# Memetic particle swarm optimization

Y.G. Petalas · K.E. Parsopoulos · M.N. Vrahatis

Published online: 9 August 2007 © Springer Science+Business Media, LLC 2007

**Abstract** We propose a new Memetic Particle Swarm Optimization scheme that incorporates local search techniques in the standard Particle Swarm Optimization algorithm, resulting in an efficient and effective optimization method, which is analyzed theoretically. The proposed algorithm is applied to different unconstrained, constrained, minimax and integer programming problems and the obtained results are compared to that of the global and local variants of Particle Swarm Optimization, justifying the superiority of the memetic approach.

Keywords Global optimization  $\cdot$  Particle swarm optimization  $\cdot$  Memetic algorithms  $\cdot$  Local search

# 1 Introduction

Particle Swarm Optimization (PSO) is a stochastic, population-based search algorithm that gained a lot of attention since its development in 1995. Its popularity can be attributed to its easy implementation and its ability to solve efficiently a plethora of problems in science and engineering, including optimal design of power systems (Abido 2002), feature selection for structure-activity correlations in medical applications (Agrafiotis and Cedeno 2002), biological applications (Cockshott and Hartman 2001), size and shape optimization (Fourie and Groenwold 2002; Ray and Liew 2002), environmental applications (Lu et al. 2002), analysis in chemical processes (Ourique et al. 2002), bioinformatics (Parsopoulos et al. 2004), task assignment problems (Saldam et al. 2002), industrial control (Papageorgiou et al. 2004) and numerical optimization (Parsopoulos and Vrahatis 2002c, 2004).

Y.G. Petalas · K.E. Parsopoulos · M.N. Vrahatis (🖂)

Computational Intelligence Laboratory (CI Lab), Department of Mathematics, University of Patras Artificial Intelligence Research Center (UPAIRC), University of Patras, 26110 Patras, Greece e-mail: vrahatis@math.upatras.gr

Y.G. Petalas e-mail: petalas@math.upatras.gr

K.E. Parsopoulos e-mail: kostasp@math.upatras.gr

The main inspiration behind PSO springs from the simulation and analysis of social dynamics and the interactions among the members of organized colonies, therefore, it is categorized as a swarm intelligence algorithm. PSO has many common key characteristics with Evolutionary Algorithms (EAs), such as Genetic Algorithms (Holland 1975), Evolution Strategies (Schwefel 1995) and Differential Evolution (Storn and Price 1997), thereby sharing many aspects of their behavior.

EAs have proved to be very useful in many applications. However, there is a well-known problem regarding their local search abilities in optimization problems (Angeline 1998). More specifically, although most EAs are capable of detecting the region of attraction of the global optimizer fast, once there, they cannot perform a refined local search to compute the optimum with high accuracy, unless specific procedures are incorporated in their operators. Some versions of PSO also exhibit this deficiency.

The aforementioned drawback of EAs triggered the development of Memetic Algorithms (MAs), which incorporate local search components. MAs constitute a class of metaheuristics that combines population-based optimization algorithms with local search procedures (Dawkins 1976; Moscato 1989, 1999). More specifically, MAs consist of a global component, which is responsible for a rough search of the search space and the detection of the most promising regions, and a local search component, which is used for probing the detected promising regions, in order to obtain solutions with high accuracy. EAs have been used as the global component in MAs with Simulated Annealing and random local search (Moscato, 1999). MAs have proved to be an unrivaled methodology in several problem domains (Moscato, 1999; Petalas and Vrahatis 2004a, 2004b).

We propose a new algorithm that combines PSO with local search methods, resulting in an efficient Memetic PSO scheme. The performance of the new scheme is investigated on different test problems, including unconstrained, constrained, minimax and integer minimization problems. The results are compared with the corresponding results of both the local and global variants of PSO. The rest of the paper is organized as follows: a description of Memetic PSO is provided in Section 2, along with descriptions of Memetic Algorithms, PSO and the proposed approach. Section 3 is devoted to the experimental results, as well as to a description of the Random Walk with Directional Exploitation local search that is employed to investigate the performance of the proposed scheme. The paper concludes in Section 4.

#### 2 Memetic particle swarm optimization

Memetic PSO (MPSO) is a hybrid algorithm that combines PSO with local search techniques. MPSO consists of two main components, a global one that is responsible for the global search of the search space, and a local one, which performs more refined search around potential solutions of the problem at hand. In the following, the Memetic Algorithms, Particle Swarm Optimization, as well as the proposed MPSO scheme are described, along with a convergence analysis of the proposed MPSO scheme.

2.1 Memetic algorithms

MAs comprise a family of population-based, heuristic search algorithms, designed to perform global optimization. The main inspiration behind their development was Dawkins' "meme" (Dawkins 1976), which represents a unit of cultural evolution that can exhibit refinement, as well as models of adaptation in natural systems that combine evolutionary adaptation of individuals with individual learning within a lifetime. MAs include a stage of individual optimization or learning (usually in the form of a local search) as part of their search operation.

MAs were first proposed in 1989 (Moscato 1989), where Simulated Annealing was used for local search with a competitive and cooperative game between agents, interspersed with the use of a crossover operator, to tackle the traveling salesman problem. The method gained wide acceptance, due to its ability to solve difficult problems.

Although MAs bear a similarity with Genetic Algorithms (GAs) (Goldberg 1989), they mimic rather cultural evolution than biological evolution. GAs are a way of solving problems by mimicking the same processes nature uses. To evolve a solution of a problem, GAs employ the same combination of selection, recombination and mutation that is applied to genes. In nature, genes are usually not modified during an individual's lifetime, whereas memes are. Therefore, most MAs can be interpreted as a cooperative–competitive algorithm of optimizing agents.

In general, an MA can be described through the following abstract description:

#### Begin

Population Initialization LocalSearch Evaluation Repeat Recombination Mutation LocalSearch Evaluation Selection Until termination criterion is satisfied Return best solution

### End

In particular, at the beginning, the population is initialized within the search space. The LocalSearch function takes an individual as input, and performs a local search. The Evaluation function plays the role of the objective function. After the initial population has been created, the recombination process takes place for selected individuals. A new individual is created by recombining the selected individuals according to the Recombination function. The Mutation function performs the mutation operation on some individuals of the population. The Selection function chooses the individuals that will survive in the next population. The termination condition can include various criteria, such as time-expiration and/or generation-expiration.

MAs have been successfully applied in combinatorial optimization, and especially for the approximate solution of NP-hard optimization problems. Their success can be attributed to the synergy of the different search approaches that are combined in the MA (Krasnogor 2002; Land 1998; Merz 1998).

The first implementations of MAs were hybrid algorithms that exploit GAs as an evolutionary algorithm and a local search at each iteration (GA–LS) (Belew et al. 1991; Hart 1994; Hinton and Nowlan 1987; Geesing and Stork 1991; Muhlenbein et al. 1988). The GA–LS hybrid scheme is interesting due to the interaction between the local and global search components of the algorithm. An important aspect of this phenomenon is the Baldwin effect (Belew 1990; Hinton and Nowlan 1987), in which learning in natural systems speeds up the rate of evolutionary change. Similar effects have been observed by a number of authors that used GA–LS hybrids (Belew et al. 1991; Hinton and Nowlan 1987; Geesing and Stork 1991).

#### 2.2 Particle swarm optimization

PSO is a stochastic optimization algorithm that exploits a population of individuals to synchronously probe the search space. The inspiration behind its development springs from the study of the collective behavior in decentralized systems, where populations of simple agents interact among them, as well as with their environment (Kennedy and Eberhart 2001). In PSO's context, the population is called a *swarm* and the individuals (i.e., the search agents) are called *particles*.

Each particle moves with an adaptable velocity within the search space, and retains a memory of the best position it has ever encountered. There are two main variants of PSO with respect to the information exchange scheme among the particles. In the *global* variant, the best position ever attained by all individuals of the swarm is communicated to all the particles at each iteration. In the *local* variant, each particle is assigned to a neighborhood consisting of some of the particles. In this case, the best position ever attained by the particles that comprise a neighborhood is communicated among them (Kennedy and Eberhart 2001). Neighboring particles are determined based on their indices rather than their actual distance in the search space.

Assume an *n*-dimensional search space,  $S \subset \mathbb{R}^n$ , and a swarm consisting of N particles. The *i*th particle is an *n*-dimensional vector,

$$x_i = (x_{i1}, x_{i2}, \dots, x_{in})^\top \in S.$$

The velocity of this particle is also an *n*-dimensional vector,

$$v_i = (v_{i1}, v_{i2}, \dots, v_{in})^{\top}$$

The best previous position encountered by the *i*th particle in S is denoted by

$$p_i = (p_{i1}, p_{i2}, \dots, p_{in})^{\top} \in S.$$

If r is the neighborhood's radius, then the neighborhood of  $x_i$  is defined as

$$\{x_{i-r}, x_{i-r+1}, \ldots, x_i, \ldots, x_{i+r-1}, x_{i+r}\}.$$

The particles are assumed to lie on a ring topology, i.e.,  $x_1$  is the immediate neighbor of  $x_N$ . Assume  $g_i$  to be the index of the particle that attained the best previous position among all the particles in the neighborhood of  $x_i$ , and t to be the iteration counter. Then, the swarm is manipulated by the equations (Clerc and Kennedy 2002):

$$v_i^{(t+1)} = \chi \left[ v_i^{(t)} + c_1 r_1 \left( p_i^{(t)} - x_i^{(t)} \right) + c_2 r_2 \left( p_{g_i}^{(t)} - x_i^{(t)} \right) \right],\tag{1}$$

$$x_i^{(t+1)} = x_i^{(t)} + v_i^{(t+1)},$$
(2)

where i = 1, ..., N;  $\chi$  is a parameter called *constriction factor*;  $c_1$  and  $c_2$  are two positive constants called *cognitive* and *social* parameter, respectively; and  $r_1, r_2$ , are random vectors with components uniformly distributed within [0, 1]. All operations between vectors are performed componentwise.

The constriction factor is a mechanism for controlling the magnitude of the velocities. It is derived analytically through the formula (Clerc and Kennedy 2002),

$$\chi = \frac{2\kappa}{|2 - \varphi - \sqrt{\varphi^2 - 4\varphi}|},\tag{3}$$

where  $\varphi = c_1 + c_2$ . The values received for  $\varphi > 4$  and  $\kappa = 1$  are considered the most common settings of  $\chi$  due to their good average performance (Clerc and Kennedy 2002). Different settings of  $\chi$ , as well as a thorough theoretical analysis of the derivation of (3), can be found in (Clerc and Kennedy 2002; Trelea 2003).

