is
an A. Hitscock’s thriller with rank 0.8, e4 is a S. Spielberg’s
drama with rank 0.85 and finally, e5 is a Q. Tarantino’s

e1 (20:00) e2 (20:15) e3 (20:20) e4 (20:25) e5 (20:40)

title = The Apartment
genre =

showing time
comedy

= 21:10

title = The Godfather
genre = drama

= 21:25showing time

title = Jaws
genre =

= 20:55showing time
horror

title = Psycho
genre =

showing time = 21:50
horror

title = Vertigo
genre = horror

showing time = 21:45

title = Forrest Gump
genre =

showing time
romance

= 21:10

e6 (20:45) e7 (20:50)

title = Pulp Fiction
genre = drama

= 21:25showing time

title = The Apartment
genre =

showing time
comedy

= 21:10

e2

title = Forrest Gump
genre =

showing time
romance

= 21:10

e4

title = The Big Parade
genre =

showing time
romance

= 21:00

e8 (20:55)

W1

W3 W4

W2

W5

W7

title = The Big Parade
genre =

showing time
romance

= 21:00

e1

title = Pulp Fiction
genre = drama

= 21:25showing time

e8

title = Psycho
genre =

showing time = 21:50
horror

e7

W8

W6

(no results) (no results) title = Vertigo
genre = horror

showing time = 21:45

e6

Figure 8: History-based top-2 events for Addison (w = 4, σ = 0.5).

drama with rank 0.9. Assume a window length w = 3, then
W1 = (e1), W2 = (e1, e2), W3 = (e1, e2, e3), W4 = (e2, e3,
e4) and W5 = (e3, e4, e5). Let k = 2 and σ = 0.5. W1 will
return e1, W2 will return e2, W3 will return no event, W4

will return e4 and W5 will return both e3 and e5.

An event may remain in the window and be delivered after
as many as w other more recent events have been delivered.
Thus, with sliding window, events may enter the top-k list
in an order different from their publication order (see for
example e3 in Figure 7).

5.3 History-based Filtering
Delivery using history-based filtering considers each new

event as it arrives and decides whether to deliver it or not,
based on history, i.e. the last top-k events seen by the user.
To refresh the events delivered, we assume that an event can
remain in the top-k list for up to a window of w events.

Definition 14 (History-Based Top-k). Let X be a
user. Let e be an event published at time instant tpube,
H be the set of the last top-k events delivered to the user
and e′ be the event published w events prior to e (the event
that expires when e is published). Event e is delivered, if
and only if, one of the following holds: (i) e′ ∈ H, or (ii)
divrank((H −{ei})∪{e}, X) ≥ divrank(H, X) for some ei

∈ H.

In our example, when Addison selects this policy, her top-
2 events will be the ones shown in Figure 8 (we again assume
a window of length w = 4 and σ = 0.5).

As with sliding-window, the total number of delivered
events is not bounded by k. However, since only newly pub-
lished events can be delivered to the users, at most one new
event can enter the top-k results at each window, even with
diversity.

6. THE EVENT-NOTIFICATION SERVICE
In this section, we outline a method for matching events

with subscriptions and computing event ranks. To this end,
we introduce a preferential subscription graph for organizing
our preferential subscriptions. We also show how to compute
the top-k results for each delivery policy.

6.1 Event Matching
To reduce the complexity of the matching process between

events and subscriptions, we organize the subscriptions us-
ing a graph similar to the filters poset data structure [6].
All subscriptions are organized in a directed acyclic graph,
called preferential subscription graph, or PSG, whose nodes

Figure 9: Preferential subscription graph example.

correspond to preferential subscriptions and edges to cover
relations between them. Preferential subscriptions issued
by different users which contain the same subscription are
grouped together in a single graph node.

