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Abstract

Marina K. Drosou. PhD, Computer Science and Engineering Department, University of

Ioannina, Greece. October, 2013. Relevance and Diversitybased Ranking in Network

Centric Information Management Systems. Thesis Supervisor: Evaggelia Pitoura.

With the explosion of the amount of information currently available online, locating

valuable or important information can prove out to be an overwhelming task. This

abundance of accessible information creates the need for developing methods towards

selecting and presenting to users representative subsets. Various ranking techniques

have been developed in the past, to allow users to quickly access what is most useful

to them. Ranking of information is usually based on some notion of relevance of

each specific piece of information, or item, to the user needs. Ranking based solely

on relevance, however, may lead to enhancing the overspecialization problem, i.e.,

the retrieval of too homogeneous results for a user query. For this reason, retrieving

diverse results, i.e., items that are different to each other, has recently attracted great

attention as a means to complement relevancebased ranking and increase the quality

of results retrieved by information systems.

Generally, the problem of diversification is defined as follows. Given a set P of items

and a budget k, select a subset S of P, with |S| = k, such that, S maximizes some

diversification objective. Among the many different objectives proposed in the past for

selecting diverse items, one can find approaches based on (i) content (or similarity), i.e.,

selecting items that are dissimilar to each other, (ii) novelty, i.e., selecting items that

contain new information when compared to previously seen ones, and (iii) coverage,

i.e., selecting items that belong to different categories. Selecting diverse items has been

shown to be an NPhard problem.

This PhD thesis concerns the development, implementation and evaluation of mod

els, algorithms and techniques for the ranking of information being presented to users

of networkcentric information management systems. This ranking is based on the

importance of each piece of information. We consider that importance is influenced by

both relevance to user information needs and diversity. Relevance is important so that

users are only presented with the most useful results according to their needs, while

diversity ensures that the received results do not all contain similar information.

We focus on two different axes: (i) diversifying dynamic data and (ii) diversifying
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data based on dissimilarity and coverage. In addition to this, we also develop a system

prototype, called Poikilo (from the Greek ‘‘ποικίλο’’, meaning ‘‘diverse’’) for evaluating

the results of various diversification models and algorithms.

Most previous research considers the static version of the problem, i.e., the available

items out of which a diverse set is selected do not change over time. In this thesis, we

focus on the dynamic diversification problem, where insertions and deletions of items

are allowed and the diverse set needs to be refreshed to reflect such updates. We

propose an indexbased approach using a spatialindex structure, namely the Cover

Tree. Cover trees are data structures originally proposed for approximate nearest

neighbor search. Motivated by popular proactive delivery paradigms, such as news

alerts, RSS feeds and notification services in social networks, where users specify their

interests and receive relevant notifications, we also consider the continuous version

of the problem, where diversified sets are computed over streams of items. To avoid

overwhelming users by forwarding to them all relevant items, we consider the case in

which a representative diverse set is computed, instead, whose size can be configured

by the users. We introduce a sliding window model along with continuity requirements.

Such requirements ensure that the order in which the diverse items are delivered

follows the order of their generation and that an item does not appear, disappear and

then reappear in the diverse set.

We introduce a suite of algorithms that exploit the cover tree to provide solutions

with varying accuracy and complexity and also provide theoretical results that bound

the accuracy of the solutions achieved with regards to the optimal solution. We extend

our approach to select items that are both relevant and diverse. We consider two

different approaches. The first one considers the relevance of the items when inserting

them into the index, while the second one combines relevance with diversity when

selecting items from the index. We perform an extensive experimental evaluation of the

efficiency and effectiveness of our approach using both real and synthetic datasets.

We also address diversity through a different perspective. Let P be the set of avail

able items and r a positive real number, which we call radius. Let also d be some

distance metric. For pi, pj in P, we consider that pi is similar to pj if and only if d(pi, pj)

≤ r. We also say that pj is covered by pi. Given P, we select a representative subset S,

S ⊆ P, to be presented to the user such that: (i) all items in P are covered by at least

one item in S and (ii) no two items in S cover each other. The first condition ensures

that all items in P are represented by at least one similar item in the selected subset.

The second condition ensures that the selected items of P are dissimilar. We call S

rDissimilar and Covering subset or rDisC diverse subset.

In contrary to previous approaches to diversification, instead of specifying a required

size k of the diverse set, our tuning parameter r explicitly expresses the degree of

diversification and determines the size of the diverse subset. Increasing r results in

smaller, more diverse subsets, while decreasing r results in larger, less diverse subsets.
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We call these operations zoomingout and zoomingin respectively. To retrieve a concise

representation of all items, we aim at selecting the DisC diverse subset containing the

smallest number of items. We also define weighted DisC diverse subsets, where each

item is associated with a weight indicating its relevance and multiple radii DisC diverse

subsets, where each item is associated with a different radius. Multiple radii are used

to allow different areas of the data to contribute more or less items to the selected

diverse subset.

We formalize the problem of locating minimum and minimum weighted DisC diverse

subsets as an independent dominating set problem on graphs. We provide efficient

algorithms for locating approximate solutions as well as corresponding theoretical ap

proximation bounds. We propose efficient implementations of our algorithms based on

spatial index structures. In particular, we use the Mtree. We compare DisC diversity

with other popular diversity models, both analytically and qualitatively, and provide an

extensive experimental evaluation of various aspects of our approach.

Finally, we present a system prototype, called Poikilo, to assist users in locating,

visualizing and comparing diverse items based on a suite of different diversification

models and algorithms. We provide implementations of a wide variety of diversification

approaches.
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Ο όγκος της πληροφορίας που γίνεται καθηµερινά διαθέσιµος στους χρήστες διαδικ-

τυακών συστηµάτων είναι τεράστιος. Ο εντοπισµός χρήσιµης πληροφορίας µέσα σε αυτόν

τον όγκο δεδοµένων µπορεί να αποδειχθεί εξαιρετικά δύσκολος. Για τον λόγο αυτό,

διάφορες τεχνικές διαβάθµισης πληροφορίας έχουν προταθεί κατά καιρούς, οι οποίες

στοχεύουν στη διευκόλυνση των χρηστών κατά την αναζήτηση πληροφορίας. Η διαβάθµιση

της πληροφορίας είναι συνήθως ϐασισµένη σε κάποια έννοια συνάφειας (relevance) ως

προς το ερώτηµα που έχει ϑέσει ο χρήστης. Ωστόσο, η διαβάθµιση µε ϐάση αποκλεισ-

τικά τη συνάφεια µπορεί να ενισχύσει το πρόβληµα της υπερ-εξειδίκευσης, δηλαδή την

ανάκτηση αποτελεσµάτων που είναι µεν σχετικά το καθένα µε το ερώτηµα του χρήστη αλλά

είναι πολύ όµοια µεταξύ τους.

Η ποικιλοµορφία (diversity) των δεδοµένων έχει αναδειχθεί τα τελευταία χρόνια ως ένας

τρόπος αντιµετώπισης του προβλήµατος της υπερ-εξειδίκευσης. Πέραν αυτού, πολλές

ϕορές, οι χρήστες ϑέτουν ερωτήµατα µε µία διάθεση εξερεύνησης, δηλαδή ενδιαφέρονται

να ανακτήσουν αποτελέσµατα τα οποία να καλύπτουν διαφορετικές οπτικές γωνίες του

ερωτήµατός τους. Φανταστείτε για παράδειγµα έναν χρήστη που ενδιαφέρεται για την

αγορά ενός ακινήτου και ϑέτει ένα αντίστοιχο ερώτηµα σε ένα πληροφοριακό σύστηµα.

Εν γένει, ένα σύνολο ποικίλων αποτελεσµάτων (π.χ. ακίνητα σε διαφορετικές συνοικίες,

µε διαφορετικό αριθµό υπνοδωµατίων κτλ.) περιέχει πιο χρήσιµη πληροφορία από ένα

σύνολο αποτελεσµάτων µε παρόµοια χαρακτηριστικά. Η αύξηση της ποικιλοµορφίας των

αποτελεσµάτων δρα συµπληρωµατικά µε τη συνάφειά τους για τη ϐελτίωση της ποιότητας

του αποτελέσµατος που παρουσιάζεται στον χρήστη.

Γενικά, το πρόβληµα της επιλογής ποικιλόµορφων (diverse) αποτελεσµάτων ορίζεται ως

εξής : ∆οσµένου ενός συνόλου P αποτελεσµάτων, σκοπός είναι να ϐρούµε ένα υποσύνολο

S του P τέτοιο ώστε να µεγιστοποιείται η ποικιλοµορφία των επιλεγµένων αποτελεσµάτων,

σύµφωνα µε κάποιο κριτήριο ποικιλοµορφίας.

Στόχος αυτής της διατριβής είναι η ανάπτυξη, υλοποίηση και αξιολόγηση µοντέλων,

αλγορίθµων και τεχνικών για την υποστήριξη διαβάθµισης µε ϐάση τόσο τη συνάφεια όσο
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και την ποικιλοµορφία των αποτελεσµάτων σε δίκτυο-κεντρικά συστήµατα διαχείρισης

πληροφορίας. Επικεντρώνουµε το ενδιαφέρον µας κυρίως πάνω σε δύο άξονες : (i) την

ποικιλοµορφία πληροφορίας που αλλάζει δυναµικά στο χρόνο και (ii) την ποικιλοµορφία

πληροφορίας µε ϐάση την ανοµοιότητα (dissimilarity) και την κάλυψη (coverage).

Παρόλο το ενδιαφέρον της ερευνητικής κοινότητας για την αύξηση της ποικιλοµορφίας,

η προηγούµενη έρευνα αφορά κυρίως τη στατική έκδοση του προβλήµατος, όπου η

διαθέσιµη πληροφορία µένει αµετάβλητη στο χρόνο. Στα πλαίσια αυτής της διατριβής,

ασχολούµαστε µε τη δυναµική έκδοση του προβλήµατος, όπου έχουµε δυναµικές εισ-

αγωγές και διαγραφές δεδοµένων οι οποίες πρέπει να αντικατοπτρίζονται στα ποικιλόµορφα

αποτελέσµατα που παρουσιάζονται στον χρήστη.

Ακολουθούµε µία προσέγγιση ϐασισµένη σε χωρικές δοµές ευρετηρίασης, και συγ-

κεκριµένα, σε δέντρα επικάλυψης (cover trees). Επικεντρωνόµαστε σε ένα κλασσικό

πρόβληµα ποικιλοµορφίας (MaxMin), το οποίο, δοσµένης µιας µετρικής απόστασης, στο-

χεύει στη µεγιστοποίηση της ελάχιστης απόστασης µεταξύ δύο αποτελεσµάτων. Το πρόβλη-

µα αυτό έχει αποδειχθεί πως ανήκει στην κλάση των NPhard προβληµάτων. Προτείνουµε

ένα σύνολο αλγορίθµων, διαφορετικής ακρίβειας και πολυπλοκότητας, οι οποίοι εκµετ-

αλλεύονται τις χωρικές ιδιότητες των δέντρων επικάλυψης για την αποδοτική επίλυση του

προβλήµατος. Αποδεικνύουµε ϑεωρητικά αποτελέσµατα που ϕράσσουν την ακρίβεια των

λύσεών µας σε σχέση µε τη ϐέλτιστη λύση. Τέλος, επεκτείνουµε τους αλγορίθµους µας

ώστε να συνυπολογίζουν και τη συνάφεια των αποτελεσµάτων κατά την επιλογή τους.

Η προηγούµενη έρευνα ϑεωρεί κυρίως το µέγεθος k του ποικιλόµορφου συνόλου S

ως παράµετρο του προβλήµατος και στοχεύει στην επιλογή των k αποτελεσµάτων που

µεγιστοποιούν κάποιο κριτήριο ποικιλοµορφίας. Στα πλαίσια αυτής της διατριβής, εξετά-

Ϲουµε την ποικιλοµορφία από µία νέα οπτική γωνία. ΄Εστω P ένα σύνολο αποτελεσµάτων

και r ένας ϑετικός πραγµατικός αριθµός, τον οποίο καλούµε ακτίνα. ΄Εστω ακόµα µία

µετρική απόστασης d. Θεωρούµε πως δύο αποτελέσµατα p1, p2 του P είναι παρόµοια αν

και µόνο αν d(p1, p2) ≤ r. Σε αυτήν την περίπτωση, λέµε επίσης πως το p1 καλύπτει το p2.

∆οσµένου του P, ϑέλουµε να εντοπίσουµε ένα αντιπροσωπευτικό, ποικίλο υποσύνολο

S του P, τέτοιο ώστε (i) όλα τα αποτελέσµατα του P να καλύπτονται από τουλάχιστον

ένα αποτέλεσµα του S και (ii) όλα τα αποτελέσµατα του S να είναι ανόµοια µεταξύ τους.

Η πρώτη συνθήκη εξασφαλίζει ότι όλα τα αποτελέσµατα εκπροσωπούνται από κάποιο

παρόµοιο αποτέλεσµα στο επιλεγµένο υποσύνολο, ενώ η δεύτερη συνθήκη εξασφαλίζει ότι

δεν υπάρχουν παρόµοια αποτελέσµατα µεταξύ των επιλεγµένων. Καλούµε το υποσύνολο

S rDissimilarandCovering (rDisC) υποσύνολο και στοχεύουµε στην ανάκτηση ενός

ελάχιστου rDisC υποσυνόλου.

Σε αντίθεση µε τις προηγούµενες προσεγγίσεις, αντί να ορίζουµε εξαρχής ως είσοδο

στο πρόβληµά µας το µέγεθος k του υποσυνόλου S, η παράµετρός µας r προσδιορίζει τον

απαιτούµενο ϐαθµό ποικιλοµορφίας και εµµέσως καθορίζει το µέγεθος του S. Μεγάλη

ακτίνα οδηγεί σε µικρότερα αλλά περισσότερο ποικίλα υποσύνολα, ενώ µικρή ακτίνα το

αντίθετο.
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Ασχολούµαστε επίσης µε την περίπτωση στην οποία σε κάθε αποτέλεσµα αντιστοιχεί

µία διαφορετική ακτίνα -µία τέτοια προσέγγιση είναι χρήσιµη όταν ϑέλουµε να δώσουµε

διαφορετική έµφαση σε διαφορετικά αποτελέσµατα- καθώς και µε την περίπτωση στην

οποία κάθε αποτέλεσµα ϕέρει έναν ϐαθµό συνάφειας.

Μοντελοποιούµε το πρόβληµα εντοπισµού DisC υποσυνόλων για µία κοινή ή για

πολλαπλές ακτίνες ως ένα πρόβληµα εντοπισµού συνόλων ανεξαρτησίας και κάλυψης

(independent dominating set) σε µη-κατευθυνόµενους και κατευθυνόµενους γράφους

αντίστοιχα. ∆είχνουµε ότι το πρόβληµα ανήκει στην κλάση των NPhard προβληµάτων

και προτείνουµε ένα σύνολο ευρετικών αλγορίθµων για την επίλυσή του. Παρέχουµε

ϕράγµατα για το µέγεθος των λύσεών µας σε σχέση µε την ϐέλτιστη λύση.

Ορίζουµε τις πράξεις zoomingout και zoomingin για την προσαρµογή ενός συνόλου

S σε κάποια µεγαλύτερη ή µικρότερη από την αρχική του ακτίνα αντίστοιχα. Μελετούµε

τη σχέση µεταξύ του αρχικού και του τελικού υποσυνόλου. Παρέχουµε ϕράγµατα για τη

σχέση µεγέθους τους και προτείνουµε αλγορίθµους για την αυξητική µετατροπή του S.

Παρέχουµε αποδοτικές υλοποιήσεις των αλγορίθµων µας ϐασισµένες σε χωρικές δοµές

ευρετηρίασης, και συγκεκριµένα σε Μ-δέντρα (Mtrees), εκµεταλλευόµενοι την ταχύτητα

αυτών των δοµών για τη γρήγορη ανάκτηση παρόµοιων αποτελεσµάτων.

Τέλος, αναπτύξαµε ένα ολοκληρωµένο σύστηµα, το οποίο καλούµε «ΠΟΙΚΙΛΟ», για την

αξιολόγηση και την οπτικοποίηση των αποτελεσµάτων που λαµβάνουµε από ένα πλήθος

αλγορίθµων αύξησης της ποικιλοµορφίας που έχουν κατά καιρούς προταθεί στη σχετική

ϐιβλιογραφία.
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Chapter 1

Introduction

1.1 Overview

1.2 Thesis Contribution

1.3 Thesis Layout

N
owadays, a great volume of information becomes available to users every day

from a number of online sources. Locating valuable or important informa

tion can prove out to be an overwhelming task, due to the great amount of

accessible data. For this reason, various ranking techniques have been developed, to

allow users to quickly access what is most useful to them. Ranking of information is

usually based on some notion of relevance of each specific piece of information to the

user needs. Ranking based solely on relevance, however, may lead to enhancing the

overspecialization problem, i.e., the retrieval of too homogeneous results, or items, for a

user query. Beside this, many user searches are of an exploratory nature, in the sense

that users are interested in retrieving pieces of information that cover many aspects

of their information needs. Diversification has recently attracted great attention as a

means to complement relevancebased ranking and provide information systems with

the means to retrieve more satisfying results (e.g., [88]). The aim of diversification is to

retrieve results that are different to each other.

This PhD thesis concerns the development, implementation and evaluation of mod

els, algorithms and techniques for the ranking of information being presented to users

of networkcentric information management systems. This ranking is based on the

importance of each piece of information. We consider that importance is influenced by

both relevance to user information needs and diversity. Relevance is important so that

users are only presented with the most useful results according to their needs, while

diversity ensures that the received results do not all contain similar information.
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1.1 Overview

Many different approaches have been proposed in the past for selecting diverse items

(e.g., [48, 57, 109, 113]). Most of these can be classified in three different categories

[42], namely in terms of:

1. content (or similarity), i.e., selecting items that are dissimilar to each other (e.g.,

[114, 107]),

2. novelty, i.e., selecting items that contain new information when compared to

previously seen ones (e.g., [35, 115]), and

3. coverage, i.e., selecting items that belong to different categories (e.g., [11, 104]).

Contentbased definitions interpret diversity as an instance of the pdispersion prob

lem, whose objective is to select p out of n given items, so that the minimum distance

between any pair of selected items is maximized [48]. The pdispersion problem has

been studied in the field of operations research for locating facilities that should be

dispersed; such as franchises belonging to a chain or nuclear power plants. Formally,

let P = {p1, . . . , pn} be a set of n items. Given a distance metric d : P × P → R+

indicating the dissimilarity of two items in P, assume that the diversity of a set S,

S ⊆ P, is measured by a function f : 2|P| × d → R+. For a positive integer k, k ≤ n,

the contentbased diversification problem is the problem of selecting a subset S∗ of P
such that:

S∗ = argmax
S⊆P
|S|=k

f(S, d). (1.1)

The choice of f affects the selection of items, even for a specific distance metric d. Two

widely used functions are the minimum distance among the selected items and the sum

of the distances of the selected items, formally defined as:

fMin(S, d) = min
pi,pj∈S
pi 6=pj

d(pi, pj) (1.2)

and

fSum(S, d) =
∑

pi,pj∈S

d(pi, pj) (1.3)

The corresponding problems are called MaxMin and MaxSum diversification problems.

Intuitively, MaxMin aims at discouraging the selection of nearby items, while MaxSum

at increasing the average pairwise distance among all items.

Novelty is a notion closely related to that of diversity, in the sense that items which

are diverse from all items seen in the past are likely to contain novel information, i.e.,

information not seen before. A distinction between novelty and diversity is made in

[35], where novelty is viewed as the need to avoid redundancy, whereas diversity is

viewed as the need to resolve ambiguity.

2



Finally, some works view diversity in a different way, that of selecting items that

cover many different interpretations of the user’s information need. For example, [11]

considers typical web search and, given a taxonomy of independent information cat

egories, aims at retrieving items that cover many interpretations of the user query,

especially interpretations that are considered important.

Given a set of items P, locating an optimal diverse subset of P is an NPhard

problem for all these definitions (e.g., [47]). For this reason, various heuristics have

been proposed for locating approximate solutions. Most of the heuristics in the related

literature can be classified into two main groups, namely (i) greedy (e.g., [119]) and

(ii) interchange (e.g., [113]) algorithms.

Greedy algorithms are the ones most commonly used since they are intuitive and

fast. Such algorithms generally make use of two sets to locate a diverse subset of size

k: the set P of the available n items and the set S which contains the selected, i.e.,

diverse, items. Items are iteratively moved from P to S and vice versa until |S| = k

and |P| = n − k. In most approaches, S is initialized with some item, e.g., the most

relevant one, and then items are moved onebyone from P to S until k of them have

been selected. Many greedy algorithms have been proved to provide 1/2approximations

of the optimal solution.

Interchange algorithms have also been widely used in the literature for solving the

diversification problem. Such algorithms are generally initialized with a random solu

tion S and then iteratively attempt to improve that solution by interchanging an item

in the solution with another item that is not in the solution.

Another line of research aims at selecting diverse results similarly to topk results

by employing some sort of threshold algorithm, often attempting to incorporate weights

to this threshold (e.g., [87, 22]). This approach is more common in noveltybased defi

nitions of diversity in information retrieval (e.g., [35, 115]). There is a crucial difference

between the two problems, however, in that the diversity of a single item cannot be com

puted independently from that of other items as in the topk case, since all diversity

measures require comparing the item with any previously selected ones.

1.2 Thesis Contribution

In this thesis, we mainly focus on two different axes: (i) diversifying dynamic data and

(ii) diversifying data based on dissimilarity and coverage. We also developed a system

prototype, called Poikilo (from the Greek ‘‘ποικίλο’’, meaning ‘‘diverse’’) for evaluating

the results of various diversification models and algorithms. We next present our

contribution in each field.

Diverse Set Selection over Dynamic Data. Despite the considerable interest in diver

sification, most previous research considers the static version of the problem, i.e., the

available items out of which a diverse set is selected do not change over time. Here, we
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focus on the dynamic diversification problem, where insertions and deletions of items

are allowed and the diverse set needs to be refreshed to reflect such updates. In the

past, we addressed the dynamic problem [41] using a slidingwindow model. Our ap

proach is based on keeping any nonexpired diverse items in every new window and

using them to initialize a greedy algorithm. Besides reducing the computational cost,

this approach often performs better than executing the greedy algorithm from scratch

for each window, since an already diversified subset of items is used as a seed. The

dynamic problem was also addressed in [84], using an interchange heuristic instead.

Here, we propose an indexbased approach.

Our solution is based on Cover Trees. Cover trees are data structures originally

proposed for approximate nearestneighbor search [16]. Motivated by popular proactive

delivery paradigms, such as news alerts, RSS feeds and notification services in social

networks, where users specify their interests and receive relevant notifications, we also

consider the continuous version of the problem, where diversified sets are computed

over streams of items. To avoid overwhelming users by forwarding to them all relevant

items, we consider the case in which a representative diverse set is computed, instead,

whose size can be configured by the users. We introduce a sliding window model along

with continuity requirements. Such requirements ensure that the order in which the

diverse items are delivered follows the order of their generation and that an item does

not appear, disappear and then reappear in the diverse set.

We focus on the MaxMin diversity problem. We propose a suite of algorithms that

exploit the cover tree to provide solutions with varying accuracy and complexity. We

provide theoretical results that bound the accuracy of the solutions achieved with

regards to the optimal solution.

In a nutshell, this thesis makes the following contributions:

• we propose indexing based on cover trees to address the dynamic diversification

problem along with continuity requirements appropriate for a streaming scenario,

• we present a suite of methods with varying complexity that exploit the cover

tree for the MaxMin problem and provide bounds for the achieved diversity with

regards to the optimal solution,

• we extend the cover tree and our algorithms for selecting items that are both

relevant and diverse, and

• we experimentally evaluate the efficiency and effectiveness of our approach using

both real and synthetic datasets.

DisC Diversity: Result diversification based on Dissimilarity and Coverage. We

also address diversity through a different perspective. Let P be the set of items in a

query result and r a positive real number, which we call radius. Let also d be some

distance function. For pi, pj in P, we consider that pi is similar to pj if and only if
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d(pi, pj) ≤ r. We also say that pj is covered by pi. Given P, we select a representative

subset S, S ⊆ P, to be presented to the user such that: (i) all items in P are covered

by at least one item in S and (ii) no two items in S cover each other. The first condition

ensures that all items in P are represented by at least one similar item in the selected

subset. The second condition ensures that the selected items of P are dissimilar. We

call the set S rDissimilar and Covering subset or rDisC diverse subset.

In contrary to previous approaches to diversification, we aim at computing subsets

of items that contain items that are both dissimilar with each other and cover the whole

result set. Furthermore, instead of specifying a required size k of the diverse set or a

threshold, our tuning parameter r explicitly expresses the degree of diversification and

determines the size of the diverse set. Increasing r results in smaller, more diverse sub

sets, while decreasing r results in larger, less diverse subsets. We call these operations

zoomingout and zoomingin respectively.

We aim at retrieving a concise representation of all results. For this reason, among

all DisC diverse subsets that answer the user query, we aim at selecting the one con

taining the smallest number of items. In case items are also associated with weights, we

also take them into consideration when selecting our diverse items. We also consider

extending the definition of DisC diverse subsets to allow each item to be associated with

a different radius. We do this to allow different areas of the data to contribute more or

less items to the selected diverse subset.

We formalize the problem of locating minimum and minimum weighted DisC diverse

subsets as an independent dominating set problem on graphs [58]. In the case of a

single radius, items can be represented via an undirected graph. When multiple radii

are employed, a directed graph is used instead. We show that locating minimum DisC

diverse subsets is an NPhard problem and provide a suite of algorithms for locating

approximate solutions. We also consider the problem of adjusting the radius r, or

zooming. We explore the relation among DisC diverse subsets of different radii and

provide algorithms for incrementally adapting a DisC diverse subset to a new radius.

We provide theoretical upper bounds for the size of the diverse subsets produced by

our algorithms for computing DisC diverse subsets as well as for their zooming coun

terparts. Since the crux of the efficiency of the proposed algorithms is locating similar

items, we take advantage of spatial data structures. In particular, we propose efficient

implementations based on the Mtree [33].

In a nutshell, this thesis makes the following contributions:

• we introduce a new, intuitive definition of diversity, called DisC diversity, based

on using a radius r rather than a size limit k to select diverse items,

• we extend DisC diversity to the weighted and multiple radii cases and introduce

a graphbased view of the problem in both cases,

• we introduce incremental diversification through zoomingin and zoomingout,
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• we show that locating DisC diverse subsets is an NPhard problem and provide

efficient algorithms for their computation as well as corresponding theoretical

approximation bounds,

• we provide efficient Mtree tailored implementations of our algorithms and exper

imentally evaluate their performance, and

• we compare DisC diversity with other popular diversity models, both analytically

and qualitatively.

POIKILO: A System for Evaluating the Results of Diversification Models and Algo

rithms. Finally, during the elaboration of this thesis, we also developed a system

prototype, called Poikilo, which is a system designed to assist users in locating, vi

sualizing and comparing diverse results based on a suite of different diversification

models and algorithms. We provide implementations of a wide variety of diversification

approaches for retrieving diverse results.

Users of Poikilo can submit queries to a number of different datasets and see a

visualization of a diversified subset of their query result. Users can choose among a

wide selection of diversification algorithms and specify various configuration parame

ters. Furthermore, they can zoomin and zoomout of this initial diverse subset and

navigate between consequent windows in the case of streaming data.

1.3 Thesis Layout

The rest of this thesis is structured as follows. In Chapter 2, we overview related work

in the field of diversification. In Chapter 3, we introduce indexing based on cover trees

to address the dynamic diversification problem. In Chapter 4, we introduce a novel

definition of diversity, called DisC diversity, as well as, a suite of algorithms for locating

concise DisC diverse subsets. Chapter 5 presents a system prototype for visualizing

diverse results. Finally, Chapter 6 summarizes this thesis and overviews directions for

future work.
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Chapter 2

Related Work on Search Result

Diversification

2.1 Diversity Definitions

2.2 Combination of Diversity with Other Criteria

2.3 Algorithms

2.4 Evaluation Measures

2.5 Summary

T
oday, most user searches are of an exploratory nature, in the sense that users

are interested in retrieving pieces of information that cover many aspects of

their information needs. Therefore, recently, result diversification has attracted

considerable attention as a means of counteracting the overspecialization problem,

i.e., the retrieval of too homogeneous results in recommender systems and web search,

thus enhancing user satisfaction (e.g., [119, 107]). Consider, for example, a user who

wants to buy an apartment and submits a related web search query. A diverse result,

i.e. a result containing various apartments in different neighborhoods with different

number of bedrooms and other characteristics is intuitively more informative than a

result that contains a homogeneous result containing only apartments with similar

features.

Diversification is also useful in counterweighting the effects of personalization. Per

sonalization aims at tailoring results to meet the preferences of each specific individual

(e.g., [73, 98]). However, this may lead to overly limiting the search results. Diversifica

tion can complement preferences and provide personalization systems with the means

to retrieve more satisfying results (as in [88]).

In this chapter, we survey the various approaches taken in the area of result diver

sification. We classify the ways that diverse items are generally defined in the related

literature in three different categories, namely in terms of:
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1. content (or similarity), i.e., items that are dissimilar to each other (e.g., [114, 107]),

2. novelty, i.e., items that contain new information when compared to previously

seen ones (e.g., [35, 115]), and

3. coverage, i.e., items that belong to different categories (e.g., [11]).

We present various diversification algorithms of the related literature and classify them

into two main groups, namely (i) greedy (e.g., [119, 57]) and (ii) interchange (e.g., [113,

81]) algorithms. We also present other criteria often used along with diversity and show

various measures used for evaluating the performance of diversification systems.

The rest of this chapter is structured as follows. In Section 2.1, we classify various

definitions of the diversification problem, while in Section 2.2, we see how diversity is

combined with other ranking criteria. In Section 2.3, we review proposed algorithms

for efficiently retrieving diverse results and, in Section 2.4, we show measures used

for evaluating the diversity of selected items. Finally, Section 2.5 summarizes this

chapter.

2.1 Diversity Definitions

Generally, the problem of selecting diverse items can be expressed as follows:

Definition 2.1 (Diversification Problem). Given a set1 P of n available items and a

restriction k on the number of wanted results, select a subset S∗ of k items out of the

n available ones, such that, the diversity among the items of S∗ is maximized.

In this section, we present various specific definitions of the result diversification

problem that can be found in the research literature. We classify these definitions based

on the way that diverse items are defined, i.e., (i) content, (ii) novelty and (iii) coverage.

Note that, this classification is sometimes fuzzy, since these factors are related to each

other and, therefore, a definition can affect more than one of them.

2.1.1 Contentbased definitions

Contentbased definitions interpret diversity as an instance of the pdispersion problem.

The objective of the pdispersion problem is to select p out of n given items, so that

the minimum distance between any pair of selected items is maximized [48]. The p

dispersion problem has been studied in the field of operations research for locating

facilities that should be dispersed; such as franchises belonging to a chain or nuclear

power plants. Formally, the pdispersion problem is defined as follows:

1In some works, the term ‘‘set’’ is used loosely to denote a set with bag semantics or a multiset, where

the same item may appear more than once in the set.

