
On Novelty in Publish/Subscribe Delivery

Dimitris Souravlias, Marina Drosou, Kostas Stefanidis and Evaggelia Pitoura

Computer Science Department, University of Ioannina, Greece
{dsouravl, mdrosou, kstef, pitoura}@cs.uoi.gr

Abstract— In publish/subscribe systems, users express their
interests in specific items of information and get notified when
relevant data items are produced. Such systems allow users to
stay informed without the need of going through huge amounts
of data. However, as the volume of data being created increases,
some form of ranking of matched events is needed to avoid
overwhelming the users. In this work-in-progress paper, we
explore novelty as a ranking criterion. An event is considered
novel, if it matches a subscription that has rarely been matched
in the past.

I. INTRODUCTION

With the explosion of the amount of information that

becomes available online, publish/subscribe systems offer an

attractive alternative to search by providing a proactive model

of information supply. In such systems, users (or subscribers)

express their interest in specific pieces of data (or events) via

queries called subscriptions. Then, they are notified whenever

some information source (or publisher) generates an event that

matches one of their subscriptions. Examples of such proac-

tive delivery include news alerts, RSS feeds and notification

services in social networks.

Typically, all subscriptions are considered equally important

and users are notified whenever a published event matches

any of their subscriptions. However, as with search, user

subscriptions are often exploratory in nature. Thus, recent

research has suggested that event matching should be best

effort by associating some form of ranking to the matching

process. The rank associated with each matched event may

depend on the user preferences or interests [6], [11], on the

authority or relevance of its publisher [12] or, in the case of

fuzzy or approximate matching, on the degree of relevance

between the event and the matching subscriptions [10], [9].

In our previous work [6], [5], we have focused on ranked

publish/subscribe delivery based on preferences and content

diversity. In particular, we considered delivering to each user

those k events among the matched ones that are both highly-

ranked based on user preferences and also have different

content with each other. In this work-in-progress paper, we

present another aspect of ranking based on subscription nov-

elty. Novelty and diversity are gaining increasing interest

in information retrieval as evaluation measures along with

relevance. Whereas there is no standard definition for either,

one can define novelty as the need to limit redundancy by

avoiding results with overlapping content and diversity as

the need to resolve ambiguity by including results that cover

different topics (for example, “Jaguar” as a car, a cat and the

classic Fender guitar) [4]. Our interpretation of novelty in this

work is that an event is novel if it matches a subscription that

has rarely been matched in the past. This form of novelty

is desirable for various reasons. We outline below two of

them: making rare events visible and allowing expressing an

information need with various levels of detail.

Consider a user that poses subscriptions with different and

varying rates of matching events. As an example, take a user in

a social networking application that follows both friends that

are very productive in terms of content generation and friends

that post information only seldom. Novel events (i.e. events

that correspond to subscriptions that are rarely matched) will

get high ranks and get noticed by the subscriber instead of

potentially being overwhelmed by other less novel events. As

another motivating application, novelty ranking allows users to

express subscriptions with different levels of granularity. For

example, a user may subscribe to both “movies” and “horror

movies”. The “horror movies” subscription is redundant in

a publish/subscribe system without ranking, since an event

that matches “horror movies” also matches “movies” and will

be delivered to the user anyway. With novelty, an event that

matches a detailed subscription, such as “horror movies”, will

implicitly get a higher rank than an event that matches only a

more general one, such as “movies”.

In the rest of this paper, we first present our pub-

lish/subscribe model, then formally define novelty and finally

present some initial experimental results.

II. PUBLISH/SUBSCRIBE MODEL

In general, a publish/subscribe system consists of three

parts: (i) the publishers that provide events to the system,

(ii) the subscribers that enter subscriptions and consume

events and (iii) a notification service that stores the various

subscriptions, matches the incoming events against them and

delivers the matching events to the appropriate subscribers [7].

The form of events and subscriptions depends on the specific

application. In this work, we use a generic content-based

model to form events and subscriptions, similar to the one

used, for example, in [3], [6] and [8]. In particular, events are

sets of attributes. Each event consists of an arbitrary number

of attributes and each attribute has a type, a name and a value.

Attribute types belong to a predefined set of primitive types,

such as “integer” or “string”. Attribute names are character

strings that take values according to their type. An example

event about a movie is shown in Fig. 1a. Formally:

An event e is a set of attributes {a1, . . . , ap}, where each ai,

1 ≤ i ≤ p, is of the form (ai.type ai.name = ai.value).

(a) (b)

Fig. 1. (a) Event and (b) subscription examples.

Subscriptions are used to specify the kind of events users are

interested in. Each subscription consists of a set of constraints

on the values of specific attributes. Each attribute constraint

has a type, a name, a binary operator and a value. Types,

names and values have the same form as in events. Binary

operators include common operators, such as =, <, > and ∗
(substring). An example subscription is depicted in Fig. 1b.

Formally:

A subscription s is a set of attribute constraints {b1, . . . , bq},

where each bi, 1 ≤ i ≤ q, is of the form (bi.type bi.name θbi

bi.value), θbi
∈ {=, <,>,≤,≥, 6=, ∗, > ∗, ∗ <}.