The performance of a population-based algorithm depends on its ability to perform global search of the search space (exploration) as well as more refined local search (exploitation). Proper balance between these two characteristics results in enhanced performance. In the global variant of PSO, all particles are attracted by the same overall best position, converging faster towards specific points. Thus, the global variant of PSO emphasizes exploitation over exploration. On the other hand, in the local variant, the information of the best position of each neighborhood is communicated slowly to the other particles of the swarm through their neighbors. Therefore, the attraction to specific best positions is weaker, hindering the swarm from getting trapped in locally optimal solutions. Thus, the local variant of PSO emphasizes exploration over exploration and exploitation. The selection of the appropriate neighborhood size is an open problem. In practice, it is up to the practitioner and it is based solely on his experience.

The initialization of the swarm and the velocities, is usually performed randomly and uniformly in the search space, although more sophisticated initialization techniques can enhance the overall performance of the algorithm (Parsopoulos and Vrahatis 2002a).

#### 2.3 The proposed algorithm

MPSO constitutes a combination of the PSO algorithm with a local search method. Thus, various different schemata can be obtained such as:

Scheme 1: Local search is applied on the overall best position,  $p_g$ , of the swarm, where g is the index of the best particle.

- Scheme 2: For each best position,  $p_i$ , i = 1, ..., N, a random number, r, is generated, and, if  $r < \varepsilon$ , where  $\varepsilon > 0$  is a prescribed threshold, then local search is applied on  $p_i$ .
- Scheme 3a: Local search is applied both on the best position,  $p_g$ , of the swarm, as well as on some randomly selected best positions,  $p_i, i \in \{1, ..., N\}$ .
- Scheme 3b: Local search is applied both on the best position,  $p_g$ , of the swarm, as well as on some randomly selected best positions,  $p_i$ ,  $i \in \{1, ..., N\}$ , for which,  $||p_g p_i|| > c\Delta(S)$ , where  $c \in (0, 1)$  and  $\Delta(S)$  is the diameter of the search space S.

The above three schemata can be applied either in every iteration of the algorithm or at some iterations. Of course, many other related schemata can be considered such as those that apply local search to all particles. However, as we have noticed in experiments, the latter schemata are costly in terms of function evaluations, and, in practice, only a small percentage of the particles (say 5%) has to be considered for applying local search. The same conclusions were derived also by Hart (1994), based on investigation on GA–LS hybrid schemes.

A pseudocode for the MPSO algorithm is given below.

**Input**: N,  $\chi$ ,  $c_1$ ,  $c_2$ ,  $x_{\min}$ ,  $x_{\max}$  (lower & upper bounds), F (objective function). Set t = 0. **Initialize**  $x_i^{(t)}, v_i^{(t)} \in [x_{\min}, x_{\max}], p_i^{(t)} \leftarrow x_i^{(t)}, i = 1, ..., N.$ Evaluate  $F(x_i^{(t)})$ . **Determine** the indices  $g_i, i = 1, ..., N$ . While (stopping criterion is not satisfied) Do **Update** the velocities  $v_i^{(t+1)}$ , i = 1, ..., N, according to (1). Set  $x_i^{(t+1)} = x_i^{(t)} + v_i^{(t+1)}, i = 1, ..., N.$ Constrain each particle  $x_i$  in  $[x_{\min}, x_{\max}]$ . Evaluate  $F(x_i^{(t+1)}), i = 1, ..., N$ . If  $F(x_i^{(t+1)}) < F(p_i^{(t)})$  Then  $p_i^{(t+1)} \leftarrow x_i^{(t+1)}$ . Else  $p_i^{(t+1)} \leftarrow p_i^{(t)}$ . Update the indices  $g_i$ . When (local search is applied) Do **Choose** (according to one of the Schemata 1–3)  $p_q^{(t+1)}, q \in \{1, ..., N\}$ . Apply local search on  $p_q^{(t+1)}$  and obtain a new solution, y. If  $F(y) < F(p_q^{(t+1)})$  Then  $p_q^{(t+1)} \leftarrow y$ . End When **Set** t = t + 1. End While

#### 2.4 A convergence analysis of memetic PSO

A proof of convergence in probability can be given for the MPSO scheme, assuming that a stochastic local search method is applied on the best particle of the swarm at each iteration of the algorithm. The proof follows the analysis of Matyas (1965) for stochastic optimization algorithms. Assume that  $F : S \to \mathbb{R}$  is a unimodal objective function,  $x_{opt}$  is its unique minimizer in *S*, and  $F_{opt} = F(x_{opt})$ . Let also *g* be the index of the best particle of the swarm in the *k*th iteration, i.e.,  $p_g^{(k)}$  is the best solution seen by the algorithm since its start up to iteration *k*. The level set of *F* at a constant value, *K*, is defined as  $G[K] = \{x : F(x) < K\}$ . We assume that  $G[K] \neq \emptyset$ , for all  $K > F_{opt}$ . Let f(z) be the probability distribution of the points generated by the stochastic local search. The proof holds for any probability distribution with  $f(z) \neq 0$ , for all *z*. We define as a *successful step* of MPSO at iteration *k*, the fact that

$$F\left(p_g^{(k+1)}\right) < F\left(p_g^{(k)}\right) - \varepsilon,$$

for a prescribed  $\varepsilon > 0$ . The probability of a successful step from  $p_g^{(k)}$  is given by

$$P_F(x) = \int_{G[F(p_g) - \varepsilon]} f(z - p_g) dz.$$

Then, based on the analysis of Matyas (1965), the following theorem is straightforwardly proved:

**Theorem 1** Let F(x) have a unique minimum in S,  $G[K] \neq \emptyset$ , for all  $K > F_{opt}$ , and  $f(z) \neq 0$  for all z. Then, the sequence of best positions,  $\{p_g^{(k)}\}$ , of the swarm in MPSO tends in probability to  $x_{opt}$ .

*Proof* Let  $\delta(x) = \{z: \varrho(z, x) < \delta\}, \delta > 0$ , be the  $\delta$ -neighborhood of a point x, where  $\varrho(z, x)$  denotes the distance between the points x, z. We will prove that for any  $\delta > 0$  it holds that

$$\lim_{k \to \infty} P\left\{ \varrho\left( p_g^{(k)}, x_{\text{opt}} \right) > \delta \right\} = \lim_{k \to \infty} P\left\{ p_g^{(k)} \notin \delta(x_{\text{opt}}) \right\} = 0,$$

i.e., the probability that the distance  $\varrho(p_g^{(k)}, x_{opt}) > \delta$ , or equivalently that  $p_g^{(k)} \notin \delta(x_{opt})$ , tends to zero. If we denote by  $F_{\delta}$  the minimum value of F on the boundary of  $\delta(x_{opt})$ , we shall have  $F_{\delta} > F_{opt}$ . We can now define  $\varepsilon = \varepsilon(\delta)$  such that  $0 < \varepsilon(\delta) < F_{\delta} - F_{opt}$ . For all previous best positions,  $p_g \notin \delta(x_{opt})$ , of the particle under consideration, the inequality  $F(p_g) - \varepsilon > F_{opt}$ , is valid. Furthermore, from the assumptions of the theorem,  $G[F(p_g) - \varepsilon]$  is a non-empty region. Since f(z) > 0 for all z, there will exist an  $\alpha > 0$ , such that  $P_F(p_g) \ge \alpha$ , i.e., the probability of a successful step from  $p_g$  is positive (although in some cases it may become very small).

Let  $F(p_g^{(1)})$  be the function value of the best position,  $p_g^{(1)}$ , in the first iteration of the algorithm. We denote,

$$\tau = \frac{(F(p_g^{(1)}) - F_\delta)}{\varepsilon},$$

and  $m = \lfloor \tau \rfloor$ , i.e., *m* is the largest integer less than  $\tau$ . From the design of the PSO and MPSO algorithm, if even m + 1 steps turn out to be successful, then all the subsequent points of the sequence  $\{p_g^{(k)}\}\$  lie in  $\delta(x_{opt})$ . Consequently, the probability  $P\{p_g^{(k)} \notin \delta(x_{opt})\}\$  is less than or equal to the probability that the number of successful steps does not exceed *m*, i.e.,

$$P\left\{p_g^{(k)} \notin \delta(x_{\text{opt}})\right\} \le P\left\{\sum_{i=1}^k y^{(i)} \le m\right\},\,$$

where,  $y^{(i)} = 1$ , if there was a successful step in iteration *i*, and  $y^{(i)} = 0$ , otherwise. The latter probability increases with a decrease in the probability of successful steps, and since  $P_F(p_g) \ge \alpha$ , it obeys the well-known Newton's theorem (on the binomial probability distribution),

$$P\left\{\sum_{i=1}^{k} y^{(i)} \le m\right\} \le \sum_{i=0}^{m} \binom{k}{i} \alpha^{i} (1-\alpha)^{k-i},$$

where k is the number of steps (iterations) taken. Further, when k > 2m and  $\alpha < 0.5$ ,

$$\sum_{i=0}^{m} \binom{k}{i} \alpha^{i} (1-\alpha)^{k-i} < (m+1) \binom{k}{m} (1-\alpha)^{k}$$
$$= \frac{m+1}{m!} k(k-1)(k-2) \cdots (k-m+1)(1-\alpha)^{k}$$
$$< \frac{m+1}{m!} k^{m} (1-\alpha)^{k}.$$

Consequently,  $P\{\varrho(p_g^{(k)}, x_{opt}) > \delta\} < \frac{m+1}{m!}k^m(1-\alpha)^k$ . Thus, for  $\alpha > 0$ , it is clear that

$$\lim_{k\to\infty}k^m(1-\alpha)^k=0,$$

and the theorem is proved.

D Springer

We must note that alternative local search schemes may require modifications in the proof in order to remain valid.

### **3** Experimental analysis

This is our first attempt to experimentally show that there always exists an MPSO scheme that outperforms the standard PSO method. To achieve this, we have considered a large number of benchmark problems from various categories and we have experimentally configured the parameters used by the proposed approach. In particular, MPSO was tested on 29 well-known and widely used unconstrained, constrained, minimax and integer optimization benchmark problems. For all test problems, the PSO parameters were set to their default values,  $\chi = 0.729$ ,  $c_1 = c_2 = 2.05$  (Clerc and Kennedy 2002). The remaining parameters, such as the number of iterations and the step length of the local search method used, were problem dependent and, thus, individually specified for each test problem. For the local search component of MPSO, the Random Walk with Direction Exploitation, which is described in the following, was employed. The derived scheme is denoted as RWMPSO.

#### 3.1 Random walk with direction exploitation

*Random Walk with Direction Exploitation* (RWDE) is an iterative, stochastic optimization method that generates a sequence of approximations of the optimizer by assuming a random vector as a search direction. RWDE can be applied in discontinuous and non-differentiable functions, and it has been proved effective in cases where other methods fail due to difficulties posed by the form of the objective function, e.g., sharply varying functions and shallow regions (Rao 1992).

