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Abstract: Self–adaptive probabilistic neural networks have already been proposed in the
literature. Typically, the kernel of the probabilistic neural network is an n–dimensional
identity matrix multiplied by the scalar spread parameter, σ. This prevents the network
from properly fitting the data. Another approach is to use a diagonal spread matrix,
allowing each dimension to assume its own spread value. This approach increases the
degrees of freedom of the network and thus allows it to fit better to the available data.
However, since the optimization procedure is now multivariate instead of univariate, it is
harder and computationally more demanding. To address this optimization problem we
employ state-of-the-art computational intelligence optimization algorithms, like Particle
Swarm Optimization, Differential Evolution and Evolution Strategies.
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1 Introduction

In this contribution an effort is attempted to combine a classical statistical technique with state-
of-the-art computational intelligence methods. A common task in numerous scientific fields is the
classification and prediction of class membership. Many approaches have been proposed to this
end, including discriminant analysis, artificial neural networks, probabilistic neural networks, naive
Bayes classifiers, and projection pursuit regression among others.

Probabilistic neural networks (PNNs) are known in the statistical literature as kernel discrimi-
nant analysis [9]. PNNs are used in many fields such as bioinformatics, medicine, and engineering
with not always very promising results. Recently, PNNs have been successfully applied for the pre-
diction of protein cellular localization sites [2]. For this purpose, the Particle Swarm Optimization
(PSO) algorithm has been employed for the optimization of a spread parameter which is crucial
for the PNN’s operation.
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2 Probabilistic Neural Networks

The PNN was introduced by Specht [9] as a new neural network type, although it was already widely
known in the statistical literature as kernel discriminant analysis [3]. What Specht introduced was
the neural network approach of kernel discriminant analysis which incorporates the Bayes decision
rule and the non–parametric density function estimation of a population [7].

The training procedure of the PNN requires only a single pass of the patterns of the training
data, which results in a very small training time. In fact, the training procedure is just the
construction of the PNN from the available data. The structure of the PNN has always four layers;
the input layer , the pattern layer , the summation layer, and the output layer . An input feature
vector, X ∈ Rn, is applied to the n input neurons and is passed to the pattern layer. The pattern
layer is organized into K groups, where K is the number of classes present in the data set. The
ith neuron in the jth group of the pattern layer computes its output using a Gaussian kernel of
the form,

fi,k(X) =
1

(2πσ2)n/2
exp

(
−‖X −Xi,k‖2

2σ2

)
, (1)

or in matrix form,

fi,k(X) =
1

(2π)n/2 |Σ|1/2
exp

(
−1

2
(X −Xi,k)T Σ−1 (X −Xi,k)

)
, (2)

where Xi.k ∈ Rn is the center of the kernel and σ is the spread (smoothing) parameter of the
kernel. In the matrix form of the kernel, Σ equals σ2In so there is only one parameter to estimate.
The summation layer has K neurons and estimates the conditional class probabilities as follows:

Gk(X) =
Mk∑
i=1

wikfi,k(X), k ∈ {1, . . . ,K}, (3)

where Mk is the number of patterns of class k and wik is the prior probability of class k. So a
vector X is classified to the class that has the maximum output of its summation neuron.

3 Established Computational Intelligence Algorithms

Particle Swarm Optimization: Particle Swarm Optimization is a population–based, stochastic,
optimization algorithm [6]. It exploits a population of individuals to synchronously probe promising
regions of the search space. The population is called a swarm and the individuals (i.e., the search
points) are called particles. Each particle moves with an adaptable velocity within the search space,
and retains a memory of the best position it ever encountered. In the global variant of PSO, the
best position ever attained by all individuals of the swarm is communicated to all the particles at
each iteration [5].

Let Xi be the n–dimensional feature vector of the ith particle, Xi ∈ S ⊂ Rn and Vi its velocity
in the search space. Then, the swarm is manipulated by the equations,

Vi(t + 1) = w Vi(t) + c1 r1

(
Pi(t)−Xi(t)

)
+ c2 r2

(
Pbesti

(t)−Xi(t)
)
, (4)

Xi(t + 1) = Xi(t) + Vi(t + 1), (5)

where i = 1, . . . , NP ; Pi is the best position it ever attained; w is a parameter called inertia weight;
c1 and c2 are two positive constants called cognitive and social parameter, respectively; and r1, r2,
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are random vectors uniformly distributed within [0, 1]n. Alternatively, the velocity update can be
performed through the following equation [1],

Vi(t + 1) = χ
[
Vi(t) + c1 r1

(
Pi(t)−Xi(t)

)
+ c2 r2

(
Pbesti

(t)−Xi(t)
)]

, (6)

where χ is a parameter called constriction factor, giving rise to a different version of PSO.