In particular, let P be the set of all preferential subscrip-
tions, i.e. the preferential subscriptions defined by all users,
and PS be the set of all subscriptions in P . For each sub-
scription si ∈ PS , we maintain a set of pairs, called PrefRank
Set, of the form (X, prefrankX

i), where X is a user and
prefrankX

i is the preference rank of X for si. A subscrip-
tion si is associated with the pair (X, prefrankX

i), if and
only if, a preferential subscription psX

i = (si, prefrankX
i)

exists in P . For each si ∈ PS , we define the PrefRank Set
as the set PRi = {(X, prefrankX

i) | (si, prefrankX
i) ∈ P}.

Formally:

Definition 15. (Preferential Subscription Graph).
Let P be a set of preferential subscriptions and PS the set
of all subscriptions in P . A Preferential Subscription Graph
PSGP (VP , EP) is a directed acyclic graph, where for each
different si ∈ PS, there exists a node vi, vi ∈ VP , of the form
(si, PRi), where PRi is the PrefRank Set of si. Given two
nodes vi, vj, there exists an edge from vi to vj, (vi, vj) ∈ EP ,
if and only if, si covers sj and there is no node v′

j such that
si covers s′j and s′j covers sj.

For example, Figure 9 depicts the PSG of the preferential
subscriptions of two users, Carson and Addison. Carson has
specified subscription s1 = {cinema = ster, genre = drama,
time > 21:00} with preference rank 0.9, s2 = {genre =
drama, time > 21:00} with 0.7 and s3 = {cinema = ster}
with 0.5. Addison’s subscriptions are s1 with preference
rank 0.6 and s4 = {cinema = odeon, genre = drama,
time > 21:00} with 0.3.

When a new event e arrives to the event-notification ser-
vice, we traverse the PSG to locate all matching subscrip-
tions in a breadth-first manner starting from the root nodes.
In some cases, it is not necessary to walk through all nodes
of the graph. We may safely ignore a node v with subscrip-
tion s for which there is no other node v′ with subscription

s′, such that s′ covers s and s′ � e. This means that when-
ever e does not match a specific node of the PSG, its whole
sub-tree can be ignored. This way, entire paths of the graph
can be pruned. For example, in Figure 9, if an incoming
event is not covered by {cinema = ster}, then it is certainly
not covered by {cinema = ster, genre = drama time >
21 : 00} and this subscription does not have to be checked
against the event.

However, if the incoming event is covered by a node v of
the PSG, we have to check the event against other nodes in
v’s sub-tree, to retrieve their preference rank, since it is pos-
sible that some of these nodes may be more specific to the
event than v. In our example, for an event e = {cinema =
ster, genre = drama, time = 21:30}, s3 is more specific
than s1 for Carson. Therefore, even if s1 � e, we have
to continue traversing the PSG (note that in a traditional
publish/subscribe system that would not be necessary). To
avoid unnecessary traversals, we associate each entry of v’s
PrefRank Set with a status bit. This bit is set to 1, if the
subscriber of the entry can also be found in some other node
v′ covered by v in the PSG and to 0 otherwise.

For each subscriber X associated with at least one sub-
scription covering the event e, we compute the rank of the
event. In our current work, we assume that preference ranks
associated with subscriptions are indicators of positive inter-
est, thus, we use as the aggregation function F the maxi-
mum value of the preference ranks of the covering subscrip-
tions. Given that an event e is covered by m subscriptions
s1, s2, . . . , sm of user X, rank(e, X) = max {prefrankX

1 ,
prefrankX

2 , . . . , prefrankX
m}. After this matching process,

some information about the event (like the computed rank
or the content) are stored according to the delivery policy
used, as described next.

6.2 Event Delivery
Typically, publish/subscribe systems are stateless, in that,

they do not maintain any information about previously de-
livered events. However, to provide users with the current
top-ranked matching events, depending on the delivery pol-
icy, we may need to maintain some information about previ-
ously delivered events as well as buffer some published events
prior to their final delivery or dismissal.