Let  $x^{(t)}$  be the approximation of the minimizer at the *t*th iteration. Then, the new value (approximation),  $x^{(t+1)}$ , at the (t + 1)th iteration, is computed through the equation,

$$x^{(t+1)} = x^{(t)} + \lambda z^{(t)},$$

where  $\lambda$  is a prescribed scalar step-length, and  $z^{(t)}$  is a unit-length random vector. The workings of RWDE are summarized in the following steps:

Step 1. Initialize the iteration number, t = 0. Start with an initial point,  $x^{(1)}$ , and a scalar step length,  $\lambda = \lambda_{init}$ . Compute the function value,  $F^{(1)} = F(x^{(1)})$ , where *F* is the objective function.

Step 2. Set t = t + 1 and check whether t is greater than a threshold,  $t_{\text{max}}$ , and if so terminate; otherwise generate a unit-length random vector,  $z^{(t)}$ , and continue.

Step 3. Compute the value of the objective function,

$$F' = F\left(x^{(t)} + \lambda z^{(t)}\right).$$

Step 4. Compare the values F' and  $F^{(t)}$ . If  $F' < F^{(t)}$ , then set  $x^{(t+1)} = x^{(t)} + \lambda z^{(t)}$ ; set t = t + 1,  $\lambda = \lambda_{init}$ ,  $F^{(t)} = F'$ , and check whether *t* is greater than  $t_{max}$  and if so terminate; otherwise go to Step 3. If  $F' > F^{(t)}$ , set  $x^{(t+1)} = x^{(t)}$ , reduce the scalar step length  $\lambda = \lambda/2$ , and repeat Steps 2–4. If  $F' = F^{(t)}$ , set  $x^{(t+1)} = x^{(t)}$  and repeat Steps 2–4.

Instead of RWDE, we could use different, more sophisticated stochastic local searches (Hoos and Stützle 2004). The reason for choosing RWDE was to show that our approach can be efficient and effective without a thorough investigation of the efficiency of the stochastic local search used. Additionally, the selection of RWDE as the local search component of MPSO was based on its simplicity and its relative efficiency. RWDE does not make any continuity or differentiability assumptions on the objective function, thus, it is consistent with the PSO framework that requires function values solely. Therefore, it was preferred over gradient-based local search algorithms. Moreover, it is easily implemented and it can be modified with minor effort to suit different problems.

3.2 Unconstrained optimization problems

The benchmark problems that were used are:

Test Problem 1 (Trelea 2003) (Sphere). This problem is defined by

$$F_1(x) = \sum_{i=1}^n x_i^2,$$
(4)

where *n* is the dimension of the problem. The global minimizer is  $x^* = (0, ..., 0)^{\top}$  with  $F_1(x^*) = 0$ .

Test Problem 2 (Trelea 2003) (Generalized Rosenbrock). This problem is defined by

$$F_2(x) = \sum_{i=1}^{n-1} (100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2),$$
(5)

where *n* is the dimension of the problem. The global minimizer is  $x^* = (1, ..., 1)^{\top}$  with  $F_2(x^*) = 0$ .

**Test Problem 3** (Trelea 2003) (Rastrigin). This problem is defined by

$$F_3(x) = 10n + \sum_{i=1}^n \left( x_i^2 - 10\cos(2\pi x_i) \right),\tag{6}$$

where *n* is the dimension of the problem. The global minimizer is  $x^* = (0, ..., 0)^{\top}$  with  $F_3(x^*) = 0$ .

Test Problem 4 (Trelea 2003) (Griewank). This problem is defined by

$$F_4(x) = \sum_{i=1}^n \frac{x_i^2}{4000} - \prod_{i=1}^n \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1,$$
(7)

where *n* is the dimension of the problem. The global minimizer is  $x^* = (0, ..., 0)^{\top}$  with  $F_4(x^*) = 0$ .

Deringer

Test Problem 5 (Trelea 2003) (Schaffer's f6). This problem is defined by

$$F_5(x) = 0.5 - \frac{\left(\sin\left(\sqrt{x_1^2 + x_2^2}\right)\right)^2 - 0.5}{(1 + 0.001(x_1^2 + x_2^2))^2}.$$
(8)

The global minimizer is  $x^* = (0, 0)^{\top}$  with  $F_5(x^*) = 0$ .

Test Problem 6 (Storn and Price 1997) (Ackley). This problem is defined by

$$F_6(x) = -20 \exp\left(-0.02 \sqrt{\frac{\sum_{j=1}^n x_j^2}{n}}\right) - \exp\left(\frac{\sum_{j=1}^n \cos(2\pi x_j)}{n}\right) + 20 + \exp(1), \quad (9)$$

where *n* is the dimension of the problem. The global minimizer is  $x^* = (0, ..., 0)^{\top}$  with  $F_6(x^*) = 0$ .

Test Problem 7 (Storn and Price 1997) (Corana). This problem is defined by

$$F_7(x) = \sum_{j=1}^4 \begin{cases} 0.15(z_j - 0.05 \operatorname{sign}(z_j))^2 d_j, & \text{if } |x_j - z_j| < 0.05, \\ d_j x_j^2, & \text{otherwise,} \end{cases}$$
(10)

where  $x_j \in [-1000, 1000]$ ,  $(d_1, d_2, d_3, d_4) = (1, 1000, 10, 100)$ , and

$$z_j = \left\lfloor \left| \frac{x_j}{0.2} \right| + 0.49999 \right\rfloor \operatorname{sign}(x_j) 0.2$$

All points with  $|x_j^*| < 0.05$ , j = 1, 2, 3, 4, are global minimizers with  $F_7(x^*) = 0$ .

Test Problem 8 (Lee and Yao 2004). This problem is defined by

$$F_8(x) = 0.1 \left\{ \sin^2(3\pi x_1) + \sum_{i=1}^{n-1} (x_i - 1)^2 \left[ 1 + \sin^2(3\pi x_{i+1}) \right] + (x_n - 1)^2 \left[ 1 + \sin^2(2\pi x_n) \right] \right\} + \sum_{i=1}^n u(x_i, 5, 100, 4),$$
(11)

where n is the dimension of the problem and

$$u(z, a, k, m) = \begin{cases} k(z-a)^m, & z > a, \\ 0, & -a \le z \le a, \\ k(-z-a)^m, & z < -a. \end{cases}$$
(12)

The global minimizer is  $x^* = (1, ..., 1)^\top$  with  $F_8(x^*) = 0$ .

Test Problem 9 (Lee and Yao 2004). This problem is defined by

$$F_{9}(x) = \frac{\pi}{n} \left\{ 10\sin^{2}(\pi x_{1}) + \sum_{i=1}^{n-1} (x_{i} - 1)^{2} \left[ 1 + 10\sin^{2}(\pi x_{i+1}) \right] + (x_{n} - 1)^{2} \right\} + \sum_{i=1}^{n} u(x_{i}, 10, 100, 4),$$
(13)

Deringer

Table 1Parameters for the<br/>unconstrained optimization<br/>problems

| Problem | Dimension | Range                | Error Goal |
|---------|-----------|----------------------|------------|
| TP1     | 30        | $(-100, 100)^{30}$   | $10^{-2}$  |
| TP2     | 30        | $(-30, 30)^{30}$     | $10^{2}$   |
| TP3     | 30        | $(-5.12, 5.12)^{30}$ | $10^{2}$   |
| TP4     | 30        | $(-600, 600)^{30}$   | $10^{-1}$  |
| TP5     | 2         | $(-100, 100)^2$      | $10^{-5}$  |
| TP6     | 30        | $(-32, 32)^{30}$     | $10^{-3}$  |
| TP7     | 4         | $(-1000, 1000)^4$    | $10^{-6}$  |
| TP8     | 30        | $(-50, 50)^{30}$     | $10^{-6}$  |
| TP9     | 30        | $(-50, 50)^{30}$     | $10^{-2}$  |

| Table 2  | Parameter setting of     |
|----------|--------------------------|
| RWMPS    | Og for the unconstrained |
| problems | 3                        |

| Problem | SS | Iter | Step | Best | Prob | Freq |
|---------|----|------|------|------|------|------|
| TP1     | 15 | 5    | 1.0  | yes  | _    | 1    |
|         | 30 | 5    | 1.0  | yes  | _    | 1    |
|         | 60 | 5    | 1.0  | yes  | _    | 1    |
| TP2     | 15 | 10   | 1.0  | yes  | _    | 1    |
|         | 30 | 5    | 1.0  | yes  | -    | 1    |
|         | 60 | 5    | 1.0  | yes  | -    | 1    |
| TP3     | 15 | 5    | 1.0  | _    | 0.2  | 1    |
|         | 30 | 5    | 1.0  | -    | 0.2  | 1    |
|         | 60 | 5    | 1.0  | -    | 0.1  | 1    |
| TP4     | 15 | 5    | 4.0  | yes  | _    | 1    |
|         | 30 | 5    | 4.0  | yes  | -    | 1    |
|         | 60 | 5    | 4.0  | yes  | -    | 1    |
| TP5     | 15 | 8    | 1.0  | _    | 0.3  | 1    |
|         | 30 | 8    | 1.0  | -    | 0.2  | 1    |
|         | 60 | 8    | 1.0  | -    | 0.1  | 1    |
| TP6     | 15 | 5    | 1.0  | _    | 0.5  | 1    |
|         | 30 | 5    | 1.0  | -    | 0.5  | 1    |
|         | 60 | 5    | 1.0  | -    | 0.4  | 1    |
| TP7     | 15 | 5    | 1.0  | yes  | _    | 20   |
|         | 30 | 5    | 1.0  | yes  | -    | 20   |
|         | 60 | 5    | 1.0  | yes  | -    | 20   |
| TP8     | 15 | 5    | 1.0  | _    | 0.8  | 1    |
|         | 30 | 5    | 1.0  | -    | 0.5  | 1    |
|         | 60 | 5    | 1.0  | -    | 0.3  | 1    |
| TP9     | 15 | 5    | 1.0  | _    | 0.6  | 1    |
|         | 30 | 5    | 1.0  | -    | 0.5  | 1    |
|         | 60 | 5    | 1.0  | _    | 0.3  | 1    |

where *n* is the dimension of the problem and *u* is defined by (12). The global minimizer is  $x^* = (1, ..., 1)^\top$  with  $F_9(x^*) = 0$ .

The dimension of each test problem, the range in which the particles were constrained, as well as the error goal are reported in Table 1 (Lee and Yao 2004; Storn and Price 1997; Trelea 2003). The maximum number of iterations for every problem was equal to  $10^4$ . For all problems, three different swarm sizes (denoted as *SS*) were considered, namely 15, 30, and 60, following the setup of Trelea (2003). The global and the local PSO variants (denoted as PSOg and PSOI, respectively), were equipped with RWDE, resulting in the global and local RWMPSO variants (denoted as RWMPSOg and RWMPSO], respectively), and applied on all test problems. For each test problem, 50 independent experiments were conducted. An experiment was considered successful if the desired error goal was achieved within the maximum number of iterations.