8



Given a set P of items, P = {p1, . . . , pn}, a distance metric d among items and an

integer k, locate a subset S∗ of P, such that:

S∗ = argmax
S⊆P
|S|=k

f(S, d) (2.1)

where

f(S, d) = min
pi,pj∈P
pi 6=pj

d(pi, pj) (2.2)

Similar contentbased definitions of diversity have been proposed in the context of

web search and recommender systems. Often, however, the objective function that is

maximized is the average distance of any two items, instead of the minimum one, that

is:

f(S, d) =
∑

pi,pj∈P
d(pi, pj) (2.3)

These two common diversification objectives are referred to as the MaxMin and

MaxSum diversification problems, respectively. Locating a diverse set for both problems

has been shown to be an NPhard problem (e.g., [47]). Recently, a thorough complexity

analysis of contentbased diversification was presented in [38], where three interesting

problems are studied. The first problem is the existence of a set S with f(S, d) > α,

for some value α, while the second problem is finding the number of sets with diversity

larger than α. Finally, given a set S, the third problem concerns deciding how many

other sets exist with diversity larger than that of S. MaxMin and MaxSum were both

shown to be NPcomplete, #NPcomplete and coNPcomplete for the three problems

respectively.

Contentbased definitions are among the most popular ones in the related litera

ture. For example, in [119], the diversity of a set of recommendations in a typical

recommender system is defined based on their intralist similarity, which is the appli

cation of Equation 2.3 along with a userdefined distance metric. In [113], the distance

between recommendations is measured based on their explanations. Given a set of

items P and a set of users U , the explanation of an item pi ∈ P recommended to a user

ui ∈ U can be defined in a contentbased approach as:

expl(ui, pi) = {pj ∈ P|sim(pi, pj) > 0 ∧ pj ∈ items(ui)} (2.4)

where sim(pi, pj) is the similarity of pi, pj and items(ui) is the set of all items rated

in the past by user ui. A non contentbased collaborative filtering approach is also

considered, in which:

expl(ui, pi) = {uj ∈ U|sim′(ui, uj) > 0 ∧ pi ∈ items(uj)} (2.5)

where sim′ is a similarity metric between two users. The similarity sim between two

items pi and pj can be defined based on the Jaccard similarity coefficient, the cosine

similarity or any other similarity measure. The diversity of a set of items S ⊆ P is
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defined as the average distance of all pairs of items (as in Equation 2.3). A similar

Jaccardbased similarity measure is also used in [57]. In that case, each item is

described by a sketch produced by a number of hash functions. Another alternative

distance metric used in that work is a taxonomybased categorical distance when this

can be applied (e.g., in the case of documents).

A contentbased definition of diversity has also been applied in the context of pub

lish/subscribe systems [46, 41]. Here, given a period or a window of matching events

and an integer k, only the k most diverse of them (based on Equation 2.3) are delivered

to interested subscribers.

Another definition that can be classified in this category is the one used in [107]

in the context of database systems. Given a database relation R = (A1, . . . , Am), a

diversity ordering of R, denoted ≺R, is a total ordering of its attributes based on their

importance, say A1 ≺R . . . ≺R Am. Also, a prefix with respect to ≺R, denoted ρ, is

defined as a sequence of attribute values in the order given by ≺R, moving from higher

to lower priority. Let ρ be a prefix of length ℓ and t, t′ be two tuples of R that share ρ.

The similarity between t and t′ is defined as:

simρ(t, t
′) =

{

1 if t.Aℓ+1 = t′.Aℓ+1

0 otherwise
(2.6)

Now, given an integer k, a subset S of R with cardinality k is defined to be diverse

with respect to ρ if all tuples in S share the prefix ρ and the sum of their pairwise

similarities, as defined above, is minimized. S is also said to be diverse with respect

to R if it is diverse with respect to every possible prefix for R. This approach is also

followed in [76], where it is extended to the case of dynamic diversity orderings, i.e., the

diversity ordering of the attributes is not static but is rather specified by the user along

with the query. The proposed method is based on computing core covers, i.e., sets of

tuples of size smaller than k whose tuples can cover all the tuples of a diverse set of

size k. A different problem for structured data is considered in [81], that of selecting a

limited number of features that can maximally differentiate the available items.

On a related issue, contentbased definitions of diversity have been widely used to

extend the knearest neighbor problem, so that, given an item pi, the k spatially closest

results that are sufficiently different to each other are retrieved (e.g., [59, 92, 62, 10, 9]).

Similar approaches are followed; in [59], for example, the distance between two items

is based on the Gower coefficient, i.e., a weighted average of the respective attribute

differences of the items. Assuming δz to be equal to the difference between the zth

attributes of two items pi, pj then:

d(pi, pj) =
∑

z

wzδz (2.7)

where wz is a weight corresponding to the zth dimension of the items. Two items are

considered diverse if their distance is greater than a given threshold and a set S is

considered diverse if all pairs of items in it are diverse.
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Finally, contentbased diversification has also been employed to enhance skyline

search. Let pi, pj be two items in P. We say that pi dominates pj if it is better than

or equal to pj in all dimensions and strictly better than pj in at least one dimension.

An item belongs to the skyline of a set if there does not exist any other item that

dominates it. Skylines can often be large in size. Selecting k representative skyline

items is considered in [101], where representative items are selected so that the distance

between a nonselected skyline item from its nearest selected item is minimized, and

[105, 21], where the dominance relationships among items are exploited to select a

diverse subset of the skyline items.

2.1.2 Noveltybased definitions

Novelty is a notion closely related to that of diversity, in the sense that items which

are diverse from all items seen in the past are likely to contain novel information, i.e.,

information not seen before.

A distinction between novelty and diversity in the context of information retrieval

(IR) systems is made in [35], where novelty is viewed as the need to avoid redundancy,

whereas diversity is viewed as the need to resolve ambiguity. Each document pi and

query q are considered as a collection of information nuggets from the space of all

possible nuggets O = {o1, . . . , om}. Given a binary random variable Rpi
that denotes

whether a document pi is considered relevant to a given query q, it holds that:

P (Rpi
= 1|q, pi) = P (∃oi, such that oi ∈ pi ∩ q) (2.8)

Now, given an ordered list of documents p1, . . . , pn retrieved by an IR system for q, the

probability that the kth document is both novel and diverse from the k − 1 first ones is

equal to the probability of that document containing a nugget that cannot be found in

the previous k−1 documents. Given a list of k−1 preceding documents, the probability

that a nugget oi ∈ O is novel for a query q is:

P (oi ∈ q|q, p1, . . . , pk−1) = P (oi ∈ q)
k−1
∏

j=1

P (oi /∈ pj) (2.9)

Assuming that all nuggets are independent and equally likely to be relevant for all

queries, then:

P (Rpk
= 1|q, p1, . . . , pk) = 1−

m
∏

i=1

(1− γαJ(pk, oi)(1− α)roi,k−1) (2.10)

where J(pk, oi) = 1 if some human judge has determined that pk contains the nugget

oi (or zero otherwise), α is a constant in (0, 1] reflecting the possibility of a judge error

in positive assessment, γ = P (oi ∈ q) and roi,k−1 is the number of documents ranked

up to position k − 1 that have been judged to contain oi, i.e., roi,k−1 =
∑k−1

j=1 J(pj, oi).

This approach requires prior knowledge of the nuggets and also considerable amount
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of human effort for judging the relevance of documents in order to compute the related

probabilities.

Another work based on novelty is [115], which aims at enhancing adaptive filtering

systems with the capability of distinguishing novel and redundant items. Such systems

should identify items that are similar to previously delivered ones, in the sense of having

the same topic, but also dissimilar to them, in the sense of containing novel information.

The redundancy R of each item pi is measured with respect to its similarity to all

previously delivered items, denoted D(pi), as follows:

R(pi|D(pi)) = argmax
pj∈D(pi)

R(pi|pj) (2.11)

where R(pi|pj) is the redundancy (similarity) of pi with respect to another item pj.

Three different ways for measuring R(pi|pj) are considered, namely the set difference,

the geometric distance and the distributional distance. The set difference is based on

the number of new terms that appear in pi:

R(pi|pj) =
∣

∣

∣
set(pi) ∩ set(pj)

∣

∣

∣
(2.12)

In the above formula, given a term w and a document pi, it holds that w ∈ set(pi),

if and only if, count(w, pi) > h, where h is a constant and count(w, pi) = α1tfw,pi
+

α2dfw + α3rdfw. tfw,pi
is the frequency of w in pi, dfw is the number of all filtered

documents that contain w, rdfw is the number of delivered documents that contain w

and α1, α2, α3 are constants with α1 + α2 + α3 = 1. The geometric distance is based on

the cosine similarity between pi and pj. If we represent each document pi as a vector

pi = (tfw1,pi
, tfw2,pi

, . . . , tfwm,pi
)T , where w1, w2, . . . , wm are all the available terms, then:

R(pi|pj) = cos(pi,pj)

=
pi

Tpj

‖pi‖ ‖pj‖
(2.13)

Finally, the distributional distance is based on a probabilistic language model. Each

document pi is represented by a unigram word distribution θpi
and the distance among

two documents is measured via the KullbackLeibler (KL) formula:

R(pi|pj) = −KL(θpi
, θpj

)

= −
∑

wj

P (wj|θpi
) log

P (wj|θpi
)

P (wj|θpj
)

(2.14)

A mixturemodel approach is considered in order to find the language models for the θ

distributions.

Novelty is also used in [96] in the context of publish/subscribe systems, to promote

items matching subscriptions that have rarely been matched in the past.

Finally, using some notion of novelty in recommenders is also proposed in [75]. The

authors argue that, since the available data are generally sparse and they frequently
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change, recommenders continuously have to make decisions based on incomplete and

changing data, thus, increasing novelty is useful. A batch scenario is considered, where

users receive lists of recommendations in intervals. Let L1, L2 be two subsequent lists

of size k for some user. The objective of the proposed approach is to maximize
|L2\L1|

k
.

2.1.3 Coveragebased definitions

Some works view diversity in a different way, that of selecting items that cover many

different interpretations of the user’s information need. For example, [11] considers

typical web search and, given a query q and a taxonomy C of independent information

categories, aims at retrieving k documents that cover many interpretations of q, espe

cially interpretations that are considered important. The result diversification problem

in this context is formally defined as follows: Given a query q, a set of documents P, a

taxonomy C, a probability distribution P (c|q) of each category c ∈ C being relevant to

q, the probability V (pi|q, c) of each document pi ∈ P being relevant to each category c

for q and an integer k, find a set of documents S∗, such that:

S∗ = argmax
S⊆P
|S|=k

P (S|q) (2.15)

where:

P (S|q) =
∑

c

P (c|q)(1−
∏

pi∈S

(1− V (pi|q, c))) (2.16)

The probability of pi not covering a relevant to the query q category c is equal to (1 −
V (pi|q, c)). Therefore, the above formula, in essence, maximizes the probability of each

relevant category c being covered by at least one document in S. This method requires

prior knowledge of the taxonomy and the learning of the probability distributions.

[80] also makes use of a coverbased definition of diversity to locate and highlight

diverse concepts in documents. Given a set of sentences S, the cover of S is the union

of all terms t appearing in any sentence pi in S, that is:

cover(S) =
⋃

pi∈S

⋃

t∈pi

{t} (2.17)

Assuming a function g(i) that measures the benefit we have by covering a term exactly

i times, the gain of S is:

gain(S) =

|S|
∑

i=0

∑

t∈Ti

w(t)g(i) (2.18)

where Ti is the set of terms appearing in exactly i sentences in S and w(t) is a weight

for the term t. Now, the result diversification problem is defined as follows: Given a

document consisting of n sentences P = {p1, . . . , pn} and an integer k, locate a set of

sentences S∗, such that:

S∗ = argmax
S⊆P
|S|≤k

gain(S) (2.19)
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A coveragebased approach is also followed in [77] for a different problem, that of se

lecting a set of diversified queries to recommend to users. The proposed method makes

use of a query log to cluster queries into query concepts. Given an input user query,

a small set of diversified relevant concepts is first selected. To do this, a probabilistic

model is exploited, which aims at maximizing the likelihood that the recommended con

cepts cover as many interpretations of the query as possible. Only one representative

query from each cluster corresponding to each relevant concept is then returned to the

user.

A different approach is followed in [37], where an item list is considered most diverse,

with respect to some set of topics related to the query, when the number of items it

provides on each topic is proportional to the topic’s popularity. To select a highly

diversified list of items, for each position in the ranked result list, the topic that best

maintains the overall proportionality is determined. Then, the best item on this specific

topic is added to the list.

On a related issue, [117] considers modifying the way of computing subtopic cover

age in a taxonomy in the case of semistructured data by also considering the structural

similarity between subtopics, i.e., among the subtopics covered by a selected item, a

subtopic that differs considerably from its parent is considered to be ‘‘less’’ covered than

a subtopic that is structurally more similar to its parent. Structure is also considered

in [60] along with contentbased diversity, where items are organized in a tree and a

tree editdistance between items is also considered, along with content, during diverse

item selection.

2.2 Combination of Diversity with other Criteria

Diversity is often used along with some other ranking criterion, most commonly that

of relevance to the user’s query. To the best of our knowledge, the first work in which

the two measures were combined is [23], in which marginal relevance, i.e., a linear

combination of relevance and diversity, is proposed as a criterion for ranking results

retrieved by IR systems. An item has high marginal relevance if it is both relevant

to the user query q and also exhibits minimal similarity to previously selected items.

Formally, given the set of all retrieved items P and the set of already selected ones,

denoted S, the item p∗i ∈ P\S that has the maximum marginal relevance to S is:

p∗i = argmax
pi∈P\S

[

λ(w(pi)− (1− λ) max
pj∈S

d(pi, pj))

]

(2.20)

where w(pi) is the relevance of pi to the query and λ, λ ∈ [0, 1], is a diversification tuning

parameter. This approach has also been applied in [88] as a means to reformulate

queries submitted in web search. The above formulation of the problem corresponds to

the MaxSum diversification problem. The objective function that is maximized in this
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case is:

f(S,w, d, λ) = (|S| − 1)
∑

pi∈S

w(pi) + 2λ
∑

pi,pj∈S

d(pi, pj) (2.21)

where λ > 0. Other common variations of combining relevance and diversity are

MaxMin diversification, where:

f(S,w, d, λ) = min
pi∈S

w(pi) + λ min
pi,pj∈S

d(pi, pj) (2.22)

and also a monoobjective formulation of the problem in which:

f(S,w, d, λ) =
∑

pi∈S



w(pi) +
λ

|P − 1|
∑

pj∈P
d(pi, pj)



 (2.23)

A different monoobjective formulation based on coverage rather than content is

introduced in [74] in the context of items organized in a graph. Let Nℓ(S) be the set of

items which are at most ℓ edges away from at least one item of S on the graph. Then:

f(S,w, ℓ) =
∑

pi∈Nℓ(S)

w(pi) (2.24)

[118] also employes a monoobjective diversity function but, in addition, considers

that items belong to some manifold space and exploits traditional manifold ranking

algorithms to retrieve relevant and diverse items.

An interesting analysis of eight intuitive axioms that diversification systems should

satisfy concerning the combination of relevance and diversity can be found in [57]. It

is shown, however, that not all of them can be satisfied simultaneously.

The combination of diversity and relevance has also been studied in [114] as an

optimization problem. Let once again P = {p1, . . . , pn} be a set of items and D be an

n × n distance matrix with the (i, j)th element being equal to d(pi, pj). Let also m be

an ndimensional vector with the ith element being equal to w(pi). Consider, finally, an

integer k and a binary ndimensional vector y with the ith element being equal to 1, if

and only if, pi belongs to the k most highly relevant and diverse items. Now, given a

diversification factor λ ∈ [0, 1], we can define the problem of selecting k items that are

both as relevant and diverse as possible as follows:

y∗ = argmax
y

(1− λ)αyT Dy + λβmTy

s.t. 1Ty = k and

y(i) ∈ {0, 1}, 1 ≤ i ≤ n (2.25)

where α and β are normalization parameters.

Diversity has also been combined with spatial distance, as a relevance characteri

zation, when solving the knearest diverse neighbors problem, e.g., in [59].

There has been considerable work on training IR systems to retrieve relevant results

exhibiting high diversity. For example, [93] proposes adapting the degree of diversifi

cation λ to each specific query. In particular, given a previously unseen query, the

15



authors aim at predicting an effective tradeoff between relevance and diversity based

on a log of similar previous queries. First, a training set is constructed by retrieving

diverse sets for all values of λ and keeping the one with the best diversity according

to some measure. Then, a regression model is trained which is later used to decide a

degree of diversification for unseen queries. Similarly, in [94], the authors aim at pre

dicting the best IR method for different interpretations of the query. [31] also considers

a combination of IR ranking metrics along with the diversity of retrieved results to train

a probabilistic model for result retrieval.

Besides relevance, a couple of works exist that combine diversity with sentiment

(e.g., [64, 13, 9]). Sentiment is a meaningful property of text items, e.g., documents or

blog comments. It can be computed based on the content of the item, e.g., by using

a dictionary of positive and negative words and counting the number of occurrences

of these words in the text. After a sentiment (positive, negative or neutral) has been

computed for each item, it can be used along with relevance and diversity when selecting

items, as in [64, 9], or it can be used as an input parameter set by users to bias the

selection of items, as in [13].

Another criterion that can be combined with diversity is freshness. For example,

[99], which considers the problem of recommending unanswered questions of a knowl

edge base to potential answerers, combines relevance, diversity and freshness in an

effort to present answerers with questions they may find more interesting to answer.

Note that freshness and novelty are two different concepts, since a novel item, i.e., an

item the user has not seen before, is not necessarily fresh, i.e., recently created.

Besides the more traditional definitions of diversity, recently, there has been some

related work on temporal diversity, which concerns the creation time of items. A highly

temporally diversified set is a set containing items that were created at different time

from each other. Temporal diversity is useful in streaming environments. Consider,

for example, a blog publishing entries on some specific topic. A post published around

the same date as many other posts is intuitively less informative than a post which is

published at a distant time. In this spirit, a hybrid content/temporal diversity approach

is proposed in [67] to retrieve items that are both dissimilar and temporally distant to

each other. A different form of temporal diversity is also considered in [116], where the

selection of diverse results is affected not only by their (spatial) distances but also by the

time of the computation. Such an approach may increase the likelihood of a purchase

decision in online shops, since users often buy products at specific intervals, e.g., a

user may buy a printer ink cartridge every six months. The proposed method aims at

exploiting such known intervals to compute the utility surplus of each product at the

time of the query. To do this, a probabilistic model is trained based on the intervals

between subsequent purchases of products.
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2.3 Algorithms

Given a set P of items, P = {p1, . . . , pn}, a distance metric d among items and an integer

k, the diversification problem is to locate a subset S∗ of P, such that the diversity among

the selected items is maximized, where the diversity of a set of items is defined based

on some specific definition of Section 2.1.

Generally, the diversification problem has been shown to be NPhard (e.g., [47]).

Thus, to solve large instances of the problem, we need to rely on heuristics. Many

heuristic algorithms have been used in the research literature and have been employed

for solving variations of the problem in more than one research fields. We can classify

these algorithms into two main categories: (i) greedy and (ii) interchange. In following,

we describe algorithms in each category and their applications.

2.3.1 Greedy Algorithms

Greedy algorithms are the ones most commonly used since they are intuitive and some

of them are also relatively fast. Greedy algorithms generally make use of two sets: the

set P of available items and the set S which contains the selected ones. Items are

iteratively moved from P to S and vice versa until |S| = k and |P| = n − k. In most

works, S is initialized with some item, e.g., the most relevant one, and then items are

moved onebyone from P to S until k of them have been selected. The item that is

moved each time is the one that has the maximum itemset distance from S. The item

set distance, denoted d(pi, S), between an item pi and a set of items S is defined based

on its distance from the items in S, for example:

d(pi, S) = min
pj∈S

d(pi, pj) (2.26)

or

d(pi, S) =
∑

pj∈S

d(pi, pj) (2.27)

Ties are generally broken arbitrarily.

This greedy approach is, for example, used in [119] in the context of recommender

systems, where, given a set of recommendations P = {p1, . . . , pn} and their degrees of

relevance w(pi), 1 ≤ i ≤ n, to a user query, diverse recommendations are produced. S is

initialized with the most relevant recommendation. Then, recommendations are added

onebyone to S as follows: For each recommendation pi not yet added to S, its item

set distance from the recommendations already in S is computed. These ‘‘candidate’’

recommendations are then sorted in order of (i) relevance to the query and (ii) itemset

distance to S. The rank of each recommendation is a linear combination of its positions

in the two sorted lists. The recommendation with the minimum rank is added to S and

the process is repeated until S has k recommendations. Note that the recommender

system has to produce a larger number of recommendations (n) out of which the final

k ones will be selected. The larger this number, the higher the possibility that more

diverse recommendations will be located (at the cost of higher computation cost).
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A greedy heuristic is also employed in [80] for locating diverse sentences in docu

ments. At each round, the sentence which has the highest gain for S (Equation 2.19)

is added to S. [11] also follows the greedy approach. In that case, an algorithm is pro

posed that, given the set of the topk most relevant documents to a query, it reorders

them in a way, such that, the objective function of Equation 2.16 is maximized. [57] em

ploys another greedy variation, first presented in [61] as a solution to the pdispersion

problem, in which, at each iteration, the two remaining items with the largest pairwise

distance are added to S. A greedy solution is also used in [113] for recommenders.

However, in that case, threshold values are also used to determine when two recom

mendations are considered distant. [59] also uses a greedy algorithm for locating the

knearest diverse neighbors to a given item.

A variation of such greedy algorithms is introduced in [109, 108], in which, instead

of selecting the best candidate item at each step, an item is randomly chosen among

the first couple of topranked items. Also, items are selected not only based on their

itemset distance from S, but also from P\S, in an effort to select the most diverse

items in early rounds. These two techniques were experimentally shown to increase

the diversity of the produced diverse set in many cases.

A greedy heuristic is also employed in [78] for the selection of a representative,

diverse subset of skyline items.

Also, an extension of greedy algorithms to the case of streaming data is introduced

in [41], in which, every time a diverse set is requested, a greedy heuristic is used to

fill in the places of any expired items in the previous diverse set. This approach often

outperforms running the same greedy heuristic from scratch, since the algorithm is

initialized with a seed of already highly diversified results.

A special case of greedy algorithms are neighborhood algorithms. These algorithms

start with a solution S containing one random item and then iteratively add items to

the solution. The items to be considered at each iteration are limited based on the

notion of rneighborhood of an item pi ∈ P, denoted N(pi,P , r), defined as:

N(pi,P , r) = {pj ∈ P : d(pi, pj) ≤ r} (2.28)

In other words, all items that have a smaller than or equal to r distance to pi belong

to its rneighborhood. At each iteration, only items outside the rneighborhoods of all

already selected items are considered. Out of these items, one is chosen to be added to

the solution. This can be the fist located item outside those rneighborhoods, the one

that has the smallest sum of distances to the already selected items or the one that has

the largest sum of distances to the already selected items [48]. Note that the selection

of r plays an important role as it restricts the number of items that are considered at

each iteration. In fact, given a value of r, a solution S with |S| = k may not even exist.
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2.3.2 Interchange Algorithms

Interchange algorithms have also been used in the literature for solving the diversifica

tion problem. Generally, these algorithms are initialized with a random solution S and

then iteratively attempt to improve that solution by interchanging an item in the solu

tion with another item that is not in the solution. At each round, possible interchanges

are the first met one that improves the solution or the one that improves the solution

the most.

An interchange heuristic that combines relevance and diversity is proposed in [113].

In this approach, S is initialized with the k most relevant items. At each iteration, the

item of S that contributes the least to the diversity of the entire set, i.e., the one with

the minimum itemset distance, is interchanged with the most relevant item in P\S.

Interchanges stop when there are no more items in P\S with higher relevance than a

given threshold.

Another work that employs an interchange algorithm is [82], where, given a set of

structured search results, the goal is to identify a subset of their features that are able

to differentiate them. Starting with a random subset of features, at each iteration, one

of these features is interchanged with a better candidate feature.

Finally, an interchange heuristic is employed [84] for streaming data. Upon the

arrival of a new item pi, all possible interchanges between pi and the items in the

current diverse set S are performed and pi replaces an item in the solution, if this

replacement increases diversity. A similar technique is also proposed in [46] in the

context of publish/subscribe systems.

2.3.3 Other Algorithms

An algorithm for achieving diversity in database systems based on a tree index struc

ture, i.e., the Dewey tree, is presented in [107]. Each tuple of a database relation is

represented by a path in the tree. Higher levels of the tree represent more important

attributes, according to the diversity ordering of the relation (see Section 2.1). Diverse

tuples are retrieved by traversing this tree. A similar tree, called DIndex, is used in

[76].

Motivated by the fact that the onedimensional pdispersion problem can be solved

optimally in polynomial time, [48] considers a dimensionalityreduction heuristic that

projects items in one dimension. However this approach does not result in good solu

tions in practice.

A hybrid greedy/interchange heuristic is used in [41] in the context of continuous

data. In this case, a diverse subset S is located using a greedy approach and then its

diversity is further improved by performing interchanges.

Another related approach is that of [79], where, given the set of a database query

results, these results are grouped in k clusters and the corresponding k medoids are

retrieved as a subset of k representative and diverse results.
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Also, in [114], where the diversification problem is formulated as an optimization

one, a solution is approximated via optimization techniques that include problem re

laxation and quantization.

Concerning the computation of diverse skyline items, [105] follows an approach

based on hashing items and computing distances based on hashsignatures.

Finally, a recent line of research focuses on viewing diversification as a topk prob

lem (e.g., [15, 51, 113]) and using threshold algorithms (e.g., [50, 49]) for selecting

diverse items, aiming at pruning a portion of the candidate items. Thresholdbased

techniques have also be employed in [114], where variations of the optimization prob

lem of Equation 2.25 are considered (e.g., maximize the diversity of the selected items

given a relevance threshold and, the dual, maximize the relevance of the selected items

given a minimum required diversity). Placing a threshold on diversity, however, may

be hard, since it requires an estimation of the achievable diversity.

2.4 Evaluation Measures

The diversity of a set S of selected items can be evaluated by the value of the objective

function f based on which the diversity problem is defined, e.g. Equation 2.2 or

Equation 2.3. This approach is used in most of the related work (e.g., [119, 113, 46,

80, 114]). The computed value can be normalized by the corresponding value for the

set S∗, i.e., the optimal solution to the diversification problem. This, however, is not

always feasible due to the high cost of computing the optimal solution.

In the field of IR systems, there has been an effort to adapt traditional IR evaluation

measures so as to become diversityaware. A key difference of these approaches is that

the retrieved results are usually viewed as an ordered list instead of a set. These adapted

measures are usually applied along with noveltybased or coveragebased diversity

definitions.

For example, [35] proposes evaluating retrieved results through a weighted Normal

ized Discounted Cumulative Gain measure (denoted αNDCG), a measure often used in

the context of IR systems that measures the gain of an item being at a specific position

of the list, given the items that precede it. Given an ordered list of items, the kth element

of the list’s gain vector, denoted G, is computed based on Equation 2.10 as:

G[k] =
m

∑

i=1

J(pk, oi)(1− α)roi,k−1 (2.29)

and the corresponding cumulative gain vector, denoted GC, is computed as:

CG[k] =
k

∑

j=1

G[j] (2.30)

Usually, the elements of the cumulative gain vector are weighted according to their po

sition in the list, so the discounted cumulative gain vector, denoted DGC, is computed
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as:

DCG[k] =
k

∑

j=1

G[j]

log2(1 + j)
(2.31)

The discounted cumulative gain vector computed for a list is finally normalized by the

optimal discounted cumulative gain. However, the computation of this optimal gain is

an NPcomplete problem and, thus, in practice, its value is approximated via heuristics.

The adaptation of the NDCG measure is also considered in [11, 27], where NDCG

is aggregated over all available categories that a document may cover (see Section 2.1).

This variation is called IntentAware Normalized Discounted Cumulative Gain measure

(denoted NDCGIA). Its value for the kth element of a list S of items retrieved for a query

q is:

NDCGIA(S, k) =
∑

c

P (c|q)NDCG(S, k|c) (2.32)

The same aggregation method can be applied to other IR measures as well, such as

Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP).

A redundancyaware variation of the traditional precision and recall measures is

considered in [115]:

RedundancyPrecision =
R−

R− + N− (2.33)

and

RedundancyRecall =
R−

R− + R+
(2.34)

where R− is the set of nondelivered redundant items, N− is the set of nondelivered

nonredundant ones and R+ is the set of delivered redundant ones.

Variations of these measures have been studied in [106, 25, 110], where the intro

duction of the user as an explicit random variable is considered, in an effort to provide

a personalized diverse result.

Besides deriving appropriate measures, user studies are also important in evalu

ating the usefulness of diversification. In [119], two thousand volunteers from the

BookCrossing2 community were asked to rate recommendations produced by using di

versification techniques. The results vary according to the method used to acquire the

initial recommendations but, overall, users rated diversified recommendations higher

than nondiversified ones in all cases, as long as diversity contributed up to 40% to the

linear combination of the relevance and diversity measures. A higher contribution led

to a lower overall rating by the users. An interesting finding is that, when diversified

results were presented to users, the individual recommendations where generally rated

lower but the overall rating of the recommendation list as a whole was higher.

2http://www.bookcrossing.com
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2.5 Summary

In this chapter, we presented the various definitions of the result diversification prob

lem proposed in the research literature and classified them into three main categories,

namely contentbased, noveltybased and coveragebased. These three factors are

closely related and, therefore, most related work considers more than one of them.

We also reviewed different approaches taken for the combination of diversity with other

ranking criteria, most commonly that of relevance to the user’s information need. We

classified the algorithms used in the literature for locating diverse items into two main

categories (greedy and interchange) and also discussed other used approaches. Finally,

we reviewed a number of measures used for evaluating diversity.
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Chapter 3

Diverse Set Selection over Dynamic

Data

3.1 The Diversification Model

3.2 Indexbased Diversification

3.3 Diverse Set Computation

3.4 Diversity and Relevance

3.5 Experimental Evaluation

3.6 Comparison with Related Work

3.7 Summary

T
he abundance of information available online creates the need for develop

ing methods towards selecting and presenting to users representative result

sets. To this end, result diversification has attracted considerable attention

as a means of increasing user satisfaction. Result diversification takes many forms

including selecting items so that their content dissimilarity, novelty or topic coverage

is maximized [42].

Most previous approaches to computing diverse sets rely on greedy or interchange

heuristics. Greedy heuristics (e.g., [119, 57]) build a diverse set incrementally, selecting

one item at a time so that some diversity measure is maximized, whereas interchange

heuristics (e.g., [113, 81]) start from a random initial set and try to improve it.

Despite the considerable interest in diversification, most previous research consid

ers the static version of the problem, i.e., the available items out of which a diverse

set is selected do not change over time. Here, we focus on the dynamic diversification

problem, where insertions and deletions of items are allowed and the diverse set needs

to be refreshed to reflect such updates. The dynamic problem was addressed in [41]
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using a greedy heuristic and in [84] using an interchange heuristic. Here, we propose

an indexbased approach.