Periodic and Sliding-Window Delivery.
In the case of periodic delivery, the server needs to buffer

all events that match at least one subscription in its PSG
until the end of the period in which they were published
and their corresponding ranks. At the end of the period,
the top-k results for all users are computed using Algorithm
1, having as input all the events matched during the period.
Analogously, in sliding-window delivery, we buffer the con-
tent and ranks of the w most recently published events, since
an event may be forwarded to a user at some point after its
publication time. In this case, the input set to Algorithm 1
is the set of events in the current window.

History-Based Filtering.
With history-based filtering, we need to maintain some

information about previously sent top-ranked events. If we
do not consider diversity, we do not need to maintain the
actual content of the matched events, it suffices to buffer
just the preference rank of the current top-k events. We
also need to store an expiration counter along with each

Algorithm 2 History-Based Filtering Event Delivery

Input: A new event e, a buffer b of previously published match-
ing events, a preferential subscription graph PSG, a sub-
scriber X and the number k of desired top-results (and pos-
sibly a diversification factor σ).

Output: Whether e should be forwarded to X or not.

1: begin
2: result← false;
3: b← b ∪ {e};
4: TOPinit ← the current top-k results;
5: TOP ← TOPinit− the event that has just left the window

(if any);
6: if |TOP | < k then
7: result = true;
8: else
9: if not diversify then
10: find the lowest rank rlow in TOP ;
11: if rank(e, X) > rlow then
12: result = true;
13: end if
14: else
15: DIV Rinit = divrank(TOPinit, X);
16: for all ei ∈ TOP do
17: TOPi ← {TOP − ei} ∪ {e};
18: DIV Ri = divrank(TOPi, X);
19: end for
20: DIV Rfinal = max{DIV R1, . . . , DIV R|TOP |};
21: if DIV Rfinal > DIV Rinit then
22: result = true;
23: TOP ← {TOP − efinal} ∪ {e};
24: end if
25: end if
26: end if
27: return result;
28: end

buffered event rank to determine when the event expires and
disregard it. The counter is initialized to w and is decreased
by one every time a new event is published. An element is
removed from the buffer, when its counter becomes 0. A
newly published matching event e is delivered, if and only
if, (i) an event in the current top-k expires when e arrives
or (ii) e is better than the worst event in X’s current top-k.
In this case, the worst event is disregarded and replaced by
e.

If we consider diversity, we also need to store the content
of the events in the buffer for computing their distances with
any new event. As before, if an event in the current top-k
expires when a new event e arrives, e is forwarded to X.
Otherwise, we swap each event ei in the buffer with the new
event e to produce a number of k candidate sets. Then,
we compute the new diversity-aware set rank (divrank) for
each candidate set. If some of these new candidate sets
have larger divrank than the current top-k results, then
we forward e to the user and insert e in the buffer in the
place of the event ei that corresponds to the candidate set
with the maximum divrank. The process described above
is summarized in Algorithm 2.

7. EVALUATION
To evaluate our approach, we have extended the SIENA

event notification service [4], a multi-threaded publish/sub-
scribe system, to include preferential subscriptions with di-
versity and ranked event delivery. We refer to our prototype
as PrefSIENA. PrefSIENA is available for download [3].

Table 1: Heuristic vs Brute-force performance.

n k
Heuristic Brute-force

Diversity Time Diversity Time

10 4 0.873 16 0.917 41
8 0.846 26 0.851 42

20

4 0.905 29 0.917 384
8 0.850 32 0.866 43065
12 0.820 37 0.832 99608
16 0.811 58 0.814 6784

30

4 0.929 31 1.000 1987
8 0.881 38 0.923 1967339
12 0.870 46 0.889 51652649
16 0.859 57 0.874 162827625
20 0.846 69 0.857 50641750

7.1 System Description
To evaluate the performance of our model, we use a real

movie-dataset [2], which consists of data derived from the
Internet Movie Database (IMDB) [1]. The dataset contains
information about 58788 movies. For each movie, the fol-
lowing information is available: title, year, budget, length,
user rating (rating), MPAA rating (mpaa) and genre(s).