The configuration of RWDE was problem dependent. The parameter settings of RWMP-SOg and RWMPSOI for the unconstrained problems are reported in Tables 2 and 3, respectively. The first column of the tables denotes the problem, while second column stands for the swarm size. The third and fourth column report the number of iterations and initial step size used by RWDE, respectively. The fifth column has the value "yes" in the cases where RWDE was applied only on the best particle of the swarm. On the other hand, if RWDE was applied on the best position of each particle with a probability, then this probability is reported in column six. Finally, the last column shows the frequency of application of the local search. Thus, the value "1" corresponds to application of the local search at every iteration, while "20" corresponds to application every 20 iterations.

The results of RWMPSOg and RWMPSOl for the unconstrained problems are reported in Tables 4 and 5, respectively, while the corresponding results of the standard PSO are reported in Tables 6 and 7, respectively. More specifically, the number of successes (out of 50 experiments), the minimum, mean, maximum, and standard deviation of the required function evaluations (evaluated only on the successful experiments) are reported. In order to take full advantage of its exploration properties, small neighborhood sizes were selected for the local PSO. Thus, for Test Problems 1–6 and Test Problem 8, the neighborhood radius was equal to 1, while, in Test Problems 7 and 9, a neighborhood radius equal to 2 was used due to its superior performance.

Comparing the global variants, it is clear that RWMPSO improves significantly the performance of PSO. In all problems, the number of successes of RWMPSO is equal or higher than PSO. Even in cases where PSO had no successes (TP6 with swarm size 15) RWMPSO succeeded in 42 out of 50 experiments. Naturally, in some cases, this comes at the cost of some extra function evaluations, although in most cases the required number of function evaluations of RWMPSO is smaller than PSO. The influence of larger swarm sizes in RWMPSO seems to be similar to that in the standard PSO, with larger swarms requiring more function evaluations but having better success rates.

Similar conclusions can be derived also for the local variants of RWMPSO and PSO. The PSOI variant is significantly better with respect to its success rate than its global variant, and this holds also for RWMPSO. RWMPSOI performed in almost all cases better than PSOI, achieving high success rates and requiring (in most cases) significantly smaller number of function evaluations. RWMPSOI had better success rates than RWMPSOg in all test problems, although it was slower. This is also an indication that the neighborhood radius has the same effect on RWMPSO as in the standard PSO.

Interestingly, RWMPSOg outperformed in many cases even PSOl, which is a promising indication that the use of local search in PSOg can enhance significantly its exploration

| Table 3Parameter setting ofRWMPSOI for the unconstrained | Problem | SS | Iter | Step | Best | Prob | Freq |
|----------------------------------------------------------|---------|----|------|------|------|------|------|
| problems                                                 | TP1     | 15 | 10   | 1.0  | yes  | _    | 1    |
|                                                          |         | 30 | 10   | 1.0  | yes  | _    | 1    |
|                                                          |         | 60 | 5    | 1.0  | yes  | -    | 1    |
|                                                          | TP2     | 15 | 8    | 0.5  | yes  | -    | 50   |
|                                                          |         | 30 | 5    | 1.0  | yes  | -    | 30   |
|                                                          |         | 60 | 5    | 1.0  | yes  | -    | 1    |
|                                                          | TP3     | 15 | 5    | 1.0  | yes  | _    | 20   |
|                                                          |         | 30 | 10   | 1.0  | yes  | -    | 20   |
|                                                          |         | 60 | 5    | 1.0  | yes  | -    | 1    |
|                                                          | TP4     | 15 | 10   | 8.0  | yes  | -    | 1    |
|                                                          |         | 30 | 10   | 8.0  | yes  | -    | 1    |
|                                                          |         | 60 | 10   | 8.0  | yes  | -    | 1    |
|                                                          | TP5     | 15 | 8    | 1.0  | _    | 0.3  | 2    |
|                                                          |         | 30 | 8    | 1.0  | -    | 0.1  | 1    |
|                                                          |         | 60 | 8    | 1.0  | -    | 0.1  | 2    |
|                                                          | TP6     | 15 | 5    | 1.0  | yes  | _    | 20   |
|                                                          |         | 30 | 5    | 1.0  | yes  | -    | 20   |
|                                                          |         | 60 | 5    | 1.0  | yes  | -    | 20   |
|                                                          | TP7     | 15 | 5    | 1.0  | yes  | _    | 20   |
|                                                          |         | 30 | 5    | 1.0  | yes  | -    | 20   |
|                                                          |         | 60 | 5    | 1.0  | yes  | -    | 20   |
|                                                          | TP8     | 15 | 5    | 1.0  | yes  | 0.3  | 1    |
|                                                          |         | 30 | 5    | 1.0  | yes  | -    | 2    |
|                                                          |         | 60 | 5    | 1.0  | yes  | -    | 2    |
|                                                          | TP9     | 15 | 3    | 1.0  | _    | 0.5  | 1    |
|                                                          |         | 30 | 5    | 1.0  | -    | 0.1  | 1    |
|                                                          |         | 60 | 10   | 1.0  | yes  | _    | 2    |

capabilities. For some problems, where the superiority of an algorithm over another was not clear, t-tests were performed to verify the statistical significance of the results. The hypothesis testing was conducted using the null hypothesis that the mean number of required function evaluations between the two algorithms is equal, at a statistical significance level of 99%. Thus, in Test Problem 1, RWMPSOg was compared with PSOI (they both achieved 50 successes), rejecting the null hypothesis, i.e., RWMPSOg was better than PSOI, for swarm size equal to 15. The same holds also for the RWMPSOI against PSOI, and for the RWMP-SOg against RWMPSOI (this seems a natural conclusion if we consider the simplicity and unimodality of Test Problem 1). RWMPSOg was proved to be statistically better than PSOI also for Test Problem 7. Overall, RWMPSO outperformed PSO, improving significantly its performance in most test problems.

| Problem | SS | Min   | Mean    | Max    | StD     | Suc |
|---------|----|-------|---------|--------|---------|-----|
| TP1     | 15 | 5324  | 6009.7  | 6713   | 342.9   | 50  |
|         | 30 | 7507  | 8615.2  | 9616   | 492.0   | 50  |
|         | 60 | 11757 | 13604.8 | 15153  | 660.0   | 50  |
| TP2     | 15 | 3233  | 9275.5  | 62928  | 11272.3 | 50  |
|         | 30 | 4944  | 10534.2 | 95361  | 13234.9 | 50  |
|         | 60 | 6915  | 15515.3 | 54052  | 20835.7 | 50  |
| TP3     | 15 | 4042  | 14121.2 | 43767  | 9229.6  | 33  |
|         | 30 | 6669  | 18234.5 | 50466  | 10670.7 | 46  |
|         | 60 | 6812  | 19494.8 | 80063  | 15016.4 | 50  |
| TP4     | 15 | 5115  | 5956.5  | 6602   | 344.5   | 50  |
|         | 30 | 7062  | 7954.6  | 9188   | 446.5   | 50  |
|         | 60 | 10488 | 12142.2 | 13876  | 786.7   | 50  |
| TP5     | 15 | 4166  | 17962.7 | 70755  | 17727.2 | 50  |
|         | 30 | 265   | 12425.4 | 63487  | 9827.5  | 50  |
|         | 60 | 4826  | 11019.3 | 37069  | 6057.7  | 50  |
| TP6     | 15 | 33726 | 42746.1 | 69092  | 7086.1  | 42  |
|         | 30 | 50051 | 58797.6 | 69792  | 4651.9  | 48  |
|         | 60 | 69607 | 79473.6 | 95133  | 5080.0  | 50  |
| TP7     | 15 | 1560  | 2094.3  | 3428   | 458.0   | 50  |
|         | 30 | 2110  | 3412.2  | 6635   | 825.8   | 50  |
|         | 60 | 4569  | 5781.5  | 8238   | 629.4   | 50  |
| TP8     | 15 | 57145 | 74845.6 | 110259 | 10848.2 | 47  |
|         | 30 | 63590 | 78764.5 | 93710  | 6701.0  | 49  |
|         | 60 | 77465 | 89876.7 | 106207 | 7017.4  | 49  |
| TP9     | 15 | 12882 | 20300.4 | 41456  | 5209.8  | 49  |
|         | 30 | 22377 | 34710.7 | 50848  | 5818.2  | 50  |
|         | 60 | 34611 | 54114.9 | 144452 | 19734.5 | 50  |

Table 4 Results of RWMPSOg for the unconstrained problems

# 3.3 Constrained optimization problems

The benchmark problems that were used are:

Test Problem 10 (Himmelblau 1972). This problem is defined by

$$F_{10}(x) = (x_1 - 2)^2 + (x_2 - 1)^2,$$
(14)

subject to

$$x_1 = 2x_2 - 1,$$
  $\frac{x_1^2}{4} + x_2^2 - 1 \le 0,$ 

with  $x_i \in [-100, 100], i = 1, 2$ .

Deringer

 Table 5
 Results of RWMPSOI for the unconstrained problems

| Problem | SS | Min   | Mean    | Max    | StD     | Suc |
|---------|----|-------|---------|--------|---------|-----|
| TP1     | 15 | 6526  | 7318.3  | 8746   | 458.6   | 50  |
|         | 30 | 10021 | 11129.9 | 12834  | 658.5   | 50  |
|         | 60 | 16116 | 18208.7 | 20323  | 947.2   | 50  |
| TP2     | 15 | 3814  | 7679.0  | 24288  | 3846.9  | 50  |
|         | 30 | 7879  | 12220.5 | 20581  | 2554.3  | 50  |
|         | 60 | 10458 | 20687.0 | 37905  | 5662.9  | 50  |
| TP3     | 15 | 2213  | 8999.1  | 139085 | 19172.8 | 49  |
|         | 30 | 4050  | 13815.3 | 155611 | 21787.9 | 50  |
|         | 60 | 4622  | 16489.6 | 75139  | 12050.7 | 50  |
| TP4     | 15 | 5370  | 6588.2  | 7698   | 465.4   | 50  |
|         | 30 | 8379  | 9881.4  | 11880  | 726.2   | 50  |
|         | 60 | 14520 | 16858.4 | 21845  | 1417.6  | 50  |
| TP5     | 15 | 2628  | 21386.1 | 86842  | 21344.6 | 50  |
|         | 30 | 174   | 18300.2 | 113044 | 17947.4 | 50  |
|         | 60 | 271   | 18080.2 | 56900  | 12403.9 | 50  |
| TP6     | 15 | 9844  | 12978.2 | 27297  | 2487.5  | 50  |
|         | 30 | 19879 | 24600.1 | 30381  | 2378.5  | 50  |
|         | 60 | 36395 | 48110.9 | 59773  | 5710.3  | 50  |
| TP7     | 15 | 1922  | 2685.8  | 3290   | 314.6   | 50  |
|         | 30 | 3738  | 4710.6  | 5759   | 562.9   | 50  |
|         | 60 | 7230  | 8765.1  | 10001  | 739.1   | 50  |
| TP8     | 15 | 27995 | 38248.6 | 60191  | 6308.8  | 49  |
|         | 30 | 32514 | 38916.5 | 44470  | 2958.3  | 50  |
|         | 60 | 62821 | 74476.9 | 83195  | 5460.9  | 50  |
| TP9     | 15 | 12116 | 17579.2 | 28755  | 3315.0  | 50  |
|         | 30 | 11422 | 19030.9 | 56181  | 8005.8  | 50  |
|         | 60 | 8951  | 20441.7 | 74149  | 13287.7 | 50  |

