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ABSTRACT
Cooperative approaches have proved to be very useful in evo-
lutionary computation due to their ability to solve efficiently
high-dimensional complex problems through the coopera-
tion of low–dimensional subpopulations. On the other hand,
Micro–evolutionary approaches employ very small popula-
tions of just a few individuals to provide solutions rapidly.
However, the small population size renders them prone to
search stagnation. This paper introduces Cooperative Micro–
Particle Swarm Optimization, which employs cooperative
low–dimensional and low–cardinality subswarms to concur-
rently adapt different subcomponents of high–dimensional
optimization problems. The algorithm is applied on high-
dimensional instances of five widely used test problems with
very promising results. Comparisons with the standard Par-
ticle Swarm Optimization algorithm are also reported and
discussed.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global optimization,Unconstrained
optimization; G.3 [Probability and Statistics]: Proba-
bilistic algorithms

General Terms
Algorithms, Performance, Experimentation

Keywords
Particle Swarm Optimization, Cooperative, Micro–Evolutio-
nary Algorithms, Swarm Intelligence

1. INTRODUCTION
Evolutionary algorithms have proved to be a very useful

tool in modern applications where increasingly complex op-
timization problems are involved. However, dimensionality
of these problems often becomes prohibitive for their effi-
cient treatment with any stochastic optimization algorithm.
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This problem is also known as the curse of dimensionality,
and it decreases the probability of finding a solution under
reasonable time constraints.

The aforementioned deficiency has been addressed with
the introduction of Cooperative Evolutionary Algorithms
(CEAs) [18]. These approaches break the original problem
into subcomponents of lower dimensionality and apply a se-
parate subpopulation to evolve each one. Subpopulations
can communicate and combine information for the evalua-
tion of their individuals with the original (high–dimensional)
objective function.

This approach has been extensively studied for the case of
Genetic Algorithms (GAs) [3, 17, 18, 19]. Extensive experi-
mentation with GA–based approaches, such as the Coope-
rative Coevolutionary Genetic Algorithm (CCGA) [17], re-
vealed also several deficiencies of cooperative schemes, such
as the deteriorating performance in problems with correlated
coordinate directions and the introduction of new local mi-
nima. This has triggered the development of performance–
enhancing techniques such as the surrogate–assisted version
of CCGA [13]. Cooperative approaches were also introduced
for Evolution Strategies [20] and Particle Swarm Optimiza-
tion (PSO) [7, 23], verifying the ongoing interest of the sci-
entific community.

Another interesting class of algorithms consists of Micro–
Evolutionary Algorithms (Micro–EAs), which are instances
of typical evolutionary algorithms characterized by small
population size and simple fitness functions. Micro–Genetic
Algorithms (Micro–GAs), also called Tiny–GAs, have been
investigated in demanding applications [11]. Recently, a
Micro–PSO (μPSO) approach was proposed for tackling de-
manding optimization problems [8].

Search stagnation is identified as the main drawback of
Micro–approaches and can be attributed to the small popu-
lation size, which limits their exploration capability. Indeed,
small number of individuals results in rapid collapse of the
population on the best detected solution, prohibiting the al-
gorithm from further probing of the search space. Hence,
efficiency is limited especially in complex high–dimensional
problems.

This deficiency is usually addressed by combining Micro–
EAs with diversity–preserving schemes. Such schemes pro-
vide the algorithm with the ability to retain population di-
versity, thereby increasing its exploration capability. Ad-
ditionally, multiple restarts combined with techniques that
prevent convergence to the same solution can be used. For
example, μPSO [8] is equipped with a repulsion technique
based on the approach of Parsopoulos and Vrahatis [16].

467



In this paper, a Cooperative Micro–Particle Swarm Op-
timization (COMPSO) is introduced. To the best of the
author’s knowledge, this is the first approach that combines
the efficiency of cooperative algorithms on high–dimensional
problems with the flexibility and low computational require-
ments of Micro–PSO. Thus, a high–dimensional problem
is divided to low–dimensional subcomponents. Each sub-
component is tackled with a small low–dimensional sub-
swarm, while the evaluation of each particle is based on an
information–sharing scheme among subswarms. The algo-
rithm is applied on high–dimensional instances of five widely
used test problems and compared, in terms of the best so-
lution value after a prespecified number of iterations, with
the standard PSO.