Publishers generate publications by randomly selecting
mP movies and creating a new event for each of them con-
sisting of the title, year, length, rating, MPAA and genre(s)
of the movie. Publications are produced at a constant rate.
Each subscriber generates mS subscriptions, each of which
is generated independently from the others. We select a
number of the available attributes to appear in a subscrip-
tion based on a zipf distribution, i.e. some attributes are
more popular than others. The value of each attribute is
also generated using a zipf distribution, so that some values
are more common. Preferences are generated by associating
preference ranks in [0, 1] with the generated subscriptions.
Those ranks have an average value around 0.5. In general,
most specific publications get higher ranks.

Event delivery is performed following either one of our
three delivering policies, i.e. the periodic, the sliding-window
and the history-based filtering ones.

7.2 Experiments
We perform a number of different experiments. First, we

evaluate the performance of our diversity heuristic. Then,
we evaluate the number and quality of the events delivered
to the users using PrefSIENA and SIENA. We also evaluate
the overheads introduced by ranking and diversifying.

7.2.1 Heuristic Performance
To evaluate the performance of our diversity heuristic, we

compare it against the brute-force method that finds optimal
solutions. We compare these methods both in terms of the
quality of produced results as well as the required time to
produce them. The complexity of both methods depends
on the number n of candidate events to choose from and
on the required number k of events. We experiment with a
number of different values for n and k. However, the high
complexity of the brute-force algorithm prevents us from
using large values for these two parameters. Therefore, we
limit our study to n = 10, 20, 30 and k = 4, 8, 12, 16, 20. The
results of our experiment are summarized in Table 1 (time
is measured in milliseconds).

The complexity of the brute-force method is so high that
even with the relatively small values of n = 30 and k = 8,
the required time climbs up to 1967339 ms (≈ 0.5 hour). Our

heuristic required only 38 ms in this case. This reduction
in time complexity comes at the cost of decreased diversity
of the results. However, this reduction is only marginal, as
the set diversity of the results produced by the heuristic is
decreased by less than 1% in all cases.

7.2.2 Number and quality of delivered events
One of the reasons that motivated ranked delivery was

the need to reduce the large amount of events delivered to
users in a traditional publish/subscribe system. Therefore,
in this set of experiments, we first measure the total number
of delivered events and then evaluate their quality in terms
of average rank and diversity.

Since the number and quality of events depend on the
order of publications with regard to their ranks, we con-
sider a number of different event-scenarios. In particular, in
the“Best-First” scenario, the highest-ranked events are pub-
lished first, while in the “Best-Last” scenario, these events
are published after the lower-ranked ones. In the“Burst”sce-
nario, we consider that there exist bursts of highly-ranked
events at specific moments in time and finally, in the “Ran-
dom” scenario, high and low ranked events are interleaved.
For comparison, besides top-k delivery, we also consider the
case in which all matching events are delivered to the users,
as in the case of a traditional publish/subscribe system. All
scenarios consist of 2000 events out of which 930 match the
subscriptions.

Number of delivered events. We measure the number of
events delivered to a specific subscriber using PrefSIENA as
a function of the number k of the top results the subscriber
is interested in. We first consider the case where events are
selected based solely on event ranks (i.e. σ = 1.0). In Fig-
ure 10a, we show the number of delivered events for the pe-
riodic delivery policy. For comparison reasons, we consider
a constant rate of publications and run this experiment for
periods with T = 200 and T = 400 events. We see that
the number of delivered events does not depend on the used
scenario, since at each period this number is bounded by
k. Therefore, we achieve a constant rate of event delivery.
On average, the number of events delivered by PrefSIENA
ranges from 2.2% to 21.5% of all matching events for the
various values of k and T .