Our solution is based on cover trees. Cover trees are data structures originally

proposed for approximate nearestneighbor search [16]. They were recently used to

compute medoids [79] and priority medoids [18]. An indexbased approach was also

followed in [107] for the static version of the problem. The proposed index exploited a

Deweyencoding tree and can be used only with a specific diversity function on struc

tured data. Our approach is more general and can be used with any diversity function.

Motivated by popular proactive delivery paradigms, such as news alerts, RSS feeds

and notification services in social networks, where users specify their interests and

receive relevant notifications, we also consider the continuous version of the problem,

where diversified sets are computed over streams of items. To avoid overwhelming

users by forwarding to them all relevant items, we consider the case in which a repre

sentative diverse set is computed, instead, whose size can be configured by the users.

We introduce a sliding window model along with continuity requirements. Such require

ments ensure that the order in which the diverse items are delivered follows the order

of their generation and that an item does not appear, disappear and then reappear in

the diverse set.

We focus on the MaxMin diversity problem defined as the problem of selecting k out

of a set of n items so that the minimum distance between any two of the selected items

is maximized. The MaxMin problem is known to be NPhard [47]. We propose a suite

of algorithms that exploit the cover tree to provide solutions with varying accuracy and

complexity. We provide theoretical results that bound the accuracy of the solutions

achieved with regards to the optimal solution. The most efficient algorithm achieves

a b−1/2b2approximation of the optimal solution, where b is the base of the cover tree,

whereas the most expensive algorithm, a pruned implementation of a greedy heuristic,

a 1/2approximation.

Our incremental algorithms produce results of quality comparable to that achieved

by reapplying the greedy heuristic to recompute a diverse set, while avoiding the

cost of recomputation. Using cover trees also allows the efficient enforcement of the

continuity requirements. Furthermore, multiple queries with different values of k can

be supported.

In many cases, the items in the result set are associated with a relevance rank. We

have extended our approach to support the computation of diverse subsets of ranked

sets of items. We first show how to incorporate relevance in the diversity function

used to build the cover tree. In addition, to allow for dynamically tuning the relative

importance of relevance and diversity, we introduce an alternative solution based on

weighted cover trees along with appropriate algorithms.

Finally, note that a recent line of research focuses on combining relevance and

diversity by viewing diversification as a topk problem ([15, 59, 51]). In such cases,

threshold algorithms are used for selecting diverse items aiming at pruning a portion
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of the candidate items. Such approaches assume the existence of indices to provide

sorted access to items, e.g., based on relevance or their distance from a given item.

Here, instead, we aim at constructing indices that will guide the selection process.

In a nutshell, we make the following contributions:

• we address the dynamic diversification problem along with continuity require

ments appropriate for a streaming scenario

• we present a suite of methods based on spatial indexing for the MaxMin problem

and provide bounds for the achieved diversity with regards to the optimal solution,

and

• we extend our methods to the case of selecting items that are both relevant and

diverse.

The rest of this chapter is structured as follows. In Section 3.1, we present our

diversification framework and define the Continuous kDiversity Problem. Section 3.2

presents the cover tree index structure, while Section 3.3 introduces algorithms for

computing diverse items. Section 3.4 considers combining diversity with relevance.

Section 3.5 presents our experimental results. In Section 3.6, we present related work

specific to indexbased diversification, while in Section 3.7, a summary of the chapter.

3.1 The Diversification Model

Here, we focus on a general form of diversification based on content dissimilarity. Next,

we first provide a formal definition of the diversity problem and then introduce its

continuous variation.

3.1.1 The kDiversity Problem

Let P = {p1, . . . , pn} be a set of n items. Given a distance metric d : P × P → R+

indicating the dissimilarity of two items in P, assume that the diversity of a set S,

S ⊆ P, is measured by a function f : 2|P|× d→ R+. For a positive integer k, k ≤ n, the

kDiversity Problem is the problem of selecting a subset S∗ of P such that:

S∗ = argmax
S⊆P
|S|=k

f(S, d). (3.1)

The choice of f affects the selection of items, even for a specific distance metric d.

Two widely used functions are the minimum distance among the selected items and the

sum of the distances of the selected items, formally defined as:

fMin(S, d) = min
pi,pj∈S
pi 6=pj

d(pi, pj) (3.2)
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(a) MaxMin. (b) MaxSum.

Figure 3.1: MaxMin vs. MaxSum for n = 200 and k = 30. Diverse items are marked

with a darker (red) color.

and

fSum(S, d) =
∑

pi,pj∈S
pi 6=pj

d(pi, pj). (3.3)

The corresponding problems are called MaxMin and MaxSum. Intuitively, MaxMin aims

at discouraging the selection of nearby items, while MaxSum at increasing the average

pairwise distance among all items. An example is shown in Figure 3.1, which depicts

the k = 30 most diverse, in terms of geographical distance, apartments for sale from a

set of n = 200 available apartments in the London area retrieved from [6]. In general,

MaxSum tends to select items in the outskirts of the set P, whereas MaxMin selects

items that are more representative of P in the sense that they provide a better coverage

of it. In the rest of this chapter, we will focus on the MaxMin problem that exhibits this

desired property.

The MAXMIN Greedy Heuristic. The kDiversity Problem is known to be NPhard

[47]. Various heuristics have been proposed, among which a natural greedy heuristic

(Algorithm 3.1) has been shown experimentally to outperform the others in most cases

([41, 48]). The algorithm starts by selecting either a random item or the two items in P
that are the furthest apart (line 1). Then, it continues by selecting the items that have

the maximum distance from the items already selected, where the distance of an item

pi from a set of items S is defined as:

d(pi, S) = min
pj∈S

d(pi, pj) (3.4)

It has been shown (e.g., in [89]) that the minimum distance of the set produced

by the greedy heuristic is a 1/2approximation of the minimum distance of the optimal

solution and that no polynomial algorithm can provide a better guarantee.
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Algorithm 3.1 Greedy Heuristic.

Input: A set of items P, an integer k.

Output: A set S with the k most diverse items of P.

1: P∗, q∗ ← argmaxP,q∈P
P6=q

d(P, q)

2: S ← {P∗, q∗}
3: while |S| < k do

4: P∗ ← argmaxP∈P d(P, S)

5: S ← S ∪ {P∗}
6: return S

3.1.2 The Continuous kDiversity Problem

We consider the case in which the set P changes over time and we want to re

fresh the computed k most diverse items to represent the updated set. In general,

the insertion (or deletion) of even a single item may result in a completely differ

ent diverse set. The following simple example demonstrates this. Consider the set

P = {(4, 4), (3, 3), (5, 6), (1, 7)} of points in the 2dimensional Euclidean space and k =

2. The two most diverse items of P are (4, 4) and (1, 7). Assume that (0, 0) is added to

P. Now, the two most diverse items of P are (0, 0) and (5, 6).

In many applications, new items are generated in a continuous manner and, thus,

the set P changes gradually over time. For example, consider a user continuously re

ceiving a representative, i.e., most diverse, subset of the stream of available apartments

in her area. We would like to offer her a continuous view of the most diverse items in

this stream.

We adopt a slidingwindow model where the k most diverse items are computed over

sliding windows of length w in the input stream. The window length may be defined

either in time units (e.g., ‘‘the k most diverse items in the last hour’’), or in number of

items (e.g., ‘‘the k most diverse items among the 100 most recent items’’). Without loss

of generality, we assume itembased windows. We allow windows to not only slide but

also jump, i.e., move forward more than one item. For windows of length w and a jump

step of length h, h ≤ w, consequent windows share w − h common items (Figure 3.2).

Two consequent jumping windows may correspond, for example, to the items seen by a

user in two consequent visits to her RSS reader application. Between these two visits,

some items have ceased to be valid, new items have been generated, while a number

of older items remain valid. Note that, for h = 1, jumping windows behave as regular

sliding windows, while for h = w, consequent windows are disjoint which corresponds

to periodic behavior with a period of length w.

Formally, let P be a stream of items. We denote the ith jumping window of P as

Pi. The Unconstrained Continuous kDiversity Problem is the problem of selecting a

subset S∗
i of Pi for each Pi, such that:

S∗
i = argmax

Si⊆Pi

|Si|=k

f(Si, d) (3.5)
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p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
... ...

... ...p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Figure 3.2: Two consequent windows with w = 7 and h = 4.

Constrained Continuous kDiversity Problem. Since users may expect some conti

nuity in the diverse sets they receive in consequent retrievals, we consider additional

requirements on how the diverse sets change over time.

First, we want to avoid cases where diverse items that are still valid disappear. This

may lead to confusing results, where an item appears in one diverse set, disappears

in the next one and then appears again. Thus, an item selected as diverse remains

in the diverse set until it expires, i.e., exits the current window. The diverse set is

complemented with new items that are diverse with regards to those previously selected

diverse items that are still valid. For instance, in the apartments example, the user

sees new items that are diverse with regards to other previously seen apartments that

are still available. We call this the durability requirement.

Second, we want the order in which items are chosen as diverse to follow the order

of their appearance in the stream. This means that, once an item P is selected as

diverse, we cannot later on select an item older than P. We call this the freshness

requirement. This is a desirable property in case of notification services, such as news

alerts and RSS feeds, so as to ensure that the diverse items selected to be delivered to

the users follow the chronological order of their publication. Raising this requirement

may result in outoforder delivery which may seem unnatural to users.

Based on the above observations, we now formally define the Constrained Continu

ous kDiversity Problem.

Definition 3.1. (Constrained Continuous kDiversity Problem). Let P be a stream of

items, Pi−1, Pi, i > 1, be any two consequent windows and S∗
i−1 be the diverse subset

of Pi−1. The Constrained Continuous kDiversity Problem is the problem of selecting a

subset S∗
i of Pi, ∀i, such that:

S∗
i = argmax

Si⊆Pi

|Si|=k

f(Si, d) (3.6)

and the following two constraints are satisfied:

1. pj ∈ (S∗
i−1 ∩ Pi)⇒ pj ∈ S∗

i (durability requirement),

2. Let pl be the newest item in S∗
i−1. Then, ∄pj ∈ Pi\S∗

i−1 with j < l, such that,

pj ∈ S∗
i (freshness requirement).
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3.2 Indexbased Diversification

To compute diverse sets in a dynamic setting, we rely on a tree structure, called cover

tree, to index the items in P. In this section, we provide a formal definition of the cover

tree along with algorithms for constructing cover trees appropriate for the diversification

problem.

3.2.1 The Cover Tree

A Cover Tree (CT) [16] for a set P is a leveled tree where each level is associated with an

integer ℓ which increases as we move up the tree. Each node in the tree is associated

with exactly one item p ∈ P, while each item may be associated with multiple nodes,

but with at most one at each level. In the following, when clear from context, we use P
to refer to both the item P and the node associated with P at a specific level.

Let Cℓ be the set of items at level ℓ and ℓmax and ℓmin be respectively the levels of

the root and the leaves. A cover tree of base b, b > 1, is a tree that obeys the following

invariants:

1. Nesting: For all levels ℓ, ℓmin < ℓ ≤ ℓmax, Cℓ ⊆ Cℓ−1, i.e., once an item P appears

in the tree at some level, then there is a node associated with P at every lower

level.

2. Separation: For all levels ℓ, ℓmin ≤ ℓ ≤ ℓmax, and all distinct pi, pj ∈ Cℓ, it holds

that, d(pi, pj) > bℓ.

3. Covering: For all levels ℓ, ℓmin ≤ ℓ < ℓmax and all pi ∈ Cℓ, there exists a pj ∈ Cℓ+1,

such that, d(pi, pj) ≤ bℓ+1 and the node associated with pj is the parent of the

node associated with pi.

An example is shown in Figures 3.3 and 3.4.

The CT was originally proposed with base b = 2. Here, we use a more general base b,

b > 1. Generally, larger base values result in shorter and wider trees, since fewer nodes

are able to ‘‘cover’’ the nodes beneath them. The value of b determines the granularity

with which we move from one level to the next, i.e., how many more items become

visible as we descend the tree.

Due to the CT invariants, if an item P appears for the first time at level ℓ of the tree,

then P is a child of itself at all levels below ℓ. This observation provides us with a more

spaceefficient representation of the CT achieved by coalescing all nodes whose only

child is a self child. We call this representation explicit. The explicit representation of

a CT for a set P with n items requires O(n) space [16]. Although we use an explicit

representation in our experiments, for ease of presentation, we shall use the full implicit

representation when describing the algorithms.

Next, we first present an algorithm for batch constructing a CT tailored for the

MaxMin problem. Then, we consider an incremental construction of a CT appropriate

for dynamic environments.
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----level max-ℓlevel max-ℓlevel max-ℓlevel max-ℓlevel max-ℓ

level max-ℓlevel max-ℓlevel max-ℓlevel max-ℓ----- level maxℓ

Figure 3.3: An example of the top 10 levels of a cover tree for a set of items in the

2dimensional Euclidean space. Bold points represent the items (i.e., nodes) at each

level, moving from lower levels to the root level, as we move from left to right.

Figure 3.4: The (ℓmax − 5)th level of the cover tree of Figure 3.3. The items (i.e., nodes)

of the level are drawn with large bold symbols, while the items of lower levels covered

by these nodes are drawn with the same symbol (and color) as their ancestor.

3.2.2 Batch Construction

Given a set P of items, we build an appropriate CT for P using a bottomup approach as

depicted in Algorithm 3.2. First, we construct the lowest level that includes all items in

P (lines 15). Then, given a level ℓ to build the next level ℓ+1, we select items from level

ℓ whose distance is larger than bℓ+1 (so that the separation invariant is maintained), as

long as such items exist (lines 617). To construct a CT whose items at each level are

as far apart from each other as possible, we follow a greedy approach in selecting which

items from Cℓ to include in Cℓ+1. Specifically, we start by selecting the two items in Cℓ

that are the farthest apart from each other (line 9) and continue by selecting the item

that has the largest minimum distance from the items already selected (lines 1217).

The remaining items at Cℓ are assigned a parent node from Cℓ+1 so that the covering

invariant holds (lines 1821). To reduce the overlap among the areas covered by sibling
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Algorithm 3.2 Batch Cover Tree Construction.

Input: A set of items P, a base b.

Output: A cover tree T of base b for P.

1: ℓ← ⌊logb (minp,q∈P d(p, q))⌋
2: T.Cℓ ← ∅
3: for all p ∈ P do

4: T.Cℓ ← T.Cℓ ∪ {p}
5: while |T.Cℓ| > 1 do

6: T.Cℓ+1 ← ∅
7: candidates← T.Cℓ

8: p∗, q∗ ← argmaxp,q∈candidates d(p, q)

9: T.Cℓ+1 ← T.Cℓ+1 ∪ {p∗, q∗}
10: candidates← candidates\{p∗, q∗}
11: while candidates 6= ∅ do

12: candidates← candidates\{p : ∃q ∈ T.Cℓ+1 with d(p, q) ≤ bℓ+1}
13: p∗ ← argmaxp∈candidates d(p, T.Cℓ+1)

14: T.Cℓ+1 ← T.Cℓ+1 ∪ {p∗}
15: candidates← candidates\{p∗}
16: for all p ∈ T.Cℓ do

17: q∗ ← argminq∈T.Cℓ+1
d(p, T.Cℓ+1)

18: make q parent of P
19: T.Cℓ ← T.Cℓ+1

20: ℓ← ℓ + 1

21: return T

nodes, we assign each node to its closest candidate parent (line 19). We call this step

nearest parent heuristic. Clearly, from the way the tree is constructed, Cℓ+1 ⊆ Cℓ, thus

the nesting invariant also holds. We call the tree constructed using this procedure,

Batch Cover Tree (BCT ).

We shall prove that the set of items Cℓ at each level ℓ of the BCT correspond to the

result of applying the MaxMin greedy heuristic (Algorithm 3.1) on P, for k = |Cℓ|. Our

proof uses the following observation. Let SGR(P, k) denote the result of applying the

MaxMin greedy heuristic on P for k.

Observation 3.1. For any k > 2, SGR(P, k + 1) ⊃ SGR(P, k).

Theorem 3.1. Let P be a set of items and T be a BCT for P. For all levels ℓ, ℓmin ≤ ℓ <

ℓmax, of T , it holds:

Cℓ = SGR(P, |Cℓ|)

Proof. We shall prove the theorem by induction on the level ℓ. The theorem holds

trivially for ℓ equal to the lowest level of the tree, since this level includes all items in

P. Assume that it holds for level ℓ. We shall show that it also holds for level ℓ + 1.

Consider the construction of level ℓ + 1. From the induction step, it holds that,

Cℓ = SGR(P, |Cℓ|). Let P be the first item in Cℓ such that P is the best candidate, i.e.,
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has the maximum minimum distance from the items already selected, but P cannot be

moved to Cℓ+1 because P is covered by an item already selected to be in Cℓ+1. Let C ′,

C ′ ⊂ Cℓ, be the set of items already selected to be included in Cℓ+1. This means that, it

holds: minq′∈C′ d(p, q′) ≥ minq′∈C′ d(p′, q′), for all p′ ∈ Cℓ\C ′ (1) and, also, ∃ q ∈ C ′ such

that d(p, q) ≤ bℓ+1 (2). From (1) and (2), we get that for all p′ ∈ Cℓ\C ′, ∃ q ∈ C ′ such that

d(p′, q) ≤ bℓ+1, that is, all remaining items are already covered by items in C ′.

Thus, P is the last item that is considered for inclusion in Cℓ+1, since all other

remaining items in Cℓ are already covered. Therefore, to construct Cℓ+1, the items from

Cℓ to be included in level ℓ+1 are considered in the same order as in the greedy heuristic,

until one item that violates the separation criterion (it is covered by the selected items)

is encountered. When this happens the selection stops. By the induction step and

Observation 3.1, this concludes the proof.

Note that, we have made an implicit assumption that no ties occur when selecting

items. In the absence of ties, both the greedy heuristic and the BCT construction

algorithm select items deterministically. We can raise this assumption, by considering

that if ties exist, these are resolved in a specific order that may vary depending on the

nature of the items, for instance, by selecting the most recent among the items.

Regarding the complexity of Algorithm 3.2, computational steps are shared among

levels. Each level Cℓ+1 is a subset of Cℓ and, more specifically, it consists of the items of

Cℓ in the order in which they were inserted into Cℓ up to the first item whose minimum

distance from the already selected items of Cℓ is smaller than bℓ+1. Therefore, it suffices

to perform these computational steps only once (at the lowest level) and just maintain

the order in which each item was selected from the lowest level for inclusion in the next

level. This gives us an O(n2) complexity.

As a final remark, another way to view the BCT is as caching the results of the

greedy heuristic for all k and indexing them for efficient retrieval.

3.2.3 Dynamic Construction

In dynamic environments, it is not efficient to reconstruct a BCT whenever an item is

inserted or deleted. Thus, we construct a cover tree incrementally as new items arrive

and old ones expire. We refer to such trees as Incremental Cover Trees (ICTs).

Incremental Insertion. To insert a new item P into a CT, we use the recursive insert

procedure shown in Algorithm 3.3. It is based on the insertion algorithm in [16] and

subsequent corrections in [71] that we have extended to work for any b > 1. Insert

is called recursively starting from the root level, until a level is found at which P is

separated from all other items (lines 24). Each time, Insert is called only with the

nodes that cover P (line 5). When the first level such that P is separated from all other

items is located, a node that covers P is selected as its parent (lines 89). To select a

node as a parent for P, we use a nearest parent heuristic (as in the batch construction)
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Algorithm 3.3 Insert(P, T.Qℓ, ℓ)

Input: An item P, a set of nodes T.Qℓ of a cover tree T at level ℓ.

1: C ← {children(q) : q ∈ T.Qℓ}
2: if d(p, C) > bℓ then

3: return true

4: else

5: T.Qℓ−1 ← {q ∈ C : d(p, q) ≤ bℓ

b−1}
6: flag ← Insert(p, T.Qℓ−1, ℓ− 1)

7: if flag and d(p, T.Qℓ) ≤ bℓ then

8: q∗ ← argminq∈T.Qℓ,d(p,q)≤bℓ d(p, q)

9: make P a child of q∗

10: return false

11: else

12: return flag

Algorithm 3.4 Delete(p, {T.Qℓ, T.Qℓ+1, . . . , T.Qℓmax
}, ℓ)

Input: An item P, sets of nodes {T.Qℓ, T.Qℓ+1, . . . , T.Qℓmax
} of a cover tree T , a level ℓ.

1: C ← {children(q) : q ∈ T.Qℓ}
2: T.Qℓ−1 ← {q ∈ C : d(p, q) ≤ bℓ

b−1}
3: Delete(p, {T.Qℓ−1, T.Qℓ, . . . , T.Qℓmax

}, ℓ− 1)

4: if d(p, C) = 0 then

5: delete P from level ℓ− 1 and from children(parent(p))

6: for q ∈ children(p) in greedy order do

7: ℓ′ ← ℓ− 1

8: while d(q, T.Qℓ′) > bℓ′ do

9: add q into level ℓ′

10: T.Qℓ′ ← T.Qℓ′ ∪ {p}
11: ℓ′ ← ℓ′ + 1

12: q∗ ← argminq′∈T.Qℓ′
d(p′, q)

13: make q a child of q∗

and assign P to its closest candidate parent. The complexity of the algorithm depends

on how many nodes of each level cover P.

Next, we prove the correctness of the insertion algorithm.

Theorem 3.2. Let T be a cover tree for a set P and P be an item, P /∈ P. If P can be

inserted at an existing level of T , then calling Insert (Algorithm 3.3) with input P and

the root level Cℓmax
of T returns a cover tree for P ∪ {p}.

Proof. Since P can be inserted at an existing level, there is always a (sufficiently low)

level of the tree where the condition of line 2 holds for the first time. Let ℓ − 1 be this

level. Since ℓ − 1 is the highest level where this condition holds, it must hold that

d(p, T.Qℓ) ≤ bℓ. Therefore, the second condition of line 7 holds and we can always

find a parent for the new node, thus maintaining the covering invariant. Whenever
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a new node is inserted at some level, it is also inserted at all lower levels as a child

of itself, thus the nesting invariant is maintained. It remains to prove the separation

invariant. We shall prove it for level ℓ− 1. The proof proceeds similarly for lower levels.

Consider some other item q in Cℓ−1. If q ∈ C, then d(p, q) > bℓ−1. If not, then there

is a higher level ℓ′ > ℓ where some ancestor of q, say q′ was eliminated by line 5, i.e.,

d(p, q′) > bℓ′+1

b−1
. Using the triangle inequality, we have that d(p, q) ≥ d(p, q′)− d(q, q′) ≥

d(p, q′)−∑ℓ′

j=ℓ bj = d(p, q′)− bℓ′+1−bℓ

b−1
> bℓ′+1

b−1
+ bℓ−bℓ′+1

b−1
= bℓ

b−1
> (b−1)bℓ−1

b−1
= bℓ−1.

For clarity of presentation, we have made the assumption that the new item P can

be inserted at an existing level of the tree. In the general case, when the new item P
must be inserted at a level lower than ℓmin, we keep copying nodes of Cℓmin

to a new

level Cℓmin−1, until P is separated from all other items in the new level. Similarly, when

P has a distance from the root node larger than bℓmax, we promote both the root node

and P to a new higher level ℓmax + 1 and repeat this process until one of the two nodes

can cover the other. Note that, since the explicit representation of the tree is stored,

duplication of levels is only virtual and is performed very efficiently.

Incremental Deletion. Similar to insertion, to delete an item, starting from the root,

Delete (Algorithm 3.4) is called until the item P to be deleted is located, keeping note

of the candidate nodes at each level that may have P as a descendant. When P is

located, it is deleted from the tree. In addition, all of its children are reassigned to some

other candidate parent.

Algorithm 3.4 includes two heuristics for improving the quality of the resulting CT.

One is the usual nearest parent heuristic shown in line 13: we assign each child of P
to the closest among its candidate parents. The other heuristic refers to the order in

which the children of P are examined in line 6. We examine them in a greedy manner

starting from the one farthest apart from the items at level ℓ′ and continue to process

them in decreasing order of their distance to the items currently in ℓ′.

Theorem 3.3. Let T be a cover tree for a set P and P be an item, P ∈ P. If P /∈ Cℓmax

of T , calling Delete (Algorithm 3.4) with input P and the root level Cℓmax
of T returns a

cover tree for P \ {p}.

Proof. The item P is deleted from all levels that include it, thus the nesting invariant

is maintained. For each child q of P, we move up the tree, until a parent for q is

located, inserting q in all intermediate levels ℓ′ to ensure that the nesting invariant is

not violated. Such a parent is guaranteed to be found (at least at the level of the root).

Adding q under its new parent does not violate the separation invariant in any of the

intermediate levels since d(q, q′) > bℓ′, for all q′ in T.Qℓ′. The covering constraint also

holds for the parent of q.

For ease of presentation, we assumed that P /∈ Cℓmax
. Otherwise, we need to select

a new root. Note that, it is possible that none of the children of the old root covers all of

its siblings. In this case, we promote those siblings that continue to be separated from
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each other in a new (higher) level ℓmax + 1 and continue to do so until we end up with

a level having a single node.

3.3 Diverse Set Computation

In this section, we present algorithms that use the cover tree to solve the kdiversity

problem. The Level algorithms exploit the separation property, i.e., the higher the tree

level, the farthest apart its nodes. We also present an efficient implementation of the

Greedy Heuristic (Algorithm 3.1) that exploits the covering property to prune the search

space.

3.3.1 The Level Family of Algorithms

We consider first the intuitive algorithm of selecting k items from the highest possible

level of a cover tree, that is, from level ℓk, such that, |Cℓk+1| < k and |Cℓk
| ≥ k (depicted

in Algorithm 3.5). Locating this level can be implemented efficiently, e.g., by using

a hash table to store the size of each level. After locating ℓk, the complexity of the

algorithm is O(k), since a random subset of Cℓk
is selected.

Algorithm 3.5 LevelBasic Algorithm.

Input: A cover tree T , an integer k.

Output: A set S with k diverse items in T .

1: ℓk ← ℓmax

2: while |T.Cℓk
| < k do

3: ℓk ← ℓk − 1

4: S ← any subset of size k of T.Cℓk

5: return S

The following theorem characterizes the solution attained by the LevelBasic algo

rithm with respect to the optimal solution.

Theorem 3.4 (Approximation Bound). Let P be a set of items, dOPT (P , k) be the mini

mum distance of the optimal diverse set for the MaxMin problem for k ≥ 2 and dCT (P , k)

be the minimum distance of the diverse set computed by the LevelBasic algorithm. Then:

dCT (P , k) ≥ α dOPT (P , k), where α = b−1
2b2

.

Proof. Let SOPT (P , k) be an optimal set of k diverse items. To prove Theorem 3.4, we

shall bound the level where the least common ancestor (LCA) of any pair of items p1,

p2 ∈ SOPT (P , k) appears in the cover tree. Assume that the LCA of any two items p1,

p2 in the optimal solution appears for the first time at level m. That is, m is the lowest

(furthest from the root) level that such an LCA appears.
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Let us now compute a bound on m. Assume that the LCA of any two items p1, p2

∈ SOPT (P , k) appears at level m. Let P be this ancestor. From the triangle inequality,

d(p1, p) + d(p2, p) ≥ d(p1, p2). Since p1, p2 ∈ SOPT (P , k), it holds that, d(p1, p2) ≥
dOPT (P , k). Thus:

d(p1, p) + d(p2, p) ≥ dOPT (P , k). (1)

From the covering invariant of the cover tree, it holds that, d(p1, p) ≤∑m
j=−∞ bj ≤ bm+1

b−1
.

Similarly, d(p2, p) ≤ bm+1

b−1
. Substituting in (1), we get that 2 bm+1

b−1
≥ dOPT (P , k). Solving

for m, we have m ≥ logb

(

b−1
2

dOPT (P , k)
)

− 1.

Since m is the first level that the LCA of any two items in the optimal solution

appears, from the covering property, it holds that at level m − 1, there are at least k

items, i.e., the distinct ancestors of the k items in the optimal solution. Thus, there are

at least k items at level

m− 1 = logb

(

b− 1

2
dOPT (P , k)

)

− 2. (2)

This means that the cover tree algorithm will select items from this or a higher level.

From the separation invariant of the cover tree, we have dCT (P , k) ≥ bm−1. Using (2),

we get that dCT (P , k) ≥ blogb( b−1

2
dOPT (P,k))−2 ⇒ dCT (P , k) ≥ b−1

2
dOPT (P , k) b−2, which

proves the theorem.

We also consider algorithms that, instead of selecting any k items from level ℓk,

select these items greedily. The first algorithm, called LevelGreedy, performs a greedy

selection among all items at level ℓk. This requires k|Cℓk
| distance computations. The

second algorithm, called LevelInherit, (Algorithm 3.6), initializes the solution with all

items in Cℓk+1 and selects the remaining k−|Cℓk+1| items from Cℓk
in a greedy manner.

Thus, it requires (k − |Cℓk+1|)|Cℓk
| distance computations.

Algorithm 3.6 LevelInherit Algorithm.

Input: A cover tree T , an integer k.

Output: A set S with k diverse items in T .

1: ℓk ← ℓmax

2: while |T.Cℓk
| < k do

3: ℓk ← ℓk − 1

4: S ← T.Cℓk+1

5: candidates← T.Cℓk
\T.Cℓk+1

6: while |S| < k do

7: p∗ ← argmaxp∈candidates d(p, S)

8: S ← S ∪ {p∗}
9: candidates← candidates\{p∗}

10: return S

Clearly, the bound of Theorem 3.4 holds for the solution of LevelGreedy. It also

holds for the solution of LevelInherit, since due to nesting, an item that appears at
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some level of the tree also appears at all levels below it, thus, all items selected by Level

Inherit belong to Cℓk
. In general, these two algorithms are expected to produce more

diverse sets than the estimated general bound. In particular, for Batch Cover Trees

(BCTs), we can prove a better approximation. Specifically, it follows from Theorem 3.1,

that the application of LevelGreedy and LevelInherit algorithms on a BCT produces

the same solution with the greedy heuristic.

Corollary 3.1. Let P be a set of items, k ≥ 2, dGR(P, k) be the minimum distance of the

diverse set computed by the greedy heuristic and dBCT (P , k) be the minimum distance

of the diverse set computed by LevelBasic or LevelInherit when applied on a BCT for P.

It holds that dBCT (P , k) = dGR(P, k) ≥ 1/2 dOPT (P , k) .

3.3.2 Greedy Heuristic using Cover Trees

Next, we present algorithms that use the cover tree to prune the search space of the

greedy heuristic.

The algorithms proceed as follows. We initialize the diverse set S by selecting either

the root or the two furthest apart leaves of the tree. This corresponds to initializing the

greedy heuristic with either a random or the two most distant items. Then, we proceed

in rounds. At each round, we select one item by descending the tree seeking for the

item P with the maximum distance, d(p, S), from the current set S. Specifically, at

each of the k − 1 (or k − 2) rounds, we start descending the tree from the highest level

Cℓ that contains items that are not already in S. We locate the item P of Cℓ with the

largest d(p, S) and use it to prune its siblings. Then, we consider as candidates the

children of all nonpruned nodes of Cℓ and repeat the process for Cℓ−1. In the end, the

best candidate from the leaf level is added to S and we proceed to the next round. This

process is shown in Algorithm 3.7.