Intuitively, we can say that an event e matches a subscription

s, or alternatively s covers e, if and only if, every attribute

constraint of s is satisfied by some attribute of e. Formally:

Definition 1: (COVER RELATION BETWEEN EVENTS AND

SUBSCRIPTIONS). Given an event e = {a1, . . . , ap} and a

subscription s = {b1, . . . , bq}, s covers e, s ≻S
E e, if and only

if, ∀bj ∈ s, ∃ai ∈ e, such that, ai.type = bj .type, ai.name =
bj .name and ((ai.value) θbj

(bj .value)) holds, 1 ≤ i ≤ p,

1 ≤ j ≤ q.

An event e is delivered to a user, if and only if, the user

has submitted at least one subscription s, such that, s ≻S
E e.

For example, the subscription of Fig. 1b covers the event of

Fig. 1a and, therefore, this event will be delivered to all users

who have submitted this subscription.

III. NOVELTY-AWARE PUBLISH/SUBSCRIBE

We aim at enhancing notification services by introducing a

degree of importance for each delivered event. This degree

expresses the novelty of the event for the receiver and is

computed by taking into account the subscriptions of the

receiver and any previously delivered events.

Let U be the set of users of a publish/subscribe system and

S be the set of their subscriptions. Given a user u ∈ U , we

use Su, Su ⊆ S, to denote the subscriptions of u.

A. Subscription Novelty

Intuitively, users are more interested in rare pieces of

information, in the sense that being notified about something

that rarely happens is more important than being notified

about something that occurs all the time. Therefore, we would

like to favor subscriptions that are not frequently matched by

the published events. The novelty of a subscription captures

this property by measuring how frequently the subscription

is matched. Generally, the novelty of a subscription s is

decreased whenever an event e is published, such that, s ≻S
E e.

Assuming some initial default novelty for all subscriptions,

we can formally define the novelty of a subscription recur-

sively as follows:

Definition 2: (SUBSCRIPTION NOVELTY). Given a sub-

scription s ∈ S, after i events have matched s, the novelty

of s, nov(i)(s), is:

nov(i)(s) =

{

nov(i−1)(s) − α, if i ≥ 1

β, if i = 0

where α and β are positive constants.

The α parameter calibrates the reduction rate of novelty.

Here, we follow a linear approach. However, one could argue

about other variations, such as an exponential reduction. We

assume that the default novelty β of all subscriptions is the

same. Alternatively, we could use a different default value

for each subscription based, for example, on user preferences,

similarly to our approach in [6], on relevance or some other

criterion.

Event matching is continuous, thus, the novelty of each

subscription keeps reducing as events match it over time. In

this paper, we adopt a simple periodic model for refreshing

novelty. We assume time intervals or periods of a fixed length

T . The novelty of each subscription is reset to its default value

β at the beginning of each period. We use nov(s, t) to denote

the value of novelty of subscription s at time instant t.

B. Event Degree of Importance

A published event e is delivered to all users who have

submitted subscriptions that cover it. Each event presented

to a user u is associated with a degree of importance. This

degree is computed with respect to the novelty of its matching

subscriptions. In the simple case, where e matches only one

subscription s ∈ Su, the degree of importance of e for u is

equal to the novelty of s. However, in most cases, there are

more than one such subscriptions. In these cases, we base the

computation of the degree of importance of the event on the

novelty of the most specific subscriptions of u for e.

To define the most specific subscriptions for an event, we

first need to define the cover relation among two subscriptions:

Definition 3: (COVER RELATION BETWEEN SUBSCRIP-

TIONS). Given two subscriptions s and s′, s covers s′, s ≻S
S s′,

if and only if, for each event e, such that, s′ ≻S
E e, it holds

that s ≻S
E e.

Now, given all subscriptions submitted by u that cover an

event e, denoted Se
u, we say that a subscription s ∈ Se

u is a

most specific one of u for e, if and only if, there is no other

subscription s′ ∈ Se
u, such that, s ≻S

S s′. Formally:

Definition 4: (MOST SPECIFIC SUBSCRIPTION). Let u ∈
U be a user and s a subscription, such that, s ∈ Su. Given an

event e, we say that s is a most specific subscription of u for

e, if and only if:

1) s ≻S
E e and

2) ∄s′ ∈ Su, s′ 6= s, such that, s′ ≻S
E e and s ≻S

S s′.

For example, assume the event of Fig. 1a and the subscrip-

tions {genre = drama} and {genre = drama, director = T. Bur-

ton} submitted by the same user (for ease of presentation, we

omit the type of each attribute). Both subscriptions cover the

event. Between the two, the latter subscription is more specific

than the former one, in the sense that in the latter subscription

the user imposes an additional, more specific requirement to

movies.

We next define the importance of an event with regards to

the novelty of the most specific subscriptions.