The rest of the paper is organized as follows: Section 2
describes the PSO algorithm, while Section 3 presents the
proposed COMPSO approach. Experimental results are re-
ported in Section 4 and the paper concludes in Section 5.

2. PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) was proposed in 1995

by Eberhart and Kennedy [5, 9] as a stochastic population–
based algorithm for continuous optimization problems. Col-
lective behavior in decentralized systems in nature consti-
tuted the main inspiration source behind its development.
Bird flocks, fish schools, and animal herds, as well as human
groups with social hierarchy, share properties that can be
modeled with simple direct interactions among their indi-
viduals, giving rise to the field of Swarm Intelligence (SI).

Memory and information sharing possess a dominant role
in SI models. Five fundamental principals have been identi-
fied in SI systems [6, 12]:

(1) Proximity: The swarm shall be able to perform simple
space and time computations.

(2) Quality: The swarm shall be a able to respond to qua-
lity factors in the environment.

(3) Diverse response: The swarm shall not commit its ac-
tivities along excessively narrow channels.

(4) Stability: The swarm shall not change its behavior un-
der slight changes of the environment.

(5) Adaptability: The swarm shall be able to change its
behavior whenever needed.

PSO adheres these rules, hence it is categorized as an SI
algorithm.

In PSO’s context, the population is called swarm, while its
individuals are called particles. The particles are initialized
randomly in the search space and they move iteratively with
a stochastically adapted velocity (position shift). Also, each
particle retains a memory of the best position it has ever
encountered and shares this information with a set of other
particles, called its neighborhood.

In the global PSO variant, the best position ever attained
by any individual is communicated to all other particles at
each iteration, i.e., the whole swarm is considered as the
neighborhood of each particle. On the other hand, in the
local variant each particle is assigned a neighborhood strictly
smaller than the swarm (usually consisting of just a few
particles). In this case, the best position ever attained by

Figure 1: The ring (left) and star (right) neighbor-
hood topology of PSO.

the particles that comprise a neighborhood is communicated
among them [10].

Neighboring particles are determined based on their in-
dices rather than their actual distance in search space, ac-
cording to their neighborhood topology. The simplest topolo-
gies are the ring and the star topology. In the first one, de-
picted in the left part of Fig. 1, particles are assumed to lie
on a ring, each one having two immediate neighbors, namely
the particles with its neighboring indices. The second one
is depicted in the right part of Fig. 1, where each parti-
cle shares information only with the best one, i.e., the one
with the overall best position. Apparently, star topology
corresponds to the global PSO variant, while ring topology
defines local variants.

To put it more formally, let:

f : S ⊂ R
n → R,

be the n–dimensional objective function under considera-
tion. Then, a swarm consisting of N particles is defined as
a set:

S = {x1, x2, . . . , xN} ,

where the i–th particle is an n–dimensional vector:

xi = (xi1, xi2, . . . , xin)� ∈ S.

The velocity of this particle is also an n–dimensional vector:

vi = (vi1, vi2, . . . , vin)�.

The best previous position encountered by the i–th particle
in S is denoted as:

pi = (pi1, pi2, . . . , pin)� ∈ S.

If r is the neighborhood’s radius, then the neighborhood of
xi under the ring topology is defined as the set:

{xi−r, xi−r+1, . . . , xi, . . . , xi+r−1, xi+r},
where x1 is considered as the immediate neighbor next to
xN .

Assume gi to be the index of the particle that attained
the best previous position among all particles in the neigh-
borhood of xi, and let t be the iteration counter. Then, the
swarm is manipulated by the following equations [2]:

vij(t + 1) = χ
h
vij(t) + c1R1

`
pij(t) − xij(t)

´
+

c2R2

`
pgi,j(t) − xij(t)

´i
, (1)

xij(t + 1) = xij(t) + vij(t + 1), (2)
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i = 1, 2, . . . , N ; j = 1, 2, . . . , n; where χ is the constriction
coefficient; c1 and c2 are the cognitive and social parameter,
respectively; and R1, R2, are random variables uniformly
distributed in [0, 1].