Pruning is based on the following observation. Suppose that at some point we

consider for inclusion in S an item P in Cℓ. Let d(p, S) be the distance of P from S

and q be any sibling of P. Then, the best candidate in the subtree of q is at distance at

most:
ℓ

∑

j=ℓmin+1

bj =
bℓ+1 − bℓmin+1

b− 1
(3.7)

from q. Therefore, we can safely prune nodes according to the following CT pruning

rule:

CT Pruning Rule: Let P and q be two nodes at level ℓ in a CT. If d(p, S) ≥ d(q, S) +
bℓ+1−bℓmin+1

b−1
, we can prune the subtree rooted at q.

The CT pruning rule is pessimistic, in the sense that it assumes that each node may

have a child located as far as possible from it. A more efficient pruning rule can be used

at the tradeoff of maintaining some extra information. Specifically, at each node P in

the tree, we maintain the distance of P from the node in its subtree that is the furthest
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Algorithm 3.7 GreedyCT Algorithm.

Input: A cover tree T , an integer k.

Output: A set S with the k most diverse items in T .

1: S ← {T.root}
2: while |S| < k do

3: Q← children(T.root)

4: while Q 6= ∅ do

5: p∗ ← arg maxp∈Q d(p, S)

6: Q′ ← children(p∗)

7: for all P ∈ Q\{p∗} do

8: if q is not pruned by the pruning rule then

9: Q′ ← Q′ ∪ children(q)

10: Q← Q′

11: S ← S ∪ {p∗}
12: return S

apart from P. We call this distance the distance weight of P denoted by wd(p). We call

the tree that is annotated with such weights a Weighted Cover Tree (WCT ). Then, we

can use Algorithm 3.7 along with the following pruning rule:

WCT Pruning Rule: Let P and q be two nodes at level ℓ in a WCT. If d(p, S) ≥ d(q, S) +

wd(q), we can prune the subtree rooted at q.

3.3.3 Other Issues

Constrained Continuous kDiversity. The two requirements of constrained contin

uous kdiversity (Definition 3.1) can be easily enforced using cover trees. For the

durability requirement, items that are selected as diverse are marked as such and re

main part of the diverse set, until they expire. Let z be the number of such items.

In this case, our algorithms just select k − z additional items from the tree. For the

freshness requirement, nondiverse items that are older than the newest item in the

current diverse set are marked as ‘‘invalid’’ in the CT and are not considered further as

candidates for inclusion.

Adjusting k. The CT can be used to provide results for multiple queries with different

k. Thus, each user can individually tune the amount of diverse items she wishes to

receive. Furthermore, the CT supports a ‘‘zooming’’ type of functionality. Assume that

a user selects a specific value for k. After receiving the k most diverse items, she can

request a larger number of closer to each other items by choosing a larger k (‘‘zoomin’’),

or a smaller number of farther apart items by choosing a smaller k (‘‘zoomout’’). We

can exploit the nesting invariant to achieve continuity in the following sense. Let S be

the set of the k most diverse items and let ℓ be the highest level of the CT at which all

items of S appear. For k′ > k, we would like the set S ′ with the k′ most diverse items
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(a) Relevance. (b) Relevance and Diversity.

Figure 3.5: Selecting k = 10 out of n = 200 apartments in London based (a) solely

on relevance (i.e., price) and (b) incorporating diversity (i.e., geographical distance).

Selected items are marked with a darker (red) color.

to be such that S ′ ⊇ S. To achieve this, we select items from level ℓ or lower, since the

items in S appear at all levels m ≤ ℓ. Analogously, for k′ < k, to construct the set S ′

with the k′ most diverse items such that S ′ ⊆ S, we may select those items of S that

appear at levels higher than ℓ.

3.4 Diversity and Relevance

In many cases, the items in the result of a query are ranked, most often based on

their relevance to the user query. In this case, diversification also addresses the over

specialization problem, i.e., retrieving results that are very similar to each other. An

example is shown in Figure 3.5 using our apartments dataset, where relevance is de

fined based on price, i.e., the cheaper the apartment the more relevant, and diversity is

based on geographical location. Using only relevance, a user is presented with apart

ments mostly from east London, while with diversity, some relatively cheap apartments

from other regions in London are also selected.

The MAXMIN kDiversity problem with relevance. In general, the relevance score of

an item is application dependent. Without loss of generality, we assume a relevance

function r : P → R+ that assigns a relevance score to each item, where a higher value

indicates that the item is more relevant to a particular query or user. A natural bi

criteria objective seeks to maximize both the relevance and the diversity of the selected

subset. In particular, the MaxMin kDiversity With Relevance Problem for a positive

integer k, k ≤ n, is the problem of selecting a subset S∗ of P such that:

S∗ = argmax
S⊆P
|S|=k

fr(S, d, r) (3.8)

with
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fr(S, d, r) = min
pi∈S

r(pi) + λ min
pi,pj∈S
pi 6=pj

d(pi, pj) (3.9)

where λ > 0 is a parameter that tunes the importance of diversification.

A combined relevancediversity (dr) approach. It was shown in [57] that the MaxMin

kDiversity With Relevance Problem is equivalent with the MaxMin kDiversity Prob

lem if we replace the distance function d with the function dr:

dr(λ, pi, pj) =
1

2
(r(pi) + r(pj)) + λd(pi, pj). (3.10)

If we define dr(λ, pi, pj) = 0, for pi = pj, it is to easy to see that dr is a metric, if d is a

metric.

To incorporate relevance, we can now build the CTs using distance dr instead of

d. It is straightforward to see that all algorithms and related bounds advanced for the

diversityonly case directly apply to the combined relevancediversity case.

Supporting a varying λ. A drawback of the combined approach is that we need to

maintain a different CT for each different value of λ. We would like to be able to adjust

λ dynamically without having to reconstruct the trees. To this end, we consider building

CTs based solely on distance d and enhancing our algorithms for selecting diverse sets

so as to incorporate relevance in the selection.

Let Cℓk
be the highest level with at least k nodes. The enhanced LevelBasic algo

rithm selects the k most relevant items of Cℓk
, while the LevelGreedy algorithm per

forms a greedy selection among the corresponding items using the combined distance

dr, instead of d.

We also introduce a new level algorithm, called LevelHybrid, whose goal is to allow

nodes with large relevance scores that appear in low levels of the CT to enter the diverse

set. LevelHybrid uses an extended CT. In this extended CT, for each internal node P,

we maintain a pointer to the node that has the largest relevance score among all nodes

in the subtree rooted at P. Let best(p) be this node. LevelHybrid (Algorithm 3.8)

performs a greedy selection among the k nodes from level Cℓk
whose descendants have

the best relevance scores and these k descendants. LevelHybrid performs k · 2k = 2k2

distance computations.

In the CT implementation of the greedy heuristic, subtrees are pruned based on

both diversity and relevance. To this end, we maintain at each internal node P, the

largest relevance value, wr(p), called relevance weight, of any node in the subtree of P.

The best possible pruning is achieved, if we also use the distance weight. Using both

weights, we have the following pruning rule.

WCT Pruning Rule With dr: Let P and q be two nodes at level ℓ in a WCT. If dr(p, S) ≥
dr(q, S) + 1

2
(r(q) + wr(q)) + λwd(q), we can prune the subtree rooted at q.

Clearly, we could maintain only the relevance weight, in which case the distance is

bounded using the CT pruning rule.
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Algorithm 3.8 LevelHybrid Algorithm.

Input: A cover tree T , an integer k, a real number λ.

Output: A set S with the k most diverse items in T .

1: ℓk ← ℓmax

2: while |T.Cℓk
| < k do

3: ℓk ← ℓk − 1

4: C ← the k nodes P in T.Cℓk
with the most relevant best(p)

5: candidates← ∅
6: for all p ∈ C do

7: candidates← candidates ∪ {p, best(p)}
8: p∗ ← argmaxp∈candidates r(p)

9: S ← S ∪ {p∗}
10: candidates← candidates\{p∗}
11: while |S| < k do

12: p∗ ← argmaxp∈candidates dr(λ, p, S)

13: S ← S ∪ {p∗}
14: candidates← candidates\{p∗}
15: return S

Maximal Marginal Relevance (MMR) Another popular approach for combining rele

vance and diversity is Maximal Marginal Relevance (MMR) (e.g., [23, 51]). MMR con

structs a relevant and diverse subset S in a greedy fashion, by starting with either

a random or the most relevant item and adding at each round the item pi with the

maximum contribution, i.e., the item pi with the maximum quantity:

mr(λ, pi, S) = λr(pi) + (1− λ) min
pj∈S

d(pi, pj) (3.11)

where λ ∈ [0, 1] is a parameter that tunes the relative importance of each of the two

factors.

All the presented algorithms are directly applicable to MMR by using mr instead of

dr. For example, we now have the following pruning rule.

WCT Pruning Rule With MMR: Let P and q be two nodes at level ℓ in a WCT. If dr(p, S)

≥ λwr(q) + (1− λ) (d(q, S) + wd(q)), we can prune the subtree rooted at q.

3.5 Experimental Evaluation

In this section, we experimentally evaluate the performance of cover trees for dynami

cally computing diverse sets.

Datasets. We use a variety of datasets, both real and synthetic. Our synthetic datasets

consist of twodimensional points in the Euclidean space, where each dimension takes

values in [0, 1]. Items are either uniformly distributed or form clusters of different
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Table 3.1: Characteristics of the datasets.

Dataset Cardinality Dimensions Distance Relevance scores

Uniform 10,000 2 Euclidean Uniform/Clustered

Clustered 10,000 2 Euclidean Uniform/Clustered

Cities 5,922 2 Euclidean Clustered

Nestoria 1,000 8 Haversine Pricebased

Faces 300 256 Cosine Uniform

Flickr 1,000  Jaccard Uniform

Table 3.2: Input parameters.

Parameter
Range Default

Synthetic Real Synthetic Real

Base (b) 1.22.2 1.6

Diversification factor (λ) 0.01.0 0.2

Dataset size (n) 110,000 3005,922 4,000 –

Size of diverse set (k) 100300 10100 150 50

Window size (w) 1,000 100 (no window)

Window jump step (h) 100900 1090 (no window)

sizes. We assign relevance scores to items either uniformly or in a ‘‘clustered’’ manner

around specific target items, so that items that are closer to the target items get larger

relevance scores than items further away. Clustered assignment is used to model the

common case where we get high relevance scores around specific items that correspond

to different interpretations of the query. Thus, we get four combinations: (i) uniform

spatial distribution with uniform relevance scores (‘‘UniformUniform ’’), (ii) uniform spa

tial distribution with clustered relevance scores centered around uniformly distributed

target items (‘‘UniformClustered’’), (iii) clustered spatial distribution with uniform rele

vance scores (‘‘ClusteredUniform ’’) and (iv) clustered spatial distribution with clustered

relevance scores around the centers of the spatial clusters (‘‘ClusteredClustered’’).

We also employ four real datasets. ‘‘Nestoria’’ consists of information about 1,000

apartments for sale in the London area retrieved from [6]. We relate relevance with price

and consider cheaper apartments as more relevant, while similarity is measured based

on geographic proximity (Haversine distance). ‘‘Cities’’ is a collection of geographical

points representing 5,922 cities and villages in Greece [5]. We assign relevance scores

in a clustered manner to model the fact that some specific areas may be more interest

ing than others. ‘‘Faces’’ consists of 256 features extracted from each of 300 human
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face images with the eigenfaces method [2] and uniformly distributed relevance scores.

Finally, for ‘‘Flickr ’’, we used data from [4] which consists of tags assigned by users

to photographs uploaded to the Flickr photo service [3]. Table 3.1 summarizes our

datasets, while Table 3.2 our parameters.

Our datasets capture result sets with different data characteristics. Concerning

spatial distribution, for example, ‘‘UniformUniform ’’ contains items that cover all the

available space, while ‘‘Cities’’ (due to the geography of Greece, which includes a large

number of islands) provides us with both dense and sparse areas of items (Figure 3.3).

‘‘Faces’’ contains many distinct small dense areas, while ‘‘Flickr ’’ is generally a very

sparse dataset.

Setup. All methods are implemented in Java using JDK 1.6. Our experiments were

executed on an Intel Core i32100 3.1GHz PC with 3GB of RAM.

3.5.1 Building and Maintaining Cover Trees

First, we evaluate the cost of building cover trees. Figure 3.6 shows the realtime cost of

building an ICT by incrementally inserting items. This cost depends on b, since smaller

values of b lead to new items being inserted in lower tree levels, thus increasing the

cost of individual insertions. The cost also depends on the distance metric used, since

some distance computations are more expensive. For example, inserting 1,000 items of

the ‘‘Flickr ’’ dataset, using the Jaccard distance, takes up to 5 seconds, while inserting

the same number of items takes less than 0.1 seconds for our Euclidean datasets. The

results are similar for the omitted datasets.

The cost of building a BCT can be divided into (i) the cost of selecting items from the

leaf level to build the first nonleaf level and (ii) the cost of assigning nodes to suitable

parents. Table 3.3 shows these costs for the uniform dataset. The cost of step (i) is

the same as the cost of executing the greedy heuristic for k = n and is independent of

b or the dataset distribution. The cost of step (i) dominates that of step (ii) and this is

why the total building cost for BCTs does not differ significantly with b or with spatial

distribution. Building BCTs is orders of magnitude more expensive than building the

corresponding ICTs for the same datasets.

Figure 3.7 depicts the size of ICTs and BCTs for different values of b (n = 4, 000

for our synthetic datasets). The xaxis corresponds to the tree level, starting from 0

which denotes the root level, while the yaxis corresponds to the width (i.e., number

of nodes) of the corresponding level. Smaller values of b lead to taller and narrower

trees. Further, although ICTs are constructed incrementally, the resulting trees have

almost identical structure with the corresponding BCTs. In general, the height of the

tree depends on the minimum and maximum pairwise distances in the dataset, while

the width of the levels depends on the spatial distribution of the data. Therefore, for

example, levels get narrower faster as we move up the tree for ‘‘Cities’’ rather than

for ‘Uniform ’’, even though their height is roughly the same, since ‘‘Cities’’ is a more
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Figure 3.6: ICT building cost. The yaxis corresponds to the total time to incrementally

insert all n items in the tree.
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Figure 3.7: Tree sizes of the constructed ICTs and BCTs (full implicit representation).

The drawn lines in each figure correspond to smaller b values as we move from left to

right.

clustered dataset. Similarly, a wide tree is constructed for ‘‘Flickr ’’, due to sparsity.

In terms of maintenance, a single insertion in an ICT costs 1 msec for trees up to

5,000 and up to 1.3 msec for trees with 10,000 items. The cost of deletions is higher

because, after a node is removed, its children have to be reassigned to new parents.

For all datasets and b values, a single deletion requires less than 3 msec for trees up to

5,000 and less than 7 msec for trees with 10,000 items. We also measured the cost of

maintaining weights in the case of WCTs which may require some extra bookkeeping

to update weights. For all datasets and b values, 46 additional nodes where accessed

per insertion on average. The effect on execution time is negligible.

3.5.2 Computing Diverse Subsets

We next evaluate the performance of the various algorithms introduced in this chapter

in terms of the quality of the retrieved diverse sets and the computational cost.

Diversity Algorithms. We first measure the cost savings when applying the CT Pruning

Rule (‘‘GreedyCT’’) or WCT Pruning Rule (‘‘GreedyWCT’’) on an ICT vs. executing our

cover tree based implementation of the greedy heuristic (‘‘Greedy’’). We use our uniform

dataset to see how pruning improves the cost of Greedy with n and k and different values

of b (Figure 3.8). Clearly, GreedyWCT is more effective, since the actual distance to the
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Table 3.3: BCT building cost (sec).

Uniform

n step (i) step (ii) b=1.2 step (ii) b=1.6 step (ii) b=2.0

1,000 11.181 0.048 0.044 0.043

2,000 107.103 0.211 0.209 0.203

3,000 416.660 0.498 0.416 0.398

4,000 899.799 0.812 0.503 0.490
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Figure 3.8: Pruning for the diversityonly case.

furthest descendant of each node is used for pruning. In general, pruning works better

for non uniform datasets, since each selection of a diverse item results in pruning a

largest number of items around it.

Next, we experimentally compare the performance of the greedy heuristic, using the

GreedyWCT implementation, and our Level algorithms, i.e., LevelBasic, LevelGreedy

and LevelInherit. Figure 3.9 depicts the achieved diversity and corresponding cost

when varying k. For comparison, we also report the diversity attained by randomly

selecting k of the n items (RA). Clearly, the larger the k, the less diverse the selected

subset. The comparative performance of all algorithms is the same for all types of

datasets. Specifically, for all datasets, GreedyWCT achieves the best diversity at the

highest cost, LevelBasic achieves the worst diversity at the lowest cost, while the other

two Level algorithms lie inbetween. LevelInherit achieves similar diversity with Level

Greedy but is faster.

The Level algorithms select items from the appropriate tree level. Thus, their perfor

mance depends on the tree. Recall that, clustered datasets result in trees whose levels

get narrower faster as we move up the tree. LevelGreedy and LevelInherit perform a

greedy selection among the items in the appropriate level, thus the wider the level, the

worst the complexity and the better the diversity achieved. This also explains why their

cost increases in ‘‘steps’’ as k increases, since we gradually select items from lower (and

wider) levels. LevelBasic just selects any k items, thus the cost does not increase with
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Figure 3.9: Diversity and cost for the diversityonly case with varying k.

k, while the achieved diversity decreases more rapidly as k increases, since items are

selected randomly instead of greedily from wider levels.

Figure 3.10(a) shows how the cost varies with b. Smaller b values may increase the

building cost of the tree (Figure 3.6) but also lead to faster diverse set computation,

especially for GreedyWCT. The cost of LevelGreedy and LevelInherit depends on the

size of the level from which items are selected. Figure 3.10(b) shows how the cost scales

along n. All Level algorithms scale very efficiently with n, since they depend only on

the size of the corresponding tree level.

Diversity with Relevance Algorithms. Let us first evaluate pruning (Figure 3.11).

In the following, we report results for MMR (similar results are attained for dr). We

consider two rules for pruning: using only relevance weights (denoted ‘‘GreedyCT’’)

and using both relevance and distance weights (denoted ‘‘GreedyWCT’’). Again, using

distance weights improves pruning especially for small values of λ (i.e., emphasis on

diversity). Pruning is more effective for clustered relevance scores, since in this case,

there are large subtrees with no relevant items that are pruned early. For the same

reason, pruning generally performs better for very large values of λ. Finally, pruning is

less effective for ‘‘Flickr ’’ whose trees are shorter due to its sparsity.

We next compare GreedyWCT with the Level algorithms. We also consider a CT vari

ation, called Priority Cover Tree (PCT) introduced in [18] for computing priority medoids.

A PCT is a CT which in addition to the three invariants of a CT, satisfies a fourth one

that requires each node of the tree to have relevance score larger than or equal to the

scores of all nodes in its subtree. To construct a PCT so that the fourth invariant is

satisfied, items need to be inserted in descending order of relevance. In general, PCTs

cannot be built incrementally. To illustrate, we present a simple example that shows
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Figure 3.10: Cost for the diversityonly case when varying (a) b (the numbers in paren

theses are the sizes of the highest level with at least k items) and (b) n.
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Figure 3.11: Pruning for the diversity with relevance (MMR) case with varying λ.

that the arrival of a single item may change the relations among all nodes in a PCT.

Consider the PCT of Figure 3.12(b) with b = 2.0 and the relevance scores and distances

of Figure 3.12(a). This PCT is unique for p1, p2, p3, since p1 must appear at the top

due to its relevance and p3 cannot be covered by p2 at ℓ = 2. Assume that p4 arrives.

Since p4 has the largest relevance score, it must appear at the top of the tree. p1 is not

separated from p4 at levels ℓ = 3 and ℓ = 2, therefore, it cannot appear there. p2 and p3

are separated from p4 at ℓ = 2 and are placed at this level. The resulting PCT is shown

in Figure 3.12(c). Notice that all preexisting nodes p1, p2, p3 now have different parent

and children nodes than before the arrival of p4, which means that the tree is in effect

rebuilt from scratch.

Figure 3.13 shows the relevance, diversity and cost of the various algorithms when

varying λ. We report results for the faster greedy heuristic, i.e., GreedyWCT and the

three Level algorithms (namely, LevelBasic, LevelGreedy and LevelHybrid) applied on
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Figure 3.12: The arrival of p4 changes the relations among all nodes of the PCT.

an ICT and a PCT for two synthetic and two real datasets. Note that due to the fourth

invariant of the PCT, best(p) = P for every node P of a PCT, thus LevelHybrid is the

same with LevelBasic for PCTs and it is not depicted.

In terms of diversity and relevance, for all datasets, LevelHybrid is the one closer

to the greedy heuristic (which provides a good approximation of the optimal solution).

LevelHybrid achieves such results with much smaller cost. Among the Level algo

rithms, LevelBasic is clearly the fastest. LevelHybrid performs a greedy selection

among 2k items, while LevelGreedy performs a greedy selection among |Cℓk
| items,

where ℓk is the highest level with at least k items. Therefore, the relative cost of Level

Greedy when compared with LevelHybrid depends on the size of the level with regards

to k. For example, for ‘‘Flickr ’’, which has much wider levels than the other datasets,

LevelHybrid has lower cost than LevelGreedy. Note also that the cost of the level

algorithms does not depend on λ. The quality and cost of the PCT solutions does not

differ substantially from those of the ICT. Only pruning is slightly more efficient, since

larger relevance scores appear at high levels. Due to space limitations, we omit the

results for the rest of our datasets. ‘‘ClusteredUniform ’’ and ‘‘ClusteredClustered’’ be

have similarly to ‘‘UniformUniform ’’ and ‘‘UniformClustered’’ respectively, while ‘‘Cities’’

has similar behavior to ‘‘UniformClustered’’ and ‘‘Faces’’ to ‘‘ClusteredUniform ’’.

Continuous kDiversity. We next focus on streaming arrivals of items and on how

the application of our continuity requirements affects the retrieved solutions. We show

results for ‘‘Nestoria’’, where we use the actual apartment upload time as the time in

which items enter the stream. We also use the ‘‘ClusteredUniform ’ dataset which has

the most different distribution. For ‘‘ClusteredUniform ’, the items that enter the stream

are selected in a random manner.

Figure 3.14 reports results for the Unconstrained and the Constrained kDiver sity

Problem. We vary the jump step h of the window and fix the other parameters to study

the behavior of the algorithms as the number of valid diverse items from the previous

window changes. We report average values over all windows as the window slides along

the stream of items. In most cases, the constrained variations achieve similar relevance

and diversity with the unconstrained alternatives. For all algorithms performing greedy

computations, the constrained variations are executed faster, since the diverse subset

of each window is initialized with the valid items of the diverse subset from the previous
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Figure 3.13: Relevance (top row), diversity (middle row) and cost (bottom row) for the

MMR case with varying λ.

window, and thus, fewer computations are required. LevelBasic is unaffected, since

it does not involve any greedy steps. Besides cost savings, another important aspect

of the constrained variations is the higher sense of continuity between subsequent

diverse sets seen by the users. To quantify this, we use the Jaccard similarity between

the acquired diverse sets. The Jaccard similarity of two sets of items S1, S2 is defined

as:

Jaccard(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

The higher the Jaccard similarity of two sets, the more common items the two sets

share. In Figure 3.14, we see that the constrained variations exhibit higher Jaccard

similarity.
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Figure 3.14: Relevance ((a)/(e)), diversity ((b)/(f)), cost ((c)/(g)) and Jaccard similarity

((d)/(h)) for the Unconstrained (U) and Constrained (C) MMR case in a streaming setting

when varying h (k = 150 (resp. k = 15), w = 1000 (resp. w = 100) for the synthetic

(resp. real) dataset, b = 1.6, λ = 0.2).

3.6 Comparison with Related Work

There are a couple of approaches in the related literature that consider indexing to

assist diversification. Most such works consider structured data. Relational data are

considered in [107]. Attributes are totally ordered by importance in terms of diversity,

so that two tuples that differ in a highly important attribute are considered highly

diverse, even if they share common values in other less important attributes. This

diversity measure allows the exploitation of a Dewey encoding of tuples that enables

a tree structure which is later exploited to select the k most diverse tuples. Contrary

to our approach, the proposed method is limited to this specific diversity measure and

cannot be applied in the general case.

Spatial index are often exploited to locate those relevant nearest neighbors of an

item that are the most distant to each other (e.g., [59]). Our work is different since our

goal is not to locate the nearest diverse neighbors of a single object but rather to locate

a relevant and diverse subset of all available items.

Cover trees are employed in [79] for solving the kmedoids problem. While locating k

representative medoids is a form of diversification, that work focuses on the clustering

of data rather than their diversification. A variation of cover trees, called Priority Cover

50



Trees (PCTs), were employed in [18, 17] for computing priority medoids, i.e., medoids

having a high relevance factor. Besides solving a different problem, this approach can

not be employed in dynamic environments, since all available items must be known in

advance for building PCTs. Our method, can handle dynamic insertions and deletions

and provide an evolving diverse set of items.

The related literature focusing on continuous data is limited. None of the existing

proposals considers an indexbased approach to diversification as we do here. In our

previous work [41], we evaluated various heuristics in case of continuous data, and a

greedy heuristic that enforces durability was shown to outperform the other methods.

A method based on interchange heuristics is proposed in [84]. Upon the arrival of a

new item p, all possible interchanges between p and the items in the current solution

are performed and p replaces an item in the solution, if this replacement increases

diversity. A similar technique was also proposed in [46]. However, with these methods,

old items do not expire, and a new item may enter the solution only upon its arrival.

The MaxSum diversification problem is studied in [19], in the setting of streaming

data and monotone submodular diversification functions. A 1/2approximation greedy

algorithm is proposed which is faster than the usual greedy heuristic. Dynamic updates

are also considered in the sense that when the underlying set of available items changes,

interchanges are attempted to improve the computed solution. Our approach considers

a different diversification problem, i.e., MaxMin, and is not restricted to monotone

submodular functions. Finally, the online version of the diversity problem is considered

in [86], that is, selecting a diverse subset without knowing the complete set of items.

3.7 Summary

Most current research addresses the static version of the diversification problem. In

this chapter, we have studied the diversification problem in a dynamic setting where the

items to be diversified change over time. We have proposed an indexbased approach

that allows the incremental evaluation of the diversified sets to reflect item updates.

Our solution is based on cover trees. We have provided theoretical and experimental

results regarding the quality of our solution.
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Chapter 4

DisC Diversity: Result Diversification

based on Dissimilarity and Coverage

4.1 DisC Diversity

4.2 Computing DisC Diverse Subsets

4.3 Incremental DisC

4.4 Comparison of Diversification Models

4.5 Implementation

4.6 Experimental Evaluation

4.7 Comparison with Related Work

4.8 Summary

R
esult diversification has attracted considerable attention as a means of en

hancing the quality of the query results presented to users (e.g., [107, 119]).

Consider, for example, a user who wants to buy a camera and submits a re

lated query. A diverse result, i.e., a result containing various brands and models with

different pixel counts and other technical characteristics is intuitively more informative

than a homogeneous result containing only cameras with similar features.

There have been various definitions of diversity; they can be roughly categorized [42]

as based on: (i) content (or similarity), i.e., items that are dissimilar to each other (e.g.,

[119]), (ii) novelty, i.e., items that contain new information when compared to what was

previously presented (e.g., [35]) and (iii) coverage, i.e., items that belong to different

categories or topics (e.g., [11]).

Most previous approaches to diversification rely on assigning a diversity score to

each item and then selecting as diverse either the k items with the largest score for a
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given k (e.g., [15, 24]), or the items with score larger than some predefined threshold

(e.g., [113]). Diversity is often combined with other ranking criteria, such as relevance

(e.g., [99]). In this case, the selected items must be both highly relevant individually

and diverse as a set. The two criteria are often conflicting with each other, since the

items most relevant to a specific user need are often similar to each other. A number of

different approaches have been proposed to achieve a tradeoff between high relevance

and high diversity (e.g., [23, 57]), usually based on assigning weights to the two factors,

resulting again in a unified score and a corresponding topk or threshold problem.

Here, we address diversity through a different perspective. In contrary to previous

approaches, we aim at selecting a representative subset of the result set that contains

items that are both dissimilar with each other and cover the whole result set. Let P
be the set of items in a query result, d a distance metric, and r a real number, that

we call radius. We consider that two items pi, pj in P are similar to each other, if and

only if, d(pi, pj) ≤ r. We also say that they cover each other. Our goal is to select a

subset S of P, such that (i) for each item pi ∈ P, there is at least one item pj in P,

such that d(pi, pj) ≤ r, and (ii) for any pair of items, pi, pj ∈ S, it holds d(pi, pj) > r.

The first condition ensures that all items in P are represented, or covered, by at least

one similar item in the selected subset. The second condition ensures that the selected

items are dissimilar to each other. We call the set S Dissimilar and Covering subset or

DisC diverse subset.

A novel aspect of our approach is that, instead of specifying a required size k of

the diverse set or a threshold, our tuning parameter r explicitly expresses the degree

of diversification and determines the size of the diverse set. Increasing r results in a

smaller, more diverse subset, while decreasing r results in a larger, less diverse subset.

We call these operations zoomingout and zoomingin respectively. At one extreme, a

radius equal to the diameter of the result set gives a singleton diverse subset. At the

other extreme, a radius smaller than the smallest pairwise distance in the result set

gives a diverse subset equal to the original result set.

Since there may be more than one DisC diverse subset of a result set, for attaining a

concise representation, we aim at selecting the one with the smallest number of items,

termed Minimum rDisC diverse subset. Furthermore, when the items in the result set

are associated with weights, besides the size, we take weights into account and select

a Minimum Weighted rDisC diverse subset. When all weights are equal, a Minimum

Weighted rDisC diverse subset reduces to a Minimum rDisC diverse subset. As an

example, Figure 4.1(a) and Figure 4.1(b) depict the selected diverse subset for a set of

items representing major cities in our world, without and with weights respectively. In

this example, weights were set based on population.

Further, we would like to allow different areas of the result set to contribute more or

less items in the diverse subset. To this end, we extend the definition of DisC diverse

subsets to allow each item pi to be associated with a different radius r(pi). The radius

of an item may depend on its relevance to the query, on the density of its surrounding
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(a) No weights. (b) Weights. (c) Multiple radii.

Figure 4.1: DisC diversity: (a) no weights, single radii, (b) weights, single radii, and

(c) no weights, multiple radii. Selected items are shown as solid circles with size

proportional to their weight. (Non solid) circles denote the radius around the selected

items.

area, or other factors. Figure 4.1(c) depicts the selected subset of the world cities

example in the case of multiple radii, where a smaller radii is used for cities in Europe,

resulting in more items being selected from this area.