Test Problem 11 (Floudas and Pardalos 1987). This problem is defined by

$$F_{11}(x) = (x_1 - 10)^3 + (x_2 - 20)^3,$$
(15)

subject to

$$100 - (x_1 - 5)^2 - (x_2 - 5)^2 \le 0,$$
  

$$(x_1 - 6)^2 + (x_2 - 5)^2 - 82.81 \le 0,$$
  

$$13 \le x_1 \le 100, \quad 0 \le x_2 \le 100.$$

D Springer

| Problem | SS | Min   | Mean    | Max    | StD     | Suc |
|---------|----|-------|---------|--------|---------|-----|
| TP1     | 15 | 6585  | 10824.8 | 24060  | 3408.4  | 43  |
|         | 30 | 9060  | 11242.3 | 17850  | 1508.1  | 47  |
|         | 60 | 14280 | 16360.0 | 19140  | 933.3   | 48  |
| TP2     | 15 | 4830  | 14898.3 | 84735  | 15417.8 | 36  |
|         | 30 | 6450  | 12469.7 | 35100  | 5877.1  | 29  |
|         | 60 | 8880  | 26420.0 | 156900 | 27337.6 | 39  |
|         | 15 | 2370  | 3282.3  | 6105   | 1109.8  | 11  |
| TP3     | 30 | 3270  | 5097.3  | 8250   | 1276.8  | 22  |
|         | 60 | 5340  | 10042.5 | 22860  | 3103.7  | 40  |
| TP4     | 15 | 6030  | 8785.9  | 18885  | 2567.2  | 29  |
|         | 30 | 8280  | 9718.1  | 11910  | 914.8   | 47  |
|         | 60 | 12240 | 14891.0 | 18360  | 1176.4  | 49  |
| TP5     | 15 | 1230  | 7727.4  | 59250  | 11973.9 | 31  |
|         | 30 | 2100  | 18210.0 | 271350 | 44027.4 | 37  |
|         | 60 | 3120  | 11877.3 | 66600  | 12168.4 | 44  |
| TP6     | 15 | -     | _       | _      | _       | 0   |
|         | 30 | 15090 | 16395.0 | 17700  | 1305.0  | 2   |
|         | 60 | 21840 | 25116.0 | 30300  | 2171.2  | 20  |
| TP7     | 15 | 1365  | 1896.7  | 2685   | 244.8   | 47  |
|         | 30 | 2370  | 3272.4  | 4350   | 336.7   | 49  |
|         | 60 | 4620  | 5616.0  | 6720   | 401.1   | 50  |
| TP8     | 15 | 17325 | 29893.8 | 41955  | 7954.4  | 13  |
|         | 30 | 19110 | 24277.9 | 35370  | 4173.8  | 19  |
|         | 60 | 26100 | 30172.7 | 33840  | 1770.7  | 33  |
| TP9     | 15 | 2070  | 8546.0  | 48555  | 10426.9 | 30  |
|         | 30 | 4740  | 17416.6 | 179490 | 29615.7 | 38  |
|         | 60 | 6300  | 39581.1 | 427680 | 91879.1 | 38  |

 Table 6
 Results of PSOg for the unconstrained problems

Test Problem 12 (Hock and Schittkowski 1981). This problem is defined by

$$F_{12}(x) = (x_1 - 10)^2 + 5(x_2 - 12)^2 + x_3^4 + 3(x_4 - 11)^2 + 10x_5^6 + 7x_6^2 + x_7^4 - 4x_6x_7 - 10x_6 - 8x_7,$$
(16)

subject to

$$\begin{aligned} &-127+2x_1^2+3x_2^4+x_3+4x_4^2+5x_5\leq 0,\\ &-282+7x_1+3x_2+10x_3^2+x_4-x_5\leq 0,\\ &-196+23x_1+x_2^2+6x_6^2-8x_7\leq 0,\\ &4x_1^2+x_2^2-3x_1x_2+2x_3^2+5x_6-11x_7\leq 0,\\ &-10\leq x_i\leq 10,\quad i=1,\ldots,7.\end{aligned}$$

Table 7 Results of PSOI for the unconstrained problems

| Problem | SS | Min   | Mean    | Max    | StD     | Suc |
|---------|----|-------|---------|--------|---------|-----|
| TP1     | 15 | 6195  | 8467.5  | 10335  | 907.7   | 50  |
|         | 30 | 13200 | 16716.0 | 20250  | 1573.7  | 50  |
|         | 60 | 24780 | 34054.8 | 40920  | 3769.3  | 50  |
| TP2     | 15 | 3795  | 8004.9  | 38940  | 6441.3  | 50  |
|         | 30 | 7440  | 14337.6 | 38100  | 6673.5  | 50  |
|         | 60 | 14040 | 26443.2 | 76740  | 10755.0 | 50  |
| TP3     | 15 | 2820  | 10759.0 | 81195  | 12830.5 | 45  |
|         | 30 | 3720  | 16848.0 | 141600 | 22935.6 | 50  |
|         | 60 | 10020 | 24465.6 | 58560  | 9765.0  | 50  |
| TP4     | 15 | 6105  | 8006.4  | 10890  | 1042.3  | 50  |
|         | 30 | 11850 | 16132.8 | 20940  | 2203.4  | 50  |
|         | 60 | 23520 | 31506.0 | 39600  | 3796.8  | 50  |
| TP5     | 15 | 45    | 27170.0 | 117975 | 28745.1 | 45  |
|         | 30 | 90    | 28363.2 | 201450 | 38115.6 | 50  |
|         | 60 | 180   | 27240.0 | 135960 | 27689.4 | 50  |
| TP6     | 15 | 9420  | 12733.5 | 39990  | 4123.7  | 50  |
|         | 30 | 17670 | 24231.6 | 45810  | 3791.3  | 50  |
|         | 60 | 39120 | 47902.8 | 60420  | 4924.5  | 50  |
| TP7     | 15 | 2175  | 2686.2  | 3540   | 312.1   | 50  |
|         | 30 | 3180  | 4657.8  | 5550   | 520.9   | 50  |
|         | 60 | 7020  | 8769.6  | 10800  | 714.3   | 50  |
| TP8     | 15 | 15840 | 19353.8 | 27060  | 2027.4  | 43  |
|         | 30 | 30300 | 36608.6 | 42300  | 2478.8  | 49  |
|         | 60 | 64080 | 74986.8 | 120360 | 7833.0  | 50  |
| TP9     | 15 | 4080  | 14011.7 | 58575  | 13167.1 | 45  |
|         | 30 | 9570  | 21287.1 | 97830  | 19328.5 | 49  |
|         | 60 | 17280 | 25918.8 | 59520  | 6634.4  | 50  |

Test Problem 13 (Hock and Schittkowski 1981). This problem is defined by

\_

$$F_{13}(x) = 5.3578547x_3^2 + 0.8356891x_1x_5 + 37.293239x_1 - 40792.141,$$
(17)

subject to

$$\begin{aligned} 0 &\leq 85.334407 + 0.0056858T_1 + T_2x_1x_4 - 0.0022053x_3x_5 \leq 92, \\ 90 &\leq 80.51249 + 0.0071317x_2x_5 + 0.0029955x_1x_2 + 0.0021813x_3^2 \leq 110, \\ 20 &\leq 9.300961 + 0.0047026x_3x_5 + 0.0012547x_1x_3 + 0.0019085x_3x_4 \leq 25, \\ 78 &\leq x_1 \leq 102, \qquad 33 \leq x_2 \leq 45, \qquad 27 \leq x_i \leq 45, \quad i = 3, 4, 5, \end{aligned}$$

where  $T_1 = x_2 x_5$  and  $T_2 = 0.0006262$ .

**Test Problem 14** (Hock and Schittkowski 1981). This problem is defined exactly as Test Problem 13, but with

$$T_1 = x_2 x_3, \qquad T_2 = 0.00026.$$

Test Problem 15 (Michalewicz 1996). This problem is defined by

$$F_{15}(x) = -10.5x_1 - 7.5x_2 - 3.5x_3 - 2.5x_4 - 1.5x_5 - 10x_6 - 0.5\sum_{i=1}^{5} x_i^2, \qquad (18)$$

subject to

$$6x_1 + 3x_2 + 3x_3 + 2x_4 + x_5 - 6.5 \le 0,$$
  

$$10x_1 + 10x_3 + x_6 \le 20,$$
  

$$0 \le x_i \le 1, \quad i = 1, \dots, 5, \quad 0 \le x_6 \le 50.$$

For these test problems, the non-stationary penalty function employed in (Parsopoulos and Vrahatis 2002b) was adopted. More specifically, the penalty function is defined as (Yang et al. 1997),

$$f(x) = F(x) + h(t)H(x),$$
 (19)

where F(x) is the original objective function of the constrained problem; h(t) is a dynamically modified penalty value, where t is the algorithm's current iteration number; and H(x) is a penalty factor defined as

$$H(x) = \sum_{i=1}^{m} \theta(q_i(x)) q_i(x)^{\gamma(q_i(x))},$$
(20)

where  $q_i(x) = \max\{0, g_i(x)\}, i = 1, ..., m$ , and  $g_i(x)$  are the problem's constraints (assuming they are in the form  $g_i(x) \le 0$ ). The function  $q_i(x)$  is a relative violated function of the constraints;  $\theta(q_i(x))$  is a multi-stage assignment function (Homaifar et al. 1994); and  $\gamma(q_i(x))$  is the power of the penalty function.