The best positions are updated as follows:

pi(t + 1) =

(
xi(t + 1), if f(xi(t + 1)) < f(pi(t)),

pi(t), otherwise.
(3)

The constriction coefficient is a mechanism for controlling
the magnitude of velocities. Based on the stability analysis
of PSO due to Clerc and Kennedy [2], it is derived analyti-
cally through the formula:

χ =
2κ˛̨̨

2 − φ −
p

φ2 − 4φ
˛̨̨ , (4)

where φ = c1 + c2. Values received for φ > 4 and κ = 1 are
considered to be the most prominent settings of χ due to
their good average performance [2]. A thorough theoretical
analysis of the derivation of Eq. (4) can be found in [2, 22].

Initialization of swarm and velocities is usually performed
randomly and uniformly in the search space, although more
sophisticated techniques can enhance the overall performance
of PSO [14, 15].

3. COOPERATIVE MICRO–PARTICLE
SWARM OPTIMIZATION

Micro–PSO works in direct analogy to the standard PSO
described in the previous section. The only difference is
the swarm size, N , which is considered to be rather small.
Typically, it is required that N � 10, with N = 5 being a
common choice. Similarly to the rest Micro-EAs, the perfor-
mance of small swarms depends heavily on problem dimen-
sion, n. Micro–PSO is expected to converge quite rapidly
due to its small number of particles. Thus, the difficulty in
detecting the global minimizer is related to the ratio,

D =
n

N
.

Small values of D (less than 1) imply swarm sizes larger
than problem dimension. On the other hand, values higher
than 1 correspond to dimensions higher than swarm size.
Empirical evidence for evolutionary algorithms suggest that
in most cases the problem becomes harder as D increases.
According to this observation, Micro–PSO is expected to be
a promising approach only in low–dimensional problems.

The problem of search stagnation and premature conver-
gence in Micro–EAs has been tackled by introducing multi-
start techniques that prevent the algorithm from converging
to the same solution after restart. Huang and Mohan [8]
equipped their μPSO approach with a scheme that repels the
swarm away from any point belonging to a black–list of al-
ready detected solutions. Their technique has many in com-
mon with typical Tabu Search approaches, as well as with
the repulsion technique of Parsopoulos and Vrahatis [16].
Nevertheless, the small amount of reported results, mostly
for test problems with dimension up to n = 500, has proved
to be inadequate to establish Micro–PSO approaches as a
promising alternative.

In contrast to Micro–PSO, Cooperative PSO (CPSO) ap-
proaches have been proposed as a means for addressing high–
dimensional problems efficiently [7, 23]. In CPSO, the ori-

ginal n–dimensional problem is divided to low–dimensional
subcomponents, each one evolved with a separate subswarm.

Let n1, n2, . . . , nK , be K positive integers such that:

n =
KX

k=1

nk,

where n is the dimension of the original problem. Then, in-
stead of using a single n–dimensional swarm, S, as in stan-
dard PSO, K subswarms, S1, S2, . . . , SK , with dimensions,
n1, n2, . . . , nK , and sizes, N1, N2, . . . , NK , respectively, are
used. Thus, each subswarm optimizes a specific subcompo-
nent of strictly smaller dimension than the original problem.

The update of each subswarm is exactly the same with
the standard PSO described in Section 2. However, an issue
arises with the evaluation of particles, since the objective
function is n–dimensional while their dimension is strictly
smaller than n in all subswarms. The problem is addressed
by using an n–dimensional buffer vector, also called context
vector [23]:

P = (P1, P2, . . . , Pn)�,

where each subswarm deposits its contribution. Thus, if:

z[k] =
“
z
[k]
1 , z

[k]
2 , . . . , z[k]

nk

”�
,

is a contributed nk–dimensional vector by the k–th sub-
swarm, Sk, k = 1, 2, . . . , K, the buffer vector is defined as:

P =
“

z
[1]
1 , . . . , z[1]

n1| {z }
contribution of S1

, z
[2]
1 , . . . , z[2]

n2| {z }
contribution of S2

, . . . , z
[K]
1 , . . . , z[K]

nK| {z }
contribution of SK

”�
.