We formalize the problem of locating minimum DisC diverse subsets as an indepen

dent dominating set problem on graphs. In the case of a single radius, the correspond

ing graph is undirected, whereas in the case of multiple radii, the corresponding graph

is directed. We show that, locating a DisC diverse subset is equivalent to locating an

independent and dominating set for the corresponding graph. However, for directed

graphs, there are graphs for which there is no independent and dominating set. We

show that for the graphs modeling the DisC problem, there is always such a set. Locat

ing a minimum independent and dominating set is an NPhard problem. We provide a

suite of greedy algorithms for locating approximate solutions along with bounds for the

size of the produced diverse subsets.

Then, we consider the problem of incrementally adjusting the radius r, or zooming.

We explore the relation among DisC diverse subsets of different radii and provide algo

rithms for adapting an already computed DisC diverse subset to a new radius along with

corresponding theoretical upper bounds for the size of the diverse subsets produced.

Figure 4.2 shows an example of zoomingin and zoomingout.

Although the examples presented so far concern twodimensional points, DisC di

versity is applicable to any type of data set, including the case of noncategorical at

tributes, as long as an appropriate distance d is provided. As an example, consider

searching for cameras, where diversity refers to cameras with different features. Fig

ure 4.3 depicts an initial most diverse result and the result of zoomingin one individual

camera in this result.

Since the crux of the efficiency of all proposed algorithms is locating neighbors, we

take advantage of spatial data structures. In particular, we propose efficient imple

mentations based on the Mtree [33]. We evaluate our algorithms for the different DisC

diversity versions using both real and synthetic datasets and draw various conclusions
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(a) Initial set. (b) Zoomingin. (c) Zoomingout.

Figure 4.2: Zooming. Selected items are shown as solid circles with size proportional

to their weight. (Non solid) circles denote the radius around the selected items.

regarding their effectiveness and efficiency.

In a nutshell, we make the following contributions:

• we use a new, intuitive definition of diversity, called DisC diversity, based on

using a radius r rather than a size limit k and extend it to support a different

radius for each item,

• in addition to the geometrical interpretation of DisC diversity, we present an

equivalent graphbased model of the problem,

• we introduce incremental diversification through zoomingin and zoomingout,

• we show that locating DisC diverse subsets is an NPhard problem, provide ef

ficient algorithms for their computation along with theoretical approximation

bounds, present efficient Mtree tailored implementations and experimentally

evaluate their performance, and

• we compare DisC diversity with other popular diversity models, both analytically

and qualitatively.

The rest of this chapter is structured as follows. Section 4.1 introduces DisC diver

sity and Section 4.2 algorithms for computing diverse subsets, Section 4.3 introduces

incremental diversification and Section 4.4 compares our approach with other diversi

fication methods. In Section 4.5, we employ the Mtree for the efficient implementation

of our algorithms, while in Section 4.6, we present experimental results. Finally, Sec

tion 4.7 presents related work and Section 4.8 concludes the chapter.

4.1 DisC Diversity

In this section, we first provide a formal definition of DisC diversity. We define the

Minimum rDisC and Minimum Weighted rDisC diverse subsets and provide various

theoretical bounds for the size of an rDisC diverse subset with regards to the minimum
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Brand Model Megapixels Zoom Interface Battery Storage

Epson PhotoPC 750Z 1.2 3.0 serial NiMH internal, CompactFlash

Ricoh RDC-5300 2.2 3.0 serial, USB AA internal, SmartMedia

Sony Mavica DSC-D700 1.4 5.0 None lithium MemoryStick

Pentax Optio 33WR 3.1 2.8 USB AA, lithium MultiMediaCard, SecureDigital

Toshiba PDR-M11 1.2 no USB AA SmartMedia

FujiFilm MX-1700 1.3 3.2 serial lithium SmartMedia

FujiFilm FinePix S20 Pro 6.0 6.0 USB, FireWire AA xD-PictureCard

Nikon Coolpix 600 0.8 no serial NiCd CompactFlash

Canon IXUS 330 1.9 3.0 USB lithium CompactFlash

Brand Model Megapixels Zoom Interface Battery Storage

Canon S30 IS 14.0 35.0 USB lithium SecureDigital, SecureDigital HC

Canon A520 3.9 4.0 USB AA MultiMediaCard, SecureDigital

Canon A400 3.1 2.2 USB AA SecureDigital

Canon ELPH Sd10 3.9 no USB lithium SecureDigital

Canon A200 1.9 no USB AA CompactFlash

Canon S30 3.0 3.0 USB lithium CompactFlash

Figure 4.3: Zoomingin a specific camera.

ones. Then, we extend our definition of DisC diversity to support a different radius for

each item. Finally, we present a graph based model of DisC diversity and show that

locating a DisC diverse subset is equivalent to finding an independent and dominating

set of the corresponding graph.

4.1.1 Definition of DisC Diversity

Let P be a set of items returned as the result of a user query. We want to select a

representative subset S of these items such that each item of P is represented by a

similar item in S and the items selected to be included in S are dissimilar to each other.

We define similarity between two items using a distance metric d : P × P → R+.

For a real number r, r ≥ 0, we use Nr(pi) to denote the set of neighbors (or, the

neighborhood) of an item pi ∈ P, i.e., the items lying at distance at most r from pi:

Nr(pi) = {pj | pi 6= pj ∧ d(pi, pj) ≤ r} (4.1)

We use N+
r (pi) to denote the set Nr(pi) ∪ {pi}, i.e., the neighborhood of pi including pi

itself. Items in the neighborhood of pi are considered similar to pi, while items outside

its neighborhood are considered dissimilar to pi. We define an rDisC diverse subset

as follows:

Definition 4.1. (rDisC Diverse Subset) Let P be a set of items and r, r ≥ 0, a

real number. A subset S of P is an rDissimilarandCovering diverse subset, or r

DisC diverse subset, of P, if the following two conditions hold: (i) (coverage condition)

∀pi ∈ P, ∃ pj ∈ N+
r (pi), such that pj ∈ S and (ii) (dissimilarity condition) ∀ pi, pj ∈ S

with pi 6= pj, it holds that d(pi, pj) > r.

The first condition ensures that all items in P are represented by at least one similar

item in S and the second condition that the items in S are dissimilar to each other. We

call every item pi ∈ S an rDisC diverse item and r the radius of S. When the value of

r is clear from context, we simply refer to rDisC diverse items as diverse items.
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Figure 4.4: (a) A set of items: the (minimum) rDisC diverse subset {p2, p4, p6} is

preferred over the larger rDisC diverse subset {p1, p3, p4, p6}, (b) their graph represen

tation.

There may be more than one dissimilar and covering diverse subsets for the same

set of items P. Since we want a concise representation of P, we select the smallest one

(see Figure 4.4(a) for an example). Formally, we define the Minimum rDisC diverse

subset problem as follows:

Definition 4.2. (Minimum rDisC Diverse Subset Problem) Given a set P of items and

a radius r, r ≥ 0, find an rDisC diverse subset S∗ of P, such that, for every rDisC

diverse subset S of P, it holds that f(S∗) ≤ f(S), where f(S) = |S|.

Often, items are associated with a weight indicating their importance under some

specific context, e.g., satisfying some specific user information need. We use w(pi)

to denote the weight of pi. Larger weights indicate items of higher importance. For

simplicity, we consider that all weights are in (0, 1]. Now, given P, we want to select

items that are both diverse to each other and also highly relevant. We define the

Minimum Weighted rDisC diverse subset problem as follows:

Definition 4.3. (Minimum Weighted rDisC Diverse Subset Problem) Given a set of

items P, with each item pi ∈ P associated with a weight w(pi), and a radius r, r ≥ 0,

find a DisC diverse subset S∗ of P, such that, for every DisC diverse subset S of P, it

holds that f(S∗) ≤ f(S), where

f(S) =
∑

pi∈S

1

w(pi)

If we consider all weights equal, i.e., when we are only interested in the diversity of

the selected set and not the individual weights of the selected items, then the Minimum

Weighted rDisC diverse subset problem is reduced to the Minimum rDisC diverse

subset problem, i.e., locating the minimum sized subset of dissimilar items that can

cover the available space. Between two subsets of equal size, Definition 4.3 selects the

one with the largest sum of weights.
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Figure 4.5: Manhattan independent neighbors.

4.1.2 General Bounds

Next, we present a number of theoretical results concerning the size of an rDisC

diverse subset. In the following, we use the terms dominance and coverage, as well

as, independence and dissimilarity interchangeably. In particular, two items pi and

pj are independent, if d(pi, pj) > r. We also say that an item covers all items in its

neighborhood.

Theorem 4.1. Let B be the maximum number of independent neighbors of any item in

P. Any rDisC diverse subset S of P is at most B times larger than any minimum rDisC

diverse subset S∗.

Proof. Since S is an independent set, any item in S∗ can cover at most B items in S

and thus |S| ≤ B|S∗|.

Note that, since a minimum weighted rDisc subset for P cannot be smaller than a

minimum rDisC diverse subset P, it also holds that any rDisC diverse subset S of P
is at most B times larger than any minimum weighted rDisC diverse subset S∗.

The value of B depends on the distance metric used and also on the dimensionality

dim of the data space. For many distance metrics, B is a constant. Next, we show how

B is bounded for specific combinations of the distance metric and data dimensionality.

Lemma 4.1. If d is the Euclidean distance and dim = 2, each item pi in P has at most

B = 5 neighbors that are independent from each other.

Proof. Let p1, p2 be two independent neighbors of p. Then, it must hold that ∠p1pp2 is

larger than π
3
. Otherwise, d(p1, p2) ≤ max{d(p, p1), d(p, p2)} ≤ r which contradicts the

independence of p1 and p2. Therefore, p can have at most (2π/π
3
)− 1 = 5 independent

neighbors.

Lemma 4.2. If d is the Manhattan distance and dim = 2, each item pi in P has at most

B = 7 neighbors that are independent from each other.

Proof. Let p1, p2 be two independent neighbors of p. Then, it must hold that ∠p1pp2 (in

the Euclidean space) is larger than π
4
. We will prove this using contradiction. p1, p2

are neighbors of p so they must reside in the shaded area of Figure 4.5. Without loss
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Figure 4.6: (a) A set of items associated with different radii and their graph represen

tation for the (b) Covering and (c) CoveredBy problems. A directed edge from vi to vj

indicates that d(pi, pj) ≤ r(pi) and d(pi, pj) ≤ r(pj) respectively.

of generality, assume that one of them, say p1, is aligned to the vertical axis. Assume

that ∠p1pp2 ≤ π
4
. Then cos(∠p1pip2) ≥

√
2

2
. It holds that b ≤ r and c ≤ r, thus, using the

cosine law we get that a2 ≤ r2(2 −
√

2) (1). The Manhattan distance of p1, p2 is equal

to x + y =
√

a2 + 2xy (2). Also, the following hold: x =
√

b2 − z2, y = c − z and z =

b cos(∠p1pip2) ≥ b
√

2
2

. Substituting z and c in the first two equations, we get x ≤ b√
2

and

y ≤ r− b
√

2
2

. From (1), (2) we now get that x+y ≤ r, which contradicts the independence

of p1 and p2. Therefore, p can have at most (2π/π
4
)− 1 = 7 independent neighbors.

Lemma 4.3. If d is the Euclidean distance and dim = 3, each item pi in P has at most

B = 24 neighbors that are independent from each other.

Proof. Assume a sphere of radius r centered at pi. To fit as many independent items in

the sphere as possible, we place them on the surface of the sphere at distance r from

each other. Let p1, p2 be two such items. Since the radius of the sphere is also r, it

holds that ∠p1pip2 = π
3
. Thus, the arc on the surface of the sphere between p1 and p2

is equal to π
3
r. The problem of how many such independent items can be placed on the

surface of the sphere is equivalent to that of how many equilateral spherical triangles

of side length π
3
r can be packed on the surface of the sphere, without overlap except at

the edges. This number is not known exactly but it has been shown to be between 20

and 22 (e.g., [111]). The proof is based on dividing the area of the surface of the sphere

by the the area of such a triangle. To form these triangles, 24 items are required (3 for

the first triangle plus 1 for each of the rest of the triangles), which proves the lemma.

4.1.3 DisC Diversity with Multiple Radii

So far, we considered that the radius r is global, i.e., r is the same for all items in

P. Radius r specifies the granularity with which the selected DisC diverse subset

represents the underlying result space. A large r results in a small subset, whereas

a small r results in a large subset. There may be cases, however, in which we want

different parts of the data space to be represent with more or less items in the DisC

diverse subset. To allow this, we consider the more general case where each item pi is
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associated with a different radius r(pi), i.e., r is not a constant but, instead, a function

r : P → R+ assigning a radius r(pi) ∈ R+ to each item pi ∈ P.

The problem now loses its symmetry, since an item pi may be in the neighborhood

of an item pj, while pj is not in the neighborhood of pi. This gives rise to two different

interpretations of radius. One interpretation is that pi can represent all items in its

neighborhood (i.e., all items lying at a distance at most r(pi) around it). The other

interpretation is that pi can be represented by all items its neighborhood. We call the

first problem Covering DisC diverse subset problem and the second one CoveredBy DisC

diverse subset problem.

For example, in Figure 4.6(a), under the Covering DisC semantics, the radius of p3

means that p3 represents, or covers, p2 and p1, whereas, based on their radius, neither

p2 nor p1 can represent, or cover, p3. On the contrary, under the CoveredBy semantics,

the radius of p3 means that p3 can be represented, or covered, by p2 or p1, but neither

p2 nor p1 can be represented, or covered, by p3.

Next, we present the corresponding formal definitions.

Definition 4.4. (Covering DisC Diverse Subset) Let P be a set of items and r :

P → R+ be a function determining the radius of each item in P. A subset S of P is

a Covering DissimilarandCovering diverse subset, or Covering DisC diverse subset,

of P, if the following two conditions hold: (i) (coverage condition) ∀pi ∈ P, ∃ pj with

d(pi, pj) ≤ r(pj), such that pj ∈ S and (ii) (dissimilarity condition) ∀ pi, pj ∈ S with pi 6=
pj, it holds that d(pi, pj) > max{r(pi), r(pj)}.

For example, in Figure 4.6, {p3, p5, p6, p7} is a Covering DisC subset of the depicted

set of items.

Definition 4.5. (CoveredBy DisC Diverse Subset) Let P be a set of items and r :

P → R+ be a function determining the radius of each item in P. A subset S of P is a

CoveredBy DissimilarandCovering diverse subset, or CoveredBy DisC diverse subset,

of P, if the following two conditions hold: (i) (coverage condition) ∀pi ∈ P, ∃ pj with

d(pi, pj) ≤ r(pi), such that pj ∈ S and (ii) (dissimilarity condition) ∀ pi, pj ∈ S with pi 6=
pj, it holds that d(pi, pj) > max{r(pi), r(pj)}.

For example, in Figure 4.6, {p2, p4, p7} is a CoveredBy DisC subset of the depicted

set of items.

4.1.4 Graph Representation and NPhardness

The various DisC subsets presented so far all have a corresponding graph representa

tion. Consider first a single radius r and let GP,r = (V , E) be an undirected graph such

that there is a vertex vi ∈ V for each item pi ∈ P and an edge (vi, vj) ∈ E, if and only if,

d(pi, pj) ≤ r for the corresponding items pi, pj. An example is shown in Figure 4.4(b).

Let us recall a couple of graphrelated definitions. A dominating set D for a graph G

is a subset of vertices of G such that every vertex of G not in D is joined to at least one
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Figure 4.7: (a) Minimum dominating set ({v2, v5}) and (b) a minimum independent

dominating set ({v2, v4, v6}) of the depicted graph.

vertex in D by some edge. An independent set I for a graph G is a set of vertices of G

such that for every two vertices in I, there is no edge connecting them. It is easy to see

that a dominating set of GP,r satisfies the covering condition of Definition 4.1, whereas

an independent set of GP,r satisfies the dissimilarity condition of Definition 4.1. Thus:

Lemma 4.4. Finding an rDisC diverse subset for a set P is equivalent to finding an

independent dominating set of the corresponding graph GP,r.

We next present some useful properties that relate the coverage (i.e., dominance) and

dissimilarity (i.e., independence) conditions. A maximal independent set of a graph is

an independent set such that adding any other vertex to the set forces the set to contain

an edge, that is, an independent set that is not a subset of any other independent set.

It is known that:

Lemma 4.5. An independent set of a graph is maximal, if and only if, it is dominating.

From Lemma 4.5, we conclude that:

Observation 4.1. A minimum maximal independent set is also a minimum independent

dominating set.

However,

Observation 4.2. A minimum dominating set is not necessarily independent.

For example, in Figure 4.7, the minimum dominating set of the depicted items is of size

2, while the minimum independent dominating set is of size 3.

The above also holds for the Minimum Weighted rDisC diverse subset problem.

We next consider the multiple radii case. Our graphbased view of the problem is

now the following. Let GP,r(.) = (V , E) be a directed graph such that there is a vertex

vi ∈ V for each item pi ∈ P and a (directed) edge (vi, vj) ∈ E, if and only if, for the

corresponding items pi, pj, it holds that d(pi, pj)≤ r(pi) (Covering problem) or d(pi, pj)≤
r(pi) (CoveredBy problem). In Figure 4.6, we see an example. The coverage relationship

is not symmetric anymore. In Figure 4.6(b), for example, item p3 covers p1 and p2, but

neither p1 nor p2 cover p3. Independence between two items means that none of them
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covers the other. In Figure 4.6(b), p3 and p7 are independent, but points p3 and p1 are

not.

A dominating, or covering, set D for a directed graph G is a subset of vertices of

G such that every vertex of G not in D is joined to at least one vertex of D by some

incoming edge. An independent set I for a directed graph G is a set of vertices of G

such that, for every two vertices in I, there is no edge connecting them.

Lemma 4.6. Finding a Covering or CoveredBy DisC diverse subset for a set P is equiv

alent to finding an independent dominating set of the corresponding graph GP,r(.).

Proof. Let S be a DisC diverse subset for P. Due to the coverage condition, for every

item pi not in S, there must be an item pj in S with d(pi, pj) ≤ r(pj) (Covering problem)

or d(pi, pj) ≤ r(pi) (CoveredBy problem), thus S is a dominating set of GP,r(.). Also,

due to the dissimilarity condition, no item pi in S can cover some other item pj in

S. Thus, S is also an independent set. Now, let S be an independent dominating set

S of the directed graph GP,r(.). Then, for every item pi not in S there is some item

pj in S such that an edge (pj, pi) exists, i.e., d(pi, pj) ≤ r(pj) (Covering problem) or

d(pi, pj) ≤ r(pi) (CoveredBy problem). Also, there is no edge connecting pi, pj in S, i.e.,

d(pi, pj) > max{r(pi), r(pj)}. Thus, both the coverage and dissimilarity conditions of

Definition 4.4 (Covering problem) or Definition 4.5 (CoveredBy problem) hold and S is

also a DisC diverse subset for P.

Note that, when all items are associated with equal radii, it holds that d(pi, pj) ≤
r(pi) if an only if d(pi, pj) ≤ r(pj). In this case, the graph representation of a set P for

the Covering problem is equivalent to that for the CoveredBy problem and, in addition,

all edges of the graph are bidirectional, i.e., the graph can be reduced to an undirected

graph.

Finding a minimum independent dominating set of a graph has been proven to

be NPhard [53], even for special cases of graphs such as unit disk graphs [34], i.e.,

graphs in the Euclidean space whose vertices can be put in one to one correspondence

with equisized circles in a plane such that two vertices are joined by an edge, if and

only if the corresponding circles intersect. Next, we provide a suite of algorithms for

computing approximate solutions.

4.2 Computing DisC Diverse Subsets

Next, we present a suite of algorithms for locating DisC diverse subsets. We first

present general algorithms for both the single radius and multiple radii cases and then

a number of variations.
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Algorithm 4.1 Locating DisC diverse subsets.

Input: A set of items P, a radius function r(.) and a selection criterion C(.).
Output: A DisC diverse subset S of P.

1: S ← ∅
2: for all pi ∈ P do

3: color pi white

4: while there exist white items do

5: select the white item pi with the largest value of C(pi)

6: S = S ∪ {pi}
7: color pi black

8: for all pj ∈ NW
r(pi)

(pi) (Covering) or pj s.t. pi ∈ Nr(pj)(pj) (CoveredBy) do

9: color pj grey

10: return S

4.2.1 General Algorithms

Our various algorithms are based on Algorithm 4.1. For presentation convenience, let

us call black the items of P that are in the diverse subset S, grey the items covered by

some item in S and white the items that are neither black nor grey. NW
r (pi) denotes

the set of white neighbors of pi. Initially, S is empty and all items are white. Items are

selected for inclusion in S in rounds based on some selection criterion C.

Lemma 4.7. In the single radius case, Algorithm 4.1 produces an rDisC diverse subset

S of P for any selection criterion.

Proof. At first all items are white. Once an item enters S, all its neighbors become grey

and are withdrawn from consideration. Any white item is independent from all selected

items in S and thus can be selected to be included in S. To see that, assume for the

purpose of contradiction, that for a white item pj and black item pi, it holds d(pi, pj)

≤ r, then pj ∈ Nr(pi), thus it should have been colored grey, when pi was selected for

inclusion in S. Thus, the set produced by selecting any white item is an independent

set. It is also a maximal independent set, since at the end there are only grey items left,

thus adding any of them to S would violate the independence of S. From Lemma 4.5,

S is an rDisC diverse subset.

While an undirected graph always has an independent dominating subset, this is

not the case for directed graphs (e.g., [83]). To illustrate this, consider the following

simple example of Figure 4.9 where V = {v1, v2, v3} and E = {(v1, v2), (v2, v3), (v3, v1)}.
In this graph, no single item is able to cover the whole set, while, at the same time,

no two items are independent from each other. Thus, this graph has no independent

dominating subset. However, such a graph cannot exist in our case. Assume, for the

purposes of contradiction, that such as a graph exists. For the Covering case, since

there is an edge (v1, v2) but there is no edge (v2, v1), we get that r(p1) > d(p1, p2) > r(p2).

Similarly, it also holds that r(p2) > r(p3) and r(p3) > r(p1). Therefore, we get that
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Figure 4.8: A directed graph example.

r(p1) > r(p1) which cannot be true. Similarly, for the CoveredBy problem, we get that

r(p1) < r(p1) which, also, cannot be true.

However, in our case, where d is a distance metric, we can always construct an

independent dominating subset for our directed graphs. To achieve this, we need to

select white items using some specific criterion as the following lemma shows. Note,

that the proof of Lemma 4.7 does not hold, since not all white items are necessarily

independent from the selected diverse items. For example, consider the Covering prob

lem for the graph of Figure 4.8 and assume that v1 is selected first. Then, v1 will be

colored black and v2 will be colored grey, while v3 will remain white. However, v3 cannot

enter the selected subset in a following step, since it is not independent from v1. Thus,

Algorithm 4.1 does not produce an rDisC diverse subset for any selection criterion.

Lemma 4.8. Algorithm 4.1 produces a (multiple radii) DisC diverse subset S of P when

selecting white items in (i) decreasing order of their radius for the Covering problem and

(ii) increasing order of their radius for the CoveredBy problem.

Proof. We prove the lemma for the Covering problem. The proof for the CoveredBy

problem is similar. At first all items are white. Upon selecting an item for inclusion,

all its neighbors become grey and are thus withdrawn from consideration. Let pi be a

white item considered at some round and pj be an already selected, i.e., black, item.

Since pi is still white, there can be no directed edge (pj, pi). Since pj was considered

for inclusion in S prior to pi, it holds that r(pi) ≤ r(pj). Moreover, since pi is still

white, it holds that r(pi) < r(pj) and there can be no directed edge (pi, pj). Therefore,

each white item selected to be colored black at some round is independent from all

previously selected items, i.e., the produced set is an independent one. It is also a

maximal independent set, since at the end there are only grey items left (line 5), thus

selecting any of them would violate the independence of S. From Lemma 4.5, S is a

DisC diverse subset.

Now, Algorithm 4.1 for the example of Figure 4.8, would select v3 first, since v3 has

the largest radius (it covers both v1 and v2) and the Covering DisC diverse subset {p3}
will be produced.

Furthermore, in our example of Figure 4.6, by visiting white items in decreasing

order of their radius (solving the Covering problem), Algorithm 4.1 would first select p3,

followed by p5, p6 and p7, in that order, resulting in a DisC diverse subset of P. Visiting

white items in increasing order of their radius (solving the CoveredBy problem) would

result in the selection of p2, p7 and p4, in that order.
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Figure 4.9: A directed graph with no independent dominating set.

4.2.2 Greedy Algorithms

As shown, we can compute a DisC subset by selecting any of the white items in the

single radii case, or by selecting any among the white items having the largest (smallest)

radius in the Covering (resp. CoveredBy) multiple radii case. We call these algorithms

Basic-DisC algorithms. As shown by Lemma 4.1, the size of any DisC subset, and

thus the size of the DisC subset produced by Basic-DisC is at most B times larger

than that of a minimum rDisC diverse subset or a minimum weighted rDisC diverse

subset.

We now consider the following intuitive greedy variation of Basic-DisC, that we

call Greedy-DisC. Instead of selecting white items arbitrarily at each step for inclusion

in the diverse subset S, we select the white item that minimizes the objective function

f . That is, in the case of the Minimum rDisC diverse subset problem, we set C(pi) =

|NW
r (pi)|, i.e., we select the white item that covers the largest number of uncovered

items. In the case of the Minimum Weighted rDisC diverse subset problem, we select

the white item that has the best combination of weight and white neighborhood size.

We normalize the size of a white neighborhood in [0, 1] (recall that we have assumed

that weights are in (0, 1]) and use C(pi) = w(pi)
(

|NW
r (pi)|/maxpj∈P\S |NW

r (pj)|
)

. In case of

ties, we select the white item with the largest number of white neighbors.

4.2.3 Greedy Algorithms for Coverage Only

While the size of the subsets produced by Greedy-DisC is expected to be smaller than

that of the subsets produced by Basic-DisC, the fact that we consider for inclusion

in S only white, i.e., independent, items may still not reduce the size of S as much

as expected. From Observation 4.2, it is possible that an independent covering set is

larger than a covering set that also includes dependent items. For example, consider

the vertices (or equivalently the corresponding items) in Figure 4.7. Assume that v2 is

inserted in S first, resulting in v1, v3 and v5 becoming grey. Then, we need two more

vertices, namely, v4 and v6, for covering the whole set. However, if we consider for

inclusion grey items as well, then v5 can join S, resulting in a smaller covering set.

Motivated by this observation, we also define rC diverse subsets that satisfy only the

coverage condition of Definition 4.1 and modify Greedy-DisC accordingly to compute

rC diverse sets. The only change required is that in line 6 of Algorithm 4.1, we select

both white and grey items. This allows us to select at each step the item that covers

the largest possible number of uncovered items, even if this item is grey. We call this
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variation Greedy-C.

For Greedy-C, we get a covering but not necessarily dissimilar subset of P, whose

size is generally different than the size of the subset produced by Greedy-DisC for

the same radius r. In this case, we get a different bound for the size of the produced

rC diverse subset S.

Theorem 4.2. Let ∆ be the maximum number of neighbors of any item in P. The

weighted rC diverse subset produced by Greedy-C is at most ln ∆ times larger than

the minimum weighted rDisC diverse subset S∗.

Proof. We consider that inserting a vertex (item) p into S has cost 1/w(p). We distribute

this cost equally among all covered vertices, i.e., after being labeled grey, vertices are

not charged anymore. Assume an optimal minimum dominating set S∗. The graph

G can be decomposed into a number of starshaped subgraphs, each of which has

one vertex from S∗ at its center. The cost of an optimal minimum dominating set is

exactly 1/w(p) for each starshaped subgraph centered around p. We show that for a

nonoptimal set S, the cost for each starshaped subgraph is at most ln ∆, where ∆

is the maximum degree of the graph. Consider a starshaped subgraph of S∗ with p

at its center and let NW
r (p) be the number of white vertices in it. If a vertex in the

star is labeled grey by Greedy-C, these vertices are charged some cost. By the greedy

condition of the algorithm, this cost can be at most 1/w(p)|NW
r (p)| per newly covered

vertex. Otherwise, the algorithm would rather have chosen p for the dominating set

because p would contribute 1/w(p)|NW
r (p)| to the selected set. In the worst case, no

two vertices in the star of p are covered at the same iteration. In this case, the first

vertex that is labeled grey is charged at most 1/w(p)(δ(p) + 1), the second vertex is

charged at most 1/w(p)δ(p) and so on, where δ(p) is the degree of p. Therefore, the

total cost for covering the star of p is at most:

1

w(p)

(

1

δ(p) + 1
+

1

δ(p)
+ . . . +

1

2
+ 1

)

=
1

w(p)
H(δ(p) + 1) ≤ 1

w(p)
H(∆ + 1)

where H(i) is the ith harmonic number. The total cost of the set S produced by

Greedy-C for covering all the stars of S∗ is:

f(S) ≤
∑

pi∈S∗

1

w(pi)
H(∆ + 1) = H(∆ + 1)f(S∗) ≈ ln ∆f(S∗)

Since the size of a minimum weighted dominating set is equal or smaller than the size

of a minimum weighted independent dominating set, the theorem holds.

Note that, Theorem 4.2 also holds in the case of the (unweighted) Minimum r

DisC diverse subset problem, where we simply consider the cost of each starshaped

subgraph around p to be equal to 1.
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Figure 4.10: Zooming (a) in and (b) out. Dashed and solid circles correspond to radius

r and r
′ respectively.

4.3 Incremental DisC

The radius r determines the desired degree of diversification. A large radius corre

sponds to fewer and less similar to each other representative items, whereas a small

radius results in more and less dissimilar representative items. At one extreme, a ra

dius equal to the largest distance between any two items results in a single item being

selected and at the other extreme, a radius smaller than the smallest pairwise distance

in the result set results in all items of P being selected.

In this section, we consider an interactive mode of operation where, after being pre

sented with an initial set of results for some radius r, a user asks to see either more or

less results by correspondingly decreasing or increasing the radius. For simplicity, we

shall focus on zooming in the case of a single radius. The results are easily transferred

to the case of multiple radii. First, we present results relating the size of DisC diverse

subsets for different radii and then propose algorithms for incrementally changing the

radius.

4.3.1 Zooming

Given a set of items P and an rDisC diverse subset S of P for some specific radius,

we want to compute an r′DisC diverse subset S ′ of P. There are two cases: (i) r′ < r

and (ii) r′ > r which we call zoomingin and zoomingout respectively.

Since we want to support an incremental mode of operation, the set S ′ should be as

close as possible to the already seen result S. Ideally, S ′ ⊇ S, for r′ < r and S ′ ⊆ S, for

r′ > r. However, this is not always possible as the following lemma shows.

Lemma 4.9. Let S be a covering and dissimilar subset of P for r.

(i) S is a covering but not necessarily dissimilar subset of P for r′ > r,

(ii) S is a dissimilar but not necessarily covering subset of P for r′ < r.