The functions  $h(\cdot)$ ,  $\theta(\cdot)$  and  $\gamma(\cdot)$ , are problem dependent. We used the same values that are reported in (Yang et al. 1997), i.e., the relative violated function of the constraints was,

$$\gamma(q_i(x)) = \begin{cases} 1, & \text{if } q_i(x) < 1, \\ 2, & \text{otherwise,} \end{cases}$$

the assignment function was

$$\theta(q_i(x)) = \begin{cases} 10, & \text{if } q_i(x) < 0.001, \\ 20, & \text{if } 0.001 \le q_i(x) < 0.1, \\ 100, & \text{if } 0.1 \le q_i(x) < 1, \\ 300, & \text{otherwise,} \end{cases}$$

and

$$h(t) = \begin{cases} \sqrt{t}, & \text{for Test Problem 10,} \\ t\sqrt{t}, & \text{otherwise.} \end{cases}$$

Deringer

| <b>Table 8</b> Parameter setting forthe constrained optimization | Problem | Algorithm | Iter | Step               |
|------------------------------------------------------------------|---------|-----------|------|--------------------|
| problems                                                         | TP10    | RWMPSOg   | 5    | $2 \times 10^{0}$  |
|                                                                  |         | RWMPSOl   | 5    | $2 \times 10^0$    |
|                                                                  | TP11    | RWMPSOg   | 5    | $10^{-4}$          |
|                                                                  |         | RWMPSO1   | 5    | $10^{-3}$          |
|                                                                  | TP12    | RWMPSOg   | 10   | $10^{-1}$          |
|                                                                  |         | RWMPSO1   | 10   | $10^{-1}$          |
|                                                                  | TP13    | RWMPSOg   | 8    | $2 \times 10^{-5}$ |
|                                                                  |         | RWMPSOl   | 4    | $10^{-8}$          |
|                                                                  | TP14    | RWMPSOg   | 5    | $10^{-8}$          |
|                                                                  |         | RWMPSO1   | 5    | $10^{-8}$          |
|                                                                  | TP15    | RWMPSOg   | 4    | $5 \times 10^{-5}$ |
|                                                                  |         | RWMPSOl   | 8    | $2 \times 10^{-5}$ |

A constraint of the form  $g_i(x) \le 0$ , was assumed to be violated only if  $g_i(x) > 10^{-5}$ . In all test problems, a swarm of size 100 was used. For each test problem, each algorithm was executed until it reached  $10^5$  function evaluations. Then, the best feasible detected solution was reported. For each test problem, 30 independent experiments were performed. An experiment was considered to be successful only if a feasible solution was detected.

Here, we must point out a difference between PSO's implementation in constrained and unconstrained problems. Penalty functions may assign quite low function values to unfeasible solutions. These solutions can be stored as particles' best positions, thereby attracting the swarm towards them. In order to prevent the swarm from being attracted to unfeasible regions, the indices  $g_i$  of the best particles in PSO were selected after looking at the current positions of the particles, instead of their best positions. This approach was adopted in Parsopoulos and Vrahatis (2002b) with promising results. The alternative approach of accepting only feasible solutions as particles' best positions is not valid unless there is a mechanism that can ensure that each particle will take at least one feasible position during the experiment, otherwise no best position for some or all particles can be determined. Even in the case that such a mechanism exists, the best positions' change rate is usually very slow, thereby leading to search stagnation. Thus, it is not recommended.

In Table 8, the values of the parameters used by RWMPSOg and RWMPSOl, respectively, are given. All results for the constrained problems are reported in Table 9. More specifically, the number of successes in 30 experiments, the mean and the standard deviation of the function value of the obtained feasible solutions (for the successful experiments only) are reported. For the RWMPSO variants, RWDE was applied at each iteration of the algorithm on the best detected feasible solution, if any, otherwise, each particle of the current swarm was selected for local search with probability 0.1.

With the exception of Test Problem 13, where the performance of all algorithms was equal, in all test problems RWMPSO exhibited a better performance than PSO. More specifically, RWMPSOg had a better success rate than PSOg in Test Problems 10 and 11, while the quality of its solutions was superior in all problems. The same holds for RWMPSOI, which had a better performance than PSOI in all test problems. Moreover, the standard deviations of the RWMPSO variants were always smaller than the corresponding standard deviations of the PSO variants, indicating its robustness.

| Problem |      | RWMPSOg    | RWMPSOl    | PSOg       | PSOl       |
|---------|------|------------|------------|------------|------------|
| TP10    | Suc  | 30/30      | 30/30      | 24/30      | 22/30      |
|         | Mean | -6961.283  | -6960.717  | -6960.668  | -6939.627  |
|         | StD  | 0.380      | 1.798      | 1.043      | 58.789     |
| TP11    | Suc  | 25/30      | 30/30      | 24/30      | 30/30      |
|         | Mean | 1.832      | 1.427      | 2.042      | 1.454      |
|         | StD  | 0.474      | 0.061      | 0.865      | 0.078      |
|         | Suc  | 30/30      | 30/30      | 30/30      | 30/30      |
| TP12    | Mean | 680.915    | 680.784    | 681.254    | 680.825    |
|         | StD  | 0.178      | 0.062      | 0.245      | 0.077      |
| TP13    | Suc  | 30/30      | 30/30      | 30/30      | 30/30      |
|         | Mean | -30665.550 | -30665.550 | -30665.550 | -30665.550 |
|         | StD  | 0.000      | 0.000      | 0.000      | 0.000      |
| TP14    | Suc  | 30/30      | 30/30      | 30/30      | 30/30      |
|         | Mean | -31021.173 | -31026.435 | -31021.140 | -31026.440 |
|         | StD  | 11.506     | 0.000      | 12.617     | 0.000      |
| TP15    | Suc  | 30/30      | 30/30      | 30/30      | 30/30      |
|         | Mean | -212.616   | -213.047   | -211.833   | -212.933   |
|         | StD  | 1.043      | 0.002      | 1.840      | 0.365      |

Table 9 Results for the constrained optimization problems

## 3.4 Minimax problems

The general form of the minimax problem is (Xu 2001):

$$\min_{x} F(x), \tag{21}$$

where

$$F(x) = \max_{i=1,...,m} f_i(x),$$
 (22)

with  $f_i(x): S \subset \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$ . Also, nonlinear programming problems of the form:

$$\min_{x} F(x),$$
  
$$g_i(x) \ge 0, \quad i = 2, \dots, m,$$

can be transformed and solved as minimax problems,

$$\min_{x} \max_{1 \le i \le m} f_i(x), \tag{23}$$

where

$$f_1(x) = F(x),$$
  

$$f_i(x) = F(x) - \alpha_i g_i(x),$$
  

$$\alpha_i > 0,$$
  
(24)

for  $2 \le i \le m$ . It can be proved that for large values of  $\alpha_i$ , the optimal points of the two problems coincide (Bandler and Charalambous 1974). The benchmark problems that were used in our experiments are:

Test Problem 16 (Xu 2001). This problem is defined by

$$\min_{x} F_{16}(x),$$

$$F_{16}(x) = \max\{f_i(x)\}, \quad i = 1, 2, 3,$$

$$f_1(x) = x_1^2 + x_2^4,$$

$$f_2(x) = (2 - x_1)^2 + (2 - x_2)^2,$$

$$f_3(x) = 2\exp(-x_1 + x_2),$$
(25)

and the desired error goal is  $F_{16}(x^*) = 1.9523$ .

**Test Problem 17** (Xu 2001). This is a nonlinear programming problem that can be transformed to a minimax problem according to (23) and (24), and it is defined by

$$F_{17}(x) = x_1^2 + x_2^2 + 2x_3^2 + x_4^2 - 5x_1 - 5x_2 - 21x_3 + 7x_4,$$
  

$$g_2(x) = -x_1^2 - x_2^2 - x_3^3 - x_4^2 - x_1 + x_2 - x_3 + x_4 + 8,$$
  

$$g_3(x) = -x_1^2 - 2x_2^2 - x_3^2 - 2x_4^2 + x_1 + x_4 + 10,$$
  

$$g_4(x) = -x_1^2 - x_2^2 - x_3^2 - 2x_1 + x_2 + x_4 + 5.$$
(26)

The desired error goal is  $F_{17}(x^*) = -40.10$ .

**Test Problem 18** (Xu 2001). This is a nonlinear programming problem that can be transformed to a minimax problem according to (23) and (24), and it is defined by

$$F_{18}(x) = (x_1 - 10)^2 + 5(x_2 - 12)^2 + 3(x_4 - 11)^2 + x_3^4$$
  
+  $10x_5^6 + 7x_6^2 + x_7^4 - 4x_6x_7 - 10x_6 - 8x_7,$   
 $g_2(x) = -2x_1^2 - 3x_3^4 - x_3 - 4x_4^2 - 5x_5 + 127,$   
 $g_3(x) = -7x_1 - 3x_2 - 10x_3^2 - x_4 + x_5 + 282,$   
 $g_4(x) = -23x_1 - x_2^2 - 6x_6^2 + 8x_7 + 196,$   
 $g_5(x) = -4x_1^2 - x_2^2 + 3x_1x_2 - 2x_3^2 - 5x_6 + 11x_7.$  (27)

The desired error goal is  $F_{18}(x^*) = 247$ .

Test Problem 19 (Schwefel 1995). This problem is defined by

$$\min_{x} F_{19}(x),$$

Deringer

subject to

$$F_{19}(x) = \max\{f_i(x)\}, \ i = 1, 2,$$
  

$$f_1(x) = |x_1 + 2x_2 - 7|,$$
  

$$f_2(x) = |2x_1 + x_2 - 5|.$$
(28)

The desired error goal is  $F_{19}(x^*) = 10^{-6}$ .

Test Problem 20 (Schwefel 1995). This problem is defined by

$$\min_{x} F_{20}(x), 
F_{20}(x) = \max\{f_i(x)\}, 
f_i(x) = |x_i|, \quad i = 1, ..., 10,$$
(29)

and the desired error goal is  $F_{20}(x^*) = 10^{-6}$ .

Test Problem 21 (Lukšan and Vlček 2000). This problem is defined by

$$\begin{split} \min_{x} F_{21}(x), \\ F_{21}(x) &= \max\{f_i(x)\}, \\ f_1(x) &= \left(x_1 - \sqrt{x_1^2 + x_2^2} \cos \sqrt{x_1^2 + x_2^2}\right)^2 + 0.005(x_1^2 + x_2^2), \\ f_2(x) &= \left(x_2 - \sqrt{x_1^2 + x_2^2} \sin \sqrt{x_1^2 + x_2^2}\right)^2 + 0.005(x_1^2 + x_2^2), \end{split}$$
(30)

and the desired error goal is  $F_{21}(x^*) = 10^{-6}$ .

Test Problem 22 (Lukšan and Vlček 2000). This problem is defined by

$$\min_{x} F_{22}(x), 
F_{22}(x) = \max\{|f_i(x)|\}, \quad i = 1, ..., 21, 
f_i(x) = x_1 \exp(x_3 t_i) + x_2 \exp(x_4 t_i) - \frac{1}{1 + t_i}, 
t_i = -0.5 + \frac{i - 1}{20},$$
(31)

and the desired error goal is  $F_{22}(x^*) = 0.1$ .

For each test problem, 50 experiments were performed with a swarm size equal to 20, and the particles were constrained in the range  $[-50, 50]^n$ , where *n* is the dimension of the problem. An experiment was considered successful if the desired error goal was achieved within the maximum number of function evaluations.