Then, the i–th particle of the j–th swarm,

x
[j]
i =

“
x

[j]
i1 , x

[j]
i2 , . . . , x

[j]
i,nj

”�
,

is evaluated using the buffer vector, P , by substituting the
components that correspond to the contribution of the j–th

swarm with the components of x
[j]
i , while the rest compo-

nents remain unaffected, i.e.,

f
“
x

[j]
i

”
= f

“
P

[j]
i

”
, (5)

where,

P
[j]
i =

“
z
[1]
1 , . . . , z[1]

n1 , . . . , x
[j]
i1 , . . . , x

[j]
i,nj| {z }

evaluated particle

, . . . , z
[K]
1 , . . . , z[K]

nK

”�
,

i = 1, 2, . . . , Nj ; j = 1, 2, ..., K.
The most obvious choice of contribution of each subswarm

is its overall best position, i.e.,

z[k] = p[k]
g =

“
p
[k]
g1 , p

[k]
g2 , . . . , p[k]

g,nk

”�
,

which results in a buffer that contains the overall best posi-
tions of all subswarms:

P =
“

p
[1]
g1 , . . . , p[1]

g,n1| {z }
p
[1]
g of S1

, p
[2]
g1 , . . . , p[2]

g,n2| {z }
p
[2]
g of S2

, . . . , p
[K]
g1 , . . . , p[K]

g,nK| {z }
p
[K]
g of SK

”�
.

(6)
In this case, by definition, the buffer constitutes the best
position ever attained by the algorithm, i.e., it is the best
obtained approximation of the global minimizer of f(x).
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Table 1: Pseudocode of the proposed COMPSO approach.

Input: K (number of swarms), Ni (swarm sizes), ni (swarm dimensions), i = 1, 2, . . . , K,

P (buffer vector), Dmin (diversity threshold), f (objective function)

Step 1. Initialize all subswarms randomly in their search spaces (subspaces of the original one).

Step 2. Initialize buffer vector P using a randomly selected particle from each subswarm.

Step 3. Do (k = 1, 2, . . . , K)

Step 4. Do (i = 1, 2, . . . , Nk)

Step 5. Update the particle x
[k]
i using Eqs. (1) and (2).

Step 6. Evaluate x
[k]
i using Eq. (5) and the buffer P .

Step 7. Update the best position p
[k]
i using Eq. (3).

Step 8. If
“
f(x

[k]
i ) < f(P )

”
Then

Step 9. Copy x
[k]
i in the proper position of buffer P .

Step 10. End If

Step 11. End Do

Step 12. Compute standard deviations, dj , j = 1, 2, . . . , nk, for all coordinate directions.

Step 13. If
“

minj{dj} < Dmin

”
Then

Step 14. Re–initialize the k–th subswarm randomly retaining its best positions.

Step 15. End If

Step 16. End Do

Step 17. Print buffer P and f(P ).

Different choices of buffer result in different properties of
the algorithm. For example, instead of the overall best posi-
tion, a randomly selected particle from each subswarm can
be considered as its contribution resulting in a cooperative
scheme with slower convergence but higher diversity.

The proposed COMPSO approach combines Micro–PSO
with the cooperative approaches described above. More
specifically, the problem at hand is broken down in low–
dimensional subcomponents and Micro–PSO is applied on
each one. In order to render it capable of tackling the as-
signed problems using only a few particles, the size of each
subswarm was selected to be higher than the dimension of
the corresponding problem subcomponent.