Proof. (i) Let r′ > r. Since S is a covering subset of P for r, for each item pi ∈ P, there

is an item pj ∈ S such that d(pi, pj) ≤ r < r′, thus S is also a covering subset of P
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Figure 4.11: Independent neighbors.

for r′. However, for two items pi, pj ∈ S, it is possible that pj ∈ Nr′(pi). Therefore, S

may not be a dissimilar subset of P for r′. (ii) Let r′ < r. Since S is a dissimilar subset

of P for r, for any two items pi, pj ∈ P, it holds d(pi, pj) > r > r′, thus S is also a

dissimilar subset of P for r′. However, it is possible that there exists some item pi ∈ P
for which there does not exist an item pj ∈ S with pi ∈ Nr′(pj). Therefore, S may not

be a covering subset of P for r′.

To study the relationship between S and S ′ when changing the radius, we focus on

the items lying at distance between r and r′ from the selected items of the initial DisC

diverse subset (Figure 4.10). These are items of interest since they are possibly either

left uncovered when the radius decreases (zoomingin), thus violating the covering

property, or covered by other diverse items when the radius increases (zoomingout),

thus violating the dissimilarity property.

For two radii r1, r2, r2 ≥ r1, we define the set N I
r1,r2

(pi), as the set of items at

distance at most r2 from pi which are at distance at least r1 from each other, i.e.,

items in Nr2
(pi)\Nr1

(pi) that are independent from each other considering the radius

r1. The following lemma bounds the size of N I
r1,r2

(pi) for specific distance metrics and

dimensionality.

Lemma 4.10. Let r1, r2 be two radii with r2 ≥ r1. Then, for dim = 2:

(i) if d is the Euclidean distance:

∣

∣N I
r1,r2

(pi)
∣

∣ ≤ 9
⌈

logβ(r2/r1)
⌉

, where β =
1 +
√

5

2

(ii) if d is the Manhattan distance:

∣

∣N I
r1,r2

(pi)
∣

∣ ≤ 4

γ
∑

i=1

(2i + 1), where γ =

⌈

r2 − r1

r1

⌉

Proof. Euclidean distance: For the proof, we use a technique for partitioning the annu

lus between r1 and r2 similar to the one in [102] and [112]. Let r1 be the radius of an

item p (Figure 4.11(a)) and α a real number with 0 < α < π
3
. We draw circles around the
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item p with radii (2cosα)xp , (2cosα)xp+1, (2cosα)xp+2, . . . , (2cosα)yp−1, (2cosα)yp, such

that (2cosα)xp ≤ r1 and (2cosα)xp+1 > r2 and (2cosα)yp−1 < r2 and (2cosα)yp ≥ r2. It

holds that xp =
⌊

ln r1

ln(2 cos α)

⌋

and yp =
⌈

ln r2

ln(2 cos α)

⌉

. In this way, the area around p is parti

tioned into yp−xp annuli plus the r1disk around p. Consider an annulusA. Let p1 and

p2 be two neighbors of p in A with d(p1, p2) > r1. Then, it must hold that ∠p1pp2 > α.

To see this, we draw two segments from p crossing the inner and outer circles of A at

a, b and c, d such that p1 resides in pb and ∠bpd = α, as shown in the figure. Due to

the construction of the circles, it holds that
|pb|
|pc| = |pd|

|pa| = 2 cos α. From the cosine law

for p
△
ad, we get that |ad| = |pa| and, therefore, it holds that |cb| = |ad| = |pa| = |pc|.

Therefore, for any item p3 in the area abcd of A, it holds that |pp3| > |bp3| which means

that all items in that area are neighbors of p1, i.e., at distance less or equal to r1. For

this reason, p2 must reside outside this area which means that ∠p1pp2 > α. Based on

this, we see that there exist at most 2π
α
− 1 independent (for r1) nodes in A. The same

holds for all annuli. Therefore, we have at most (yp−xp)
(

2π
α
− 1

)

independent nodes in

the annuli. For 0 < α < π
3
, this has a minimum when α is close to π

5
and that minimum

value is 9
⌈

ln(r2/r1)
ln(2 cos(π/5))

⌉

= 9
⌈

logβ(r2/r1)
⌉

, where β = 1+
√

5
2

.

Manhattan distance: Let r1 be the radius of an item p. We draw Manhattan circles

around the item p with radii r1, 2r1, . . . until the radius r2 is reached. In this way,

the area around p is partitioned into γ =
⌈

r2−r1

r1

⌉

Manhattan annuluses plus the r1

Manhattandisk around p. Consider an annulus A. The items shown in Figure 4.11(b)

cover the whole annulus and their Manhattan pairwise distances are all greater or

equal to r1. Assume that the annulus spans among distance ir1 and (i + 1)r1 from

p, where i is an integer with i > 1. Then, |ab| =
√

2 (ir1 + r1/2)2
. Also, for two items

p1, p2 it holds that |p1p2| =
√

2 (r1/2)2
. Therefore, at one quadrant of the annulus

there are
|ab|

|p1p2| = 2i + 1 independent neighbors which means that there are 4(2i + 1)

independent neighbors in A. Therefore, there are in total
∑γ

i=1 4(2i + 1) independent

(for r1) neighbors of p.

4.3.2 Incremental Zooming Algorithms

Next, we describe our algorithms for incrementaly adapting an rDisC diverse subset S

to an r′DisC diverse subset S ′ and provide bounds concerning the size relationship of

S and S ′.

Zoomingin

Let us first consider the case of zoomingin to a smaller radius, i.e., r′ < r. Here, we

aim at producing a small independent covering solution S ′, such that, S ′ ⊇ S. For this

reason, we construct r′DisC diverse sets that are supersets of S by adding items to S

to make it maximal.

Consider an item of S, for example p1 in Figure 4.10(a). Items at distance at most

70



Algorithm 4.2 GreedyZoomIn.

Input: A set of items P, a solution S and initial and new radii r(pi), r′(pi), r′(pi) < r(pi), for

each item pi in P.

Output: An adapted DisC diverse subset of P.

1: S′ ← S

2: for all pi ∈ S do

3: color items in {Nr(pi)(pi)\Nr′(pi)(pi)} white

4: while there exist white items do

5: select the white item pi with the largest

∣

∣

∣
NW

r(pi)
(pi)

∣

∣

∣

6: color pi black

7: S′ = S′ ∪ {pi}
8: for all pj ∈ NW

r(pi)
(pi) do

9: color pj grey

10: return S′

r′ from p1 are still covered by p1 and cannot enter S ′. Items at distance greater than r′

and at most r may be uncovered and join S ′. Each of these items can enter S ′ as long

as it is not covered by some other item of S that lays outside the former neighborhood

of p1. For example, in Figure 4.10(a), p4 and p5 may enter S ′ while p3 can not, since,

even with the smaller radius r′, p3 is covered by p2.

To adapt a DisC diverse subset, we consider such items in turn. This turn can

be either arbitrary (Basic-Zoom-In algorithm) or proceed in a greedy way, where

at each turn the item that covers the largest number of uncovered items is selected

(Greedy-Zoom-In, Algorithm 4.2).

Concerning the size relationship between S and S ′, the following lemma holds.

Lemma 4.11. Let S be the initial DisC diverse subset and S ′ be the adapted one gener

ated by the Basic-Zoom-In or Greedy-Zoom-In algorithm. It holds that:

(i) S ⊆ S ′ and

(ii) |S ′| ≤ |S|+ ∑

pi∈S |N I
r′,r(pi)|

Proof. Condition (i) trivially holds from step 1 of the algorithm. Condition (ii) holds since

for each item in S there are at most |N I
r′,r(pi)| independent items at distance greater

than r′(pi) from each other that can enter S ′.

In practice, items selected to enter S ′, such as p4 and p5 in Figure 4.10(a), are likely

to cover other items left uncovered by the same or similar items in S. Therefore, the

size difference between S and S ′ is expected to be smaller than this theoretical upper

bound.

Zoomingout

Next, we consider zoomingout to a larger radius, i.e., r′ > r. In this case, the user is

interested in seeing less and more dissimilar items, ideally a subset of the already seen
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results for r, that is, S ′ ⊆ S. However, in this case, in contrast to zoomingin, it may

not be possible to construct a diverse subset S ′ that is a subset of S (take, for example,

the items of Figure 4.10(b) with S = {p1, p2, p3}; no subset of S is an r′DisC diverse

subset for this set of items).

We focus on the following sets of items: (i) S\S ′ and (ii) S ′\S. The first set consists of

the items that belong to the previous diverse subset but are removed from the new one,

while the second set consists of the new items added to S ′. To illustrate, let us consider

the items of Figure 4.10(b) and that p1, p2, p3 ∈ S. Since the radius becomes larger, p1

now covers all items at distance at most r′ from it. This may include a number of items

that also belonged to S, such as p2. These items have to be removed from the solution,

since they are no longer dissimilar to p1. However, removing such an item, say p2 in

our example, can potentially leave uncovered a number of items that were previously

covered by p2 (these items lie in the shaded area of Figure 4.10(b)). In our example,

requiring p1 to remain in S ′ means than p5 should be now added to S ′.

To produce the new adapted DisC diverse subset, we proceed in two passes. In the

first pass, we examine all items of S in some order and remove their diverse neigh

bors that are now covered by them. At the second pass, items from any uncovered

areas are added to S ′. Again, we have an arbitrary and a greedy variation, denoted

Basic-Zoom-Out and Greedy-Zoom-Out respectively. Algorithm 4.3 shows the

greedy variation; the first pass (lines 411) considers S\S ′, while the second pass (lines

1219) considers S ′\S. Initially, we color all previously black items red. All other

items are colored white. We consider three variations for the first pass of the greedy

algorithm: selecting the red items with (a) the largest number of red neighbors, (b) the

smallest number of red neighbors and (c) the largest number of white neighbors. Vari

ations (a) and (c) aim at minimizing the items to be added in the second pass, that is,

S ′\S, while variation (b) aims at maximizing S ∩ S ′. Algorithm 4.3 depicts variation (a),

where NR
r′ (pi) denotes the set of red neighbors of item pi.

Concerning the size relationship between S and S ′, the following lemma holds.

Lemma 4.12. For the solution S ′ generated by the Basic-Zoom-Out or Greedy-

Zoom-Out algorithm, it holds that:

(i) There are at most
∑

pi∈S |N I
r,r′(pi)| items in S\S ′.

(ii) For each item of S not included in S ′, at most B − 1 items are added to S ′.

Proof. Condition (i) is a direct consequence of the definition of N I
r,r′(pi). Concerning

condition (ii), recall that each removed item pi has at most B independent neighbors for

r′(pi). Since pi is covered by some neighbor, there are at most B− 1 other independent

items that can potentially enter S ′.
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Algorithm 4.3 GreedyZoomOut(a).

Input: A set of items P, a solution S and initial and new radii r(pi), r′(pi), r′(pi) > r(pi), for

each item pi in P.

Output: An adapted DisC diverse subset of P.

1: S′ ← ∅
2: color all black items red

3: color all grey items white

4: while there exist red items do

5: select the red item pi with the largest |NR
r′(pi)

(pi)|
6: color pi black

7: S′ = S′ ∪ {pi}
8: for all pj ∈ Nr′(pi)(pi) do

9: color pj grey

10: while there exist white items do

11: select the white item pi with the larger |NW
r′(pi)

(pi)|
12: color pi black

13: S′ = S′ ∪ {pi}
14: for all pj ∈ NW

r′(pi)
(pi) do

15: color pj grey

16: return S′

4.4 Comparison of Diversification Models

In this section, we first show how our DisC model relates to other widely used diversi

fication methods and then compare the various variations of the DisC model.

4.4.1 Comparison with Other Models

Next, we present both theoretical and qualitative results concerning the relation be

tween DisC diversity and various other diversification approaches.

Theoretical Results

Two widely used diversification models are MaxMin and MaxSum that aim at selecting a

subset S of P so as the minimum or the average pairwise distance of the selected items

is maximized (e.g., [57, 109, 19]). More formally, an optimal MaxMin (resp., MaxSum)

subset of P is a subset with the maximum fMin(S) = minpi,pj∈S
pi 6=pj

dist(pi, pj) (resp., fSum(S)

=
∑

pi,pj∈S
pi 6=pj

dist(pi, pj)) over all subsets of the same size. Input in both approaches is

the size k of the diverse subset.

The following lemma provides a bound for the fMin distance of the items in any

rDisC set with regards to the optimal distance fMin of a subset of the same size.
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Figure 4.12: Counter example for the MaxSum case (a≫ 1).

Lemma 4.13. Let P be a set of items, S be an rDisC diverse subset of P and λ be the

fMin distance between the items of S. Let S∗ be an optimal MaxMin subset of P for k =

|S| and λ∗ be the fMin distance of S∗. Then, λ∗ ≤ 3 λ.

Proof. Each item in S∗ is covered by (at least) one item in S. There are two cases, either

(i) all items p∗1, p∗2 ∈ S∗, p∗1 6= p∗2, are covered by different items is S, or (ii) there are at

least two items in S∗, p∗1, p∗2, p∗1 6= p∗2 that are both covered by the same item p in S. Case

(i): Let p1 and p2 be two items in S such that d(p1, p2) = λ and p∗1 and p∗2 respectively

be the items in S∗ that each covers. Then, by applying the triangle inequality twice, we

get: d(p∗1, p
∗
2) ≤ d(p∗1, p1) + d(p1, p

∗
2) ≤ d(p∗1, p1) + d(p1, p2) + d(p2, p

∗
2). By coverage, we

get: d(p∗1, p
∗
2) ≤ r + λ + r ≤ 3 λ, thus λ∗ ≤ 3 λ. Case (b): Let p∗1 and p∗2 be two items

in S∗ that are covered by the same item p in S. Then, by coverage and the triangle

inequality, we get d(p∗1, p
∗
2) ≤ d(p∗1, p) + d(p, p∗2) ≤ 2 r, thus λ∗ ≤ 2 λ.

Lemma 4.13 asks how much smaller the fMin distance of an rDisC subset is with

regards to the optimal fMin of a subset of the same size. The following lemma looks into

the size of an rDisC subset that attains the same fMin distance as an optimal MaxMin

subset of size k.

Lemma 4.14. Let P be a set of items, S∗ be an optimal subset of P of size k and λ∗

be the fMin distance of S∗. Let S be an rDisC diverse subset with r = λ∗. It holds that

|S| < k′, where k′ is the first integer larger than k for which the corresponding optimal

MaxMin subset of P S∗′ has fMin distance equal to λ∗′, with λ∗′ < λ∗.

Proof. Since the optimal (i.e., maximum) minimum distance for k′ is smaller than λ∗,

then there can be no DisC set for r = λ∗ with size equal or larger than k′. Therefore, a

DisC diverse subset for r = λ∗ can be of size up to k′.

A bound similar to that of Lemma 4.13 does not exist for the MaxSum case1. To

illustrate this, consider the example of Figure 4.12, where k−1 of the items are located

1We would like to thank Dr. Anirban Dasgupta from Yahoo! Labs for suggesting this example.
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in a line, at distance r from each other, while the rest of the items are very close to each

other and located at a large distance from the other items, i.e., a ≫ 1. Let us call the

two groups of items ‘‘group X’’ and ‘‘group Y’’ respectively. For simplicity, let r = 1.

An optimal DisC diverse set for r = 1 is of size k and consists of the k − 1 items

of group X plus one item from group Y. Let G be the sum of the pairwise distances of

all items of group X. The sum of pairwise distances fDisC of the optimal DisC set is

approximately equal to a(k − 1) + G. A MaxSum solution for k would instead select

k/2 items from group X and k/2 items from group Y. The corresponding sum of pairwise

distances fMaxSum in this case would be a(k/2)2 + G′, where G′ < G is the sum of the

pairwise distances of all items from group X. Since a can be arbitrarily large, for a

sufficiently large value of a, we can assume that fDisC ≃ a(k − 1) and fMaxSum ≃ a(k/2)2.

Therefore, for a sufficiently large value of a, it holds that fMaxSum

fDisC
= k2

4(k−1)
. Thus, fMaxSum

fDisC

can grow arbitrarily large as k increases.

Qualitative Results

Next, we present some qualitative results of applying different approaches for selecting

diverse items, namely DisC, MaxMin and MaxSum. We also show results for kmedoids,

a widespread clustering algorithm that seeks to minimize 1
|P|

∑

pi∈P d(pi, c(pi)), where

c(pi) is the closest item of pi in the selected subset, since the located medoids can be

viewed as a representative subset of the dataset. We used a 2dimensional ‘‘Clustered’’

dataset. To implement MaxMin and MaxSum, we used greedy heuristics which have

been shown to achieve good solutions [42]. To allow for a comparison, we first run

Greedy-DisC for a given r and then use the size of the produced diverse subset as

the input k of the other approaches. In this example, k = 12 for r = 0.15 (Figure 4.13).

MaxSum diversification and kmedoids fail to cover all areas of the dataset; MaxSum

tends to focus on the outskirts of the dataset, whereas kmedoids clustering reports

only central items, ignoring items that are further away. MaxMin performs better in

this aspect. However, since MaxMin seeks to retrieve items that are as far apart as

possible, it fails to retrieve items from dense areas; see, for example, the central areas

of the clusters in Figure 4.13. Note also that MaxSum and kmedoids may select near

duplicates, as opposed to DisC and MaxMin. We also experimented with variations of

MaxSum proposed in [109] but the results did not differ substantially from the ones in

Figure 4.13(b).

In Figure 4.14, we see how the DisC solution (Figure 4.14(a)) is affected when the

dissimilarity condition is raised, i.e., we have a covering but not necessarily indepen

dent subset of the data (Figure 4.14(b)). Raising the dissimilarity condition slightly

decreases the size (by one item) in this example. However, the selected items are close

together (see, for example, the cluster on the right of the dataset).
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(a) rDisC. (b) MaxSum. (c) MaxMin. (d) kmedoids.

Figure 4.13: Solutions by the various diversification methods for a clustered dataset.

All items are associated with equal weights and radii. Selected items are shown as solid

circles. Circles around items of the DisC solution denote the radius r of the selected

items.

(a) rDisC. (b) rC.

Figure 4.14: Solutions for (a) the DissimilarandCovering (rDisC) and (b) Covering

only (rC) problems. Selected items are shown as solid circles. Circles around items

denote the radius r of the selected items.

4.4.2 Comparison of DisC Models

We next present a qualitative comparison of how the assignment of different weights

and/or different radii to each item affect the retrieved DisC diverse subsets. To do

this, we use again our ‘‘Clustered’’ dataset. Unless otherwise noted, we use the

Greedy-DisC algorithm.

Using weights. We first compare the unweighted and weighted problems for a single

radius r. We use two different ways to assign weights: (i) assigning a uniformly dis

tributed weight to each item (uniform case) and (ii) assigning larger weights to items

closer to the center of their cluster (clustered case). The second approach models the

common case in which we have a number of different interpretations of the query and

items close to one of these interpretations are more important. All weights are in (0, 1].

We used the same radius (r = 0.09) to generate unweighted and weighted rDisC

diverse subsets for both the uniform and the clustered cases. Figure 4.15(a) and

Figure 4.15(d) depict the unweighted rDisC diverse subsets, while Figure 4.15(b) and

Figure 4.15(e) depict the weighted rDisC diverse subsets. For comparison, we used
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(a) Uniform weights: Unweighted

rDisC.

(b) Uniform weights: Weighted r

DisC.

(c) Uniform weights: Top items.

(d) Clustered weights: Un

weighted rDisC.

(e) Clustered weights: Weighted

rDisC.

(f) Clustered weights: Top items.

Figure 4.15: Unweighted rDisC diverse subsets (left column), weighted rDisC diverse

subsets (middle column) and top largestweighted items (right column) for roughly the

same number of items (r = 0.09 and k ≈ 30). Selected items are shown as solid circles.

Larger circles correspond to items with larger weights. Circles around items denote the

radius r of the selected items.

the size k of the weighted rDisC diverse subsets as the input for retrieving the topk

items with the largest weights (without enforcing diversity), i.e., 33 and 35 items for

the uniform and clustered case respectively. Figure 4.15(c) and Figure 4.15(f) show

the corresponding results. Clearly, the topweighted items in the clustered case are

very close to each other. In the uniform case they are more spread but, still, not

highly diverse. In both cases, the weighted subsets are roughly of the same size as the

unweighted ones. However, the selected items have clearly larger weights as expected

and are diverse.

In Figure 4.16, we see how the weighted DisC solution (Figure 4.16(a)) is affected

when the dissimilarity condition is raised (Figure 4.16(b)). While, in our example, the

size remains the same, the selected items are closed together, i.e., not as dissimilar.

However, this allows us to get more items with larger weights, since the selected items

are not required to be dissimilar to each other.

Using multiple radii. Next, we present a qualitative view of various options of assigning

radii to items. Our motivation behind multiple radii is to place different importance to

different items in the dataset. We present three different scenaria for assigning radii to
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(a) rDisC. (b) rC.

Figure 4.16: Weighted solutions for the DissimilarandCovering and Coveringonly

problems. Selected items are shown as solid circles. Larger circles correspond to items

with larger weights. Circles around items denote the radius r of the selected items.

(a) Covering. (b) CoveredBy.

Figure 4.17: Using multiple radii based on areas of interest. Selected items are shown

as solid circles. More items from areas of higher interest enter the diverse set. (In the

CoveredBy case, each item pi not in the diverse subset is represented by an item in

the diverse subset within distance r(pi) from it. Since there is a large number of such

items, we do not draw their radius for clarity.)

the items.

The first one corresponds to the case where some parts of the dataset are considered

more important than others and we want them to be represented with more items in

the selected diverse subset. In Figure 4.17, we see such an example, where each of the

four quadrants is assumed to have different importance, with the most important one

being the bottom left quadrant and importance decreasing as we move clockwise. To

achieve a representation corresponding to importance, we assign to each area clock

wise increasing radius values. As seen, areas associated with smaller radii (i.e., more

important ones) are represented by more items in the diverse set, since items in these

areas have to be closer together to be considered similar. The basic difference between

the results of the CoveredBy and the Covering approach is near the boundaries of the

quadrants. In the Covering approach, items in the quadrant with the larger radii cover

the items in the neighboring quadrant, thus excluding them from the diverse set.

The second scenario corresponds to the case in which we want to relate representa
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(a) Covering. (b) CoveredBy.

Figure 4.18: Using multiple radii based on density. Items in denser areas are associated

with smaller radii. Selected items are shown as solid circles. Larger circles correspond

to items in denser areas. (In the CoveredBy case, each item pi not in the diverse subset

is represented by an item in the diverse subset within distance r(pi) from it. Since

there is a large number of such items, we do not draw their radius for clarity.)

tion with density, so that dense areas are not underrepresented in the diverse subset.

To achieve this, we assign smaller radii to items in denser areas of the dataset. Fig

ure 4.18 shows the retrieved solutions for the Covering and CoveredBy variations of

the multiple radii problem (in our example, items closer to the centers of their clusters

are in denser areas and, thus, are assigned smaller radii). In both cases, the dense

areas of the dataset are better represented in the diverse set due to their items being

associated with smaller radii. Again, as explained above, in the CoveredBy case, more

items from dense areas enter the diverse subset (see, for example, the items selected

from the outskirts of the top cluster).

The third scenario corresponds to the case in which we want to relate representation

with weights. For the Covering problem, we assign larger radii to items wither larger

weights. This is to model the case where we want highly relevant items to cover a

large area around them. For the CoveredBy problem, we assign smaller radii to items

wither larger weights. This ensures that each item can be covered only by items that

have a larger weight than it. We consider again the uniform and clustered distribution

of weights (Figure 4.19). The Covering variation of the multiple radii problem works

well for uniformly distributed weights. However, this does not seem to be the case for

clustered weights. This happens because, in the latter case, items with large weights,

and thus large radii, block each other from entering the diverse set. The CoveredBy

variation does not face this issue. In general, the Covering variation results in smaller

sets, since the algorithm starts with the item with the largest radii and, thus, with the

item that possibly covers the largest number of items. However, in neighboring areas

with different radii, the items with the larger radii disallow items with the smaller radii

from entering the diverse set. Thus, when radii is associated with relevance weights, the

CoveredBy approach produces better results in the sense that it allows more relevant

items to be included in the diverse set.
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(a) Uniform weights: Cov

ering

(b) Clustered weights:

Covering
(c) Uniform weights: Cov

eredBy

(d) Clustered weights:

CoveredBy

Figure 4.19: Using multiple radii based on weights. Items with larger weights are

associated with larger radii in the Covering case and with smaller radii in the CoveredBy

case. Selected items are shown as solid circles. Larger circles correspond to items

with larger weights. (In the CoveredBy case, each item pi not in the diverse subset is

represented by an item in the diverse subset within distance r(pi) from it. Since there

is a large number of such items, we do not draw their radius for clarity.)

4.5 Implementation

A central operation in computing DisC diverse subsets is locating neighbors. For this

reason, we introduce implementations of our algorithms that exploit a spatial index

structure, namely, the Mtree [33]. An Mtree is a balanced tree index that can handle

large volumes of dynamic data of any dimensionality in general metric spaces. In

particular, an Mtree partitions space around some of the indexed items, called pivots,

by forming a bounding ball region of some covering radius around them. Let c be

the maximum node capacity of the tree. Internal nodes have at most c entries, each

containing a pivot item pv, the covering radius rv around pv, the distance of pv from its

parent pivot and a pointer to the subtree tv. All items in the subtree tv rooted at pv

are within distance at most equal to the covering radius rv from pv. Leaf nodes have

entries containing the indexed items and their distance from their parent pivot.

The construction of an Mtree is influenced by the splitting policy that determines

how nodes are split when they exceed their maximum capacity c. Splitting policies

indicate (i) which two of the c + 1 available pivots will be promoted to the parent node

to index the two new nodes (promote policy) and (ii) how the rest of the pivots will be

assigned to the two new nodes (partition policy). These policies affect the overlap among

the nodes of the trees. For computing diverse subsets:

(i) We link together all leaf nodes. This allows us to visit all items in a single leftto

right traversal of the leaf nodes and exploit some degree of locality in covering the

items.

(ii) To compute the neighbors Nr(pi) of an item pi at radius r, we perform a range

query centered around pi with distance r, denoted Q(pi, r).

(iii) We build trees using splitting policies that minimize overlap. In most cases, the
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(a) GreyGreedyDisC.
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Figure 4.20: GreedyDisC variations.

policy that resulted in the lowest overlap was (a) promoting as new pivots the pivot

pi of the overflowed node and the item pj with the maximum distance from pi and

(b) partitioning the items by assigning each item to the node whose pivot has the

closest distance with the item. We call this policy ‘‘MinOverlap’’.

4.5.1 Computing Diverse Subsets

BasicDisC. The Basic-DisC algorithm selects white items in random order. In the

Mtree implementation of Basic- DisC, we consider items in the order they appear

in the leaves of the Mtree, thus taking advantage of locality. Upon encountering a

white item pi in a leaf, the algorithm colors it black and executes a range query Q(pi, r)

to retrieve and color grey its neighbors. Since the neighbors of an indexed item are

expected to reside in nearby leaf nodes, such range queries are in general efficient. We

can visualize the progress of Basic-DisC as gradually coloring all items in the leaf

nodes from lefttoright until all items become either grey or black.

GreedyDisC. The Greedy-DisC algorithm selects at each iteration the best white item

according to the selection criterion C (line 6 of Algorithm 4.1). To efficiently implement

this selection, we maintain a sorted list, L, of all white items ordered as C dictates,

that is, by

• decreasing order of the size of their white neighborhood for the Minimum rDisC

Diverse Subset problem,

• decreasing order of the product of their weight and the (normalized) size of their

white neighborhood for the Minimum Weighted rDisC Diverse Subset problem,

and

• decreasing (resp. increasing) order of their radius for the Covering (resp. Cov

eredBy) problem for the multiple radii case.

Remember that, in all cases, ties are resolved by selecting the item with the largest

white neighborhood.
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Instead of performing one range query per item after building the tree to compute the

size of the white neighborhoods to initialize L, we compute such values incrementally

as we build the Mtree. At first, for each item pi, it holds that NW
r (pi) = Nr(pi). To

compute the neighborhood size of each item incrementally, when an item pi is inserted

into the Mtree, a range query Q(pi, r) is executed, the white neighborhood of pi is

initialized to |Q(pi, r)| and the size of the white neighborhoods of all items retrieved by

the range query are incremented by one. We found this incremental approach reduces

node accesses up to 45%.

Considering the maintenance of L, each time an item pi is selected and colored

black, its neighbors at distance r(pi) are colored grey. Therefore, we need to update the

ordering of a number of affected items. We consider two variations. The first variation,

termed Grey-Greedy-DisC, executes, for each newly colored grey neighbor pj of pi,

a range query Q(pj, r(pj)) to locate its neighbors and reduce by one the size of their

white neighborhood. The second variation, termed White-Greedy-DisC, executes

one range query for all remaining white items within distance less than or equal to

r(pi) + maxpj∈N(pi) r(pj) from pi. These are the only white items whose white neigh

borhood may have changed. Consider, for example, the items of Figure 4.20. For

simplicity, let all items have the same radius r. Assume that p1 has just been colored

black. Both variations will first execute a query Q(p1, r) to retrieve and color grey the

neighbors of p1, i.e., p2 and p3. After this, Grey-Greedy-DisC will execute the queries

Q(p2, r) and Q(p3, r) (thus retrieving p5 twice) to update the affected white neighbor

hoods of p4, p5 and p6, while Grey-Greedy-DisC will execute Q(p1, 2r) instead. Since

the cost of maintaining the exact size of the white neighborhoods may be large, we also

consider ‘‘lazy’’ variations. Lazy-Grey-Greedy-DisC only retrieves grey neighbors

at some distance smaller than r(pi), while Lazy-White-Greedy-DisC only retrieves

white items at some distance smaller than r(pi) + maxpj∈N(pi) r(pj).

Pruning. We make the following observation that allows us to prune subtrees while

executing range queries. Items that are already grey do not need to be colored grey

again when some other of their neighbors is colored black.

Pruning Rule: A leaf node that contains no white items is colored grey. When all its

children become grey, an internal node is colored grey. While executing range queries,

any topdown search of the tree does not need to follow subtrees rooted at grey nodes.

As the algorithms progresses, more and more nodes become grey, and thus, the

cost of range queries reduces over time. For example, we can visualize the progress of

the Basic-DisC (Pruned) algorithm as gradually coloring all tree nodes grey in a

postorder manner.

GreedyC. The Greedy-C algorithm considers at each iteration both grey and white

items. A sorted structure L has to be maintained as well, which now includes both

white and grey items and is substantially larger. Furthermore, the pruning rule is no

longer useful, since grey items and nodes need to be accessed again for updating the

size of their white neighborhood.
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Table 4.1: Input parameters.