Differential Evolution: Differential Evolution (DE) is also a population–based, stochastic al-
gorithm that exploits a population of potential solutions, individuals, to probe the search space.
Each new individual is generated by the combination of randomly chosen individuals of the pop-
ulation. This combination will be called mutation. So, for each individual wk

g , k = 1, . . . , NP ,
where g denotes the current generation, a new individual vi

g+1 is generated according to one of the
following equations:

vi
g+1 = wbest

g + F
(
wr1

g − wr2
g

)
, (7)

vi
g+1 = wr1

g + F
(
wr2

g − wr3
g

)
, (8)

vi
g+1 = wi

g + F
(
wbest

g − wi
g

)
+ F

(
wr1

g − wr2
g

)
, (9)

vi
g+1 = wbest

g + F
(
wr1

g − wr2
g

)
+ F

(
wr3

g − wr4
g

)
, (10)

vi
g+1 = wr1

g + F
(
wr2

g − wr3
g

)
+ F

(
wr4

g − wr5
g

)
, (11)

vi
g+1 =

(
wr1

g + wr2
g + wr3

g

)
/3 + (p2 − p1)

(
wr1

g − wr2
g

)
+ (p3 − p2)

(
wr2

g − wr3
g

)
+

(p1 − p3)
(
wr3

g − wr1
g

)
, (12)

where wbest
g is the best individual of the previous generation; F > 0 is a real parameter, called

mutant constant and r1, r2, r3, r4, r5 and r6 ∈ {1, 2, . . . , k− 1, k +1, . . . , NP} are random integers
mutually different.

Evolution Strategies: Evolution Strategies (ES) are population based search algorithms that
have been developed by Rechenberg and Schwefel [11]. ES exploit a population of µ individuals to
probe the search space. At each iteration of the algorithm, λ offsprings are produced by stochastic
variation, called mutation, of recombinations of a set of individuals (called the parents) from
the current population. Mutation is typically carried out by adding a realization of a normally
distributed random vector. After the creation of the offspring individuals, selection takes place, and
either the µ best individuals among the offspring population, or the µ best individuals among both
the parent and the offspring populations are selected to form the parents in the next generation.
These two selection schemes are denoted as (µ, λ)–ES and (µ + λ)–ES, respectively.

ES use a set of parameters, called strategy parameters, to parameterize the normal distribution
used in the mutation procedure. These parameters can either be fixed, or evolve during the evolu-
tion process resulting in self–adaptive ES. A special case of ES is the Covariance Matrix Adaptation
Evolution Strategies (CMA–ES), which has been developed by Hansen and Ostermeier [4]. CMA–
ES adapt the parameters of the algorithm such that strategy parameter settings that produce
individuals that are selected are favored [4].

4 The Proposed Approach

The main disadvantage of PNNs is their sensitivity with respect to the choice of a parameter,
called spread parameter, which influence the receptive field of each kernel. Usually, this parameter
is set to standard default values suggested in the literature. However, this approach is not always
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appropriate due to the dependence of the spread parameter on the specific data at hand. There-
fore, techniques for the automatic determination and adaptation of this parameter can be proved
very useful. We investigate the sensitivity of the PNNs’ performance with respect to the spread
parameter and propose algorithms for the selection of an optimized value. The PSO, DE and ES
algorithms are considered for this purpose.

Alternatively, a matrix of spread parameters can be used to enhance PNNs’ performance by
increasing the network’s degrees of freedom. This approach, however, imposes a heavier computa-
tional burden since the optimization procedure becomes multivariate instead of univariate. Thus,
although the matrix of spread parameters offers more flexibility to the model, the high dimension-
ality of the problem renders the optimization over–identified [8]. For example, if the problem is
100–dimensional, then the matrix would be 10000–dimensional, and huge amount of data would be
necessary to obtain a reliable estimate of the matrix. To overcome this problem, a diagonal form
of the matrix of spread parameters can be used. This matrix can be efficiently computed through
the PSO, DE and ES algorithms.
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