Since Micro–PSO subswarms shall have a very small size,
the dimension of subcomponents shall be selected such that
the ratio, Di = ni/Ni, i = 1, 2, . . . , K, lies as close to zero
as possible for each subswarm. In practice, a ratio around
0.5 provides satisfactory results. For example, for subswarm
sizes, Ni = 5, a partitioning of the original problem to sub-
components of dimension, ni = 3, i = 1, 2, . . . , K, is ex-
pected to be an effective configuration with 5 particles ope-
rating on 3 coordinate directions of the objective function.

Moreover, in order to avoid search stagnation, a thresh-
old, Dmin, was set for each subswarm and the standard de-
viation per coordinate direction of its particles were com-
puted at each iteration. If the smallest standard deviation
falls under this threshold, then the subswarm is restarted
randomly, retaining its best positions. The COMPSO al-
gorithm is reported in pseudocode in Table 1. In the next
section, experimental results on high–dimensional instances
of widely used test problems are reported.

4. EXPERIMENTAL RESULTS
COMPSO was applied on the following widely used test

problems:

Test Problem 1 (TP1 - Sphere) [21]. This n–dimensional
problem is defined as:

f(x) =

nX
i=1

x2
i , (7)

and it has a global minimizer, x∗ = (0, 0, . . . , 0)�, with
f(x∗) = 0.

Test Problem 2 (TP2 - Generalized Rosenbrock) [22]. This
n–dimensional problem is defined as:

f(x) =

n−1X
i=1

“
100

`
xi+1 − x2

i

´2
+ (xi − 1)2

”
, (8)

and it has a global minimizer, x∗ = (1, 1, . . . , 1)�, with
f(x∗) = 0.

Test Problem 3 (TP3 - Rastrigin) [21]. This n–dimensional
problem is defined as:

f(x) = 10n +

nX
i=1

`
x2

i − 10 cos(2πxi)
´
, (9)

and it has a global minimizer, x∗ = (0, 0, . . . , 0)�, with
f(x∗) = 0.

Test Problem 4 (TP4 - Griewank) [21]. This n–dimensional
problem is defined as:

f(x) =
nX

i=1

x2
i

4000
−

nY
i=1

cos

„
xi√

i

«
+ 1, (10)

and it has a global minimizer, x∗ = (0, 0, . . . , 0)�, with
f(x∗) = 0.

Test Problem 5 (TP5 - Ackley) [1]. This n–dimensional
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Table 2: Dimension and range for each test problem.

Problem Dimension (n) Range

TP1 150, 300, 600, 900, 1200 [−100, 100]n

TP2 150, 300, 600, 900, 1200 [−30, 30]n

TP3 150, 300, 600, 900, 1200 [−5.12, 5.12]n

TP4 150, 300, 600, 900, 1200 [−600, 600]n

TP5 150, 300, 600, 900, 1200 [−20, 30]n

Table 3: The total number of particles and number
of subswarms per dimension.

Problem Total number Number of Particles per

dimension of particles subswarms subswarm

150 250 50 5

300 500 100 5

600 1000 200 5

900 1500 300 5

1200 2000 400 5

problem is defined as:

f(x) = 20 + exp(1) − 20 exp

0
@−0.2

vuut 1

n

nX
i=1

x2
i

1
A

− exp

 
1

n

nX
i=1

cos(2πxi)

!
, (11)

and it has a global minimizer, x∗ = (0, 0, . . . , 0)�, with
f(x∗) = 0.

Each test problem was considered for five different dimen-
sions, namely, n = 150, 300, 600, 900, and 1200. The corre-
sponding n–dimensional search spaces are reported in Ta-
ble 2. COMPSO divides each problem in K, 3–dimensional
subcomponents and applies a Micro–PSO subswarm of 5
particles on each. Hence, using the notation of the previous
section, we have:

nk = 3, Nk = 5,

for all k = 1, 2, . . . , K, with K = n/3. The number of sub-
swarms as well as the total number of particles per dimension
are reported in Table 3.