Parameter Default value Range

Mtree node capacity 50 25  100

Mtree splitting policy MinOverlap various

Dataset cardinality 10000 579  50000

Dataset dimensionality 2 2  10

Dataset spatial distribution clustered uniform, clustered

Dataset weight distribution clustered uniform, clustered

Distance metric Euclidean Euclidean, Hamming

Radius assignment uniform uniform, weightbased

4.5.2 Adapting the Radius

For zoomingin, given an rDisC diverse subset S of P, we would like to compute an

r′DisC diverse subset S ′ of P, r′ < r, such that, S ′ ⊇ Sr. A naive implementation would

require as a first step locating the items in N I
r′,r(pi) (line 3 of Algorithm 4.2) by invoking

two range queries for each pi (with radius r and r′ respectively). Then, a diverse subset

of the items in N I
r′,r(pi) is computed either in a basic or in a greedy manner. However,

during the construction of S, items in the corresponding Mtree have already been

colored black or grey. We use this information based on the following rule.

Zooming Rule: Black items of S maintain their color in S ′. Grey items maintain their

color as long as there exists a black item at distance at most r′ from them.

Therefore, only grey nodes with no black neighbors at distance r′ may turn black

and enter S ′. To apply this rule, we augment the leaf nodes of the Mtree with the

distance of each indexed item pi to its closest black neighbor pj, since pi will continue

to be covered by pj for all r′ ≤ d(pi, pj).

The Basic-Zoom-In algorithm requires one pass of the leaf nodes. Each time

a grey item pi is encountered, we check whether it is still covered, i.e., whether its

distance from its closest black neighbor is smaller or equal to r′. If not, pi is colored

black and a range query Q(pi, r
′) is executed to locate and color grey the items for which

pi is now their closest black neighbor. At the end of the pass, the black items of the

leaves form S ′. The Greedy-Zoom-In algorithm involves the maintenance of a sorted

structure L of all white items. To build this structure, the leaf nodes are traversed,

grey items that are now found to be uncovered are colored white and inserted into L.

After this, L is sorted accordingly.

Zoomingout algorithms are implemented similarly to the zoomingin case.

4.6 Experimental Evaluation

In this section, we evaluate the efficiency and effectiveness of our algorithms using both

synthetic and real datasets. We first describe our datasets and algorithms and, then,
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Table 4.2: Algorithms.

Algorithm Abbreviation Description

Basic-DisC B-DisC Single radius: Selects items in order of appear

ance in the leaf level of the Mtree. Multiple

radii: Selects items in order of their radius.

Greedy-DiSc G-DisC Selects at each step the white item pi with the

largest value of C(pi).

→ Grey-Greedy-DisC Gr-G-DisC One range query per grey node at distance

r(pi) from pi.

−→ Lazy-Grey-Greedy-DisC L-Gr-G-DisC One range query per grey node at distance

r(pi)/2 from pi

→ White-Greedy-DisC Wh-G-DisC One range query per white node at distance

r(pi) + maxpj∈N(pi) r(pj) from pi.

−→ Lazy-White-Greedy-DisC L-Wh-G-DisC One range query per white node at distance

r(pi) +
(

maxpj∈N(pi)
r(pj)

)

/2 from pi.

Greedy-C G-C Selects at each step the nonblack item pi with

the largest value of C(pi).

present experimental results.

Datasets. Our synthetic datasets consist of multidimensional items, which are either

uniformly distributed in space or form (hyper) spherical clusters of different sizes. We

assign weights to items either uniformly or in a ‘‘clustered’’ manner around specific

target items, so that items that are closer to the target items get larger weights than

items further away. Clustered assignment is used to model the common case where we

have large weights around specific items that correspond to different interpretations of

the query. Thus, we have four combinations for our synthetic data based on the spatial

and weight distributions, namely ‘‘UniformUniform’’, ‘‘UniformClustered’’, ‘‘Clustered

Uniform’’ and ‘‘ClusteredClustered’’. We also employ four real datasets. Three of them

contain geographic information about (i) 5922 cities and villages in Greece (‘‘Greek

Cities’’) [5], (ii) the 590 highest populated cities in the world (‘‘World Cities’’) [8] and

(iii) 1000 apartments for sale in London (‘‘Nestoria’’) [6]. Weights are assigned uniformly

for ‘‘Greek Cities’’, based on higher population for ‘‘World Cities’’ and based on lower

price for ‘‘Nestoria’’. The fourth real dataset (‘‘Cameras’’) consists of 7 characteristics

for 579 digital cameras, such as brand and storage type [1]. We assign weights based

on a combination of the megapixels and the optical zoom of the cameras.

We normalize the values of all datasets in [0, 1]. We use the Euclidean distance

for the synthetic and geographical datasets, while for ‘‘Cameras’’, whose attributes are

categorical, we use d(pi, pj) =
∑

i δ
i(pi, pj), where δi(pi, pj) is equal to 1, if pi and pj

differ in the ith dimension and 0 otherwise, i.e., the Hamming distance. Note that the

choice of an appropriate distance metric is an important but orthogonal to our problem

issue.

Algorithms. We next briefly summarize the algorithms used throughout this section.
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• Unweighted DisC: We employ the Basic-DisC and Greedy-DisC algorithms.

Basic-DisC simply selects a valid DisC diverse subset, while Greedy-DisC

also attempts to minimize the size of the selected subset by selecting at each

step the white item pi with the largest |NW (pi)|. We use both variations of

Greedy-DisC, i.e., Grey-Greedy-DisC and White-Greedy-DisC, as well

as their lazy variations, i.e., Lazy-Grey-Greedy-DisC and Lazy-White-

Greedy-DisC (for r/2 and 3r/2 respectively), as described in Section 4.5.

• Weighted DisC: Again, we employ Basic-DisC and Greedy-DisC. The differ

ence now is that the greedy algorithms select at each step the white item pi with

the largest w(pi)
(

|NW
r (pi)|/maxpj∈P\S |NW

r (pj)|
)

. In case of ties, the item pi with the

largest |NW (pi)| is selected.

• Multiple radii DisC: When each item is assigned a different radius, Basic-DisC

is modified to consider items in decreasing or increasing order of their radius

for the Covering and CoveredBy problems respectively. Grey-DisC also con

siders the items in order of their radius but, in addition, selects the item pi

with the largest |NW (pi)| in case of ties. For the Covering problem, we use

r(pj) and r(pj)/2 for Grey-Greedy-DisC and Lazy-Grey-Greedy-DisC re

spectively. Note that, for the CoveredBy problem, our White-Greedy-DisC and

Lazy-White-Greedy-DisC algorithms are no longer applicable, since at each

step, after an item is selected for inclusion in the diverse set S, we have to check

every other item pj in P\S to see whether d(pi, pj) ≤ r(pj). Let rmax be the largest

radius in the dataset. Then, the affected items at each step are at distance at

most rmax from the selected item pi. Our implementation of Grey-Greedy-DisC

checks all items at distance rmax to update their white neighborhoods, while the

lazy variation checks all items at some distance smaller than that.

In all cases, we also consider the Greedy-C algorithm that produces covering but not

necessarily independent sets. Greedy-C works as Greedy-DisC with the difference

that both white and grey items are consider as candidates at each step.

Table 4.1 summarizes the values of the input parameters used in our experiments

and Table 4.2 summarizes the algorithms employed.

4.6.1 Unweighted DisC

We first consider the unweighted DisC case. We first compare the various algorithms

for computing DisC subsets in terms of cost and of the size of the produced subset.

We also evaluate the effect of specific characteristics of the datasets and of the Mtree.

We conclude the evaluation with a comparison of the result of DisC with the results of

other diversification methods.

Computational Cost. We measure the computational cost of our algorithms in terms

of node accesses in the employed Mtrees. Figure 4.21 reports this cost, as well as, the
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(e) Nestoria.
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Figure 4.21: Node accesses for Basic-DisC, Greedy-DisC and Greedy-C with and

without pruning for the unweighted case.

cost savings when the pruning rule of Section 4.5 is employed for Basic-DisC and

Greedy-DisC (as previously detailed, this pruning cannot be applied to Greedy-C).

Greedy-DisC has higher cost than Basic-DisC. The additional computational cost

becomes more significant as the radius increases. The reason for this is that Greedy-

DisC performs significantly more range queries. As the radius increases, items have

more neighbors and, thus, more Mtree nodes need to be accessed in order to retrieve

them, color them and update the size of the neighborhoods of their neighbors. On

the contrary, the cost of Basic-DisC is reduced when the radius increases, since it

does not need to update the size of any neighborhood. For larger radii, more items

are colored grey by each selected (black) item and, therefore, less range queries are

performed. Both algorithms benefit from pruning (up to 50% for small radii). We also

experimented with employing bottomup rather than topdown range queries. At most

cases, the benefit in node accesses was less than 5%.

Figure 4.22 compares Grey-Greedy-DisC with White-Greedy-DisC and their

corresponding lazy variations. We see that White-Greedy-DisC performs better than

Grey-Greedy-DisC for the clustered dataset as r increases. This is because in this

case, grey items share many common white neighbors which are accessed multiple

times by Grey-Greedy-DisC for updating their white neighborhood size and only

once by White-Greedy-DisC. The lazy variations reduce the computational cost

further as expected.
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(f) Cameras.

Figure 4.22: Node accesses for Basic-DisC and all variations of Greedy-DisC with

pruning for the unweighted case.

Solution Size. We next compare our various algorithms in terms of the size of the com

puted diverse subset (Table 4.3). We present results for our synthetic and one of our

real datasets. Results are similar for the omitted datasets. We consider Basic-DisC,

Greedy-DisC (note that, both Grey-Greedy-DisC and White-Greedy-DisC pro

duce the same solution) and Greedy-C. We also tested the lazy variations of the greedy

algorithm, namely Lazy-Grey-Greedy-DisC with distance r/2 and Lazy-White-

Greedy-DisC with distance 3r/2. Grey-Greedy-DisC locates a smaller DisC di

verse subset than Basic-DisC in all cases. The lazy variations also perform better

than Basic-DisC and comparable with Grey-Greedy-DisC. Lazy-White-Grey-

DisC seems to approximate better the actual size of the white neighborhoods than

Lazy-Grey-Greedy-DisC and produces smaller subsets. Greedy-C produces sub

sets with size similar with those produced by Grey-Greedy-DisC. This means that

raising the independence assumption does not lead to substantially smaller diverse

subsets in our datasets.

Impact of Dataset Cardinality and Dimensionality. In the rest of this section, unless

otherwise noted, we use the (Grey-)Greedy-DisC (Pruned) algorithm.

For this experiment, we employ the ‘‘Clustered’’ dataset. We vary its cardinal

ity from 5000 to 15000 items and its dimensionality from 2 to 10 dimensions. Fig

ure 4.23 shows the corresponding computational cost and solution size as computed

by Greedy-DisC. We observe that the solution size is more sensitive to changes in
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Table 4.3: Solution size (unweighted case).

(a) Uniform.

r

0.01 0.02 0.03 0.04 0.05 0.06 0.07

BDisC 3798 1364 679 395 272 187 145

GDisC 3217 1133 571 352 230 170 132

LGrGDisC 3332 1250 635 378 252 180 143

LWhGDisC 3248 1160 571 354 243 167 131

GC 3393 1113 558 347 224 163 128

(b) Clustered.

r

0.01 0.02 0.03 0.04 0.05 0.06 0.07

BDisC 1203 443 237 147 103 71 57

GDisC 1060 376 197 127 88 66 47

LGrGDisC 1133 435 254 167 118 88 65

LWhGDisC 1059 377 194 125 86 64 47

GC 1058 374 205 130 90 67 47

(c) World Cities.

r

0.01 0.02 0.03 0.04 0.05 0.06 0.07

BDisC 288 161 104 75 56 39 33

GDisC 274 129 87 63 44 33 28

LGrGDisC 276 141 95 68 50 35 32

LWhGDisC 274 136 87 61 48 35 30

GC 282 137 89 64 43 34 30

cardinality when the radius is small. The reason for this is that for large radii, a se

lected item covers a large area in space. Therefore, even when the cardinality increases

and there are many available items to choose from, these items are quickly covered by

the selected ones. In Figure 4.23(a), the increase in the computational cost is due to

the increase of range queries required to maintain correct information about the size of

the white neighborhoods.

Increasing the dimensionality of the dataset causes more items to be selected as

diverse as shown in Figure 4.23(d). This is due to the ‘‘curse of dimensionality’’ effect,

since space becomes sparser at higher dimensions. The computational cost may how

ever vary as dimensionality increases, since it is influenced by the cost of computing

the neighborhood size of the items that are colored grey.

Impact of Mtree Characteristics. Next, we evaluate how the characteristics of the

employed Mtrees affect the computational cost of computed DisC diverse subsets. Note

that, different tree characteristics do not have an impact on which items are selected

as diverse.

Different degree of overlap among the nodes of an Mtree may affect its efficiency for

executing range queries. To quantify such overlap, we employ the fatfactor [63] of a
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(c) Node accesses (n = 10000).
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(d) Solution size (n = 10000).

Figure 4.23: Varying (a)(b) cardinality (for 2 dimensions) and (c)(d) dimensionality (for

10000 items).

tree T defined as:

f(T ) =
Z − nh

n
· 1

m− h

where Z denotes the total number of node accesses required to answer point queries

for all items stored in the tree, n the number of these items, h the height of the tree and

m the number of nodes in the tree. Ideally, the tree would require accessing one node

per level for each point query which yields a fatfactor of zero. The worst tree would

visit all nodes for every point query and its fatfactor would be equal to one.

We created various Mtrees using different splitting policies which result in different

fatfactors. We present results for four different policies. The lowest fatfactor was

acquired by employing the ‘‘MinOverlap’’ policy. Selecting as new pivots the two items

with the greatest distance from each other resulted in increased fatfactor. Even higher

fatfactors were observed when assigning an equal number of items to each new node

(instead of assigning each item to the node with the closest pivot) and, finally, selecting

the new pivots randomly produced trees with the highest fatfactor among all policies.

Figure 4.24 reports our results for our uniform and clustered 2dimensional datasets

with cardinality equal to 10000. For the uniform dataset, we see that a high fatfactor

leads to more node accesses being performed for the same solution. This is not the case

for the clustered dataset, where items are gathered in dense areas and thus increasing

the fatfactor does not have the same impact as in the uniform case, due to pruning
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Figure 4.24: Varying Mtree fatfactor.

and locality. As the radius of the computed subset becomes very large, the solution

size becomes very small, since a single item covers almost the entire dataset, this is

why all lines of Figure 4.24 begin to converge for r > 0.5.

We also experimented with varying the capacity of the nodes of the Mtree. Trees

with smaller capacity require more node accesses since more nodes need to be recovered

to locate the same items; when doubling the node capacity, the computational cost was

reduced by almost 45%.

Comparison with Other Methods. Next, we compare the diverse subsets produced by

DisC with those produced by other diversification methods, in particular by MaxMin

and MaxSum. To implement MaxMin and MaxSum, we used the most widely used greedy

algorithms for these problems. MaxMin selects items so as to maximize their minimum

pairwise distance, while MaxSum so as to maximize their average pairwise distance.

Both algorithms take as input the desired size k of the result. To compare the results,

we compute DisC for various values of r. For each value of r, we compute MaxMin

and MaxSum setting k equal to the size of the result produced by DisC. In Figure 4.25,

we report the minimum and average pairwise distances of the results. The minimum

distance among the items selected by Greedy-DisC is very close to that of MaxMin.

For comparison, we also report the minimum and average distance among k random

items. Note that, MaxMin and MaxSum attempt to optimize only the minimum and

average distance respectively and do not consider coverage or other criteria.

4.6.2 Weighted DisC

Next, we consider the weighted DisC problem and evaluate the quality (i.e, size, weight

and diversity) of the results produced by various algorithms when the weight of the

items is taken into account. We report results for Basic-DisC, Greedy-DisC and

Greedy-C for the weighted version of the problem. We also report results for the lazy

variations of Greedy-DisC (the two nonlazy versions of Greedy-DisC produce the

same sets, only at different computational cost).
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Figure 4.25: Minimum and average distnace for MaxMin, MaxSum, Greedy-DisC and

Greedy-C for the unweighted case.

Solution Size. The produced subsets are slightly larger than those of the unweighted

version (Table 4.4) in all cases (except from Basic-DisC which is the same, since

Basic-DisC produces an independent and covering subset without considering the

size or the weight of the resulting subset). This happens because our algorithms are now

selecting items based on both the weight and the neighborhood size of the items and,

thus, items with large weights enter the diverse set even if they do not cover as many

other items. Finally, note that, when weights are considered, the subsets produced for

‘‘UniformClustered’’ are generally smaller than those of ‘‘UniformUniform’’, since in

this case items with larger weights are closer to each other.

Average Weight. Figure 4.26 shows the average weight of the subsets produced by

our algorithms. We also report the average weight of the topk items with the largest

weights, for k equal to the size of the subset generated by Greedy-DisC. Greedy-C

achieves a larger average weight. This happens because Greedy-C is not restricted to

selecting dissimilar items and, thus, nearby items with large weights can all be selected.

The Lazy-Grey-Greedy-DisC algorithm performs better than the nonlazy variation

for the ‘‘ClusteredClustered’’ dataset, since items with large weights are located nearby

in that case and the lazy update of the white neighborhoods of the items allows more

such items to enter the diverse subset.

Minimum Distance. Next, we report the minimum pairwise distance among the se

lected items for the weighted version of the problem as compared to selecting the topk

91



Table 4.4: Solution size (weighted case).

(a) UniformUniform.

r

0.01 0.02 0.03 0.04 0.05 0.06 0.07

BDisC 3798 1364 679 395 272 187 145

GDisC 3557 1226 624 382 259 187 141

LGrGDisC 3601 1283 645 387 264 185 144

LWhGDisC 3560 1227 618 371 248 179 131

GC 3643 1235 612 370 249 176 131

(b) UniformClustered.

r

0.01 0.02 0.03 0.04 0.05 0.06 0.07

BDisC 3798 1364 679 395 272 187 145

GDisC 3201 1133 569 358 234 168 126

LGrGDisC 3324 1250 640 378 255 180 142

LWhGDisC 3230 1149 576 359 232 173 128

GC 3323 1103 558 336 229 162 123

(c) World Cities.

r

0.01 0.02 0.03 0.04 0.05 0.06 0.07

BDisC 288 161 104 75 56 39 33

GDisC 288 160 94 73 55 38 33

LGrGDisC 292 158 94 73 57 41 34

LWhGDisC 289 159 95 73 55 38 33

GC 301 165 100 82 60 40 35

most relevant items, for k equal to the size of the subset generated by Greedy-DisC.

Figure 4.27 shows the results. We see that the results produced by just selecting the

items with the topk weights are very close to each other and thus exhibit very poor

diversity. We also see that the increased average weight of Greedy-C (Figure 4.26)

has the tradeoff of selecting items that are much closer to each other, especially for

smaller radii.

4.6.3 Multiple Radii DisC

Next, we evaluate some interesting issues concerning using multiple radii.

Tuning the radius of a specific area. First, we see how we can use multiple radii so

as to tune the number of diverse items selected from a specific area of the dataset. For

this experiment, we consider our ‘‘Uniform’’ dataset. We partition the dataset in four

areas of equal size and set the radius of all items in the first three areas equal to 0.05,

while varying the radius of the items in the fourth area from 0.01 to 0.10. Figure 4.28(a)

reports the number of selected items from the fourth, ‘‘tunable’’ area, as well as, each of

the other three ‘‘nontunable’’ areas. We see that by varying the radius of the ‘‘tunable’’

area, we can over or underrepresent it in the diverse subset, according to our liking.

The percentage of the items this tunable area contributes to the diverse set is depicted
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(g) Nestoria.

1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

radius

A
ve

ra
ge

 r
el

ev
an

ce

 

 

B−DisC
G−DisC
L−Gr−G−DisC
L−Wh−G−DisC
Greedy−C
Top−k

(h) Cameras.

Figure 4.26: Average weight for Basic-DisC, Greedy-C and all variations of

Greedy-DisC for the weighted case.

in Figure 4.28(b).

Covering vs. CoveredBy problems. Figure 4.29 shows the size and average weight

for the Covering and CoveredBy problems for our uniform dataset, when weights are

assigned both uniformly (‘‘UniformUniform’’) or in a clustered manner (‘‘Uniform

Clustered’’). For comparison, rather than assigning radii based on specific charac

teristics of our datasets, we assign radii uniformly in (0, 2r], where r is the one shown

in the xaxis of the figures. In the case of uniformly distributed weights, the Covering

variation achieves a larger average weight. This, however, is not the case for clustered

weights, where the CoveredBy variation performs better. This happens because, for

CoveredBy, it is more difficult for items with large weight to block other items with

large weight that are close to them from entering the diverse subset. This is also the

reason, however, why the solutions retrieved by CoveredBy are generally larger in size.
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(b) UniformClustered.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

radius

M
in

im
um

 D
is

ta
nc

e

(c) ClusteredUniform.
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(e) Greek Cities.
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(f) World Cities.
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(g) Nestoria.
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Figure 4.27: Minimum distance among the selected items for Greedy-DisC,

Greedy-C and the topweighted items for the weighted case.

4.6.4 Zooming.

In the following, we evaluate our zooming algorithms. We begin with the zoomingin

algorithms. To do this, we first generate solutions with Greedy-DisC for a specific

radius r and then adapt these solutions for radius r′. We use Greedy-DisC because

it gives the smallest sized solutions. We compare the results to the solutions generated

from scratch by Greedy-DisC for the new radius. The comparison is made in terms

of solution size, computational cost and also the relation of the produced solutions. In

general, we would like the solutions produced to share many common items so as to

achieve a sense of continuity for the results presented to the user. We evaluate the

similarity between solutions using the Jaccard distance. Given two sets S1, S2, their
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Figure 4.28: Tuning the radius of a specific area.

Jaccard distance is defined as:

Jaccard(S1, S2) = 1− |S1 ∩ S2|
|S1 ∪ S2|

The Jacard distance is 0 when S1 = S2 and 1 when the S1 and S2 are disjoint. Fig

ure 4.30 and Figure 4.31 report the corresponding results for different radii. Due to

space limitations, we report results for the ‘‘Clustered’’ and ‘‘Cities’’ datasets. Simi

lar results are obtained for the other datasets as well. Each solution reported for the

zoomingin algorithms is adapted from the Greedy-DisC solution for the immediately

larger radius and, thus, the xaxis is reversed for clarity; e.g., the zooming solutions

for r = 0.02 in Figure 4.30(a) and Figure 4.31(a) are adapted from the Greedy-DisC

solution for r = 0.03.

We observe that the zoomingin algorithms provide similar solution sizes with those

of Greedy-DisC in most cases, while their computational cost is smaller, even for

Greedy-Zoom-In. More importantly, the Jaccard distance of the adapted solutions

for r′ to the Greedy-DisC solution for r is much smaller than the corresponding

distance of the Greedy-DisC solution for r′ (Figure 4.32). This means that computing

a new solution for r′ from scratch changes most of the items returned to the user, while

a solution computed by a zoomingin algorithm maintains many common items in the

new solution. Therefore, the new diverse subset is intuitively closer to what the user

expects to receive.

Figure 4.33 and Figure 4.34 show corresponding results for the zoomingout al

gorithms. The Greedy-Zoom-Out(c) algorithm achieves the smallest adapted DisC

diverse subsets. However, its computational cost is very high and generally exceeds the

cost of computing a new solution from scratch. Greedy-Zoom-Out(a) also achieves

similar solution sizes with Greedy-Zoom-Out(c), while its computational cost is

much lower. The nongreedy algorithm has the lowest computational cost. Again, all

the Jaccard distances of the zoomingout algorithms to the previously computed so

lution are smaller than that of Greedy-DisC (Figure 4.35), which indicates that a

solution computed from scratch has only a few items in common from the initial DisC

diverse set.
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(b) UniformClustered: size.
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Figure 4.29: Covering vs. CoveredBy variations for the multiple radii case.

4.7 Related Work

In this section, we first overview other diversity definitions proposed in the related

literature and discuss how our DisC definition of diversity is related to them. Then, we

review related work on the use of indices for the efficient implementation of diverse item

selection. Finally, we present related work from the field of graph theory concerning

independent and dominating sets.

Other Diversity Definitions. Diversity has recently attracted a lot of attention as a

means of counteracting the overspecialization problem and enhancing user satisfac

tion [109, 15, 57, 19]. Diverse results have been defined in various ways [42], namely

in terms of content (or similarity), novelty and semantic coverage.

Most contentbased definitions (e.g., [114]) interpret diversity as an instance of

the pdispersion problem, which is generally defined as selecting p out of n items, so

that some objective function based on the chosen items is optimized. A number of

variations of the pdispersion problem have been extensively studied in the field of

operations research (e.g., [48, 91, 26]). In the field of result diversification, the objective

most usually employed is that of maximizing the minimum distance among any pair of

selected items. This problem is most often referred to as the MaxMin diversification

problem (e.g., [45]). Other works consider the MaxSum diversification problem instead

(e.g., [109, 19]), whose objective is to select p out of n items, so that the average

distance between the chosen items is maximized. Our approach here differs from
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Figure 4.30: Solution size for zoomingin.
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Figure 4.31: Node accesses for zoomingin.

those two traditional diversification problems, in that the size of the diverse subset

is not an input parameter. Instead, users can explicitly define the desired degree of

diversification via the radius r and later adapt the retrieved solutions by tuning r to

see more or less diverse results.

Diversity is often combined with other criteria, most often that of relevance, to se

lect items that are both highly relevant to a user query, as well as, diverse to each

other. Assuming that each item pi is associated with some weight w(pi), a common

way to combine the two criteria is to use a diversification factor λ, λ > 0, and se

lect the subset with the largest value of minpi∈S w(pi) + λ minpi,pj∈S
pi 6=pj

d(pi, pj) and (k −
1)

∑

pi∈S w(pi)+ 2λ
∑

pi,pj∈S d(pi, pj) for the MaxMin and MaxSum problems respectively

(e.g., [57]). Another common approach is Maximal Marginal Relevance (MMR) [23], in

which weights and diversity are linearly combined when items are selected. For exam

ple, for the MaxMin problem, for some λ′, 0 ≤ λ′ ≤ 1, at each iteration of the various

greedy algorithms, the item pi with the largest value of λ′w(pi)+(1−λ′) minpj∈S d(pi, pj)

is selected. Our approach here is different, since we are not restricted by the number

k of selected items but, instead, seek a subset of dissimilar items that can cover the

available space. Therefore, we aim at selecting a valid DisC subset that minimizes the

objective of Definition 4.3, i.e., we favor smaller DisC subsets containing highly relevant

items. Also, we can employ multiple radii to tune the importance of different areas in
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Figure 4.32: Jaccard distance for zoomingin.

0.02 0.03 0.04 0.05 0.06 0.07
0

100

200

300

400

500

600

700

800

900

radius

D
is

C
 d

iv
er

se
 s

ub
se

t s
iz

e

 

 

Greedy−DisC
Basic−Zoom−Out
Greedy−Zoom−Out (a)
Greedy−Zoom−Out (b)
Greedy−Zoom−Out (c)

(a) Clustered.

0.0025 0.005 0.0075 0.01 0.0125
0

500

1000

1500

2000

2500

radius

D
is

C
 d

iv
er

se
 s

ub
se

t s
iz

e

 

 

Greedy−DisC
Basic−Zoom−Out
Greedy−Zoom−Out (a)
Greedy−Zoom−Out (b)
Greedy−Zoom−Out (c)

(b) Cities.

Figure 4.33: Solution size for zoomingout.

the dataset, as opposed to treating all items in the same way as in those traditional

approach.

Another line of research aims at selecting diverse results similarly to topk results

by employing some sort of threshold algorithm, often attempting to incorporate weights

to this threshold (e.g., [87, 22]). This approach is more common in noveltybased defi

nitions of diversity in information retrieval (e.g., [35, 115]). There is a crucial difference

between the two problems, however, in that the diversity of a single item cannot be

computed independently from the other items as in the topk case, since all diversity

measures require comparing the item with any previously selected ones. In this spirit,

[24] presents an approach for lowdimensional vector spaces in which the computation

of the solution requires the availability of both relevancebased and distancebased

sorted access methods. Items are selected in rounds; at each round a portion of the

available space around the already selected items is pruned from further consideration.

A number of variations of sorted and random accesses are also employed in [15] to re

trieve a topk list of relevant and diverse results. However, the focus of that work is on

scheduling the order of the various accesses for cost efficiency rather than maximizing

the quality of the retrieved solutions. Generally, such diversity threshold scores are

hard to interpret, since they do not depend solely on the item. Instead, the score of each

item is relative to which items precede it in the rank. Our approach is fundamentally
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Figure 4.34: Node accesses for zoomingout.
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Figure 4.35: Jaccard distance for zoomingout.

different in that we treat the result as a whole and select DisC diverse subsets of it that

fully cover it.

Another related problem is that of extending nearest neighbor search to selecting

k neighbors that are not only spatially close to the query item but are also diverse to

each other [92, 62, 10]. Such works usually focus on exploiting thresholds and space

pruning techniques to enforce diversity during the retrieval of the nearest neighbors

of a query item. Our work is different since our goal is not to locate the nearest and

most diverse neighbors of a single item but rather to locate an independent and covering

subset of the whole dataset. On a related issue, selecting k representative skyline items

is considered in [101], where representative items are selected so that the distance

between a nonselected skyline item from its nearest selected item is minimized and

[105], where the dominance relationships among items are exploited to select a diverse

subset of the skyline items.

Clustering is a research field related to that of diversification, since cluster medoids

can be viewed as representative items (e.g., [79]). Medoids were extended in [18] to

include some sense of relevance (priority medoids). However, there are fundamental

differences between the two problems, since clustering aims at selecting representatives

that minimize some intracluster distance, which leads medoids to be drawn to dense

areas of items. Thus, items selected by clustering algorithms may not be as distant
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from each other as items selected by diversification algorithms. Furthermore, medoids

may not cover all the available space. Perhaps the clustering works mostly related to

our are those on detecting distancebased outliers (e.g., [70]). An item is considered a

distancebased outlier if there are less than m other items lying at distance at most r

from it. However, outliers and rDisC diverse items are two distinctive sets. A major

difference is that the decision whether an item is an outlier depends only on the size

of its neighborhood and not on whether other neighbor items are outliers or not. This

is not the case for rDisC diverse items, since the decision to select an item as rDisC

diverse affects other items as well.

Finally, the problem of diversifying continuous data has been recently considered in

[45, 86, 84] using a number of variations of the MaxMin and MaxSum diversification

models.

IndexBased Implementations of Diversification Algorithms. Due to the NPhard

ness of the diversification problem (e.g., [38]), many heuristics have been proposed

for locating approximate solutions. Most of these can be classified as either greedy

or interchange (swap) heuristics [42]. In greedy heuristics, items are iteratively se

lected in rounds in the diverse set. The complexity of greedy heuristics in terms of

computed distances ranges from O(k2n) to O(n2) depending on the initialization step,

while 1/2approximations of the optimal solutions can be achieved for both the MaxMin

and MaxSum problems (e.g., [100]). Interchange heuristics initialize S with a random

solution and then iteratively attempt to improve it by interchanging an item in S with

another item that is not in S. Their worst case complexity is O(nk).