In Table 10, the values of the parameters used by MPSO in minimax problems are reported. These parameters are same with those described in the corresponding tables for the unconstrained problems. All results are reported in Table 11. More specifically, the number

| <b>Table 10</b> Parameter setting forthe minimax problems | Problem | Algorithm | Iter | Step | Best | Prob | Freq |
|-----------------------------------------------------------|---------|-----------|------|------|------|------|------|
|                                                           | TP16    | RWMPSOg   | 8    | 0.01 | yes  | _    | 1    |
|                                                           |         | RWMPSOl   | 8    | 0.01 | yes  | -    | 1    |
|                                                           | TP17    | RWMPSOg   | 5    | 0.5  | yes  | _    | 50   |
|                                                           |         | RWMPSOl   | 8    | 0.5  | yes  | -    | 1    |
|                                                           | TP18    | RWMPSOg   | 3    | 1.0  | yes  | -    | 2    |
|                                                           |         | RWMPSOl   | 5    | 0.5  | yes  | -    | 2    |
|                                                           | TP19    | RWMPSOg   | 5    | 1.0  | yes  | -    | 20   |
|                                                           |         | RWMPSOl   | 3    | 0.5  | yes  | -    | 20   |
|                                                           | TP20    | RWMPSOg   | 3    | 1.0  | yes  | -    | 2    |
|                                                           |         | RWMPSOl   | 10   | 1.0  | yes  | -    | 2    |
|                                                           | TP21    | RWMPSOg   | 8    | 0.01 | yes  | _    | 1    |
|                                                           |         | RWMPSOl   | 8    | 0.01 | yes  | -    | 1    |
|                                                           | TP22    | RWMPSOg   | 5    | 0.5  | _    | 0.3  | 1    |
|                                                           |         | RWMPSOl   | 5    | 0.5  | -    | 0.3  | 1    |

of successes is reported along with the maximum, minimum, mean and standard deviation of the required number of function evaluations for the successful cases. In all cases, the RWMPSO variants outperformed the corresponding standard PSO variants, having also higher success rate in Test Problem 22, were PSOg succeeded only in 36 experiments. RWMPSOg outperformed all algorithms, exhibiting the best performance. This was also verified through t-tests. Also, the worst behavior (maximum number of function evaluations) of the RWMPSO variants was far lower than the corresponding PSO variants in most cases.

#### 3.5 Integer programming problems

This is a very interesting class of test problems, since most evolutionary algorithms that work by rounding the real variables to integers suffer from search stagnation. The problems that were used are:

Test Problem 23 (Rüdolph 1994). This problem is defined by

$$F_{23}(x) = \|x\|_1 = |x_1| + \dots + |x_n|, \tag{32}$$

where *n* is the dimension, and  $x \in [-100, 100]^n$ . The global minimum is  $F_{23}(x^*) = 0$ .

Test Problem 24 (Rüdolph 1994). This problem is defined by

$$F_{24}(x) = x^{\top} x = (x_1 \quad \dots \quad x_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$
(33)

where *n* is the dimension, and  $x \in [-100, 100]^n$ . The global minimum is  $F_{24}(x^*) = 0$ .

StD

1244.2

Suc

50

| where $x \in$ | [-100, | 100] <sup>n</sup> |
|---------------|--------|-------------------|
|               |        |                   |
| 🖄 Springer    |        |                   |

 Table 11
 Results for the minimax problems

Problem

TP16

Min

722

| 0       |      |       |         |        |         |    |
|---------|------|-------|---------|--------|---------|----|
|         | TP17 | 1665  | 3991.3  | 16421  | 2545.2  | 50 |
|         | TP18 | 4290  | 7021.3  | 10332  | 1241.4  | 50 |
|         | TP19 | 2430  | 2947.8  | 3541   | 257.0   | 50 |
|         | TP20 | 15760 | 18520.1 | 19958  | 776.9   | 50 |
|         | TP21 | 135   | 1308.8  | 2359   | 505.5   | 50 |
|         | TP22 | 2028  | 4404.0  | 24704  | 3308.9  | 50 |
| RWMPSOl | TP16 | 665   | 2686.9  | 5874   | 1320.7  | 50 |
|         | TP17 | 2771  | 5948.4  | 10827  | 1902.8  | 50 |
|         | TP18 | 7813  | 11165.0 | 16590  | 2145.1  | 50 |
|         | TP19 | 2799  | 3463.7  | 3968   | 295.8   | 50 |
|         | TP20 | 28400 | 32167.4 | 36200  | 1775.2  | 50 |
|         | TP21 | 104   | 1599.7  | 3938   | 797.7   | 50 |
|         | TP22 | 1963  | 4593.6  | 11042  | 1680.5  | 50 |
| PSOg    | TP16 | 1540  | 4347.2  | 15720  | 3643.0  | 50 |
|         | TP17 | 1960  | 4050.4  | 12260  | 1932.8  | 50 |
|         | TP18 | 4650  | 7098.0  | 14750  | 1966.1  | 50 |
|         | TP19 | 2600  | 3018.4  | 3540   | 209.4   | 50 |
|         | TP20 | 16400 | 18465.0 | 20600  | 932.4   | 50 |
|         | TP21 | 80    | 1658.0  | 2340   | 321.6   | 50 |
|         | TP22 | 620   | 5976.6  | 87960  | 15572.9 | 36 |
| PSOI    | TP16 | 1560  | 3669.2  | 13860  | 2526.4  | 50 |
|         | TP17 | 2480  | 6820.8  | 27820  | 4831.0  | 50 |
|         | TP18 | 7650  | 11289.0 | 16700  | 1990.2  | 50 |
|         | TP19 | 2760  | 3475.2  | 4360   | 387.9   | 50 |
|         | TP20 | 30500 | 33687.0 | 36950  | 1641.7  | 50 |
|         | TP21 | 100   | 2572.4  | 4460   | 931.0   | 50 |
|         | TP22 | 1020  | 7530.0  | 101600 | 18817.0 | 50 |

Mean

2415.3

Max

6893

Test Problem 25 (Glankwahmdee et al. 1979). This problem is defined by

$$F_{25}(x) = -(15 \quad 27 \quad 36 \quad 18 \quad 12) x$$

$$+ x^{\top} \begin{pmatrix} 35 & -20 & -10 & 32 & -10 \\ -20 & 40 & -6 & -31 & 32 \\ -10 & -6 & 11 & -6 & -10 \\ 32 & -31 & -6 & 38 & -20 \\ -10 & 32 & -10 & -20 & 31 \end{pmatrix} x,$$
(34)

where  $x \in [-100, 100]^n$ . The global minimum is  $F_{25}(x^*) = -737$ .

Algorithm

RWMPSOg

Test Problem 26 (Glankwahmdee et al. 1979). This problem is defined by

$$F_{26}(x) = \left(9x_1^2 + 2x_2^2 - 11\right)^2 + \left(3x_1 + 4x_2^2 - 7\right)^2.$$
(35)

The global minimum is  $F_{26}(x^*) = 0$ .

Test Problem 27 (Glankwahmdee et al. 1979). This problem is defined by

$$F_{27}(x) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4.$$
 (36)

The global minimum is  $F_{27}(x^*) = 0$ .

Test Problem 28 (Glankwahmdee et al. 1979). This problem is defined by

$$F_{28}(x) = 2x_1^2 + 3x_2^2 + 4x_1x_2 - 6x_1 - 3x_2.$$
 (37)

The global minimum is  $F_{28}(x^*) = -6$ .

Test Problem 29 (Glankwahmdee et al. 1979). This problem is defined by

$$F_{29}(x) = -3803.84 - 138.08x_1 - 232.92x_2 + 123.08x_1^2 + 203.64x_2^2 + 182.25x_1x_2.$$
(38)

The global minimum is  $F_{29}(x^*) = -3833.12$ .

For each test problem, 50 independent experiments were conducted with the particles constrained in  $[-100, 100]^n$ . The swarm size was problem dependent and equal to 100, 10, 70, 20, 20, 10, and 20, for Test Problems 23–29, respectively. An experiment was considered

| Table 12       Parameter setting for         the integer programming       problems | Problem | Algorithm | Iter | Step | Best | Prob | Freq |
|-------------------------------------------------------------------------------------|---------|-----------|------|------|------|------|------|
|                                                                                     | TP23    | RWMPSOg   | 8    | 2.0  | yes  | 0.1  | 1    |
|                                                                                     |         | RWMPSOl   | 3    | 2.0  | yes  | -    | 1    |
|                                                                                     | TP24    | RWMPSOg   | 3    | 2.0  | yes  | _    | 1    |
|                                                                                     |         | RWMPSOl   | 3    | 2.0  | yes  | -    | 1    |
|                                                                                     | TP25    | RWMPSOg   | 3    | 2.0  | yes  | 0.1  | 1    |
|                                                                                     |         | RWMPSOl   | 3    | 2.0  | yes  | -    | 1    |
|                                                                                     | TP26    | RWMPSOg   | 8    | 4.0  | yes  | _    | 1    |
|                                                                                     |         | RWMPSOl   | 5    | 2.0  | yes  | -    | 1    |
|                                                                                     | TP27    | RWMPSOg   | 3    | 2.0  | yes  | _    | 1    |
|                                                                                     |         | RWMPSOl   | 3    | 2.0  | yes  | -    | 1    |
|                                                                                     | TP28    | RWMPSOg   | 5    | 4.0  | yes  | _    | 1    |
|                                                                                     |         | RWMPSOl   | 5    | 4.0  | yes  | -    | 1    |
|                                                                                     | TP29    | RWMPSOg   | 5    | 2.0  | yes  | _    | 1    |
|                                                                                     |         | RWMPSOl   | 5    | 2.0  | yes  | -    | 1    |

 Table 13 Results for the integer programming problems

| Algorithm | Problem | Min   | Mean    | Max    | StD     | Suc |
|-----------|---------|-------|---------|--------|---------|-----|
| RWMPSOg   | TP23    | 17160 | 27176.3 | 74699  | 8656.9  | 50  |
|           | TP24    | 252   | 578.5   | 912    | 136.5   | 50  |
|           | TP25    | 1361  | 6490.6  | 41593  | 6912.8  | 50  |
|           | TP26    | 76    | 215.0   | 468    | 97.9    | 50  |
|           | TP27    | 687   | 1521.8  | 2439   | 360.7   | 50  |
|           | TP28    | 40    | 110.9   | 238    | 48.6    | 50  |
|           | TP29    | 72    | 242.7   | 620    | 132.2   | 50  |
| RWMPSOI   | TP23    | 24870 | 30923.9 | 35265  | 2405.0  | 50  |
|           | TP24    | 369   | 773.9   | 1931   | 285.5   | 50  |
|           | TP25    | 5003  | 9292.6  | 15833  | 2443.7  | 50  |
|           | TP26    | 73    | 218.7   | 620    | 115.3   | 50  |
|           | TP27    | 675   | 2102.9  | 3863   | 689.5   | 50  |
|           | TP28    | 40    | 112.0   | 235    | 48.7    | 50  |
|           | TP29    | 70    | 248.9   | 573    | 134.4   | 50  |
| PSOg      | TP23    | 14000 | 29435.3 | 261100 | 42039.1 | 34  |
|           | TP24    | 400   | 606.4   | 1000   | 119.0   | 50  |
|           | TP25    | 2150  | 12681.0 | 187000 | 35066.8 | 50  |
|           | TP26    | 100   | 369.6   | 620    | 113.2   | 50  |
|           | TP27    | 680   | 1499.0  | 3440   | 513.1   | 43  |
|           | TP28    | 80    | 204.8   | 350    | 62.0    | 50  |
|           | TP29    | 100   | 421.2   | 660    | 130.4   | 50  |
| PSOI      | TP23    | 27400 | 31252.0 | 35800  | 1817.8  | 50  |
|           | TP24    | 450   | 830.2   | 1470   | 206.0   | 50  |
|           | TP25    | 4650  | 11320.0 | 22650  | 3802.8  | 50  |
|           | TP26    | 120   | 390.0   | 920    | 134.6   | 50  |
|           | TP27    | 800   | 2472.4  | 3880   | 637.5   | 50  |
|           | TP28    | 70    | 256.0   | 520    | 107.5   | 50  |
|           | TP29    | 100   | 466.0   | 820    | 165.0   | 50  |

successful if the global minimum was obtained with an accuracy of  $10^{-6}$ . In order to avoid search stagnation and possible deterioration of the algorithms' dynamics, the search points were rounded to the nearest integer only for function evaluation purposes, while they were considered as real numbers for all other operations. The best solution was also rounded after the termination of the algorithm.