In Figures 10b and 10c, we present the total number of
delivered events for the sliding-window and history-based
filtering policies. We run the experiment for all of the above
scenarios and use window lengths of w = 200 and w = 400
events. We see that when those policies are used, the number
of delivered events depends not only on k and w but also on
the input. For the sliding-window policy, we observe that
a larger window size leads to the delivery of fewer events.
The best pruning is achieved when the “Random” scenario
is used. This happens because in this case, there are always
some highly preferable events in the current window to filter
out less preferable ones. The worse pruning, as expected, is
observed in the case of the “Best-Last” scenario, since in
this case every new event is better than the old ones and is
thus forwarded to the user. In the case of the history-based
filtering, the“Best-Last” scenario also has the worse pruning
while the“Random”one achieves the greatest pruning. Once
again, a larger window length results in greater reduction of
delivered events.

When diversity is also a factor for choosing which events

 0

 200

 400

 600

 800

 1000

4 8 12 16 20

N
um

be
r

of
 e

ve
nt

s

k

All scenarios, T=200
All scenarios, T=400

All matching events

(a) Periodic delivery policy

 0

 200

 400

 600

 800

 1000

4 8 12 16 20

N
um

be
r

of
 e

ve
nt

s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(b) Sliding-window delivery policy

 0

 200

 400

 600

 800

 1000

4 8 12 16 20

N
um

be
r

of
 e

ve
nt

s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(c) History-based delivery policy

Figure 10: Total number of delivered events (σ = 1.0 - no diversity).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 12 16 20

A
ve

ra
ge

 r
an

k
of

 e
ve

nt
s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(a) Periodic delivery policy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 12 16 20

A
ve

ra
ge

 r
an

k
of

 e
ve

nt
s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(b) Sliding-window delivery policy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 12 16 20

A
ve

ra
ge

 r
an

k
of

 e
ve

nt
s

k

Best-First scenario, T=200
Best-Last scenario, T=200

Burst scenario, T=200
Random scenario, T=200

Best-First scenario, T=400

Best-Last scenario, T=400
Burst scenario, T=400

Random scenario, T=400
All matching events

(c) History-based delivery policy

Figure 11: Average rank of delivered events (σ = 1.0 - no diversity).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 12 16 20

A
ve

ra
ge

 r
an

k
of

 d
el

iv
er

ed
 e

ve
nt

s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(a) Periodic delivery policy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 12 16 20

A
ve

ra
ge

 r
an

k
of

 d
el

iv
er

ed
 e

ve
nt

s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(b) Sliding-window delivery policy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 12 16 20

A
ve

ra
ge

 r
an

k
of

 d
el

iv
er

ed
 e

ve
nt

s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(c) History-based delivery policy

Figure 12: Average rank of delivered events (σ = 0.0 - no ranking).

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 12 16 20

A
ve

ra
ge

 r
an

k
of

 d
el

iv
er

ed
 e

ve
nt

s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(a) Periodic delivery policy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 12 16 20

A
ve

ra
ge

 r
an

k
of

 d
el

iv
er

ed
 e

ve
nt

s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(b) Sliding-window delivery policy

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 12 16 20

A
ve

ra
ge

 r
an

k
of

 d
el

iv
er

ed
 e

ve
nt

s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(c) History-based delivery policy

Figure 13: Average rank of delivered events (σ = 0.5).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

k = 4 k = 12 k = 20

A
ve

ra
ge

 s
et

 d
iv

er
si

ty
 p

er
 p

er
io

d

T = 200

σ=1.0
σ=0.5
σ=0.0

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

k = 4 k = 12 k = 20

A
ve

ra
ge

 s
et

 d
iv

er
si

ty
 p

er
 p

er
io

d

T = 400

(a) Periodic delivery policy

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

k = 4 k = 12 k = 20

A
ve

ra
ge

 s
et

 d
iv

er
si

ty
 p

er
 p

er
io

d

w = 200

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

k = 4 k = 12 k = 20

A
ve

ra
ge

 s
et

 d
iv

er
si

ty
 p

er
 p

er
io

d

w = 400

(b) Sliding window delivery policy

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

k = 4 k = 12 k = 20

A
ve

ra
ge

 s
et

 d
iv

er
si

ty
 p

er
 p

er
io

d

w = 200

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

k = 4 k = 12 k = 20

A
ve

ra
ge

 s
et

 d
iv

er
si

ty
 p

er
 p

er
io

d

w = 400

(c) History-based delivery policy

Figure 14: Average diversity - random scenario.