Here, we used the Mtree to implement our approach and exploited its properties,

as well as our pruning rule, to reduce the computational cost of our approach. Indices

have been used in the past for result diversification, most recently in [45], where a

number of algorithms, as well as a fast implementation of the greedy heuristic, based

on Cover Trees are proposed for the MaxMin diversification problem. A Dewey encoding

of database tuples enables them to be organized in a tree structure which is later

exploited to select the k most diverse of them in [107]. A similar approach is followed

in [76]. However, the proposed methods are limited to a specific diversity measure and

cannot be applied in the general case. A spatial index is also exploited in [59] to locate

those relevant nearest neighbors of an item that are the most distant to each other.

Results from Graph Theory. The properties of independent and dominating (or cov

ering) subsets have been extensively studied in graph theory. A number of different

variations exist (e.g., [58, 55]). Among these, the Minimum Independent Dominating

Set problem is equivalent to the rDisC diversity problem. The problem of locating a

Minimum Independent Dominating Set has been shown to have some of the strongest

negative approximation results: in the general case, it cannot be approximated in poly

nomial time within a factor of n1−ǫ for any ǫ > 0 unless P = NP [58]. However, some

approximation results and faster algorithms have been found for special graph cases,

such as bounded degree graphs and unit disk graphs (e.g, [32, 14, 52, 36, 56, 20]). In
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our work, rather than providing polynomial approximation bounds for DisC diversity,

we focus on the efficient computation of nonminimum but small DisC diverse subsets

and their adaptation to new radii.

Weighted variations of independent and dominating graphs also exist (e.g., [120,

65]). Most commonly, graph vertices are associated with some weight and we seek to

locate the independent and dominating subgraph with the maximum or the minimum

sum of weights. This is usually referred as the Maximum (or Minimum) Weighted In

dependent Dominating Set problem. Clearly, the weighted case is at least as hard to

be solved as the unweighted one. Moreover, since most approximation bounds for the

unweighted problem rely on the average degree of the underlying graph, locating such

bounds for the weighted case is even more challenging, since adding vertices of any

weight can arbitrarily change the average degree of the graph.

We have seen that our multiple radii approach can be modeled via directed graphs.

Related work on directed graphs is considerably more limited. An extra challenge in

this case is that not all directed graphs have an independent dominating set. In [83] a

number of conditions for the existence of an independent dominating set for a number

of different kinds of graphs are provided. Some related work also exists on locating

minimum dominating (but not independent) sets (e.g., [85, 28]).

Finally, there is a substantial amount of related work in the field of wireless networks

research, since a Minimum Connected Dominating Set of wireless nodes can be used as

a backbone for the entire network (e.g, [103]). However, allowing the dominating set

to be connected has an impact on the complexity of the problem and allows different

algorithms to be designed. Here, we require diverse items to be dissimilar to each other,

thus, such approaches cannot be exploited.

4.8 Summary

In this chapter, we proposed a novel, intuitive definition of diversity as the problem

of selecting a minimum representative subset S of a result P, such that each item

in P is represented by a similar item in S and that the items included in S are not

similar to each other. Similarity is modeled by a radius r around each item. We

call such subsets rDisC diverse subsets of P. We introduced weighted and multiple

radii variations of DisC subsets and, also, adaptive diversification through decreasing

r, termed zoomingin, and increasing r, called zoomingout. Since locating minimum

rDisC diverse subsets is an NPhard problem, we introduced heuristics for computing

approximate solutions, including incremental ones for zooming, and provided corre

sponding theoretical bounds. We also presented efficient implementations based on

spatial indexing.
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Chapter 5

Poikilo: A System for Evaluating the

Results of Diversification Models and

Algorithms

5.1 Diversification Models

5.2 Algorithms

5.3 Other Features

5.4 System Description

5.5 Summary

I
n the previous chapters, we described result diversification in detail and detailed a

wide range of its applications. Different diversification methods aim at optimizing

different diversification criteria. Often, it is not clear what method is more suitable

for a specific application. Here, we present Poikilo (from the greek πoικίλo, meaning

‘‘diverse’’), a system designed to assist users in locating, visualizing and comparing

diverse results based on a suite of different diversification models and algorithms. We

provide implementations of a wide variety of diversification approaches for retrieving

diverse results. For the case in which the degree of diversification is specified by

a radius, we also provide an interactive zoomin and zoomout form of functionality

(Figure 5.2).

Often, results are associated with a relevance score. Poikilo includes various meth

ods for combining relevance and diversity in selecting representative results. Further

more, we consider the case of streaming data, where the query results change over

time and so does the diverse result presented to the users. We employ a sliding win

dow streaming model and provide options to navigate between consequent windows of

diverse results.
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Figure 5.1: Poikilo user interface. Users can upload data, configure diversification

options and see diversified results. Diverse results are shown as solid circles, while

their size varies based on their relevance.

Users of Poikilo can submit queries to a number of different datasets and see a

visualization of a diversified subset of their query result (Figure 5.1). We provide vari

ous synthetic and real datasets. Users can also upload their own datasets. Users can

choose among a wide selection of diversification algorithms and specify various config

uration parameters. Furthermore, they can zoomin and zoomout of this initial diverse

subset and navigate between consequent windows in the case of streaming data.

5.1 Diversity Models

Various models have been proposed for result diversification [42]. In this section, we

describe the various models made available to users by Poikilo. Most of these models

involve the use of a distance function. We have implemented the most common distance

functions (e.g., Euclidean, cosine). In addition, users can select which of the attributes

of each item will be used for diversification.

Dispersion models. The most widespread diversity models are related to the k

dispersion problem, defined as selecting k out of a set P of items in some space, such

that some objective function is maximized. Common variations include the MaxMin

and MaxSum methods. Given a distance metric d and an integer k, k > 1, MaxMin aims

at locating a subset S of P with k items, such that, the minimum pairwise distance

among any items in S is maximized. MaxSum, on the other hand, aims at maximizing

the sum of the respective pairwise distances. That is, the two models aim at maximizing
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(a) Initial diverse items. (b) Zoomingin. (c) Zoomingout.

Figure 5.2: Zooming operations in action in Poikilo. Selected items are shown as solid

circles.

(a) DisC. (b) MaxMin. (c) MaxSum. (d) kMedoids.

Figure 5.3: Comparison of various diversification models.

the following diversity functions:

fMin(S, d) = min
pi,pj∈S

d(pi, pj) and fSum(S, d) =
∑

pi,pj∈S

d(pi, pj) (5.1)

Intuitively, MaxMin aims at discouraging the selection of nearby items, while MaxSum

at increasing the average pairwise distance among all items.

DisC diversity. DisC is a recently proposed model that combines coverage and diversity

[44]. Let Nr(pi) be the neighborhood of an item pi ∈ P, i.e., the items lying at distance

at most r from pi. r, r ≥ 0, is a tuning parameter called radius. Let also N+
r (pi) be the

set Nr(pi) ∪ {pi}. Intuitively, we would like to select exactly one item from each item’s

neighborhood.

Definition 5.1. (rDisC Diverse Subset) Let P be a set of items and r, r ≥ 0, a real

number. A subset S ⊆ P is an rDissimilar and Covering subset, or rDisC diverse

subset, of P, if the following two conditions hold: (i) (coverage condition) ∀pi ∈ P,

∃pj ∈ N+
r (pi), such that pj ∈ S and (ii) (dissimilarity condition) ∀ pi, pj ∈ S with i 6= j,

it holds that d(pi, pj) > r.

Given P, we would like to select the smallest number of dissimilar and covering
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items.

Definition 5.2. (Minimum rDisC Diverse Subset) Given a set P of items and a radius

r, find an rDisC diverse subset S∗ of P, such that, for every rDisC diverse subset S

of P, it holds that |S∗| ≤ |S|.

The DisC model allows an interactive mode of operation where, after being presented

with an initial set of results for some radius r, a user can see either more or less results

by decreasing or increasing r. Specifically, given a set of items P and an rDisC diverse

subset Sr of P, we want to compute an r′DisC diverse subset Sr′ of P. Zooming can be

global, in the sense that the radius r is modified similarly for all items in P, or local, i.e.,

modifying the radius only for a specific area of the data set. To support an incremental

mode of operation, the set Sr′ should be as close as possible to the already seen result

Sr. Ideally, Sr′ ⊇ Sr, for r′ < r and Sr′ ⊆ Sr, for r′ > r. Although in general there is no

monotonic property among the optimal rDisC diverse and r′DisC diverse subsets of a

set of items P, for r 6= r′, we provide heuristics that achieve these requirements.

Other models. Often, clustering methods have been proposed as an alternative to

selecting diverse items. In this case, the diverse set consists of representatives from

each cluster. For example, kmedoids seeks to minimize 1
|P|

∑

pi∈P d(pi, c(pi)), where

c(pi) is the closest item of pi in the selected subset. We also consider other diversifica

tion models, such as the Greedy Marginal Contribution and Greedy Randomized with

Neighborhood Expansion models presented in [109]. Our tool can be easily extended

with additional methods as well.

Figure 5.3 shows the diverse sets located by Poikilo for some of the different ap

proaches. Generally, MaxSum and kmedoids fail to cover all areas of the dataset;

MaxSum tends to focus on the outskirts of the dataset, whereas kmedoids clustering

reports only central points, ignoring sparser areas. MaxMin performs better in this as

pect. However, since MaxMin seeks to retrieve objects that are as far apart as possible,

it fails to retrieve objects from dense areas; see, for example, the central areas of the

clusters in Figure 5.3. DisC gives priority to such areas and, thus, such areas are

better represented in the solution. Note also that MaxSum and kmedoids may select

near duplicates, as opposed to DisC and MaxMin.

5.2 Algorithms

Due to the NPhardness of most of the models of the diversification problem, a number

of different heuristics have been proposed (e.g., see [48]). Poikilo provides various

implementations of different variations of such heuristics.

For MaxMin and MaxSum, a simple iterative greedy heuristic has been shown to

provide 1/2approximations of the optimal solution. In this heuristic, first, the two

furthest apart items of P are added to S. Then, at each iteration, one more item is

added to S. The item that is added is the one that has the maximum distance from
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Figure 5.4: Zoomingin in action.

the items already in S. Interchange heuristics are often used as well. Such heuristics

are initialized with a random solution S and then iteratively attempt to improve that

solution by interchanging an item in the solution with another item that is not in the

solution. Usually, the item that is eliminated from the solution at each iteration is one of

the two closest items in it. We provide various interchange heuristics, e.g., performing

at each iteration the first interchange that improves the solution (FirstInterchange) or

considering all possible interchanges and perform the one that improves the solution

the most (BestInterchange).

Poikilo also provides an implementation of all the algorithms presented in [44] for

computing DisC diverse subsets. These are graphbased algorithms that use a spatial

index structure, namely the Mtree, to efficiently execute neighborhood queries. We

briefly describe some of them next. Let us call black the items of P that are in S, grey

the items covered by S and white the items that are neither black nor grey. The Basic

DisC heuristic initially considers that S is empty and all items are white. The algorithm

proceeds in rounds; until there are no more white items, it selects an arbitrary white

item pi, colors pi black and colors all items in Nr(pi) grey. The GreedyDisC heuristic,

instead of selecting white items arbitrarily at each round, selects the white item with

the largest number of white neighbors, that is, the white item that covers the largest

number of uncovered items. For zoomingin, i.e., for r′ < r, we can construct r′DisC

diverse sets that are supersets of Sr by adding items to Sr (Figure 5.4). The items to be

added are either selected randomly or in a greedy manner, where at each turn the item

that covers the largest number of uncovered items is selected. For zoomingout, i.e.,
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Figure 5.5: Zoomingout in action.

for r′ > r, in general, there may be no subset of Sr that is r′DisC diverse. We provide

a suite of algorithms that focus on minimizing Sr\Sr′, i.e., the set of items that belong

to the previous diverse subset but are removed from the new one, and Sr′\Sr, i.e., the

set of the new items added to Sr′ (Figure 5.5).

5.3 Other Features

We also consider a number of aspects complimentary to diversification, namely, com

bining diversity with relevance and handling streaming data.

5.3.1 Relevance

In many cases, the items in a result set are associated with a relevance score, most

often based on their relevance to the user query. In such cases, it is important to

retrieve items that are highly relevant to the user query. In general, the relevance score

of an item is application dependent. Without loss of generality, we assume a relevance

function w : P → R+ that assigns a relevance score to each item, where a higher value

indicates that the item is more relevant to a particular query.

Dispersionbased models combine relevance and diversity using parameters for tun

ing the degree of diversification. Most common approaches use weights, for example

a parameter σ, 0 ≤ σ ≤ 1, to weight the relevance of each item against its distance
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(a) Diversity only. (b) Diversity and rele

vance.

Figure 5.6: Combining diversity and relevance. Larger item size denotes higher rel

evance. In (a) some areas are covered by items with very low relevance, while in (b)

highly relevant items are selected.

from other items during the selection process (a method called MMR [23]) or using a

parameter λ, λ ≥ 0 to favor the selection of diverse results among relevant ones. In

the latter case, the corresponding relevanceaware diversity functions for MaxMin and

MaxSum are:

fMin(S, d) = min
pi∈S

rel(pi) + λ min
pi,pj∈S

d(pi, pj) and (5.2)

fSum(S, d) = (k − 1)
∑

pi∈S

rel(pi) + 2λ
∑

pi,pj∈S

d(pi, pj) (5.3)

In Poikilo, users can select how to combine relevance with diversity and specify the

value of related tuning parameters.

Concerning the DisC model, we define the Weighted rDisC Diverse Subset Problem:

Definition 5.3. (Minimum Weighted rDisC Diverse Subset) Given a set P of items with

each object pi ∈ P associated with a weight w(pi) and a radius r, find an rDisC

diverse subset S∗ of P, such that, for every rDisC diverse subset S of P, it holds that
∑

pi∈S∗
1

w(pi)
≤∑

pi∈S
1

w(pi)
.

Figure 5.6 reports solutions for the same dataset and radius when relevance is

considered or not. Again, we provide implementations of many different algorithms for

handling relevance.

5.3.2 Streaming data

We also consider the dynamic case in which items change over time, as for example, in

the case of notification services. We adopt a slidingwindow model where diverse items

are computed over sliding windows of length w in the input data. The length of the

window w can be defined either in time units (e.g., ‘‘the most diverse items in the last

hour’’) or in number of items (e.g., ‘‘the most diverse items among the 100 most recent

ones’’).
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Figure 5.7: Poikilo system architecture.

We have implemented the indexbased algorithms proposed in [39, 45], using Cover

Trees to dynamically update the diverse subset of each window. We also provide the

option to enforce the continuity properties proposed in [39, 45] among consequent

windows. For example, the order in which the diverse items are delivered to the users

should follow the order of their generation. Also, an item should not appear, disappear

and then reappear in the diverse set.

5.4 System Description

Poikilo is a Web Application implemented in Java EE using JavaServer Faces 2.0.

Poikilo can be accessed via a simple web browser using an intuitive GUI (Figure 5.1).

The system architecture can be seen in Figure 5.7. During the demonstration, users

will be allowed to submit queries to a number of different datasets, see diverse results

and tune a variety of diversification parameters.

We provide a number of datasets, both real and synthetic. Our synthetic datasets

consist of points in the 2D plane. Points are either uniformly distributed in space or

form clusters of different sizes. Relevance scores are also assigned to items in a uniform

or clustered way. We also use a number of real datasets, such as two spatial datasets

containing geographic information about the location of (i) 5922 cities and villages in

Greece [5], (ii) apartments in various cities (London, Paris etc.) collected from [6] and

also a dataset consisting of images of people posing with different facial expressions [2].

Users can also upload their own datasets to the system via the GUI.

Upon entering the system, users are presented with a panel providing a wide variety

of different diversification options (Figure 5.8). First, they select a dataset along with a

distance metric (e.g., Euclidean, cosine, Harversine) and a diversification model (e.g.,

DisC, MaxMin, MaxSum). Then, according to the selected model, a number of algorithms

and options become available to them. For example, they can select a diversification

algorithm (e.g., BasicDisC or BestInterchange) and algorithmspecific parameters (e.g.,

r, k). Also, they can choose whether to also account for relevance or not during the
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Figure 5.8: Selecting diversification parameters.

Figure 5.9: Diverse results for our images dataset.

selection of representative results and also whether to treat the input data as streaming

by specifying a window length.

The computed diverse subset is presented to the users along with additional infor

mation, such as the size of the diverse subset and the average pairwise distance among

the selected items. For point data, a visualization of the whole dataset is presented, in

which diverse items are represented in a different size and color (Figure 5.1). If rele

vance is considered, the size of each diverse item corresponds to its relevance score, i.e.,

the larger this score is, the larger the item appears. Users have the option to hide the

nondiverse items if they wish. For image data, the diverse set of images is presented

to the user (Figure 5.9).

When the DisC model is employed, after being presented with the diverse subset,

users have the option to tune the degree of diversification by zoomingin or zoomingout

of the presented subset. A sliding bar is provided, which users can slide to dynamically

increase or decrease the value of r without having to specify it explicitly.

Finally, when users use the streaming option, they have the opportunity to see how

diverse items change as items enter and leave the current window by navigating between
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windows via ‘‘next’’ and ‘‘previous’’ buttons. Users can also request the enforcement of

continuity properties among consequent windows.

5.5 Summary

In this chapter, we presented Poikilo, a tool to assist users in locating and evaluating

diverse results. We provide implementations of a wide suite of models and algorithms

found in the related literature to compute and compare diverse results. Users can tune

various diversification parameters, combine diversity with relevance and also see how

diverse results change over time in the case of streaming data. When the diversification

model allows it, they can also zoomin and zoomout of the diversified results.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Contributions

6.2 Directions for Future Work

T
he purpose of this thesis was the development, implementation and evalua

tion of models, algorithms and techniques for ranking information based on

both relevance to user information needs and diversity. Next, in Section 6.1,

we summarize our contributions along these axes while, in Section 6.2, we describe

directions for future work.

6.1 Summary of Contributions

During the elaboration of this thesis, we mainly focused on two interesting aspects of

diversification. First, we considered the problem of diversifying dynamic data based

on a traditional, widely used definition of diversity, namely MaxMin. Second, we in

troduced a novel definition of diversity, called DisC diversity, which is based on item

dissimilarity and coverage. Generally, given a positive real number r, which we call

radius, two items are dissimilar to each other when their distance is larger than r,

while they cover each other when their distance is smaller than or equal to r. We

also considered the problem of incrementally adapting a DisC diverse subset to a new

radius. Finally, we developed a system prototype, called Poikilo, for evaluating the

results of various diversification models and algorithms. Next, we briefly summarize

the contributions of this thesis.

Despite the considerable recent interest in diversification, most previous research

considers the static version of the problem. This means that the available items out of

which a diverse subset is selected do not change over time. Here, we focused on the
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dynamic MaxMin diversification problem, where insertions and deletions of items are

allowed and the diverse subset needs to be refreshed to reflect such updates.

We proposed an indexbased approach based on cover trees and introduced a suite

of algorithms that exploit the cover tree to provide solutions with varying accuracy

and complexity. We also provided theoretical results that bound the accuracy of the

solutions achieved with regards to the optimal solution.

Concerning dynamic data diversification, our main contributions can be outlined

as follows:

• We proposed a novel, indexbased approach for solving the MaxMin diversification

problem. We also introduced a number of continuity requirements for increasing

the quality of diverse results in a streaming scenario.

• We showed that locating optimal solutions is an NPhard problem and provided

a number of cover tree based algorithms for locating approximate solutions. We

presented an efficient implementation of a traditional greedy algorithm which

provides an 1/2approximation of the optimal solution. We also introduced a new

family of algorithms which provide a b−1/2b2approximation of the optimal solution,

where b is the base of the cover tree.

• We extended our algorithms for selecting items that are both relevant and diverse.

We considered two different approaches. The first one considers the relevance of

the items when inserting them into the index, while the second one combines

relevance with diversity when selecting items from the index.

We also addressed diversity through a different perspective, via defining rDissimilar

and covering or rDisC diverse subsets, based on some radius r. To ensure that all

items are represented by at least one similar item in the diverse subset, we require all

available items to be covered by at least one diverse item. We also require diverse items

to be dissimilar to each other.

Instead of specifying a required size k of the diverse set or a threshold, as is the case

with most other diversity definitions, our tuning parameter r explicitly expresses the

degree of diversification and determines the size of the diverse set. To retrieve a concise

representation of all items, among all DisC diverse subsets that answer the user query,

we aim at selecting the one containing the smallest number of items. In case items are

also associated with weights, we also take them into consideration when selecting our

diverse items. Also, to allow different areas of the data to contribute more or less items

to the selected diverse subset, we extended the definition of DisC diverse subsets to

allow each item to be associated with a different radius.

We formalized the problem of locating minimum and minimum weighted DisC di

verse subsets as an independent dominating set problem on graphs. We showed that

locating minimum DisC diverse subsets is an NPhard problem and provided a suite of

algorithms for locating approximate solutions. We explored the relation among DisC
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diverse subsets of different radii and provided algorithms for incrementally adapting a

DisC diverse subset to a new radius (zooming). We provided theoretical upper bounds

for the size of the diverse subsets produced by our algorithms for computing DisC

diverse subsets as well as for their zooming counterparts.

Concerning diversification based on dissimilarity and coverage, our main contribu

tions can be outlined as follows:

• We introduced a novel, intuitive definition of diversity, called DisC diversity, based

on using a radius r rather than a size limit k to select diverse items. We extended

DisC diversity to the weighted case, in which items are associated with a weight

indicating their importance, or relevance. We also considered the case in which

different items are associated with different radii and defined two variations of

DisC diversity.

• We exploited a graphbased view of the problem and showed that locating mini

mum DisC diverse subsets is an NPhard problem.

• We provided a suite of algorithms for locating approximate solutions. We showed

that our solutions are at most B times larger than any optimal solution, where

B be the maximum number of independent neighbors of any item in our data.

B depends on the dimensionality of the data and the employed distance metric.

We derived the value of B for a number of different dimensionalities and distance

metrics.

• We introduced incremental diversification to a new radius through zoomingin

and zoomingout and studied the size relationship between the diverse subsets

for the two radii. Again, we derived specific bounds for a number of different

dimensionalities and distance metrics.

• We provided efficient implementations of our algorithms based on spatial index

structures, namely the MTree.

• We provided a thorough qualitative comparison of the various DisC variations and

also compared DisC diversity with other popular diversity models, both analyti

cally and qualitatively.

Finally, we also developed a system prototype, called Poikilo, which is a system

designed to assist users in locating, visualizing and comparing diverse results based

on a suite of different diversification models and algorithms. We provided implementa

tions of a wide variety of diversification approaches found in the related literature for

retrieving diverse results. Users of Poikilo can submit queries to a number of different

datasets and see a visualization of a diversified subset of their query result. They can

choose among a wide selection of diversification algorithms and specify various config

uration parameters. Furthermore, they can also zoomin and zoomout of this initial

115



diverse subset and navigate between consequent windows in the case of streaming

data.

6.2 Directions for Future Work

Next, we offer some insights on a number of open issues related to this thesis that are

the subject of our ongoing and future work. We make a distinction between short term

plans, that consist of extensions to work done during the elaboration of this thesis, and

long term plans, that outline ideas for future research related to our work.

Short term plans

Diversification has a wide range of applications, ranging from database and web search

to notification systems and recommenders. We next briefly describe our previous work

on database exploration, multiple search results diversification and keyword search and

present future work ideas for these lines of research.

Diversification in Database Exploration. Users usually interact with databases by

formulating queries. This queryresponse mode of interaction assumes that users are

to some extent familiar with the content of the database and, also, that they have a

clear understanding of their information needs. However, as the volume of information

becomes larger and accessible to a more diverse and less technicallyoriented audi

ence, a more exploratory/recommendationbased mode of information seeking seems

relevant and useful.

Previous approaches for assisting users in querying a database mainly focus on

query rewriting for retrieving more or less results, for example, by adding constraints

to the query (e.g., [95]) or automatically ranking query results and presenting to users

only the topk most highly ranked among them (e.g., [30]). With facet search (e.g.,

[90, 66, 54]), users start with a general query and progressively narrow its results

down to a specific item by specifying at each step restrictions on attribute values.

In our previous work [40, 43, 97], we introduced a novel exploratory mode of

database interaction that allows users to discover items that, although not part of

the result of their original query, are highly correlated to this result. For example, as

sume a user asking about movies by a specific director, e.g., M. Scorsese. We want to

highlight interesting aspects of these results, e.g., interesting years, production coun

tries, pairs of genre and years etc. To do this, at first, interesting parts of the result

of the initial user query are identified. These are sets of (attribute, value) pairs, called

faSets, that are highly distinctive for the query. The interestingness of a faSet is based

on its frequency, both in the query result and the database. Intuitively, the more fre

quent a faSet in the query result and the less frequent a faSet in the database, the more

interesting it is for the query.

To avoid the costly online computation of the frequency of each faSet, in [40, 43],
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we proposed maintaining an appropriate summary that allows us to estimate such

frequencies when needed. Our approach is based on storing the frequencies of a set of

representative rare faSets which are then used to estimate the interestingness of the

faSets that appear in the result of any given user query.

After the k most interesting faSets have been located for a specific user query,

exploratory queries are constructed whose results possess these interesting faSets. The

results of the exploratory queries, called Ymal (‘‘You May Also Like’’) results, are also

presented to the user. For example, by clicking on each important aspect of the query

about movies by M. Scorsese, the user gets additional recommended Ymal results, i.e.,

other directors who have directed movies with characteristics similar to the selected

ones. This way, users get to know other, possibly unknown to the them, directors who

have directed movies similar to those of M. Scorsese in our example.

In some respect, exploratory queries may be seen as recommendations. Extending

database queries with recommendations has been suggested in some recent works,

namely [72] and [29, 12]. [72] proposes a general framework and a related engine for

the declarative specification of the recommendation process. The recommendations in

our case are of a very specific form. Recommendations in [29, 12] have the form of

queries and are based on the relations they involve and the similarity of their structure

to that of the original user query. Those recommendations are based on the past

behavior of similar users, whereas we consider only the content of the database and

the query result. The functionality we propose is complementary to queryresponse

and recommendation systems. Contrary to facet search and related approaches, our

goal is not to refine the original query so as to narrow its results. Instead, we provide

users with items that do not belong to the results of their original query but are highly

related to them. We do this based solely on the database content and the initial query

and not based on any log of previous user queries or results.

However, the most interesting faSets may often be similar to each other, since

interesting faSets are often subfaSets of other interesting faSets. For this reason,

diversification can greatly improve the quality of presented faSets. In our previous

user studies [40], we saw that most users find larger faSets, i.e., faSets containing

more (attribute, value) pairs, to be more interesting. We reckon that some coverage

based definition of diversity can be employed to select a concise subset of faSets by

promoting faSets that cover more (attribute, value) pairs. Another interesting direction

is to employ some notion of novelty to dynamically change the ordering of presented

faSets after the user has clicked on one or more faSets and returned back to the list,

to reflect the fact that the user has already explored some part of the database and did

or did not find it to their liking.

Besides incorporating diversity, another interesting extension of this line of research

is to consider using information from resources external to the database, such as the

web, when forming exploratory queries. For example, consider that ‘‘Italy’’ is an inter

esting faSet when searching for movies of M. Scorsese. Then, besides retrieving other
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directors related to Italy, we could also adjust our exploratory query to retrieve further

information about the country itself from some external source, such as Wikipedia [7].

Diversification of Multiple Search Results. The explosion of accessible data empha

sizes the need for data diversification in a wide range of web, scientific, and business

applications. The challenge of efficient diversification is further accentuated in a multi

user environment, in which multiple search queries are to be executed and diversified

at the same time. The focus of previous research, however, is on diversifying the results

of a single query. In our previous work [68, 69], we addressed the problem of scalable

diversification of multiple search results. Our approach leverages the natural overlap

in results of different queries for the concurrent diversification of those overlapping re

sults. This allows us to reduce computational costs. Moreover, we extend our approach

to exploit a spatial grid structure that allows us to further reduce computational costs

while maintaining comparable quality of diversification.

A number of issues are open in this line of research. One of them concerns the

efficient detection of overlapping results of different queries by exploiting spatial indices

to quickly browse similar results. Another one concerns the tradeoff of accuracy for

efficiency in such multiuser environments. For example, consider two queries q1 and

q2 and their corresponding result sets P1 and P2. Let q1 and q2 be very similar to

each other. In this case, a diversified subset of P1 is probably a good answer for q2 as

well. However, there may be items in P2 that do not belong to P1 and, thus, are never

retrieved for q2, even if they are diverse to the rest of the returned items. However, users

may be willing to disregard such items in exchange for quick result retrieval, as long

as the overall quality of the retrieved results does not degrade considerably. Studying

the relation between the similarity of two queries and their optimal diversified subsets

is an interesting open problem.

Diversification of Keyword Search Results in Databases. In our previous work [98],

we considered keywordbased search in relational databases. Keywordbased search

allows users to discover relevant information without knowing the database schema

or using complicated queries. However, such searches may return an overwhelming

number of results, often loosely related to the user intent. We proposed ranking results

based on both their relevance to the query and user preferences and presenting users

with only the topk most highly ranked results. We also considered diversifying the

retrieved results based on content. To do this, first, the topm most highly ranked

results are retrieved, for m ≥ k. Then, the k most diverse items are presented to the

user. The larger the value of m, the larger the computational cost but, also, the larger

the diversity of the retrieved results.

Although common in the related literature, computing first m results out of which

the final k ones are retrieved induces extra computational overheads. An interesting

direction for future research is moving diversification in the initial ranking phase. One

approach is to use some monoobjective formulation of the problem. Also, a coverage

based definition of diversity may be better suited in this context, due to the distinctive
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form of results, which are in the form of joining trees of tuples, i.e., tuples from the

database linked through foreign key constraints.

Long term plans

In our future work, we plan to focus on result diversification in a distributed setting,

where the available items are not gathered in a single site but are rather distributed

over a set of different sources.

Our motivation emanates from a number of reasons. First, nowadays, a large num

ber of information sources are distributed over the network. This, in addition to the

huge volume of accessible information, renders the transferring of all relevant informa

tion to a single site as a preprocessing step before computing diverse subsets imprac

tical. Diversifying information at the source and later aggregating partial results seems

a much more attractive approach. Second, computing diverse subsets has inherently

high computational cost, since the diversity of a single item is not an individual prop

erty but rather depends on the selection of other items. Computing distances among all

available items is the main factor for this high computational cost. Computing diverse

subsets of partitions of data and later aggregating such partial results can, thus, also

greatly decrease cost overheads. Finally, another reason for ‘‘pushing’’ diversification

closer to the information sources is the possible exploitation of shared computations for

diversifying items corresponding to results of different queries, issued by one or more

users. This scenario finds many applications in modern notification services, in which

users are both generators and consumers of information. Locating optimal nodes in

such an overlay network of users to conduct result diversification can reduce both the

computational as well as the communication costs in the network.

A great challenge of the distributed computation of diverse items is that the optimal

solutions computed for different partitions of the data may be generally very different

from the optimal solution for the whole data. However, in many applications, such as

web search and recommenders, diverse items are often used as a first step towards pre

senting the user with a representative, concise overview of the underlying information.

Users can then refine such diverse results to their liking. Therefore, quickly locating

diverse subsets is of high importance. We believe that efficient algorithms for fast re

trieval of approximate solutions, withing some acceptable bound, are of great practical

interest.
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