In Table 12, the parameter setting of RWMPSO is reported. All results are reported in Table 13. More specifically, the number of successes is reported along with the minimum, mean, maximum, and standard deviation of the required number of function evaluations for the successful cases. Once again, RWMPSO was superior to standard PSO. RWMPSOg exhibited better performance than all the other algorithms with respect to the required mean number of function evaluations. Its standard deviations were also the smallest among the algorithms in the majority of the test problems, thereby verifying its robustness. The statistical significance of the RWMPSOg results was also verified through t-tests. Interestingly,

## 4 Conclusions

A new Memetic Particle Swarm Optimization scheme that incorporates local search techniques to the standard Particle Swarm Optimization algorithm was proposed. Its performance was investigated on a plethora of test problems, including unconstrained, constrained, minimax and integer programming problems, employing the Random Walk with Direction Exploitation. Both the local and global variants of the proposed scheme were tested and compared with the corresponding variants of Particle Swarm Optimization. In almost all problems the memetic approach proved to be superior, increasing both the efficiency and the effectiveness of the algorithm.

Techniques for the self-adaptation of the local search parameters that could further enhance the algorithm's performance and different local search techniques will be included in future correspondence.

Acknowledgements We would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions. We thank the European Social Fund (ESF), Operational Program for Educational and Vocational Training II (EPEAEK II) and particularly the Program PYTHAGORAS, for funding the above work.

#### References

- Abido, M. A. (2002). Optimal design of power system stabilizers using particle swarm optimization. *IEEE Transactions on Energy Conversion*, 17, 406–413.
- Agrafiotis, D. K., & Cedeno, W. (2002). Feature selection for structure-activity correlation using binary particle swarms. *Journal of Medicinal Chemistry*, 45, 1098–1107.
- Angeline, P. J. (1998). Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In V. W. Porto, N. Saravanan, D. Waagen & A. E. Eiben (Eds.), *Evolutionary* programming (Vol. VII, pp. 601–610). Berlin: Springer.
- Bandler, J. W., & Charalambous, C. (1974). Nonlinear programming using minimax techniques. Journal of Optimization Theory and Applications, 13, 607–619.
- Belew, R. K. (1990). Evolution, learning and culture: computational metaphores for adaptive algorithms. *Complex Systems*, 4, 11–49.
- Belew, R. K., McInerny, J., & Schraudolph, N. N. (1991). Evolving networks: using the genetic algorithm with connectionist learning. In C. Langton, C. Taylor, J. Farmer & S. Rasmussen (Eds.), *Proceedings of* the second conference in artificial life (pp. 511–548). Reading: Addison-Wesley.
- Clerc, M., & Kennedy, J. (2002). The particle swarm—explosion, stability, and convergence in a multidimensional complex space. *IEEE Transactions on Evolutionary Computation*, 6, 58–73.
- Cockshott, A. R., & Hartman, B. E. (2001). Improving the fermentation medium for *Echinocandin B* production. Part II: particle swarm optimization. *Process Biochemistry*, 36, 661–669.
- Dawkins, R. (1976). The selfish gene. New York: Oxford University Press.
- Floudas, C. A., & Pardalos, P. M. (1987). A collection of test problems for constrained global optimization algorithms. In P. M. Floudas (Ed.), *Lecture notes in computer science*, Vol. 455. Berlin: Springer.
- Fourie, P. C., & Groenwold, A. A. (2002). The particle swarm optimization algorithm in size and shape optimization. *Structural and Multidisciplinary Optimization*, 23, 259–267.
- Geesing, R., & Stork, D. (1991). Evolution and learning in neural networks: the number and distribution of learning trials affect the rate of evolution. In R. Lippmann, J. Moody & D. and Touretzky (Eds.), NIPS 3 (pp. 804–810). San Mateo: Morgan Kaufmann.
- Glankwahmdee, A., Liebman, J. S., & Hogg, G. L. (1979). Unconstrained discrete nonlinear programming. Engineering Optimization, 4, 95–107.
- Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.

- Hart, W. E. (1994). Adaptive global optimization with local search. Ph.D. thesis, University of California, San Diego, USA.
- Himmelblau, D. M. (1972). Applied nonlinear programming. New York: McGraw-Hill.
- Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide evolution. *Complex Systems*, 1, 495–502.
- Hock, W., & Schittkowski, K. (1981). Test examples for nonlinear programming codes. In Lecture notes in economics and mathematical systems (Vol. 187). Berlin: Springer.
- Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: Ann Arbor University Press.
- Homaifar, A., Lai, A. H. -Y., & Qi, X. (1994). Constrained optimization via genetic algorithms. Simulation, 2, 242–254.
- Hoos, H. H., & Stützle, T. (2004). Stochastic local search: foundations and applications. San Mateo: Morgan Kaufmann.
- Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Mateo: Morgan Kaufmann.
- Krasnogor, N. (2002). *Studies on the theory and design space of memetic algorithms*. Ph.D. thesis, University of the West of England, Bristol, UK.
- Land, M. W. S. (1998). *Evolutionary algorithms with local search for combinatorial optimization*. Ph.D. thesis, University of California, San Diego, USA.
- Laskari, E. C., Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization for integer programming. In *Proceedings of the IEEE 2002 congress on evolutionary computation* (pp. 1576–1581). Hawaii (HI), USA. New York: IEEE Press.
- Lee, C. -Y., & Yao, X. (2004). Evolutionary programming using mutations based on the Lévy probability distribution. *IEEE Transactions on Evolutionary Computation*, 8, 1–13.
- Lu, W. Z., Fan, H. Y., Leung, A. Y. T., & Wong, J. C. K. (2002). Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization. *Environmental Monitoring* and Assessment, 79, 217–230.
- Lukšan, L., & Vlček, J. (2000). Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical report 798, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- Matyas, J. (1965). Random optimization. Automatization and Remote Control, 26, 244-251.
- Merz, P. (1998). Memetic algorithms for combinatorial optimization. Fitness landscapes and effective search strategies. Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of Siegen, Germany
- Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs. Berlin: Springer.
- Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts. Towards memetic algorithms. Technical report C3P, Report 826, Caltech Concurrent Computation Program, California, USA
- Moscato, P. (1999). Memetic algorithms. A short introduction. In D. Corne, M. Dorigo & F. and Glover (Eds.), New ideas in optimization (pp. 219–235). London: McGraw-Hill.
- Muhlenbein, M., Gorges Schleiter, M., & Kramer, O. (1988). Evolution algorithms in combinatorial optimization. *Parallel Computing*, 7, 65–85.
- Ourique, C. O., Biscaia, E. C., & Carlos Pinto, J. (2002). The use of particle swarm optimization for dynamical analysis in chemical processes. *Computers and Chemical Engineering*, 26, 1783–1793.
- Papageorgiou, E. I., Parsopoulos, K. E., Groumpos, P. P., & Vrahatis, M. N. (2004). Fuzzy cognitive maps learning through swarm intelligence. In: *Lecture notes in computer science* (Vol. 3070, pp. 344–349). Berlin: Springer.
- Parsopoulos, K. E., & Vrahatis, M. N. (2002a). Initializing the particle swarm optimizer using the nonlinear simplex method. In A. Grmela & N. Mastorakis (eds.) Advances in intelligent systems, fuzzy systems, evolutionary computation (pp. 216–221). WSEAS Press.
- Parsopoulos, K. E., & Vrahatis, M. N. (2002b). Particle swarm optimization method for constrained optimization problems. In P. Sincak, J. Vascak, V. Kvasnicka & J. and Pospichal (Eds.), *Intelligent technologies– theory and application (New trends in intelligent technologies). Frontiers in artificial intelligence and applications* (Vol. 76, pp. 214–220). Amsterdam: IOS Press.
- Parsopoulos, K. E., & Vrahatis, M. N. (2002c). Recent approaches to global optimization problems through particle swarm optimization. *Natural Computing*, 1, 235–306.
- Parsopoulos, K. E., & Vrahatis, M. N. (2004). On the Computation of all global minimizers through particle swarm optimization. *IEEE Transactions on Evolutionary Computation*, 8, 211–224.
- Parsopoulos, K. E., Papageorgiou, E. I., Groumpos, P. P., & Vrahatis, M. N. (2004). Evolutionary computation techniques for optimizing fuzzy cognitive maps in radiation therapy systems. In *Lecture notes in computer science* (Vol. 3102, pp. 402–413). Berlin: Springer.
- Petalas, Y. G., & Vrahatis, M. N. (2004a). Memetic algorithms for neural network training in bioinformatics. In European symposium on intelligent technologies, hybrid systems and their implementation on smart adaptive systems (EUNITE 2004) (pp. 41–46). Aachen, Germany.

Rao, S. S. (1992). *Optimization: theory and applications*. New Dehli: Wiley Eastern.

- Ray, T., & Liew, K. M. (2002). A swarm metaphor for multiobjective design optimization. *Engineering Optimization*, 34(2), 141–153.
- Rüdolph, G. (1994). An evolutionary algorithm for integer programming. In Y. Davidor, H.-P. Schwefel & R. Männer (Eds.), Parallel problem solving from nature (Vol. 3, pp. 139–148). Berlin: Springer.
- Saldam, A., Ahmad, I., & Al-Madani, S. (2002). Particle swarm optimization for task assignment problem. *Microprocessors and Microsystems*, 26, 363–371.
- Schwefel, H. -P. (1995). Evolution and optimum seeking. New York: Wiley.
- Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. *Journal of Global Optimization*, 11, 341–359.
- Trelea, I. C. (2003). The particle swarm optimization algorithm. Convergence analysis and parameter selection. *Information Processing Letters*, 85, 317–325.
- Xu, S. (2001). Smoothing method for minimax problems. Computational Optimization and Applications, 20, 267–279.
- Yang, J.-M., Chen, Y.-P., Horng, J.-T., & Kao, C.-Y. (1997). Applying family competition to evolution strategies for constrained optimization. In *Lecture Notes in Mathematics* (Vol. 1213, pp. 201–211). New York: Springer.