to deliver, only the sliding-window and history-based filter-
ing policies are affected. In the periodic policy, while the
delivered events may actually be different than in the no-
diversity case, their total number remains the same. In the
sliding-window case, the total number of delivered results
is slightly larger due to Proposition 3, while in the history-
based case the number depends on the input (we omit the
relative figures).

Quality of delivered events. We also run a set of exper-
iments to evaluate the quality of the delivered events. We
characterize quality based on two factors: (i) the average
rank of delivered events and (ii) their diversity.

Figure 11 depicts the average rank of all the delivered
events for the various timing policies and scenarios when
σ = 1.0 (no diversity case). Average rank is computed over
all events delivered in each delivery policy (as opposed to
over the same number of top-ranked events). Generally, we
observe that the average rank depends on the input. The
average rank of all matching events is 0.46. In PrefSIENA,
even though in the presence of many high-ranked events
some of them may fail to appear in the top-k results, the
average rank is larger than that in all cases. When diver-
sifying the events, there is a decrease of the average rank,
since diverse events may have lower ranks, as expected (Fig-
ures 12 and 13). The average rank of events decreases along
with k, since for large values of k more events are delivered
to the users. This decrease is more evident when diversity
is used.

In Figure 14, we measure the average diversity of the
events that are forwarded to a user for the “Random” sce-
nario. Average diversity is computed over the events deliv-
ered in each period or window. We run this experiment for
different period and window lengths using our diversifica-
tion methods with σ = 1.0 (no diversity case), σ = 0.5 and
σ = 0.0 (no ranking case). We see that the produced results
do indeed exhibit a higher diversity when they are chosen
based not only on their ranks but also on their distance from
each other. This increase is larger for smaller values of k.
Similar behavior can be observed for the other scenarios as
well. Due to space limitations, we omit the related figures.

7.2.3 Performance
Finally, we perform a number of experiments to evaluate

the performance of PrefSIENA. There are two sources of
extra overhead for implementing ranked delivery of events.
First, to compute the importance of a new event, we have to
locate all matching subscriptions, while in traditional pub-
lish/subscribe systems it suffices to locate the most general
one. Second, there is also the overhead of maintaining state
for previously forwarded events and performing computa-
tions to decide whether a new event belongs in the diverse
top-ranked results or not.

The matching overhead depends on the relations among
the various user subscriptions. More specifically, the over-
head is more evident when users issue many subscriptions
that cover each other, i.e. users refine their previously made
subscriptions. To compute this overhead, we perform the
following experiment: we construct a number of profiles in
which a percentage c of user subscriptions are covered by
some other subscription. We also construct a number of
scenarios in which a percentage m of the published events
match the user subscriptions. In Table 2, we see the number
of PSG nodes checked during the execution of each scenario

Table 2: Matching overhead.
m c SIENA PrefSIENA

0%

0% 10000 10000
10% 9000 9000
30% 7000 7000
50% 5000 5000

10%

0% 10000 10000
10% 9000 9010
30% 7000 7010
50% 5000 5010

20%

0% 10000 10000
10% 9000 9020
30% 7000 7020
50% 5000 5010

for each of the user profiles in SIENA and PrefSIENA, with
c = 0%, 10%, 30%, 50% and m = 0%, 10%, 20%.