Each subswarm was restarted as soon as its minimum
standard deviation per coordinate direction fell under the
threshold, Dmin = 10−5. A maximum number of 1000 iter-
ations was allowed to each subswarm for every test problem
and dimension. Regarding their parameters, the local vari-
ant with ring neighborhood topology of radius, r = 1, was
used for all subswarms due to its nice exploration proper-
ties, along with the default parameters, χ = 0.729, c1 =
c2 = 2.05 [2]. All subswarm parameters are summarized
in Table 4. The parameters were set to reasonable values
for each problem case, without any further fine–tuning that
could enhance the performance of the proposed approach.

For each test problem, 30 independent experiments were
performed. At each experiment, COMPSO was allowed to
perform 1000 iterations and the best solution it ever detected
was recorded along with its function value. The obtained
function values were then analyzed statistically, in terms of

Table 4: Subswarm parameters.

Parameter Value

Nk (size) 5

nk (dimension) 3

Dmin (restart threshold) 10−5

tmax (maximum iterations) 103

χ (constriction coefficient) 0.729

c1, c2 2.05

Neighborhood topology Ring

r (neighborhood radius) 1

their mean, standard deviation, minimum and maximum.
For comparison purposes, experiments were conducted also
for the standard local PSO variant with the same parameters
as COMPSO. In order to make fair comparisons, the swarm
size of PSO was set equal to the total number of particles
employed by COMPSO, which is reported in Table 3, and
the same number of iterations was allowed. Statistics on the
performance of PSO were also derived and compared with
that of COMPSO.

Moreover, statistical hypothesis tests were conducted to
ensure significance of the results. Therefore, for each prob-
lem, COMPSO was compared against PSO using the non-
parametric Wilcoxon rank–sum test [4] with the null hypo-
thesis that the two samples of final solution values in 30 ex-
periments come from identical continuous distributions with
equal medians, against the alternative that they do not have
equal medians. The decision for acceptance or rejection of
the null hypothesis, as well as the corresponding p–value,
were recorded for each test problem.

All results and statistical tests are reported in Tables 5–
14. In all cases, COMPSO clearly outperforms PSO. The
solution values achieved by COMPSO are several orders of
magnitude better than those of PSO. Also, COMPSO ap-
pears to be less affected when dimension of the problem
increases significantly. For example, in TP1, increasing di-
mension from 150 to 1200 results in a difference of one order
of magnitude in the performance of COMPSO (from 10−9 to
10−8). At the same time, the performance of PSO changes
by three orders of magnitude (from 102 to 105). Similar ob-
servations can be made for the rest problems, while, in TP4
and TP5, COMPSO’s performance is marginally affected by
dimension increase.

The apparent, naked–eye superiority of COMPSO was
verified also by the statistical hypothesis tests. In all cases,
the obtained p–values of the Wilcoxon tests were very small
(of order 10−11), thereby rejecting the null hypothesis of
samples with equal medians.

The reported results support the claim that COMPSO
can solve high–dimensional problems efficiently. Its perfor-
mance was retained in high levels regardless of the increase
in problem dimension, while in some cases it was even left
unaffected. Although subswarms of equal size and dimen-
sion were used in the reported experiments, this can change
arbitrarily if required. Moreover, fine–tuning of parameters
can further enhance the performance of COMPSO, while its
straightforward parallelization capability renders it a very
promising approach in high–dimensional problems.
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Table 5: Results for the 150–dimensional problems.
PSO uses a single swarm of 250 particles, while
COMPSO uses 50 subswarms of 5 particles each.