Definition 5: (EVENT DEGREE OF IMPORTANCE). Given

an event e, a user u ∈ U and a set of subscriptions S, the

degree of importance of e for u at time t, doi(e, u,S, t), is:

doi(e, u,S, t) = max
s∈Se

u

nov(s, t)

where Se
u is the set of the most specific subscriptions of u for

e and nov(s, t) is the novelty of s at the time instant t of the

doi computation.

There are two subtle points regarding Definition 5. First,

an event gets the novelty of the most specific subscriptions

matching it. Note, however, that by Definition 2, we update

the novelty of all subscriptions that match an event. In the

example, we update the novelty of both subscriptions {genre

= drama} and {genre = drama, director = T. Burton}. Thus,

the novelty of general subscriptions, such as {genre = drama},

tends to be reduced faster than the novelty of most specific

ones, such as {genre = drama, director = T. Burton}. Conse-

quently, events that match very specific information needs of

a user and may be rarely generated tend to get high scores

in general. Second, when more than one most specific sub-

scription matches an event, we use the maximum novelty. To

see why, take again the event in Fig. 1a and the subscriptions

{genre = drama, director = T. Burton} and {genre = drama,

release date = 13 Feb 2004}. Both subscriptions match the

event and none of the two covers the other. The event will get

the best novelty. For example, if there have been many events

about drama movies by T. Barton but very few events about

drama movies released on 13 Feb 2004, the event in Fig. 1a

will get the novelty of the second subscription, that is, the

highest one, so that such rare events are noticed.

IV. PRELIMINARY EVALUATION

To evaluate our approach, we have extended the SIENA no-

tification service [2] with our novelty functionality. Our goal is

to demonstrate that novel events are brought to the foreground.

To do this, we use a set of subscriptions constructed based

on a real movie dataset [1] and generate events that match

the subscriptions uniformly. We report results for a subset

S = {s1, . . . , s7} of the subscriptions, where s1 covers s3 and

s4, and s2 covers s5, s6 and s7. There are 1000 events, each

one covered by at least one subscription in S. In Fig. 2, we

show the change in the novelty of each subscription as events

are being published. We use α = 0.001β. The more general the

subscription, the higher the reduction rate of its novelty. Also,

0.5β

0.6β

0.7β

0.8β

0.9β

β

 100 200 300 400 500 600 700 800 900 1000

S
u
b
s
c
ri
p
ti
o
n
 n

o
v
e
lt
y

Number of matched events

s1
s2
s3
s4
s5
s6
s7

Fig. 2. Subscription novelty per number of matched events during one period.

the reduction rate of the novelty of a subscription increases as

the number of the subscriptions covered by it increases.

V. CONCLUSIONS

In this short paper, we have argued for making novelty

a ranking criterion in publish/subscribe systems. There are

many issues for further research. First, novelty is only one of

the criteria to characterize the importance of an event. Other

possible criteria include relevance, source authoritativeness,

diversity and user preferences. How to combine such criteria

for effectiveness is a difficult problem. Then, we have assumed

that all ranked matching events are delivered to users. It is

reasonable to define a top-k variant of the problem, where only

the k events with the highest degrees are delivered, as well as,

a threshold-based variant of the problem, where only the events

having a degree above a threshold are delivered. Furthermore,

since publish/subscribe provides a form of continuous delivery,

we are looking into a sliding window model for novelty to

replace our periodic one. Finally, there are implementation

and performance issues that we have not considered in this

paper that are worthy of further research, such as an efficient

architecture for the matching service.

REFERENCES

[1] Movies dataset. http://had.co.nz/data/movies.
[2] SIENA. http://serl.cs.colorado.edu/∼serl/dot/siena.html.
[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation

of a wide-area event notification service. ACM Trans. Comput. Syst.,
19(3):332–383, 2001.

[4] C. L. A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan,
S. Büttcher, and I. MacKinnon. Novelty and diversity in information
retrieval evaluation. In SIGIR, pages 659–666, 2008.

[5] M. Drosou and E. Pitoura. Diversity over continuous data. IEEE Data

Eng. Bull., 32(4):49–56, 2009.
[6] M. Drosou, K. Stefanidis, and E. Pitoura. Preference-aware pub-

lish/subscribe delivery with diversity. In DEBS, pages 1–12, 2009.
[7] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many

faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.
[8] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and

D. Shasha. Filtering algorithms and implementation for very fast
publish/subscribe. In SIGMOD, pages 115–126, 2001.

[9] H. Liu and H.-A. Jacobsen. Modeling uncertainties in publish/subscribe
systems. In ICDE, pages 510–522, 2004.

[10] A. Machanavajjhala, E. Vee, M. N. Garofalakis, and J. Shanmugasun-
daram. Scalable ranked publish/subscribe. PVLDB, 1(1):451–462, 2008.

[11] K. Pripuzic, I. P. Zarko, and K. Aberer. Top-k/w publish/subscribe:
finding k most relevant publications in sliding time window w. In DEBS,
pages 127–138, 2008.

[12] C. Zimmer, C. Tryfonopoulos, K. Berberich, M. Koubarakis, and
G. Weikum. Approximate information filtering in peer-to-peer networks.
In WISE, pages 6–19, 2008.