To measure the time overhead introduced by the ranking
and diversifying algorithms, we measure the time between
the publication and the delivery of each event (Figure 15).
In the periodic policy, the sequence of the published events
influences the freshness of the delivered ones. For exam-
ple, if high-ranked events are published towards the end of a
period, they will reach the user earlier than if they are pub-
lished at the beginning. As expected, a larger period length
results in larger delays between publication and delivery. In
the sliding-window delivery policy, a larger window length
increases the average delivery time. This happens (i) be-
cause an event remains in the window for longer and there-
fore, it has more opportunities to enter the top-k results and
(ii) because the complexities of the ranking and diversifying
algorithms depend on the window size. In the history-based
filtering delivery policy, the freshness of data does not de-
pend much on the scenario, but is rather more influenced by
the size of the window.

8. RELATED WORK
Although there has been a lot of work on developing a

variety of publish/subscribe systems, there has been only
little work on the integration of ranking issues into pub-
lish/subscribe. Recently, in [17], the problem of ranked
publish/subscribe systems is also considered. However, the
problem is viewed in a different way. In a sense, the authors
consider the “reverse” or “dual” problem. Instead of locating
the most relevant events to each subscription, the authors
aim at recovering the most relevant matching subscriptions
to a published event. Subscriptions are modeled as sets of
interval ranges in some dimensions and events as points that
match all the intervals that they stab. Another work that
also deals with the problem of ranked publish/subscribe is
[18]. In the proposed model, a subscriber receives the k
most relevant events per subscription within a window w
which can be either time-based or event-based. For each
user subscription, a queue is maintained. This queue buffers
those events that are relevant to the subscription and have
a high probability to enter the top-k result at some point
in the future. The focus is on efficiently maintaining this
buffer queue. Here, we aim at specifying and computing
event ranks. [24] considers the case where only a subset
of top-ranked publishers provide notifications for a specific
query. These publishers are ranked according to the simi-
larity of their past publications to the query. Similarity is

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

4 8 12 16 20

A
ve

ra
ge

 fr
es

hn
es

s
of

 d
el

iv
er

ed
 e

ve
nt

s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(a) Periodic delivery policy

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

4 8 12 16 20

A
ve

ra
ge

 fr
es

hn
es

s
of

 d
el

iv
er

ed
 e

ve
nt

s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(b) History-based delivery policy

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

4 8 12 16 20

A
ve

ra
ge

 fr
es

hn
es

s
of

 d
el

iv
er

ed
 e

ve
nt

s

k

Best-First scenario, w=200
Best-Last scenario, w=200

Burst scenario, w=200
Random scenario, w=200

Best-First scenario, w=400

Best-Last scenario, w=400
Burst scenario, w=400

Random scenario, w=400
All matching events

(c) Sliding window delivery policy

Figure 15: Average freshness of delivered events (σ = 0.5).

computed via IR techniques. [21] suggests using an exten-
sive preference model to enhance expressiveness of subscrip-
tion matching, while [16] proposes an approximate matching
mechanism so that relevant events are delivered even if they
do not match exactly the users’ subscriptions.

In terms of diversity, in [23], a method for topic diver-
sification is proposed for recommendations. The intra-list
similarity metric is introduced to assess the topical diversity
of a given recommendation list. An algorithm that con-
siders the candidate items’ scores is provided for creating
lists with small intra-list similarity. The notion of diversity
is also explored in [20]. Motivated by the fact that some
database relation attributes are more important to the user,
a method is proposed where a recommendation list consist-
ing of database tuples is diversified by first varying the val-
ues of higher priority attributes before varying the values of
lower priority ones. In case the tuples are associated with
scores, a scored variation of diversity always picks tuples
with higher scores first.

A preliminary version of our preference model (Section 3)
was presented in a workshop [8].