Prob. Stats. PSO COMPSO

TP1 Mean 6.68847230e + 02 1.55261791e − 09

StD 6.90638180e + 01 3.79786997e − 10

Min 5.14616100e + 02 9.85937300e − 10

Max 8.02410100e + 02 2.70222600e − 09

TP2 Mean 3.11629990e + 05 1.71112142e + 02

StD 4.74332076e + 04 4.62286507e + 01

Min 2.24682100e + 05 7.35445600e + 01

Max 3.88668200e + 05 2.99587000e + 02

TP3 Mean 6.94741740e + 02 4.69250047e + 01

StD 6.09857058e + 01 7.36663120e + 00

Min 5.49309700e + 02 3.21413300e + 01

Max 8.11608800e + 02 6.41216700e + 01

TP4 Mean 7.10879660e + 00 4.29663675e − 02

StD 7.11968399e − 01 5.84414428e − 02

Min 5.61826600e + 00 5.88289100e − 11

Max 8.36398000e + 00 2.70933600e − 01

TP5 Mean 5.12332983e + 00 1.22642674e − 05

StD 2.35771525e − 01 1.27414193e − 06

Min 4.64959000e + 00 9.82757100e − 06

Max 5.50357100e + 00 1.48024800e − 05

Table 6: Wilcoxon rank–sum tests for the 150–
dimensional problems.

Prob. p–value Decision

TP1 3.01985936e − 11 Reject

TP2 3.01985936e − 11 Reject

TP3 3.01985936e − 11 Reject

TP4 2.95983137e − 11 Reject

TP5 3.01985936e − 11 Reject

5. CONCLUSIONS
COMPSO, an approach that combines Cooperative PSO

schemes with Micro–PSO for solving high–dimensional prob-
lems was introduced. The proposed approach was applied on
five widely used test problems for dimensions ranging from
150 up to 1200, and it was compared with the correspond-
ing local PSO variant. COMPSO was shown to be very
efficient, with its performance being marginally affected or
completely unaffected by increases in problem dimension.

Drawbacks identified for Cooperative PSO methods re-
main to be investigated for COMPSO, especially in cases
with highly–correlated coordinate directions. Nevertheless,
COMPSO was shown to be both efficient and robust and
worths further investigation under different subswarm con-
figurations and cooperative schemes. Applications on real
world problems also constitute a very interesting direction
for future research.

Table 7: Results for the 300–dimensional problems.
PSO uses a single swarm of 500 particles, while
COMPSO uses 100 subswarms of 5 particles each.

Prob. Stats. PSO COMPSO

TP 1 Mean 1.29715330e + 04 4.46924800e − 09

StD 8.90546008e + 02 7.09153474e − 10

Min 1.13007800e + 04 3.56440200e − 09

Max 1.48469900e + 04 6.06290100e − 09

TP2 Mean 9.01191120e + 06 3.42852143e + 02

StD 1.11074795e + 06 4.57457011e + 01

Min 6.65948200e + 06 2.80865000e + 02

Max 1.06025700e + 07 4.39362000e + 02

TP3 Mean 1.99022420e + 03 1.00995904e + 02

StD 8.12381020e + 01 1.06166877e + 01

Min 1.82741800e + 03 7.36630800e + 01

Max 2.15461500e + 03 1.13846800e + 02

TP4 Mean 1.18179580e + 02 4.08703599e − 02

StD 5.72494497e + 00 8.50423385e − 02

Min 1.04005700e + 02 3.18277600e − 11

Max 1.29898800e + 02 4.36516000e − 01

TP5 Mean 9.21636153e + 00 1.44741703e − 05

StD 1.56635755e − 01 1.08774777e − 06

Min 8.83649700e + 00 1.23276500e − 05

Max 9.63042100e + 00 1.63996100e − 05

Table 8: Wilcoxon rank–sum tests for the 300–
dimensional problems.

Prob. p–value Decision

TP1 3.01985936e − 11 Reject

TP2 3.01985936e − 11 Reject

TP3 3.01985936e − 11 Reject

TP4 3.01040737e − 11 Reject

TP5 3.01985936e − 11 Reject
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[11] M. Köppen, K. Franke, and R. Vicente-Garcia. Tiny
GAs for image processing applications. IEEE
Computational Intelligence Magazine, 1(2):17–26,
2006.

[12] M. M. Millonas. Swarms, phase transitions, and
collective intelligence. In M. Palaniswami,
Y. Attikiouzel, R. Marks, D. Fogel, and T. Fukuda,
editors, Computational Intelligence: A Dynamic
System Perspective, pages 137–151. IEEE Press,
Piscataway, NJ, 1994.

[13] Y. Ong, A. Keane, and P. Nair. Surrogate–assisted
coevolutionary search. In Proc. 9th International

473



Table 13: Results for the 1200–dimensional prob-
lems. PSO uses a single swarm of 2000 particles,
while COMPSO uses 400 subswarms of 5 particles
each.

Prob. Stats. PSO COMPSO

TP1 Mean 3.46446790e + 05 3.09769483e − 08

StD 1.25211959e + 04 1.97360280e − 09

Min 3.14708400e + 05 2.71700400e − 08

Max 3.63112000e + 05 3.72747800e − 08

TP2 Mean 3.57986637e + 08 1.46841193e + 03

StD 1.50817090e + 07 8.16410749e + 01

Min 3.25739700e + 08 1.31141300e + 03

Max 3.89343700e + 08 1.68527900e + 03

TP3 Mean 1.17734573e + 04 4.36089850e + 02

StD 1.12762515e + 02 2.08992042e + 01

Min 1.15154600e + 04 3.90303400e + 02

Max 1.19282800e + 04 4.75047100e + 02

TP4 Mean 3.10432017e + 03 7.18691892e − 02

StD 9.03348378e + 01 2.04131021e − 01

Min 2.90395200e + 03 8.89046600e − 11

Max 3.27936300e + 03 1.02541900e + 00

TP5 Mean 1.55481950e + 01 1.85364203e − 05

StD 9.03550123e − 02 6.21871510e − 07

Min 1.53380300e + 01 1.72929800e − 05

Max 1.57267600e + 01 1.99353700e − 05

Table 14: Wilcoxon rank–sum tests for the 1200–
dimensional problems.

Prob. p–value Decision

TP1 3.01985936e − 11 Reject

TP2 3.01985936e − 11 Reject

TP3 3.01985936e − 11 Reject

TP4 3.00474914e − 11 Reject

TP5 3.01985936e − 11 Reject

Conference of Neural Information Processing, pages
1140–1145, 2002.

[14] K. E. Parsopoulos and M. N. Vrahatis. Initializing the
particle swarm optimizer using the nonlinear simplex
method. In A. Grmela and N.E. Mastorakis, editors,
Advances in Intelligent Systems, Fuzzy Systems,
Evolutionary Computation, pages 216–221. WSEAS
Press, 2002.

[15] K. E. Parsopoulos and M. N. Vrahatis. Recent
approaches to global optimization problems through
particle swarm optimization. Natural Computing,
1(2–3):235–306, 2002.

[16] K. E. Parsopoulos and M. N. Vrahatis. On the
computation of all global minimizers through particle
swarm optimization. IEEE Transactions on
Evolutionary Computation, 8(3):211–224, 2004.

[17] M. A. Potter and K. De Jong. A cooperative
coevolutionary approach to function optimization. In
Y. Davidor and H.-P. Schwefel, editors, Proc. 3rd
Conference on Parallel Problem Solving from Nature,
pages 249–257. Springer–Verlag, 1994.

[18] M. A. Potter and K. De Jong. Cooperative
coevolution: An architecture for evolving coadapted
subcomponents. Evolutionary Computation, 8(1):1–29,
2000.

[19] R. E. Smith, S. Forrest, and A. S. Perelson. Searching
for diverse, cooperative populations with genetic
algorithms. Evolutionary Computation, 1(2):127–149,
1993.

[20] D. Sofge, K. De Jong, and A. Schultz. A blended
population approach to cooperative coevoultion for
decomposition of complex problems. In Proc. 2002
IEEE Congress on Evolutionary Computation
(CEC’02), pages 413–418, 2002.

[21] R. Storn and K. Price. Differential evolution–a simple
and efficient heuristic for global optimization over
continuous spaces. J. Global Optimization, 11:341–359,
1997.

[22] I. C. Trelea. The particle swarm optimization
algorithm: Convergence analysis and parameter
selection. Information Processing Letters, 85:317–325,
2003.

[23] F. Van den Bergh and A. P. Engelbrecht. A
cooperative approach to particle swarm optimization.
IEEE Transactions on Evolutionary Computation,
8(3):225–239, 2004.

474