9. CONCLUSIONS
Our overall goal in this paper has been to increase the

quality of events received by the users of publish/subscribe
systems in terms of their importance or relevance and di-
versity. Ranking events by importance is achieved by let-
ting users express preferences along with their subscriptions.
Events that match more preferable subscriptions are ranked
higher than events that match less preferable ones. For rank-
ing an event, we also take into account how different the
event is from the other top-ranked ones so that the over-
all diversity among the event notifications is increased. We
have examined a number of policies with regards to the time
range over which the top-k events are computed, namely a
periodic, a sliding-window and a history-based one.

Our overall focus has been on increasing the value of the
events received by each user. There are many issues for
future work, mainly regarding performance and scalability.
We are currently working on indexing structures towards
making matching of events and ranking more efficient.

10. REFERENCES
[1] The Internet Movie Database. http://www.imdb.com.
[2] Movies dataset. http://had.co.nz/data/movies.

[3] PrefSIENA. http://www.cs.uoi.gr/∼mdrosou/PrefSIENA.
[4] SIENA. http://serl.cs.colorado.edu/∼serl/dot/siena.html.
[5] R. Agrawal and E. L. Wimmers. A framework for

expressing and combining preferences. In SIGMOD

Conference, pages 297–306, 2000.
[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design

and evaluation of a wide-area event notification service.
ACM Trans. on Computer Syst., 19:332–383, 2001.

[7] J. Chomicki. Preference formulas in relational queries.
ACM Trans. Database Syst., 28(4):427–466, 2003.

[8] M. Drosou, E. Pitoura, and K. Stefanidis. Preferential
publish/subscribe. In PersDB, pages 9–16, 2008.

[9] E. Erkut. The discrete p-dispersion problem. European
Journal of Operational Research, 46(1):48 – 60, 1990.

[10] E. Erkut, Y. Ülküsal, and O. Yeniçerioglu. A comparison of
p-dispersion heuristics. Computers & OR,
21(10):1103–1113, 1994.

[11] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. M.
Kermarrec. The many faces of publish/subscribe. ACM
Comput. Surv., 35(2):114–131, 2003.

[12] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A.
Ross, and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe. In
SIGMOD Conference, pages 115–126, 2001.

[13] P. Georgiadis, I. Kapantaidakis, V. Christophides, E. M.
Nguer, and N. Spyratos. Efficient rewriting algorithms for
preference queries. In ICDE, pages 1101–1110, 2008.

[14] W. Kießling. Foundations of preferences in database
systems. In VLDB, pages 311–322, 2002.

[15] G. Koutrika and Y. E. Ioannidis. Personalized queries
under a generalized preference model. In ICDE, pages
841–852, 2005.

[16] H. Liu and H.-A. Jacobsen. Modeling uncertainties in
publish/subscribe systems. In ICDE, pages 510–522, 2004.

[17] A. Machanavajjhala, E. Vee, M. N. Garofalakis, and
J. Shanmugasundaram. Scalable ranked publish/subscribe.
PVLDB, 1(1):451–462, 2008.

[18] K. Pripuzic, I. P. Zarko, and K. Aberer. Top-k/w
publish/subscribe: finding k most relevant publications in
sliding time window w. In DEBS, pages 127–138, 2008.

[19] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding
context to preferences. In ICDE, pages 846–855, 2007.

[20] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and
S. Amer-Yahia. Efficient computation of diverse query
results. In ICDE, pages 228–236, 2008.

[21] Q. Wang, W.-T. Balke, W. Kießling, and A. Huhn. P-news:
Deeply personalized news dissemination for mpeg-7 based
digital libraries. In ECDL, pages 256–268, 2004.

[22] M. Zhang and N. Hurley. Avoiding monotony: improving
the diversity of recommendation lists. In RecSys, pages
123–130, 2008.

[23] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. In WWW, pages 22–32, 2005.

[24] C. Zimmer, C. Tryfonopoulos, K. Berberich,
M. Koubarakis, and G. Weikum. Node behavior prediction
for large-scale approximate information filtering. In
LSDS-IR, 2007.

